
II. M. Buengan

## КРИСТАЛЛИЧЕСКИЕ И СТЕКЛООБРАЗНЫЕ ХАЛЬКОГЕНИДЫ Si, Ge, Sn И СПЛАВЫ НА ИХ ОСНОВЕ



## Д. И. Блецкан

## КРИСТАЛЛИЧЕСКИЕ И СТЕКЛООБРАЗНЫЕ ХАЛЬКОГЕНИДЫ Si, Ge, Sn И СПЛАВЫ НА ИХ ОСНОВЕ

МОНОГРАФИЯ В ДВУХ ТОМАХ

Том I

Ужгород ВАТ "Видавництво "Закарпаття" 2004

ББК 22.37

Б68 УДК 621.315.592

У монографії узагальнено літературні дані та результати досліджень автора про кристалічні і склоподібні халькогеніди кремнію, германія і олова.

У першому томі розглянуто фазові рівноваги в подвійних системах  $A^{IV}$ — $B^{VI}$  і подано T—х-діаграми бінарних і потрійних систем на основі сполук  $A^{IV}B^{VI}$ , а також мікродіаграми стану в околі напівпровідникових фаз. Подані дані про кристалічну структуру хімічних сполук халькогенідів кремнію, германія та олова і про поліморфні та політипні перетворення цих сполук. Із врахуванням установлених особливостей діаграм стану проаналізовано можливості сучасних методів синтезу і вирощування монокристалів різноманітних халькогенідів Si, Ge та Sn, розкрито механізм їх росту із газової фази. Описані умови синтезу стекол і приведені області склоутворення в подвійних і потрійних системах на основі халькогенідів елементів IVA групи.

Для наукових співробітників і фахівців у галузі напівпровідникового матеріалознавства, фізики і техніки напівпровідників, а також викладачів, аспірантів і студентів відповідних спеціальностей.

В монографии обобщены литературные данные и результаты исследований автора по кристаллическим и стеклообразным халькогенидам кремния, германия и олова.

В первом томе рассмотрены фазовые равновесия в двойных системах  $A^{IV}$ —  $B^{VI}$  и приведены T—x-диаграммы бинарных и тройных систем на основе соединений  $A^{IV}B^{VI}$ , а также микродиаграммы состояния, непосредственно примыкающие к полупроводниковым фазам. Приведены данные о кристаллической структуры моно- и дихалькогенидов кремния, германия, олова и о полиморфных и политипных превращениях этих соединений. С учетом установленных особенностей диаграмм состояния проанализированы возможности современных методов синтеза и выращивания монокристаллов различных халькогенидов Si, Ge и Sn, раскрыт механизм их роста из газовой фазы. Описаны условия синтеза стекол и приведены области стеклообразования в двойных и тройных системах на основе халькогенидов элементов IVA группы.

Для научных сотрудников и специалистов в области полупроводникового материаловедения, физики и техники полупроводников, а также для преподавателей, аспирантов и студентов соответствующих специальностей.

Видання здійснене за фінансової підтримки Науково-виробничої фірми «*Технокристал*», м. Ужгород.

IV

 $A^{IV}B^{VI} \quad A^{IV}B_2^{VI},$   $(+II) \quad (+IV)$ Si, Ge Sn Si Ge

3

 $^{IV}\!B^{VI}$  -

IV -

Ge, Sn Pb -800-900'. IV11-12n, 10–15 Si, Ge, Sn  $A^{IV}-B^{VI}$ ,  $A^{IV}B^{VI}-A^{IV}B^{VI}$ ,  $A^{IV}B^{VI}-A^{IV}B_2^{VI}$ ,  $A^{IV}B^{VI} - A_2^{III} B_3^{VI}$  $A^{IV}B^{VI} - .$   $A^{IV}B^{VI}, A^{IV}B_2^{VI}$ 

Si Ge,

 $A^{IV}B^{VI}$   $A^{IV}B_2^{VI}$ .

IV<sub>></sub> VI

IV\_ VI

-

1.1. Si>S

Si–S Si–S .

·

. --

Si–S . [16–22], : (SiS)

 $(SiS_2)$  . .1.1

SiS<sub>2</sub>, Si  $\frac{1363}{}$ ,

 $SiS_2$ , 1363 , 1373 1473 [14].

1373 1473 [14]. Si <sub>2</sub> Al<sub>2</sub>S<sub>3</sub> 1473÷1573

[15].

SiS<sub>2</sub> Si 1123 [20].

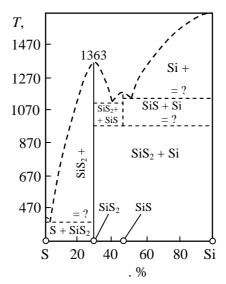
Si <sub>2</sub> <sub>2</sub>S.

SiS $_2$  [15].

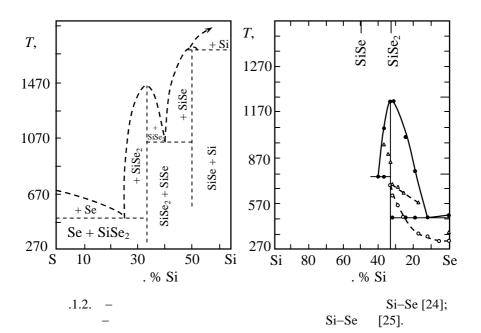
:

 $1/2 \operatorname{SiS}_2 + 1/2 \operatorname{Si} \Leftrightarrow \operatorname{SiS}, \tag{1.1}$ 

 $SiS_2$  , – ,


 $\mathrm{SiS}_2$ 

SiS [17]. SiS 1213 [14]. SiS<sub>2</sub> 1000 258,476 / .


515<sub>2</sub> 1000 258,470 /

SiS lg ( ) = -47200/4,573 + 31,6/4,573 (894 - 1076 ); SiS<sub>2</sub> lg ( ) = -61736/4,573 + 37,48/4,573 (950 - 1200 ).

[23].  $SiS_2$  (



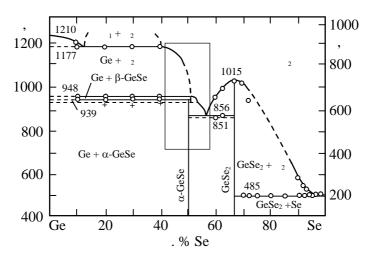
. 1.1. Si–S [16].



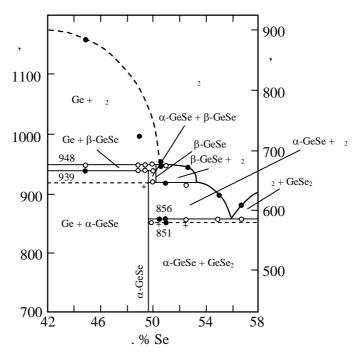
```
973
                1:1, 2:3, 1:2 1:2,2)
                   5
                                              SiS<sub>2</sub>
                                             870
                                                                      Si_2 S_3; -
                                                        1273
            Si 2.
                                                                                 SiS<sub>2</sub>
                1098 .
                                                  1273
                                                                          4,5
                                Si
                                      S
                                                                           1:2
                                                         1673
                                                                      4,4
        5
     973 4,5
                                       5
                                                                                    Si
  S 1:1, 2:3, 1:2 1:2,2
                                                                             [23].
                              1.2.
                                                 Si>S
                                                             Si-S
        Si-S,
                                                 [24],
                                                                              .1.2, .
                                                           Si-Se
    . 1.2, [25].
                                       (SiS<sub>2</sub>) [21, 22, 24–27]. -
                 (SiS)
                                                                            [22, 27].
                                       Si
                                 S
                              [27],
                    673
                             843 .
                                                                               SiS 2.
                                                              943
                 SiS<sub>2</sub>
                                               1243 \pm 5 [27].
                              SiS<sub>2</sub>
                  Si <sub>2</sub>, <sub>2</sub>S
                    3,6^{-7} [28].
       SiS<sub>2</sub>
                    SiS
          [24]:
                             2SiSe \rightarrow SiSe_2 + Si.
                                                                            (1.2)
\begin{array}{ccc} \text{Si}_{2} & \text{MgSe} & 1523 \\ 1073 & , & \end{array}
                                                                   SiS <sub>2</sub> Si
                                            Si S,
                              1023 [18, 27].
                                                                  SiSe
    2 ,
```

```
Si-S
                -Si_2S_3.
                                                           Si-S.
                                           SiS
                                                     SiS 2
                                                           [24]
                               Si
  < 493
                                                         30 . % S (
                                  1.3.
                                                        Si >Te
                  Si-Te
                                                        [29–31]. – -
     Si-Te
                                         . 1.3.
                                                               [29, 30]
      > -
                                  .1.3.
                                                                                  Si-Te
                                                                                       (Si_2Te_3),
                                                1159 [31], 1165 [29], 1168
                                                                                            [30].
                                              [129]
Si_2Te_3
                                                   1162 .
                Si_2Te_3
[29, 32].
                                                     Si-S
                                                                Si-Se,
                                                                                          Si_2Te_3
                                                                                      Si_2Te_3
                                                                                         [32]:
             Si_2Te_3 + 4H_2O \rightarrow 2SiO_2 + 2H_2\uparrow + Te + 2H_2Te\uparrow.
                                                                                        (1.3)
                  SiO<sub>2</sub> Te
                   . H<sub>2</sub>Te
                                                                                          Si<sub>2</sub>Te<sub>3</sub>
               [29, 130].
      673
                                             [31]
                                683
20 \div 60
              . %
                                     \beta-Si<sub>2</sub>Te<sub>3</sub>.
                                                                               Si_2Te_3
                                                                                          963
[31]
                                                                              873
                                                                           24)
                                                                            \alpha-Si<sub>2</sub>Te<sub>3</sub>.
              Si<sub>2</sub>Te<sub>3</sub>
                                     [33],
                                                                               [31]
```

```
Si_2Te_3( .) \rightarrow (2- )Si( .) + [(3- )/2] Te_2( ) + xSiTe( ).
                                Si<sub>2</sub>Te<sub>3</sub>
                                                                               SiTe.
             SiTe_2
            T, K
            1300
            1200
                             1159
            1100
                           o 2
            1000
                           a 3
                                             S_{\beta\text{-}Si_2Te_3}
             900
             800
                                                     687
                              683
                 Si
                           20
                                      40
                                                          80
                                                                   Te
                                                60
                                          . % Te
                                                          Si-Te [31]:
                  . 1.3.
   1 –
                                           ; 2 –
                                                  ; 3 –
                                                                    Si_2Te_3
                                        p_{Te_2} - -
      [34],
59,45 60,50 . %
                                                                              [130],
                                                              Si<sub>2</sub>Te<sub>3</sub>
         60 \div 66,6 . % , . . Si_2Te_3 «SiTe<sub>2</sub>».
                                                                  Si_2Te_3
          [31]
                                                                   59,6
                                                                              60,25
  . %
                                [31],
0,5
                                                      59,85 ± 0,06 . %
```


```
60.14 \pm 0.04 . % (
                                      1023 ).
                                       (Si<sub>2</sub>Te<sub>3</sub>
                                                               0,05 . %),
                                                                    [31].
                                     Si_2Te_3
                              (682)
17 \div 18
              . % Si [29].
                                                                        Si-Te
                   − 82,5 · . %
                                                                                679
       :
                  [30].
   683
                   Si<sub>2</sub>Te<sub>3</sub>.
                                                                                       Si-Te
                                                                        Si<sub>2</sub>Te<sub>3</sub>,
SiTe [35] SiTe<sub>2</sub> [36].
Si_2Te_3 [32]
                                                                                   SiTe [35]
  SiTe<sub>2</sub> [37, 38],
Si<sub>2</sub>Te<sub>3</sub>
                       [129],
                                                         Si_2Te_3
                       SiTe SiTe<sub>2</sub>
                                                                                            Si,
                                  1.4.
                                                      Ge>S
                                                                     Ge-S
                                                            [39]
                                Ge-S
                                                                    GeS GeS<sub>2</sub>
                          [40-44]
             .1.4.
                    ,
(GeS)
                                                 (GeS<sub>2</sub>)
                                                  GeS
                                                           GeS<sub>2</sub>,
                                 GeS,
                                                              ): 938 [39, 42], 940 [40],
         [41, 46].
                      [39, 42–44],
```

[40, 41, 46] GeS( ) = Ge( ) + (53 . % S).(1.4)Ge-S (3-45). % S)  $1193 \pm 2$  [39, 41, 42]. Ge-GeS 931 [41] 938 [42].  $+GeS_2$  $1193 \pm 2$ 1123 β-GeS<sub>2</sub>+ 1100 Ge+  $931 \pm 5$ 900 GeS+  $\beta$ -GeS<sub>2</sub>+  $770 \pm 3$  $GeS+\beta-GeS_2$ 700 Ge+GeS  $\alpha$ -GeS<sub>2</sub>+ 500 40 60 100 20 80 0 Ge . % S S . 1.4. Ge-S [41]. GeS GeS<sub>2</sub>  $870 \pm 3$ 57,3 . % S [41],883 60 . % S [46]. [39, 45] GeS 863 868 [42], 858 [47] 853 [48, 49]. 60  $773 \div 823$  . GeS [39].


12

[41, 46].

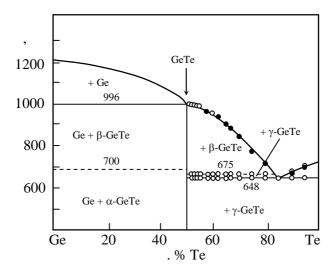
```
793
                                            770
        GeS_2
                77 \div 93 . % S
         973 \pm 5 .
                              GeS_2
                                                S
573
                                                               . % Ge
                                                        15
973
    ).
              [50]
                                                              Ge-S
                                -Ge_2S_3.
                        [39-44]
                                  Ge_2S_3
     [51], Ge<sub>2</sub>S<sub>3</sub> (
                                                 Ge-S
                                     . 6.1.4)
                          1.5.
                                         Ge>S
          Ge-Se
                                       [54-61].
                                 Ge-S.
[55-61]
                                                         Ge-S
            .1.5.
                Ge-Se
                           (GeSe)
                                                   (GeSe<sub>2</sub>)
                                 [55–57, 59–61],
                                               948\pm2
                    [58]
                                   = 943 .
                                                  GeSe
                                                 α- ,
β- [61, 62].
                                                    GeSe
                                            β-
                   Ge \,\, + \,\,
                                   948
                                                   920
\alpha-GeSe + 2.
                     939
                                                   0 \div 50 . %)
                                    13
```



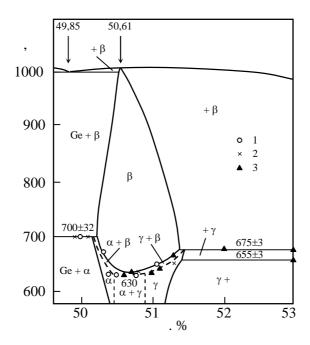
. 1.5. Ge–Se [61].



. 1.6. Ge–Se GeSe [61].


Ge( ) +  $\beta$ -GeS ( )  $\Leftrightarrow \alpha$ -GeS ( ). (1.5) [62] 924 NaC1 = 5,730 Å ( 929 ). GeSe [55], 50,4 . % Se. GeSe  $\pm 1$  . % Se [60]. [61] GeS, 900 α-GeSe .1.3. 49,5 50 . % Se, β-GeSe 50 50,6 . % Se. 49,75 50,25 1.6 GeSe . % Se. Ge  $17 \pm 2$   $40 \pm 2$  . % Se [55]  $11 \div 12$  $40 \div 42$ . % Se [59]).  $1177 \pm 3$  [55, 61].  $1015 \pm 2$  . GeSe<sub>2</sub> [53]. GeS -GeS 2 [61] [55] - 860 $856 \pm 2$  $56.0 \pm 0.5$  . % Se; 56,5 . % Se; [58] – 853 62 . % Se; [59] - 85157 ÷ 58 . % Se. Se  $\rightarrow$  GeSe<sub>2</sub> + Se.  $94.5 \pm 0.5$  . % Se [61].  $: 455 \pm 1$ [60]

Ge-S


S.

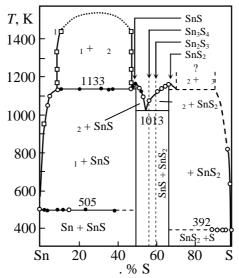
```
( . . 6.1.4).
                                       Ge>Te
                        1.6.
                             Ge-Te
[63]
                                                     (GeTe),
                                          998 \pm 3
                                                             GeTe
       85 . %
                                             648
                                                   (.1.7).
      Ge-Te
                                  40 \div 60 . %
          [64].
                                                                  GeTe
                                          997 .
                                                        . %
                                                50,61
     (Ge + GeTe)
                                                  996
                                                                  49,85
  . %
                                                        GeTe
                                          [63],
                                     [64],
        [65-71]
                                                          Ge-Te
               GeTe.
      GeTe,
          [65, 67–71]
                GeTe
                                        [64].
                          [64-73].
                                                            GeTe
                                             Ge<sub>1-</sub> Te
                              GeTe:
     NaCl (\beta) ( . . Fm3m),
\approx 640 \div 700
                                                                    (\alpha)
( . . R3m,
                                                       \alpha-As)
       (γ) (
                              SnS) [67, 68].
                                50,3
                                       51,5 . % (703 ).
                β-
                                GeTe
          α-
                                 γ-
```

[67, 69, 73–76].

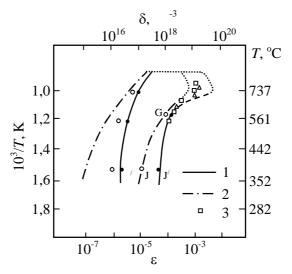


. 1.7. Ge–Te [14, 67].




. 1.8. [65, 69]: 1 - , 3 - .

```
α-
                                                  (0,503 < < 0,505).
                          \gamma-Ge<sub>1-x</sub>Te<sub>x</sub> [67],
                                              (0,509 < < 0,512)
                 640 \div 675 .
                                                               50.6 \div 50.8 . %
                                                   . α-GeTe
                                                      \geq
                                       ),
            α-
                                          α-GeTe
                                                                       [76].
                                                       γ- [74, 76].
                    \gamma \rightarrow \beta-
                            \alpha \rightarrow \beta-
                                                   ( < )
50,6–51,2 . %
              610 ÷ 630 (
                                                                                α-
                                480–520 – γ- GeTe [78].
                                                                   GeTe (
640 \div 700 )
                           50,5 \div 51,5 . %
                                                         51,1 . %
                                                                                  β
                                               α-
                                                                           α-
GeTe
p = (5 \div 10)10^{20} <sup>-3</sup>.
                                                       [66, 80]
```

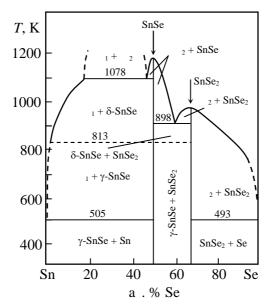

```
γ-
     [79]
γ-
             .1.8
Ge-Te
                                                                                  [65,
69].
         .1.8
                         , α-
        Ge + \beta \Leftrightarrow \alpha 700 \pm 3
                                                                 Ge.
        50,5 \div 50,9 . %
                                                                               \beta \rightarrow \alpha +
                          629 \pm 4
+ γ
                                                         GeTe
            50,6 . %
                                                γ-
                                  +\beta \rightarrow \gamma
                                                                   675 \pm 3
                                                        \rightarrow \gamma +
655 \pm 4 .
                                        [7, 46, 66, 68, 81]
                                        Ge-Te
                                                                       ( )
                                       [6]
                                            Ge-Te
                  [82]
                                                   Ge-Te
                                                                            ≈ 650 ·
GeTe<sub>2</sub>,
GeTe_2
                                                                 [12].
                                                        Ge-Te
              45 ÷ 100 . %
                                      [67]
                                GeTe_2.
                                       [83],
```

```
GeTe<sub>2</sub>
GeTe<sub>2</sub>
                                                             β-
                         d > 6
                             523
                                                              GeTe<sub>2</sub>
                       GeTe
                                1.7.
                                                    Sn>S
                                                                              S
[84]
                                   Sn-S. - -
                       Sn-S
                                                                   [85,86]
             . 1.9.
                                             (SnS<sub>2</sub>)
SnS
                (SnS)
              SnS
                                                                 1153 \pm 5 ,
                                                  1503
                                                                         3,34 \cdot 10^3
              (1154 \pm 2) SnS
                                              4.10^{6}
                                                          [84].
SnS_2 (1143 ) –
                                                         SnS
                                     858-875
                                                           [86, 89].
                                                  SnS
295 \div 1000
                                                                                      [87,
105]
                                                              ( 16, . . Pbnm)
                                                   α-
                                                                   TlI ( 33,
                      \alpha \rightarrow \beta
Cmcm).
                                                               2-
Sn S
                                   [100].
                                                                 «
                                                       SnS_2
[92],
                         lg p( . . .)=\left\lceil \frac{(4736 \pm 200)}{1000} \right\rceil + 6,88 \pm 0,15.
                                                                                (1.6)
```

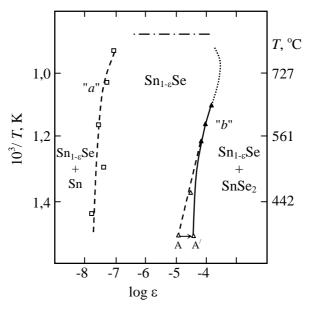
=473



. 1.9. Sn–S [85].




. 1.10. 
$$[99] (\epsilon - \\ , / ) \\ 1 - \\ [V_{Sn}] , [(V_{Sn} \, V_{Sn})^*]; 2 - \\ (300 )$$

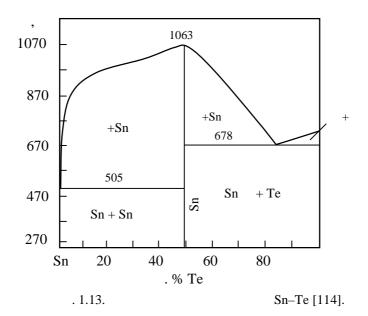

 $V_{Sn} = -/2; 3 - [98].$ 

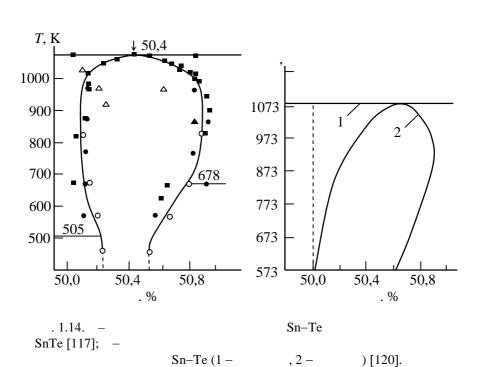
```
SnS_2
                                                                          [15].
                                [84, 86, 93–95]
                                               Sn_2S_3 Sn_3S_4,
                                                                             [93]
                              Sn_2S_3
                                        SnS
                                               [85,94]
                       Sn_3S_4.
[86, 93, 95].
                   Sn_2S_3 Sn_3S_4,
SnS
       SnS<sub>2</sub> [91, 96].
                                               Sn_2S_3 (Sn^{2+} Sn^{4+} S_3)
                                                                           Sn_3S_4
(Sn_2^{2+}, Sn^{4+}, S_4)
                                                    [10].
            50
                  40 . % Sn,
                                                   Sn_3S_4 Sn_2S_3,
                   [10].
                                           Sn_3S_4 Sn_2S_3,
                      Sn-S
              (
                                       Sn-S
                                    47 . % S.
                             10
                                  1133
            1523 (
                         .1.9).
                                                   70
                                                          90 . %.
        SnS SnS<sub>2</sub>
                                                           1013
                                                                               55
  . % S [84].
       «
                            >>
              SnS
                                                             ) [43, 85, 98, 99].
      (
```

```
.1.10
                                                                  Sn_{1\pm\,\epsilon}S
                625 \div 1010
                                                                                        [85,
99, 112].
                                                   SnS
0,05 . %.
                            S
                                                        833, 880, 940, 1010, 1069
                                        S [98].
              [\,V_{Sn}^{\,2+}\,],
                                                                          Sn
0,07
                                                  2[V_{Sn}^*] \Leftrightarrow [(V_{Sn}V_{Sn})^*] - 1,60
                   [98]
[112].
                          [\,V_{\scriptscriptstyle Sn}^{\,*}\,]
                                                     [(V_{Sn} V_{Sn})^*].
                                                                               .1.10
                                1.8.
                                                     Sn>Se
                                                        Sn-Se
[100–102]. - -
                                                                           .1.11,
                                      [103, 104].
                                                               (SnSe)
(SnSe_2)
                                                        [14]
Sn-Se
                                                        -\ Sn_2Se_3
                                   [91, 96, 103].
                                                                      Sn_2Se_3
                                               SnŠe
                                                        SnSe<sub>2</sub>.
                                                                     1153 \pm 5
                                                                                     [103].
                                                        / [102].
:
                           SnSe 32,63 \pm 3,7
                                                16)
                                                           807
                      (
α-
                                            β-
                                             23
```



. 1.11. SnSe [103].





. 1.12. 
$$[108] (\epsilon - \hspace{1cm} , \hspace{1cm} / \hspace{1cm} ).$$

```
lI (
                            33) [105].
                                                                       SnSe
                                                   [106, 107].
              SnSe
                                      200
                                                                 α-
                                                                  0 \le 0.12
0.50 \ge 0.48 -
                                Se.
                                                     β-
                                             NaCl:
                               NaC1
 /2.
                          α-
                               3-
                                                                     S_N 2 [105].
                                 SnSe
                                                               10^{-8} - 10^{-4} . % Se
[108].
      Se
                                        823÷963 ,
                   [\,V_{\text{S}n}^{\,2^{+}}\,].
                                                                              0,012
    0,20 .
                                                        [(V_{Sn})^*]:
[(V_{Sn})^{2*}],
       663÷713
                                                                           663
                             1,9
                                   1,15
                                      SnSe
                                                     [100, 102].
                        SnSe
                                                 SnSe, Se<sub>2</sub>, SnSe<sub>2</sub>
           SnSe
                                                                            SnSe.
                                           [103],
948 \pm 5
               929 \pm 2
                                                    SnSe_2
                                      [100].
                                                      2,4
                                                                 18R
                     [110].
               SnSe<sub>2</sub>
                                                                [111, 164].
                                            SnSe_2
```

Sn-Se

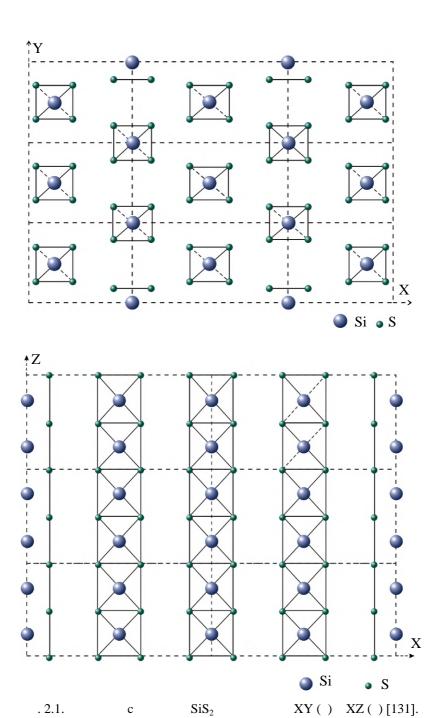
```
(10÷48 . % Se).
                         SnSe
61 . % Se.
     1078 ( .1.11).
                                                SnSe_2
                  898
                      SnSe + SnSe_2
                                                               [97].
                                         10^3 - 10^4
                  SnSe + SnSe_2
                                  SnSe_2
                                                      Sn,
  1
                 n-
SnSe
                 Se.
              SnSe SnSe<sub>2</sub>
              SnSe + SnSe_2
(001)_{\text{SnSe}} \| (001)_{\text{SnSe}} \| [110]_{\text{SnSe}} \| [1\overline{1}0]_{\text{SnSe}} .
                       1.9.
                                      Sn-Te
                                                       Sn-Te
               .1.13.
                      (SnTe),
                                                            1079
[14, 113, 114].
                                                      50.4 . %
                         SnTe.
[113].
               SnTe
\rho() = 6.15, \quad \rho() = 5.87 / ^3,
   _{m} = 1.9 \pm 0.2 / [4].
                          SnTe
                       (
                          0,3 %
                                                          95 %
    ),
[4].
85 . % ; = 678 .
                                           Sn - SnTe
                                            103
0,11 .%.
    SnTe [109, 114–121],
                           SnTe
            (.1.14, ),
    ~ 1 . %.
                                                               50.4
  . % .
                                      [120, 121]
                     (~678) [113].
Sn-Te
     e (
~ 678 ~ 1000
                                            ~ 50,1 50,9 . %
                [114]
```

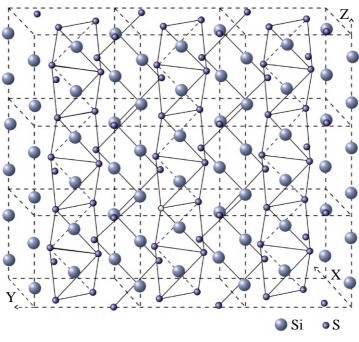




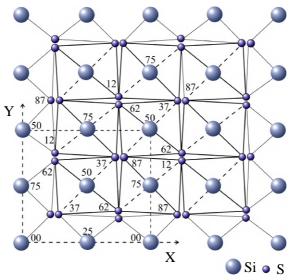
```
(573)
[117].
              SnTe
                                                      [113, 114],
[116]
                                   SnTe
                     50,4 . % Te:
 . . . (α),
                                                  ( ),
       ( ),
50,4
(R_x)
                                 [117, 118]
     Sn
                                       (
                    ),
                                               (50.1 \div 50.4 \quad 50.6 \div 50.8)
  . %
                             <sup>119</sup>Sn
                                             SnTe,
                              49,9 51,5 %
                                                             0,5 % [119].
        ( )
                                                                      ( )
           SnTe.
                                           50, 80 . %
      Sn-Te
                                                        SnTe.
                               [120],
```

```
573 – ( .1.14, ).
                                              Sn-Te,
                                   (\alpha)
      NaCl (β) [122, 123],
                                                 [124].
                      \sim 1,2\cdot 10^{20} <sup>-3</sup>,
                                                                \alpha \rightarrow \beta
               [125].
     97,5
                                 , = (1,2 \div 2,7) \cdot 10^{20}
                 p-SnTe
                \approx 1,3.10^{21}
  ( )
                ≅ 9,1
                                           SnTe (
2 \cdot 10^{20}
               8÷300
                                                     [123]
                                                                     160
                       IV_ VI
                        Ge-S(Se) Sn-S(Se),
              Pb-B<sup>VI</sup>
  IV_
```

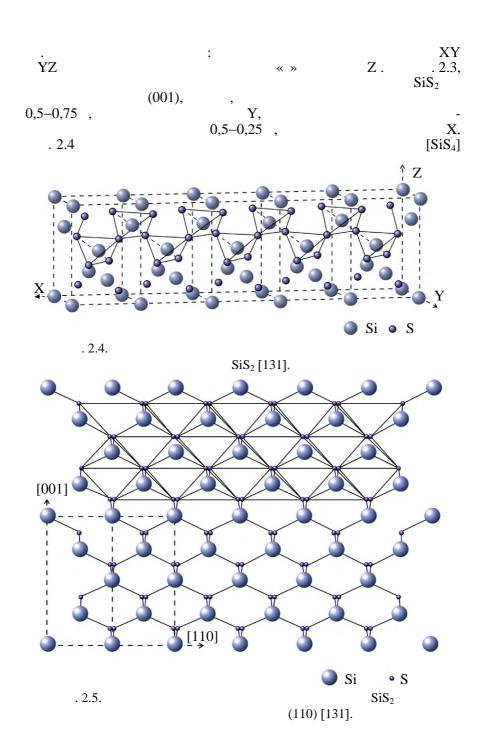

[6].


## Si, Ge, Sn

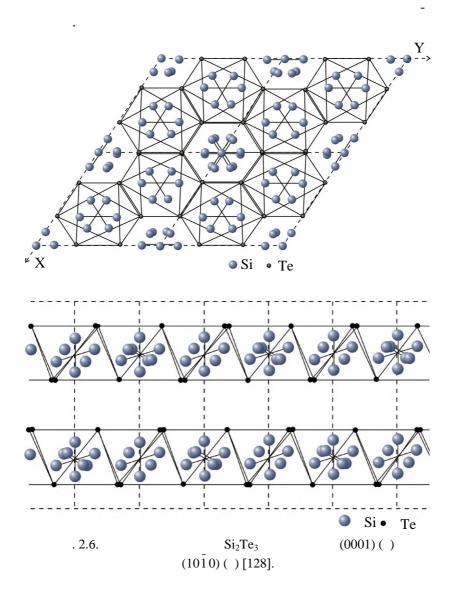
2.1.


| SiSe <sub>2</sub> ,                              |                  | . 2.1.                           | SiS <sub>2</sub>                 |
|--------------------------------------------------|------------------|----------------------------------|----------------------------------|
| Ibam,                                            | [22,             | -<br>27].                        |                                  |
|                                                  |                  | [SiX <sub>4</sub> ],<br>Z [131]. | -                                |
|                                                  |                  |                                  | -                                |
| , $\mathrm{SiS}_2$                               | . 2.1.<br>XY XZ. | . 2.2                            | -                                |
| [SiS <sub>4</sub> ].<br>= 2,133 Å, Si–Se = 2,275 | Å.               |                                  | $Si-S = 5,55 \text{ Å } (SiS_2)$ |
| 5,69 Å (SiSe <sub>2</sub> ).                     | S-               | -Si-S = 81, 99                   | , 114 116,                       |
| S - Si - Se = 80, 100, 112,                      | 117,             |                                  | [SiS <sub>4</sub> ]              |
|                                                  | . 2.1. ),        | ,                                | L +3                             |
| S-Si-S                                           | , $S_2Si_2$      | Si–S–Si                          | _                                |
| . 90,                                            | 52512            | p-                               | -                                |
| S–Si.                                            |                  | •                                | -                                |
| $[\mathrm{SiS}_{4/2}].$                          |                  |                                  |                                  |
| [DID <sub>4/2</sub> ].                           | $SiS_2$          |                                  |                                  |
| 1071                                             |                  |                                  | [23,                             |
| 127].                                            |                  |                                  | -                                |
| 17 %.                                            |                  |                                  |                                  |
| $[SiS_4],$                                       | ,                | X Y                              | -                                |
|                                                  |                  | 21 1                             | $I\overline{4} 2d$ -             |
|                                                  |                  | 1/4                              | « » -                            |

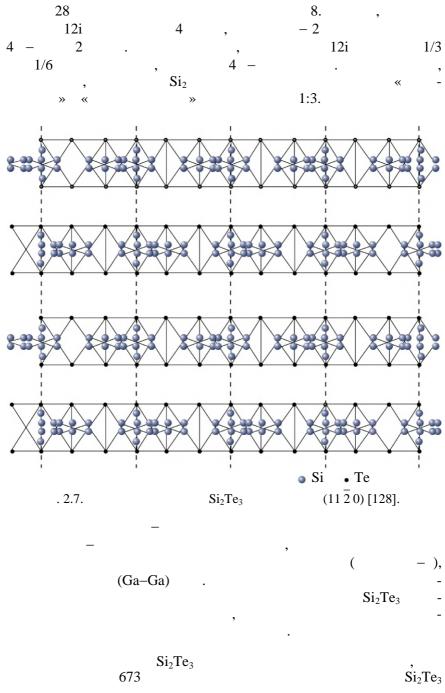
|                                                                   | ı            |   |                                                                           | -                                 |       |       | Å,                                         |      | ε.    |       |
|-------------------------------------------------------------------|--------------|---|---------------------------------------------------------------------------|-----------------------------------|-------|-------|--------------------------------------------|------|-------|-------|
| 1                                                                 | ,<br>X,      | ı | 1                                                                         |                                   | a     | q     | 2                                          | -    |       | ı     |
| SiS <sub>2</sub><br>SiS <sub>2</sub>                              | 1363         |   | $\begin{array}{c} lbam-D_{2h}^{26} \\ lbam-D_{2h}^{26} \end{array}$       | $\mathbf{Z} = 4$ $\mathbf{Z} = 4$ | 9,583 | 5,614 | 5,547                                      |      | 2,05  | [22]  |
| $SiS_2$ (                                                         | 5            |   | $I\overline{4}2d - D_{2d}^{12}$ $I\overline{4}2d - D_{2d}^{12}$           | Z = 4 $Z = 4$                     | 5,43  |       | 8,67                                       | 2,23 | 2,37  | [23]  |
| ${ m SiSe}_2$ ${ m SiSe}_2$                                       | 1243<br>1243 |   | $Ibam-D_{2h}^{26}$ $Ibam-D_{2h}^{26}$                                     | Z = 4 $Z = 4$                     | 9,669 | 5,998 | 5,851                                      | 3,64 | 3,63  | [22]  |
| $Si_2Te_3$ $Si_2Te_3$                                             | 1162         |   | $P\bar{3} 1c - D_{3d}^2 \\ P\bar{3} 1c - D_{3d}^2$                        | $\mathbf{Z} = 4$ $\mathbf{Z} = 4$ | 7,43  |       | 13,482     4,42       13,471     4,5       | 4,42 | 4,52  | [129] |
| $\mathrm{Si}_{2}\mathrm{Te}_{3}$ $\mathrm{Si}_{2}\mathrm{Te}_{3}$ | 1168         |   | $P\bar{3} 1c - D_{3d}^{\frac{2}{d}}$ $P\bar{3} 1c - D_{3d}^{\frac{2}{d}}$ | Z = 4 $Z = 4$                     | 7,422 |       | 13,465       13,475       4,56       4,566 | 4,56 | 4,566 | [30]  |







. 2.2.  $SiS_2$  [131].




. 2.3.  $\label{eq:SiS2} {\rm XY~[131]}.$ 

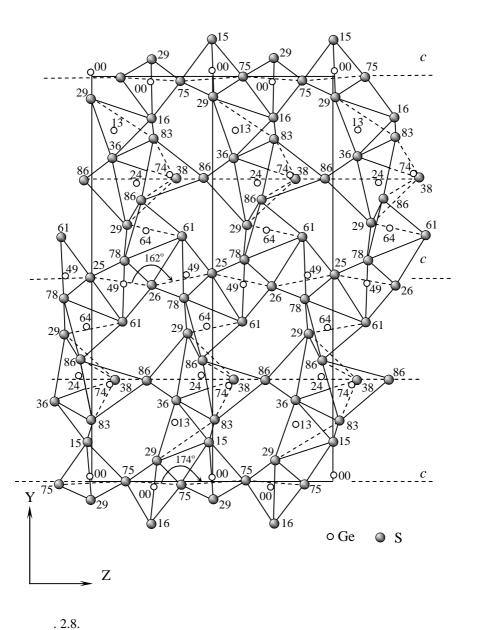


```
X
                           0,5-0,75
                                                                             0-0,25
0-0,75
                                              . 2.5
                                         (110).
              SiS_2
                                uFeS<sub>2</sub>,
                                         I\overline{4} 2d,
                        2,13 Å,
Si-S
                                                          S-Si-S = 105,2 118,5,
                                                       Si-S-Si = 109,4, . .
                                                        Si-S
                   (2,13 \text{ Å})
                                      (1,17 \text{ Å})
                                                            (1,04 Å).
                          SiS_2
                                                                [SiS_4],
                                         SiS<sub>2</sub>
               [SiS_4],
                                    Si_2Te_3
                                \overline{3} 1 [129].
     (0001), (10\overline{1}0)
                                                                  . 2.6 2.7 [128].
                            (11\,\overline{2}\,0)
                                        Si_2
             4,02 Å.
                                                                 \langle c \rangle
                             Si-Si = 2,27 \text{ Å},
                                                                      Si-Si = 2,35 \text{ Å}.
(~ 18
                                 [Te_6].
                                          2,53 Å
                                          Te-Si-Te = 113.8.
                                                                       2,66 Å
                                                      2,45; 2,13
                         Te-Si-Te 112,4; 114,6 118,5
                                                                          2,46; 2,56
```

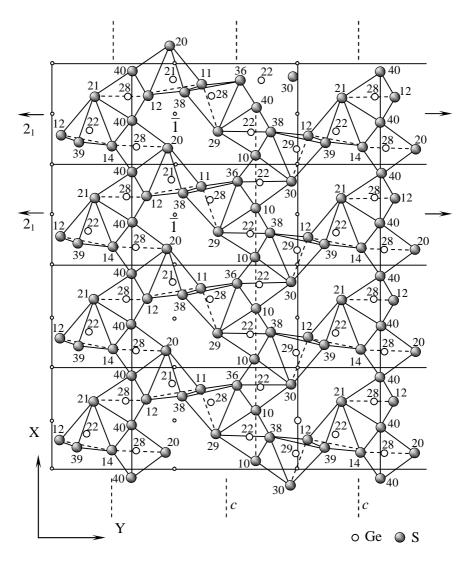


12i 71 %,



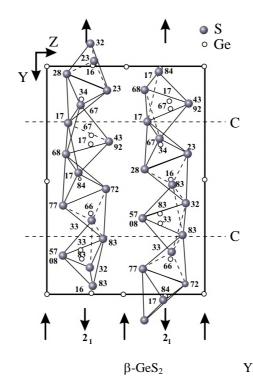

```
[130],
                                                                       673 \div 723
                              ,
Si–Si
                                                                        Si
                                    723
                                                       β-
                 Si
                     Si_2Te_3
            Si
              [130]
                                                                 Si_2Te_3 –
        Si_{2-x}Te_3 c 0,5 < < 1,
                                                      Si.
                  2.2.
                         [132, 133].
       GeS<sub>2</sub>,
                         2.2.1.
                                                                     Ge-S
            66
                   . % S
                                                                                (α-),
                                                             793
                               770
                   ,
(β-),
                                                           GeS_2
                                 [127, 139].
                                                                      GeS_2
              . 2.2.
                                                                               GeS_2
                                                          α-
                             [134],
[GeS<sub>4</sub>]
```

2.2.


 $\mathrm{GeS}_2$ 

| ı                     |      |       |        | Å,     | 8      |                         |      | 3 ,   | 1            |
|-----------------------|------|-------|--------|--------|--------|-------------------------|------|-------|--------------|
| ı                     | •    |       | q      | О      |        |                         | 1 1  | 1 1   |              |
| $\alpha\text{-GeS}_2$ |      | 98'9  | 11,6   | 22,34  |        | $Fdd2, \mathbf{Z} = 24$ | 3,01 | 3,05  | [134]        |
| $\alpha\text{-GeS}_2$ | 1098 | 6,87  | 11,57  | 22,38  |        | , Z = 24                | 3,01 |       | [39]         |
| $\alpha\text{-GeS}_2$ |      | 6,875 | 6,809  | 22,55  | 120,45 | , Z = 12                |      | 2,99  | [138]        |
| $\alpha\text{-GeS}_2$ |      | 6,874 | 6,808  | 22,54  | 120,50 | , Z=12 ,                |      | 2,98  | [133]        |
| $\beta$ -GeS $_2$     |      | 6,720 | 16,101 | 11,436 | 90,88  | $2_1/$ , $Z = 16$       | 2,89 | 2,935 | [137]        |
| $\beta\text{-GeS}_2$  | 1148 | 6,69  | 16,1   | 11,46  | 90,48  | $2_{1}', Z = 16'$       | 2,88 | 2,94  | [135]        |
| $\beta$ -GeS $_2$     |      | 6,67  | 16,12  | 11,46  |        | , Z=16                  |      |       | [39,<br>136] |
| $\beta$ -GeS $_2$     |      | 6,64  | 16,15  | 11,43  | 90,56  | $2_{1}', Z = 16,$       | 2,94 |       | [133]        |
| $\gamma	ext{-GeS}_2$  |      | 5,48  |        | 9,143  |        | $I\overline{4}2d, Z=4$  |      | 3,30  | [127]        |
| $\gamma$ -GeS $_2$    |      | 3,456 |        | 10,89  |        | $_{ m HgI_2}$ ,         | 3,49 |       | [139]        |

```
2,21 Å,
Ge–S 2,18 Å.
                              Ge-S,
                                                                   . Fdd2.
                  [39]
                                       GeS<sub>2</sub>,
770 \div 820 ,
                                           [134].
                                                                                 Pmmn.
             [39]
                                                                                       α-
                                                                 CdI<sub>2</sub>,
                                    24
                                                                         GeS<sub>2</sub>
                  [133, 135–138]
            β-
                                  GeS<sub>2</sub>,
      α-
                                β-
              2_{1}/
α-
                                                   [GeS_4].
                                                                      . 2.8-2.10
                                              β-GeS<sub>2</sub>
                                       α-
                                                             β-
                                                     [133, 137],
                                            β-
                                                                 GeS_2
                   [GeS_4]
               [GeS_4] (
                                                                       . 2.9).
                                                                   [Ge_2S_6],
         Z,
                                                               .2.10),
                                   (001).
               [Ge_8S_{22}] (2 [Ge_2S_7] + 2 [Ge_2S_6] - 4S).
                                                   [GeS_4]
                                  Ge-S 2,17-2,29 Å.
                                                                   S-Ge-S
                                 [GeS_4]
                                                             99,8-117,6,
```




8.  $\alpha$ - GeS<sub>2</sub> [133].



. 2.9.  $\beta\text{-}\qquad \text{GeS}_2\,\text{[133]}.$ 

 $SiO_2$ .



XZ, [403]

,  $\alpha$  ,  $\beta$  ,  $\alpha$  ,  $\beta$  ,  $\alpha$  ,  $\alpha$  ,  $\beta$  ,  $\alpha$  ,  $\alpha$  ,  $\beta$  ,  $\alpha$  ,  $\alpha$ 

```
Cd<sub>2</sub>,
                                                                        1173
                                           γ- GeS<sub>2</sub> [127].
            ≥ 3
                                                                        873
            \geq 300 [139].
        673
                                                                         773
              [139].
           7
                          2.2.2.
                 GeSe_2 ( . 2.3).
                                               [140]
    1)
                                                    773 ;
    2)
                                                                    - 4.56 /
                            -980 .
                                                     (\alpha, \beta, \gamma -
                                               [140]
         α-
               [53]
                                                     [140].
- 4.68 / <sup>3</sup>.
                           1013
                                        Pmmn
                                                     Pmn,
[53],
                   CdI<sub>2</sub>,
                                                                                24
```

α-GeSe<sub>2</sub>,

 $GeSe_2$ 2.3.

| 1                  | ı    |       |        | Å,     | (     |                                                                    | ı       | , / 3 |          |
|--------------------|------|-------|--------|--------|-------|--------------------------------------------------------------------|---------|-------|----------|
| ı                  | P,   |       | q      | 2      | ج     | •                                                                  | 1 1     | 1 1   | 1        |
| $\alpha$ -GeS $_2$ | 086  | 6,93  | 12,96  | 22,09  |       | , Z = 24                                                           | 4,56    | 4,61  | [140]    |
| $\alpha$ -GeS $_2$ | 1013 | 6,939 | 12,196 | 22,99  |       | $\begin{array}{cccc} P & , Pmmn \\ Pmm, & CdI_2, Z=24 \end{array}$ | 4,68    | 4,72  | [43,53]  |
| β-GeS 2            |      | 7,016 | 16,796 | 11,831 | 90.65 | $Z = 16$ , $2_{1}$ ,                                               | 4,37    | 4,39  | [142]    |
| β-GeS 2            | 1013 | 7,037 | 11,826 | 16,821 |       | , Z = 16                                                           | - 4,345 | 4,359 | [141]    |
| $\beta$ -GeS $_2$  | 1019 | 7,036 | 11,86  | 16,88  |       | , Z = 16                                                           |         | 2,935 | [43,136] |
| $\beta$ -GeS $_2$  | 1016 | 7,036 | 11,81  | 16,832 |       | $, 2_1/,$                                                          | 4,36    | 2,94  | [132]    |
|                    |      | 5,420 |        | 8,718  |       | $I\overline{4}$ 2 $d$ , $Z=4$                                      | 2,37    |       | [139]    |
|                    | 5    | 5,69  |        | 9,71   |       | $^{'}$                                                             |         | 4,87  | [139]    |
|                    | 7-8  | 5,89  |        | 5,89   |       | ,<br>CdI <sub>2</sub>                                              |         | 4,62  | [139]    |

```
CdI_2.
    β-
                         GeS 2
                                                                   [43]
                                                                      α-
       ( . 2.3). β-GeS <sub>2</sub>
                                                                             ,
β-
                                [43, 136].
                                                                              [132,
141].
            [141],
        16
                                                                  90 .
                                                 1013 ,
4,345 / <sup>3</sup>.
              \beta-GeSe_2
β-
                    GeS<sub>2</sub> [132, 142, 143].
                                                        Ge-S
                      ·
2,337
                                 2,369 Å (
                                                                   ).
                                                . 2.10).
\beta-GeS _2
                      48
           3,7 Å),
                                                       2,3 Å.
                                                  Se-Se
                                GeSe_2
                    [139].
```

```
[GeX_4]
                                         : 1)
                                [GeX_4]
      ; 2)
                Ge-S(Se)-Ge
                                              Ge-S(Se)-Ge
3)
                 Ge-S(Se)
          ; 4)
          2.3.
                                                   [146, 147].
                                             « »
(
             ).
                    (
                                                             ).
                                  (SiC, ZnS
                                                   .).
                      (
          ),
                           ,
[146].
```

```
CdI_2, PbI_2, SnS_2, SnSe_2
    100
                                                            [146–152].
                            [148],
                                                                          (n)
                                                     , R – , 15R
                             15-
, b, \overset{,}{c}
                             18 Ra, 18 Rb, 18 Rc.
                                                                             A, B, C
        , B, C Z
                                                                           c = N_{\cdot o},
   N –
                                                          ,
..(
                                                                   )(ABC)..,
                                        )(
```

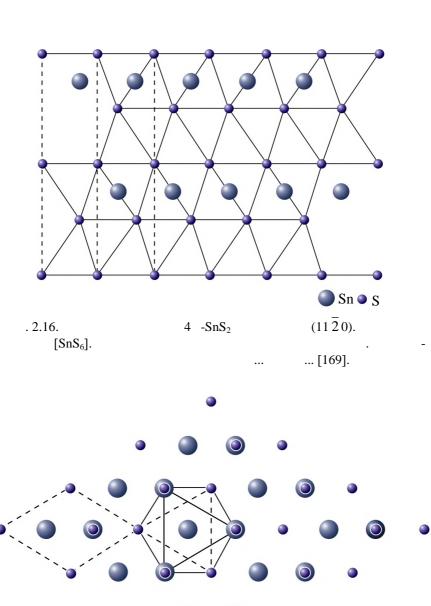
```
...(
      )( )...,
                                                                     )(
                                                                                   )...
                                                                                              A,
В
                        3^{6}),
c
              Z
                                [152]
                                                                                          3^6
                                                                                   SiC 4H =
           В,
= A\alpha B\beta C\gamma B\beta, CdI_2 4H = [(A\gamma B)(C\alpha B)],
                                                                              C
                                                                                   Cd.
                      \alpha, \beta \gamma
           Si I,
                         [150]
                                   1, 2, 3... 9.
                                                                    , 3142),
                                                                  ),
                                                                                      (11\,\overline{2}\,0),
             «
                        >>
                                                                  »,
                                                    «
(2)
                                       (11),
                                                                     (3)-
                                                                                              \infty,
                                                                                      (11\,\overline{2}\,0).
```

```
3,
                                                                             15-
                                                              : (23)_3,
                                                                                      9R
      (21)_3.
(SnS_2
           SnSe<sub>2</sub>),
                                                                 30
                              (SnS<sub>2</sub>) [153–169],
                                                . 2.4.
    2H-
(
                                    S,
Sn (
                                                                         » SnS<sub>2</sub>,
          . 2.11)),
                                                         «
                          I_2
                                                              [158],
                                                      25 %
                                                                                   38,9 %
                                                    18R,
                                                    4 .
                                            2

\dot{S}nS_2

                      [361].
              . 2.12
                                                              «c
```

2.4. SnS<sub>2</sub>


| ( -              | -                                |       | , Å             |                                                                          |                                                                                                                                                      | -                      |
|------------------|----------------------------------|-------|-----------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| )                |                                  |       |                 |                                                                          |                                                                                                                                                      |                        |
| 1                | 2                                | 3     | 4               | 5                                                                        | 6                                                                                                                                                    | 7                      |
| 2                | $\overline{3}$ ml- $D_{3d}^3$    | 3,643 | 5,894           | [11]                                                                     | $(A\gamma B)$                                                                                                                                        | [159]                  |
| 2 <i>H</i>       | $\overline{3}$ ml- $D_{3d}^3$    | 3,648 | 5,899           | [11]                                                                     | $(A\gamma B)$                                                                                                                                        | [156,<br>158]          |
| 4 <i>H</i>       | $P6_3mc$ - $C_{6v}^4$            | 3,645 | 11,802          | [22]                                                                     | $(A\gamma B)(C\alpha B)$                                                                                                                             | [157]                  |
| 4 <i>H</i>       | $P6_3mc$ - $C_{6v}^4$            | 3,648 | 11,798          | [22]                                                                     | $(A\gamma B)(C\alpha B)$                                                                                                                             | [158]                  |
| 4 <i>H</i>       | $P6_3mc$ - $C_{6v}^4$            | 3,643 | 11,79           | [22]                                                                     | $(A\gamma B)(C\alpha B)$                                                                                                                             | [159]                  |
| 6На              | $P3ml-C_{3v}^{1}$                | 3,643 | 17,683          | [1122]                                                                   | $(A\gamma B)(A\gamma B)(C\alpha B)$                                                                                                                  | [159]                  |
| 6 <i>Hb</i>      | $\overline{3}$ ml- $D_{3d}^3$    | 3,643 | 17,683          | [33]                                                                     | $(A\gamma B)(C\beta A)(C\alpha B)$                                                                                                                   | [159]                  |
| $8H_1$           |                                  |       |                 | [22][11] <sub>2</sub>                                                    | $(A\gamma B)(C\alpha B)$<br>$(A\gamma B)(A\gamma B)$                                                                                                 | [158,<br>161]          |
| $10H_{1}$        | $\overline{3}$ ml- $D_{3d}^3$    |       |                 | [22] <sub>2</sub> [11]                                                   | $(A\gamma B)(C\alpha B)(A\gamma B) \ (C\alpha B)(A\gamma B)(A\gamma B)(A\gamma B) \ (C\alpha B)(A\gamma B)(C\alpha B)(A\gamma B)$                    | [158,<br>161]          |
| $14H_1$          |                                  |       |                 | [22] <sub>3</sub> [11]                                                   | ( α )( γΒ)                                                                                                                                           | [158,<br>161]          |
| $20H_1$          |                                  |       |                 | $[22]_4[11]_2$                                                           | $(A\gamma BC\alpha B)_4$ $\gamma$ $\gamma$                                                                                                           | [161]                  |
| $24H_1$          | $P\overline{3}$ ml- $C_{3v}^{1}$ |       |                 | $[11]_3$ $[2111]_3^2$                                                    | $(\begin{array}{cc} \gamma )_6(C\alpha B)_2 \\ (\gamma )_2(C\alpha B)_2 \end{array}$                                                                 | [158,<br>161]          |
| $26H_1$          |                                  |       |                 | [21111] <sub>4</sub><br>[11]                                             | $ \begin{array}{ccc} \gamma & (C\alpha B)_3(& \gamma &)_3 \\ (C\alpha B)_3(& \gamma &)_3 \end{array} $                                               | [161]                  |
| $30H_1$          |                                  |       |                 | [2211] <sub>4</sub><br>[1122]                                            | $(\begin{array}{ccc} \gamma & C\alpha B & \gamma & )_4 \\ (\begin{array}{ccc} \gamma & ) & ( & \gamma & ) (C\alpha B) \end{array}$                   | [158,<br>161]          |
| $38H_{1}$        |                                  |       |                 | [29] <sub>9</sub> [11]                                                   | ( γ CαB) <sub>9</sub> ( γ )                                                                                                                          | [161]                  |
| 40H <sub>1</sub> |                                  |       |                 | [22] <sub>7</sub><br>[21122211]                                          | $ \begin{array}{cccc} (& \gamma & C\alpha B)_{7}(& \gamma &)(C\alpha B) \\ & (C\alpha B) & (& \gamma &)(C\alpha B) \\ & & (& \gamma &) \end{array} $ | [161]                  |
| $56H_1$          |                                  |       |                 |                                                                          |                                                                                                                                                      | [161]                  |
| 74H <sub>1</sub> |                                  |       |                 | 12[11] <sub>4</sub><br>[12] <sub>4</sub> 12[11] <sub>2</sub><br>12121112 |                                                                                                                                                      | [161]                  |
| 18 <i>R</i>      | $\overline{3}$ ml- $D_{3d}^3$    |       | 53,118<br>53,05 | [1212] <sub>3</sub>                                                      | $(A\gamma B)(A\beta C)(A\beta C)$ $(B\alpha C)(B\gamma A)(B\gamma A)$ $(C\beta A)(C\alpha B)(C\alpha B)$                                             | [156]<br>[158,<br>160] |

| 1          | 2 | 3 | 4 | 5                | 6                                                 | 7     |
|------------|---|---|---|------------------|---------------------------------------------------|-------|
|            |   |   |   |                  | Αγ $BC$ α $B$ Αγ $B$                              |       |
| $24R_{1}$  |   |   |   | $[2213]_3$       | $(A\beta CB\alpha C)_2$                           | [161] |
|            |   |   |   |                  | $(B\gamma AC\beta A)_2C\alpha B$                  |       |
|            |   |   |   |                  | $A\gamma BC\alpha BA\gamma BA\beta C$             |       |
| $30R_{1}$  |   |   |   | $[221212]_1$     | $(A\beta CB\alpha C)_2 B\gamma A$                 | [161] |
|            |   |   |   |                  | $(B\gamma AC\beta A)_2 C\alpha BC\alpha B$        |       |
|            |   |   |   |                  | $(A\gamma BC\alpha B)_2A\gamma B$                 |       |
| 42 P       |   |   |   | [22221212]       | $(A\beta C)_2(B\alpha CA\beta C)_2$               |       |
| $42R_1$    |   |   |   | _                | $B\alpha C(B\gamma A)_2(C\beta A)$                | [161] |
|            |   |   |   | 3                | $B\gamma A)_2 C\beta A(C\alpha B)_2$              |       |
| $48R_1$    |   |   |   |                  |                                                   | [161] |
| $66R_{1}$  |   |   |   |                  |                                                   | [161] |
| $66R_{2}$  |   |   |   |                  |                                                   | [161] |
| $78R_{1}$  |   |   |   |                  |                                                   | [161] |
| $78R_{2}$  |   |   |   |                  |                                                   | [161] |
|            |   |   |   |                  | $(A\gamma BC\alpha B)_3A\gamma BC\alpha BC\alpha$ |       |
|            |   |   |   |                  | $BC\beta A(C\beta AB\gamma A)_3C\beta AB$         |       |
| $84R_{1}$  |   |   |   | $[(22)_32111$    | $\gamma AB\gamma AB\alpha C(B\alpha CA\beta C)_3$ | [162] |
|            |   |   |   | 21] <sub>3</sub> | Βα C Αβ C Αβ C Αγ Β                               |       |
| $102R_1$   |   |   |   |                  |                                                   | [161] |
| $132R_{1}$ |   |   |   |                  |                                                   | [161] |
|            |   |   |   | $[(121112)_2]$   |                                                   |       |
|            |   |   |   | 12121211         |                                                   |       |
| $144R_{1}$ |   |   |   | 1212             |                                                   | [162] |
|            |   |   |   | $(11)_612]_3$    |                                                   |       |
| $156R_1$   |   |   |   |                  |                                                   |       |

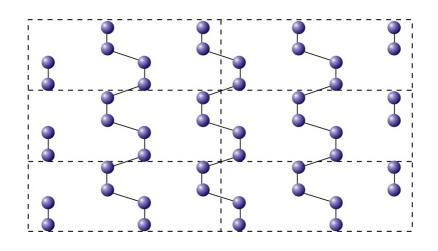
2.5. SnS  $_2$ 

| ( -         | -                             |      | , Å  |                       |                                                                                                          | -             |
|-------------|-------------------------------|------|------|-----------------------|----------------------------------------------------------------------------------------------------------|---------------|
| )           |                               |      |      |                       |                                                                                                          |               |
| 2           | $\overline{3}$ ml- $D_{3d}^3$ | 3,81 | 6,14 | [11]                  | $(A\gamma B)$                                                                                            | [163,<br>164] |
| 4 <i>H</i>  | $P6_3mc$ - $C_{6v}^4$         |      |      | [22]                  | $(A\gamma B)(C\alpha B)$                                                                                 | [163]         |
| 6На         | $P3ml-C_{3v}^{1}$             |      |      | [1122]                | $(A\gamma B)(A\gamma B)(C\alpha B)$                                                                      | [163]         |
| 6 <i>Hb</i> | $\overline{3}$ ml- $D_{3d}^3$ |      |      | [22][11] <sub>2</sub> | $(A\gamma B)(C\alpha B)(A\gamma B)(A\gamma B)$                                                           | [163]         |
| 18 <i>R</i> | $\overline{3}$ ml- $D_{3d}^3$ | 3,81 | 55,2 | [1212] <sub>3</sub>   | $(A\gamma B)(A\beta C)(A\beta C)$ $(B\alpha C)(B\gamma A)(B\gamma A)(C\beta A)$ $(C\alpha B)(C\alpha B)$ | [160]         |

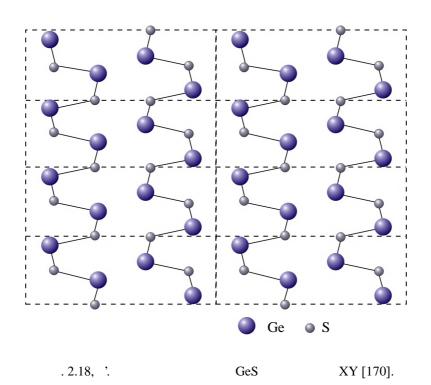
```
SnS_2
(2,57 \text{ Å}) SnSe<sub>2</sub> (2,67 \text{ Å})
                                                         Sn S
                                  2 - SnS_2
       . 2.13.
                                                        XY.
                 [SnS_6],
                                                             [169].
                                       2 -
                                                      SnS_2
                  101
                            3
     [153].
                                                   2 - SnS_2
                                                                  101
 = 3,638 = 5,88 Å = 3,605
                                                  = 5.46 \text{ Å}.
              = 3,638-0,023 +4,1\cdot10^{-8}; = 5,88-0,020 +1,9\cdot10^{-1}
                        3.5 \cdot 10^5,
      \beta_{\perp} = 6 \cdot 10^5 \quad \beta_{\parallel}
                    Sn-S 2,56, S-S 3,64, 3,65 Å; 3
         101
                                                               Sn-S 2,55,
S-S 3,61, 3,62 Å)
           1 %,
                                                                S-S (
         3,58, 3 3,256 Å)
101
                                                                    10 %.
                                                                       (
0,9 %) (7,1 %).
                            2 -SnS_2 (SnSe_2),
                                                          \vec{a}
           XY,
                                                                    120
```

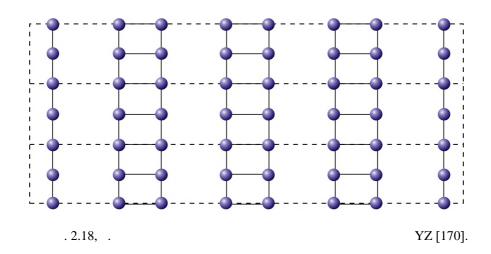


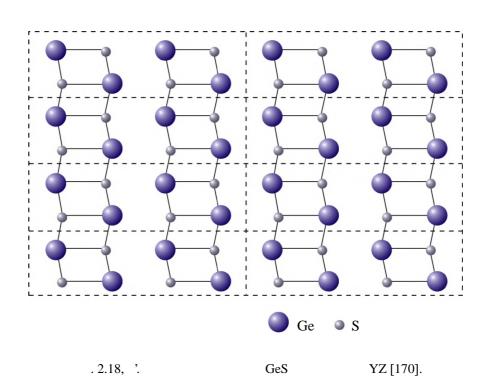
```
(\gamma)(\alpha)
         -(\gamma)(\beta)(\alpha)
      3 m1 (6Hb).
                                                        :
                                                                 6Hb
                   6
            2S
                    (0, 0, Z_1),
                                                               (0, 0, Z_1),
                                                        2S
                    Z_1=0; 4/12;
                                                                Z_1=0, 6/12;
                                                               (2/3, 1/3, \mathbb{Z}_2),
            3S
                    (2/3, 1/3, \mathbb{Z}_2),
                                                        2S
                 Z_2=2/12, 6/12, 10/12;
                                                              Z_2=2/12, 10/12;
            1S
                   (1/3, 2/3, Z_3),
                                                       2S
                                                               (1/3, 2/3, Z_3),
                    Z_3=8/12;
                                                                Z_3=4/12, 8/12;
                     (0, 0, Z_4),
                                                               (0, 0, Z_4),
            1Sn
                                                        1Sn
                    Z_4=9/12;
                                                                Z_4=9/12;
            2Sn
                    (1/3, 2/3, Z_5),
                                                               (2/3, 1/3, Z_5),
                                                       1Sn
                    Z_5=1/12, 5/12;
                                                                Z_{5}=5/12.
                    (1/3, 2/3, Z_6),
            1Sn
                    Z_6=1/12.
       18R-
              «c
                                                                        -[1212]_3
                                                                                 \bar{3}m1
( \gamma )( \beta )( \beta )( \alpha )( \gamma )( \gamma ) ( \beta )( \alpha )( \alpha ) [159]. 2.5
                                [154]
                                                                         10, 18,
22 , 30 , 36 , 42
                                                        SnSe<sub>2</sub>,
                            42R
                                   (
                                                                  SnS_2
                                                                            SnSe_2
                                                  [155],
SnS_2
     [156].
          SnS_2
                                                   : 2 -
SnS_{1,85}, 4H - SnS_{1,96} 18R - SnS_{2.04}.
                                                           18R-
                                                    4
```

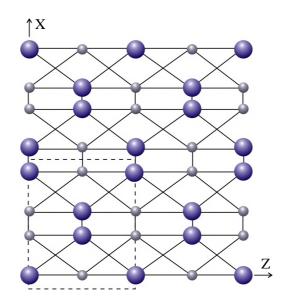

3*m*1 (6

```
Sn
                                                                       79,
   72 %.
     SnS_2
                                                  [147])
                                                 [165],
                                                                           [166],
         [167].
                                SnS_2,
[168]
2.4.
                                                      A^{IV}B^{VI}
                                                      A^{IV}B^{VI} (A = Ge, Sn, Pb
B = S, Se, Te
                                   [170].
                                                           ( ) D_{2h}^{16} = Pbnm)
( D_{2h}^{18} = Bbcm
    1.
                         (
[171]),
                                                        GeS, GeSe, SnS, SnSe
                                     α-
  γ-GeTe ( . 2.6).
                             TlI,
                                   D_{2h}^{17}=Cmcm),
        \beta-SnS(Se).
                             ( C_{3v}^5 = R3m),
V (Bi, Sb, As),
    3.
           α-GeTe.
                           NaCl, O_h^5 = Fm3m),
    4.
         PbS, PbSe, PbTe, β-GeTe, β-SnTe
\beta-GeSe(S).
```


|                                                                                                         |                    |              | 1                                               | _                        | -                                                                               |
|---------------------------------------------------------------------------------------------------------|--------------------|--------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------------------------|
| -                                                                                                       | ,                  | ,            |                                                 |                          |                                                                                 |
| GeS                                                                                                     | 300                |              | α<br>β                                          | SnS<br>NaCl              | $D_{2h}^{16} - Pbnm$ $O_h^{5} - Fm3m$                                           |
| GeSe                                                                                                    | 300<br>929         |              | α<br>β                                          | SnS<br>NaCl              | $D_{2h}^{16} - Pbnm$ $O_h^{5} - Fm3m$                                           |
| $\begin{array}{c} GeTe_{50,5\div50,3} \\ GeTe_{50,9\div51,2} \\ GeTe_{51,1} \\ GeTe_{50,6} \end{array}$ | 300<br>300<br>873  |              | α<br>γ<br>γ<br>β                                | As<br>SnS<br>SnS<br>NaCl | $C_{3v}^{5} - R3m$ $D_{2h}^{16} - Pbnm$ $D_{2h}^{16} - Pbnm$ $O_{h}^{5} - Fm3m$ |
| SnS                                                                                                     | 300<br>905<br>1000 |              | α<br>β<br>β                                     | SnS<br>TlI<br>TlI        | $D_{2h}^{16} - Pbnm$ $D_{2h}^{17} - Cmcm$ $D_{2h}^{17} - Cmcm$                  |
| SnSe                                                                                                    | 825<br>829         |              | α<br>β<br>β                                     | SnS<br>TlI<br>TlI        | $D_{2h}^{16} - Pbnm D_{2h}^{17} - Cmcm D_{2h}^{17} - Cmcm$                      |
| SnTe                                                                                                    | 300<br>300         | 20–25<br>1,7 | $egin{array}{c} lpha \ lpha' \ eta \end{array}$ | CsCl<br>SnS<br>NaCl      | $D_{2h}^{17} - Cmcm$ $D_{2h}^{16} - Pbnm$ $O_{h}^{5} - Fm3m$                    |
| PbS                                                                                                     | 300                | 21,5<br>2,2  | β                                               | CsCl<br>TlI<br>NaCl      | $D_{2h}^{17} - Cmcm$ $D_{2h}^{16} - Pbnm$ $O_{h}^{5} - Fm3m$                    |
| PbSe                                                                                                    | 300                | 16<br>4,5    | β                                               | CsCl<br>TlI<br>NaCl      | $D_{2h}^{17} - Cmcm$ $D_{2h}^{16} - Pbnm$ $O_{h}^{5} - Fm3m$                    |
| PbTe                                                                                                    | 300                | 13–16<br>6   | β                                               | CsCl<br>SnS<br>NaCl      | $D_{2h}^{17} - Cmcm$ $D_{2h}^{16} - Pbnm$ $O_{h}^{5} - Fm3m$                    |


|                                |                            |                         | , Å            | $\nabla$ |       | ٠.             | ,    | -                                           |
|--------------------------------|----------------------------|-------------------------|----------------|----------|-------|----------------|------|---------------------------------------------|
| a                              | b                          | c                       | *<br>«NaCl»    |          |       | d,             |      |                                             |
| 4,299<br>5,535                 | 10,481                     | 3,646                   | 5,477          | 0,84     | 104,7 | 4,238          | 931  | [173]<br>[181]                              |
| 4,388<br>5,730                 | 10,825                     | 3,833                   | 5,668          | 0,76     | 151,6 | 5,52           | 948  | [173]<br>[62]                               |
| 5,986<br>4,36<br>4,31<br>6,018 | 11,76<br>12,11             | 4,15<br>4,17            | 5,979<br>5,970 |          | 200,2 | 6,193<br>6,020 | 998  | [188, 189]<br>[67, 76]<br>[69]<br>[65, 188] |
| 4,334<br>4,148<br>4,136        | 11,200<br>11,480<br>11,488 | 3,987<br>4,177<br>4,172 | 5,784<br>5,834 | 0,67     | 150,8 | 5,08           | 1148 | [173]<br>[105]<br>[87]                      |
| 4,445<br>4,410<br>4,293        | 11,501<br>11,705<br>11,62  | 4,153<br>4,318<br>4,282 | 5,966<br>6,016 | 0,61     | 197,7 | 6,18           | 1153 | [173]<br>[105]<br>[87]                      |
| 4,48<br>6,308                  | 11,59                      | 4,37                    | 6,099          |          | 246,3 | 6,45           | 1063 | [199]<br>[193, 194]<br>[114, 115]           |
| 4,21<br>5,936                  | 11,28                      | 3,98                    | 5,739          |          | 239,3 | 7,60           | 1384 | [179, 195]<br>[193]<br>[2, 193]             |
| 4,39<br>6,124                  | 11,61                      | 4,00                    | 5,886          |          | 286,2 | 8,15           | 1353 | [179, 195]<br>[193, 195]<br>[2]             |
| 3,657<br>4,51<br>6,460         | 11,91                      | 4,20                    | 6,088          |          | 334,8 | 9,88<br>8,24   | 1196 | [195, 198]<br>[194, 195]<br>[6, 195]        |

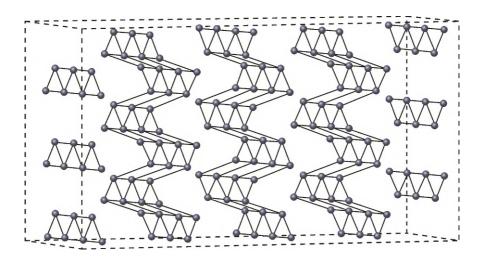

```
α-
                GeS
                                         [171–178].
                                              D_{2h}^{16}
          NaCl.
       .2.6),
\Delta (
                  NaCl,
                                                  Na- 1
\Delta = 0.
               GeS (
                                        \alpha-SnS)
                      . 2.18, , , ,
     GeS (
             . 2.18, ', ', '),
                                       . 2.19 -
               Y
                «
                             GeS
                                                   . 2.18, ').
                                               (
                      YZ
                               - Ge-S-Ge-S -
      (
          . 2.18, ').
                             . 2.18, , '
           XZ)
                             2 \times 2,224 \text{ Å} 2,244 Å,
                                                               3.314 Å:
                                                         3,592 Å [180].
                                   96 34' 102°9'.
                                       GeS 2×2,438; 2,448; 2×3,278
3,280 Å.
                                       Ge-S-Ge 96,81° 105,54°,
S-Ge-S 91,72 96,81 [173].
(
                                        NaCl)
                   [GeS_6].
                         91,72
                                  105,54,
          Ψ-
                     [GeS_5E],
```



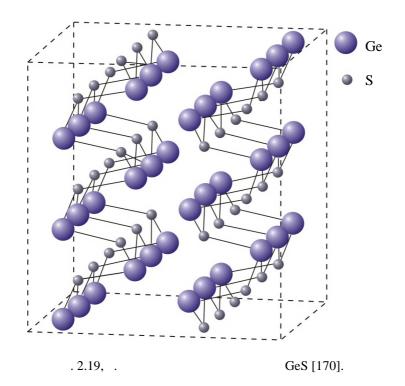

. 2.18, . XY [170].





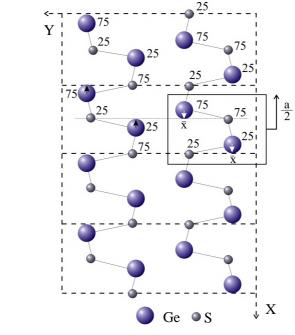


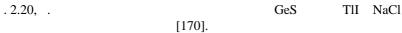


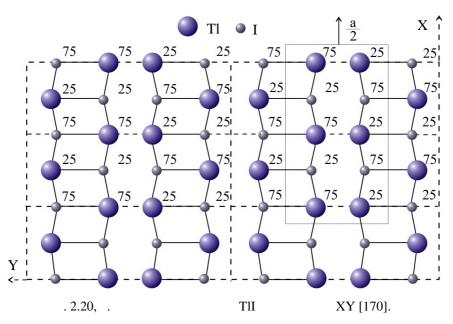


. 2.18, . XZ [170].

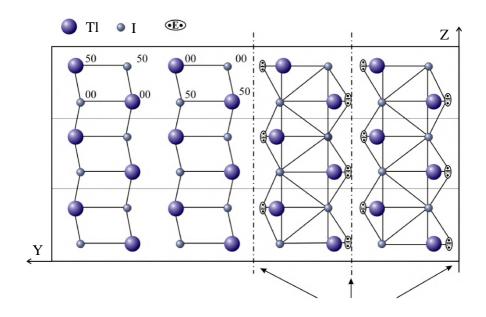


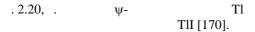
Ψ-), (010).2.18, Ψ-●Ge ●S ● Y . 2.18, . Ge GeS [170].  $\Delta$  ( . 2.6) α- $GeS \rightarrow GeSe \rightarrow SnS \rightarrow SnSe$ , [176]  $0,39 \rightarrow 0,77 \rightarrow 0,65 \rightarrow 0,59.$  $(\Delta = 1,69).$ [172, 173]  $\Delta$ . 2.6),  $\Delta$ (0,84)GeS GeS c . 2.7). NaCl A<sup>IV</sup> ( NaCl ( IV « »

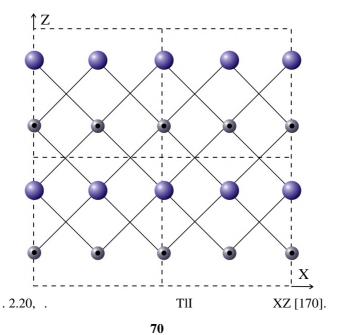


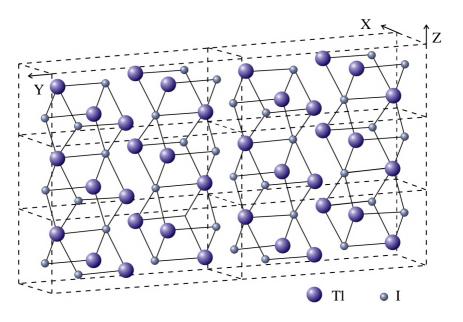


. 2.19, . [170].



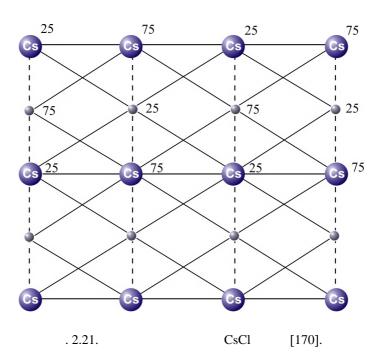


SnS [173]


|                                                               | GeS    | GeSe         | SnS          | SnSe         |
|---------------------------------------------------------------|--------|--------------|--------------|--------------|
| a, Å                                                          | 4,299  | 4,388        | 4,334        | 4,445        |
| b, Å                                                          | 10,481 | 10,825       | 11,200       | 11,501       |
| c, Å                                                          | 3,646  | 3,833        | 3,987        | 4,153        |
| $X(A^{IV})$                                                   | 0,128  | 0,112        | 0,120        | 0,104        |
| $X(B^{VI})$                                                   | 0,502  | 0,502        | 0,479        | 0,482        |
| a/c                                                           | 1,179  | 4,111        | 4,161        | 4,299        |
| $(\overline{a,c})$ , Å                                        | 3,973  | 3,827        | 3,960        | 4,066        |
| $\frac{b}{\sqrt{8}}$                                          | 3,710  | 3,827        | 3,960        | 4,066        |
| $\Delta' = c - \frac{b}{\sqrt{8}}$                            | -0,064 | 0,006        | 0,027        | 0,087        |
| $\Delta'' = \left(\overline{a,c}\right) - \frac{b}{\sqrt{8}}$ | 0,263  | 0,284        | 0,201        | 0,233        |
| $\frac{b}{\left(\overline{a,c}\right)\sqrt{8}}$               | 0,933  | 0,931        | 0,952        | 0,946        |
| $\frac{b}{a\sqrt{8}}$                                         | 0,863  | 0,872        | 0,914        | 0,915        |
| $\frac{b}{c\sqrt{8}}$                                         | 1,018  | 0,998        | 0,993        | 0,979        |
| $\overline{\overline{V}}_{.\%}$ , $\mathring{A}^3$            | 20,54  | 22,76(23,52) | 24,19(24,86) | 26,54(27,23) |













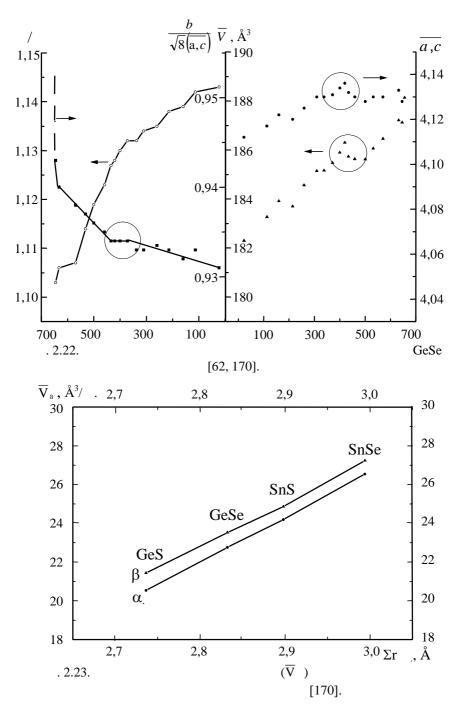


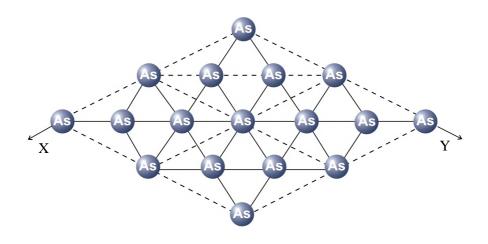

```
\begin{array}{cccc} \alpha - & ( & ). \\ \cong 2 & \sqrt{2}, & \ldots & \cong b \end{array}
                                                           \cong b / \sqrt{8}.
    \cong \cong ,
                                 b
   . 2.20, –
                                           TlI
XY, YZ, XZ
                                GeS,
                                           NaCl.
              (010),
/2 (
         . 2.20, ).
Ψ-
                [TlI_5E],
                          Y ( . 2.20, ). . 2.20,
             T1 - \bullet E \bullet,
                                                sp-
                                                      sp-
                                                                   TlI,
                                                           NaCl.
     CsCl.
                                                        -Tl-I-Tl-I-
               /2,
                                                                    . 2.20,
                                                     CsCl.
                                       XY
                                                          TlI,
                                                          [110], . 2.21).
                                 CsCl (
              TlI
                                  NaCl CsCl.
                                                            (
      «
                >>
               200)
                                                          CsCl (
                                                                      . 2.6).
                                             α- β-
                          GeS
                                   GeSe
                                                           \alpha \rightarrow \beta
       α-
                                          NaCl,
                                                   SnS
                                                          SnSe -
                                           TlI.
     , GeS GeSe
                                       \alpha \rightarrow \beta
                                                               TlI,
    β-SnS β-SnSe
                                                 , «
                                      [62, 105, 181–185],
                       NaCl
                                                         β-GeS β-GeSe
                     \alpha \rightarrow \beta
                       NaCl,
                                     β-SnS β-SnSe –
                                                               TlI.
    ),
                                                      . . 2.8
```

 $f_i$  [183]

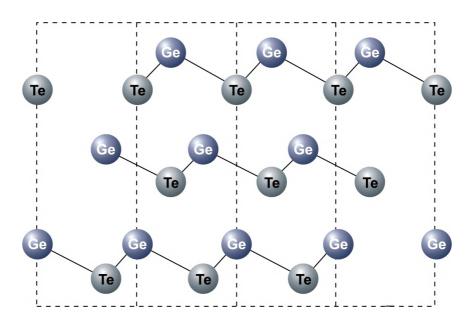
 $(\overline{n})$  ,

.

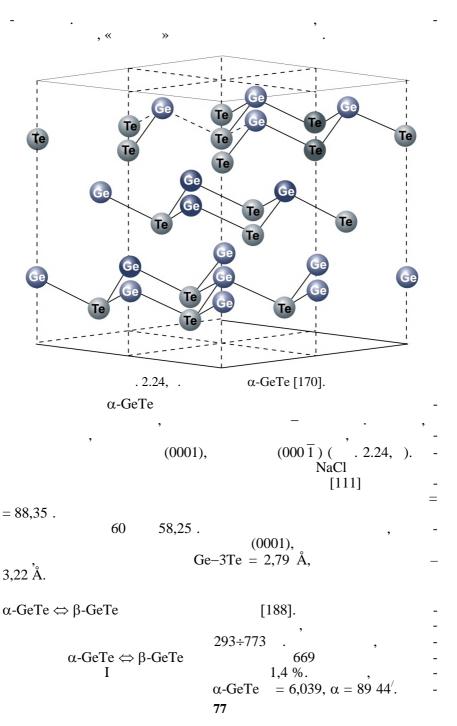

 $\bar{n}$  2.8. (f<sub>i</sub>), =5 [183].


|      | $\mathbf{f}_{\mathrm{i}}$ | $\overline{n}$ |    |    |    |    | -<br>, Å |
|------|---------------------------|----------------|----|----|----|----|----------|
| GeS  | 0,65                      | 3,5            |    |    | P  | S  | 1,32     |
| GeSe | 0,59                      | 4              |    | Ge | As | Se | 1,416    |
| GeTe | 0,46                      | 4,5            |    | Sn | Sb | Te | 1,578    |
| SnS  | 0,76                      | 4              | Tl | Pb | Bi | Po | 1,648    |
| SnSe | 0,72                      | 4,5            |    |    |    |    |          |
| SnTe | 0,64                      | 5              |    |    |    |    |          |
| PbS  | 0,79                      | 4,5            |    | •  | •  |    |          |
| PbSe | 0,76                      | 5              |    | •  | •  |    |          |
| PbTe | 0,65                      | 5,5            |    |    |    |    |          |

: GeTe, GeSe, SnTe, GeS, PbTe, SnSe, SnS, PbSe, PbS, SnSe, PbSe, PbS, SnTe, PbSe, PbTe. : GeS, GeSe, SnS, GeTe, SnSe, PbS, SnTe, PbSe, PbTe. : GeSe  $(0,59)^*$ , GeS (0,65), SnSe (0,72), SnS (0,76) GeS  $(3,5)^{**}$ , GeSe (4) = SnS (4), SnSe (4,5). GeSe SnS,  $\alpha \rightarrow \beta$  ,  $\alpha \rightarrow \beta$  ,  $\alpha \rightarrow \beta$  ,  $\alpha \rightarrow \beta$  , NaCl.


$$'=c-\frac{b}{\sqrt{8}}$$
,  $''=(\overline{a,c})-\frac{b}{\sqrt{8}}$   $\frac{b}{c\sqrt{8}}$ ,  $\frac{b}{(\overline{a,c})\sqrt{8}}$ ,  $\frac{b}{(\overline{a,c})\sqrt{8}}$ , NaCl GeSe SnS ( $\Delta'$  ), X – SnS

```
SnSe (\Delta''_{X_A^{IV}} X_B^{VI}, ). ,
0,1-0,12
                                « »
                                               , ( = 0,002), SnS
         GeS GeSe
SnSe
        (\approx 0.02).
                                                            TlI,
                                                                             SnS
  SnSe
                                                                             GeS
  GeSe
X. 2.22
                                    GeSe.
\frac{b}{(\overline{a,c})\sqrt{8}} = f(\ ), \ (\overline{a,c}) = f(T) V_r = f(T)
          400 \div 420
                                                                                х,
             . 2.23
                                                                   . 2.7).
                                                          GeS
                                                                       NaCl
\sqrt[3]{8\overline{V}^3} ( = 5,535 Å),
                                          . 2.6, A<sup>IV</sup>B<sup>VI</sup>
                                                                         α-GeTe
(.2.24,).
                                     GeTe
                                                            α-
                             R3m,
                                                                         7
(11\overline{2}0) ( . 2.24, ),
3(2,51 \text{ Å}) + 3(3,15 \text{ Å})
                                                      As-As-As 96,5 [180].
               (83 ) - As - Sb - Bi
: 104,5 - 96,5 - 95,6 - 95,5 ,
                  α-
                 sp^3-
```






. 2.24, . XY [170].



. 2.24, .  $$\alpha$-GeTe$$  (11  $\overline{2}$  0) [170].



```
GeTe
                                                   295÷716 [196] -
                                                                     α-
GeTe ,
                   β-
                                                NaCl ( Fm3m).
   = 705 \cdot \alpha \rightarrow \beta
                                  GeTe
                                    Ge-
                    [111].
                                                                 ( . . =
                   α-
= 6),
                                             NaCl,
                            SnS←TlI←NaCl ,
                                 CsCl α-GeTe,
                      Ψ-
    NaCl
                                                       TlI
                                                              SnS
Ψ-
                      \alpha-GeTe.
               A^{IV}B^{VI} \\
                                                    [197]
                                2s 3p-
                         NaCl (<sub>h</sub>),
                                         II
```

```
( <sub>3v</sub>) [122, 123].
             [124-126].
                                                                       \sim 1,2\cdot 10^{20}
   -3,
                           \alpha \rightarrow \beta
                                                        97,5
                                                                 [125],
                 8.10^{20} ^{-3} \beta-
                                                                             0
                                             1,8.10^{20}
                                                         -3
    SnTe
                                                   90
                                                          [144].
                                               SnTe
                                            20÷270
                                          77
                                              [122].
                 [145]
                                                                      SnTe
                                   50÷25
                             = 6,298 \text{ Å}
                                               296 )
                                                                      16
= 6,274, b = 6,288 = 6,303 \text{ Å}).
SnTe,
       140÷160 [88, 89, 123].
                                                               140 90
                                                               140
                                                                SnTe
[89]
                     100÷297
                                            SnTe
                                                        140
                    SnTe
                            SnTe
       (SnTe)
                              (GeTe))
                                                     [193, 194],
                                        79
```

```
NaCl
                   SnS
PbS, 2,2 \div 2,5, \quad \text{PbSe} - 4 \div 4,5, \quad \text{PbTe} - 4,0 \div 5,2,
Sn e - 1 \div 1.8 ( . 2.6).
                                             18,0
                                              [197].
           16
                SnS
                                        CsCl.
          CsCl
                              \sim 0.8
                                                   ~4 %.
                                 16
           [198].
           PbS, PbSe PbTe [179]
2,2, 4,5
                                                 NaCl
                        I
                                                            PbS
[195]
PbSe
                          TlI, SnS PbTe
         SnS (16).
   PbS 2,15 , PbSe 16 PbTe 13
                                         CsCl.
     [192]:
                                 SnS (TlI)
     CsCl -
      <sub>1</sub> <sub>2</sub> ( .2.6.).
                                 [195],
                                   34
                         [200]
                                                         6
4-5
                                                             I
                   2,3 6,5
            R = f()
                   [200].
```

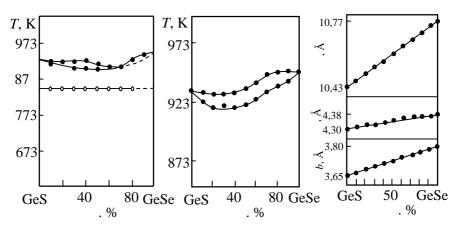
, IV

3.1.  $\mathbf{IV} \quad \mathbf{VI} \quad \mathbf{A}^{\mathbf{IV}} \mathbf{B}_{2}^{\mathbf{VI}}$  . . . [202], , ,

· · ,

; 1) , 2) , 3)

· ·


[203]:

3.

[203], [204]  $A^{IV}B^{VI} - A^{IV}B^{VI}, \, A^{IV}\,B_2^{\,VI} \, - A^{IV}\,B_2^{\,VI} \quad A^{IV}B^{\,VI} - A^{IV}\,B_2^{\,VI} \, .$ GeS>GeSe. 3.1.1. GeS-GeSe [47, 48, 205–207]. 33 . % GeS ( .3.1, ). PbS-PbSe [1, 2], PbS. [206, 207]

Se ( . 3.1, ).

GeS-GeSe  $\alpha \rightarrow \beta$  ,  $GeS_xSe_{1-x} \qquad , \qquad -$  Se [208].



. 3.1. GeS-GeSe: - [205], - [206], -

 $\operatorname{GeS}_{x}\operatorname{Se}_{1-x}[206].$ 

3.1.2. GeS>GeTe. , - GeS-GeTe
Ge-S-Te. GeS-GeTe
: 67,5 . % GeS 871 70,5 . %

GeS 857 . GeS<sub>x</sub>Te<sub>1-x</sub> , , , ,

, -[209].

GeTe–GeS ,  $620 \div 770$  ,  $GeS_x Te_{1-x}$  , > 0,02, ,

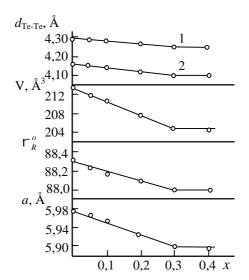
 $\begin{array}{cc} GeS & GeTe \\ \alpha \rightarrow \beta \end{array}$ 

S

. . . [209]. 3.1.3. GeSe>GeTe. [210], Ge<sub>0,98</sub> -GeSe GeSe GeTe. Ge<sub>0,98</sub>Te-GeSe [210] *T*, K o 1 Δ2 **a** 3 1000 + Ge +  $\beta$  $\beta + Ge$  $\beta + Ge + \gamma$ 900 β Ge +  $\gamma$ 800 700  $\alpha + \beta + \gamma$ 600 60  $Ge_{0,98}Te$ 20 40 80 GeSe . % . 3.2. Ge<sub>0.98</sub>Te-GeSe [214] ; 3 – ; 2 -[62]). (1 -Ge<sub>0,98</sub>Te-GeSe Ge-Te-Se . 3.2. GeSe GeTe GeSe, β-NaCl. Ge<sub>0.98</sub>Te-GeSe

 $GeTe_{1-x}Se_x$ ,

GeTe


GeSe

```
GeSe_{0,75}Te_{0,25} [209–213].
                                                [213, 214]
                                                   Ge<sub>0,98</sub>Te-GeSe
                                     γ-
                   Ge<sub>0.98</sub>Te.
                                                                                  α-GeTe
           570
                                           = 0,3 [214].
                  α-
652 \div 660
                                                                    \beta + \epsilon \Leftrightarrow \alpha.
                                                                       Ge_{0.98}Te
          (\alpha + \gamma) (\alpha + \beta)
         (\alpha + \gamma + \beta).
γ-GeTe GeSe
          γ-
                            [215]
                                                                                              γ-
                                                                                                               α-
                                                                              (\alpha + \gamma)
                                                                = 0.1 \gamma
                 . 3.3
                                                                 α-
                                     GeTe-GeSe.
                                                               \alpha \rightarrow \beta-
[215, 217].
GeTe.
                                                                                          (111),
                  d_{	ext{Te-Te}}
                                                                                    d_{\text{Te-Te}}
                                           [212]
                                                                                  d_{\mathrm{Te-Te}}
                                                        d_{\mathrm{Te-Te}}
                                                                                       )
```

 $\alpha$ - .

 $-\frac{d_{ extsf{Te-Te}}}{d_{ extsf{Te-Te}}}$  ,

[215].



. 3.3.

-  $Ge(Te_{1-x}Se_x)$  (1 - , 2 - ) [215].

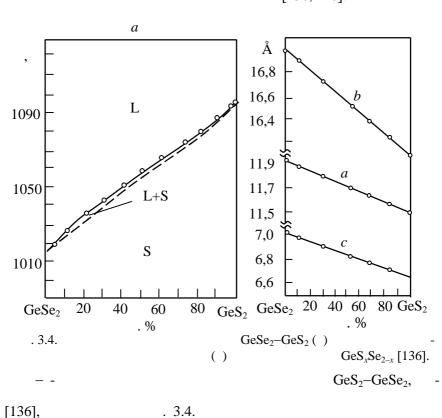
, GeSe, β-+ Ge  $\Leftrightarrow$  β [214].

GeSe  $\beta \quad (\beta + Ge) \quad , \\ Ge_{0.98} Te - GeSe \quad ,$ 

 $\beta$ - ,  $(Ge + \gamma')$ ,

GeSe.

GeSe  $\begin{tabular}{ll} [213].\\ &, & Ge_{0,98}Te-GeSe \end{tabular}$ 

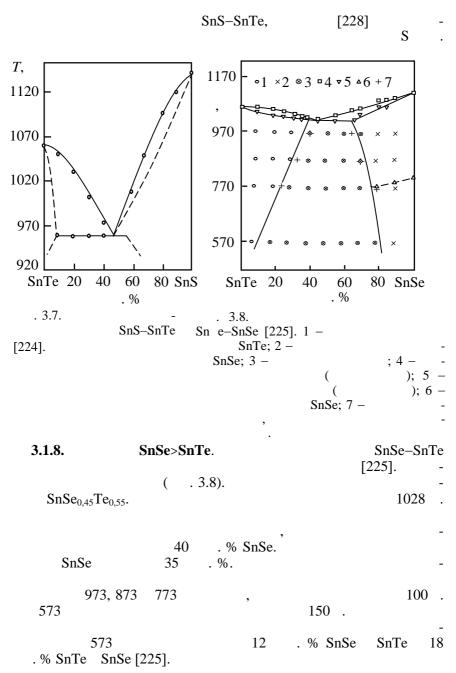

GeSe<sub>0,75</sub>Te<sub>0,25</sub>, -

GeSe<sub>0,75</sub>Te<sub>0,25</sub>  $513 \div 673 \quad [213].$ 

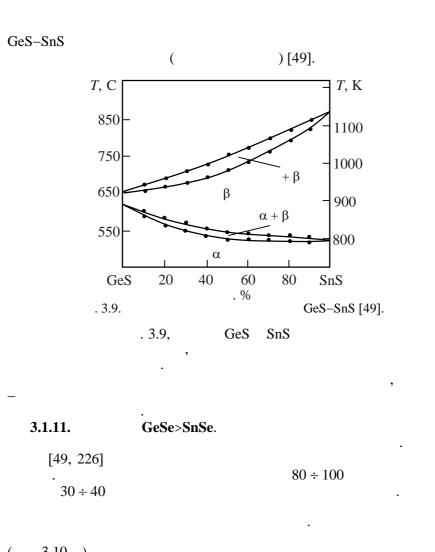
3.1.4.  $GeS_2 > GeSe_2$ .

[136, 218].

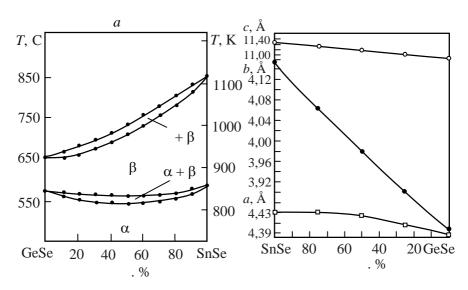
. 2.2,



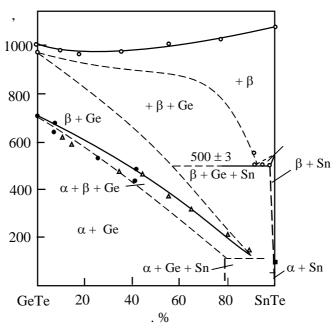

130],


```
GeS_{2x}Se_{2-2x} (0 \le \le 1)
                                                                     s Se
            [136].
GeSe_2 GeS_2 ( . 3.4, ).
                                                       GeS_{2x}Se_{2-2x}
                                                                           [218].
      GeS_{2x}Se_{2-2x}
          [218].
    3.1.5.
                           GeSe<sub>2</sub> >SnSe<sub>2</sub>.
GeSe<sub>2</sub>-SnSe<sub>2</sub>,
                                                                                 [219, 287],
                            . 3.5.
                                             GeSe_2-SnSe_2
                      . %.
                                                             50
                                                                       . % GeSe<sub>2</sub>
                5
              823 [219], (842 [287]).
                                                    • 1
                                                    × 2
                   1070
                             L+SnSe<sub>2</sub>
                                                   o 3
                    870
                    670
                                          \alpha + \beta
                    470
                       SnSe_2
                                 20
                                          40
                                                   60
                                                           80 \text{ GeSe}_2
                                                . %
             . 3.5. > -
                                                                 GeSe<sub>2</sub>-SnSe<sub>2</sub> [219].
              1 - ; 2 -
                               ; 3 –
                                                    [219],
           SnSe<sub>2</sub>,
                                    5
                                             . % GeSe<sub>2</sub>,
```

```
SnSe<sub>2</sub>,
                                                                                 SnSe<sub>2</sub>.
5
       . % GeSe<sub>2</sub> \alpha-
                                        SnSe<sub>2</sub>.
                                                                    5
                                                                            . % GeSe<sub>2</sub>, \alpha-
          16,
                                2 -
     3.1.6.
                           SnS>SnSe.
     SnS-SnSe (
                         .3.6)
                                                                    [220, 221].
                                              SnS_{0.5}Se_{0.5}
                                                                                 1126 .
                                                  , b, c, \mathring{A}
                        a
                                                 11,5
 1140
                                                 11,3
 1120
                                                 11,1
 1100
                                                  4,4
                        S
 850
                                                  4,2
 810
                 r
                                                  4,0
 770 <del>-</del>
SnS
                                                    SnS
                                                             20
                                                                    40
                                                                            60
                                                                                   80 SnSe
                                    80 SnSe
             20
                    40
                            60
                           . %
                                                                         . %
               .3.6. -
                                                                SnS-SnSe [220],
                                                                         SnS-SnSe [221].
SnS_xSe_{1-x}
                                                       SnSe ( . 3.6, ).
                                        SnS_xSe_{1-x}
                                                                         \alpha \rightarrow \beta
                                           SnS_xSe_{1-x} (0 \leq \leq 1).
                                                                       [220].
                  [222]
                                                                      SnS_xSe_{1-x}
```


```
<sup>119</sup>Sn
                                                                      Sn
                                                         SnS_xS_{1-x}
                   ).
SnS
       SnSe,
                               [222]
                                        S
                                                            Sn
                                             Se
                   SnS
                         SnSe,
            S
                 Se
                                                              [221].
                          Sn,
          SnS_xSe_{1-x},
                                                             SnS
                                                                    SnSe
                    S
                         Se, ,
   3.1.7.
                    SnS>SnTe.
                                              (.3.7)
                                            SnTe_{0,55}Se_{0,45}.
                        963
                                 SnS
                                                         60-100
                                                                      . %
SnS.
                                                                   [224]
            Sn e-SnS,
SnTe
                                    SnS
                                            60
         10 . %,
                                                   . %.
           SnS
                                       SnS_xTe_{1-x}
                                                               = 0 \div 0.1
     =0.6 \div 1.0
                                                          SnS-Sn e
                    [228]
                                     SnS
                                                                   SnTe.
                   SnS -
                                                                   NaCl.
                                          SnS
```




```
SnSe
                                                           SnTe.
SnSe [226, 227].
                                                                   SnSe (813 )
                        [227]
SnSe
    3.1.9.
                          SnS<sub>2</sub>>SnSe<sub>2</sub>.
SnS_2-SnSe_2
SnS_{2x}Se_{2-2x}.
                                    [229, 230]
                                                      SnS_{2x}Se_{2-2x} 0 \le \le 1
               10×10×10<sup>-2</sup>
                                              SnS_2)
                    (SnSe_2).
                                                                             « »
                                      « »
                                                        SnS_{2x}Se_{2-2x}
      Se
                                                        SnS_2-SnSe_2
                                      [222].
                   SnS_{2x}Se_{2-2x}
                                                                                SnS_2
SnSe<sub>2</sub>,
                                                                                      Sn
                                                                                    Se.
    3.1.10.
                          GeS>SnS.
         VI
             . 3.9
                                                                            GeS-SnS,
                                                  [49].
                          [49, 223].
       20-30
```



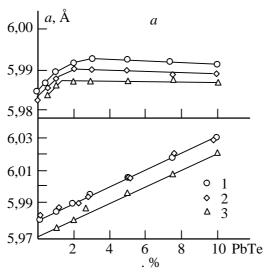
GeSe-SnSe
. 3.10,
GeS-SnS.
GeSe-SnSe
,
GeSe-SnSe
,
GeSe-SnSe
,
GeSe-SnSe
,
GeSe-SnSe
,
GeTe-SnTe



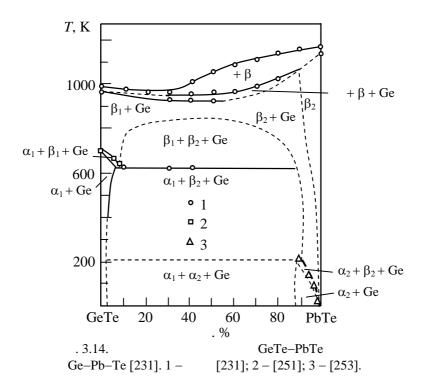
. 3.10. – GeS –SnS [49], – - GeSe–SnSe [226].



. 3.11. GeTe-SnTe Ge-Sn-Te [231].


```
NaC<sub>1</sub>
(\alpha \rightarrow \beta)
                                                         [233],
              SnTe
                                                                 NaCl
   ≈ 0,68 (300
                          <sub>IV</sub>B<sup>VI</sup>. [235, 236].
                                                                                       . 2.1,
(Ge_{1-x}Sn_x)_{1-y}Te_y
                             [231].
        [227, 232–234]
                                                                                      [231],
                                          GeTe-SnTe
                                                                                      [232],
                                                                              [231]
     Ge_{1-x}Sn_xTe,
                 (0 \le \le 0.8),
                                                                              (0.92 \le
\leq 0,97).
GeTe-SnTe,
            Ge-GeTe-SnTe-Sn [231].
                                                       . 3.11
                             GeTe-SnTe,
[231-233].
β-
                             (Ge_{1-x}Sn)_{1-y}Te_{y}.
               \Leftrightarrow \beta + Ge
                                                                                     GeTe,
                                                \beta + Ge.
                      SnTe,
                                                       500
   \Leftrightarrow \beta + Ge + Sn,
(\beta + Ge + Sn) [231].
                                       NaCl (\alpha \rightarrow \beta)
                 SnTe
                                                       Ge_{1-x}Sn_xTe.
GeTe-SnTe,
                                        SnTe
                                                         68
                                                                  .%
                                                                 SnTe -
            [233, 234].
                                                                      Ge_{1-x}Sn_xTe
```

```
\alpha \rightarrow \beta
                                                         (\alpha + \beta + Ge) [231].
                                                                  (\beta + Ge)
                                                                                 (\beta+Ge+Sn)
                                                       100
                                                                                  (\alpha + Ge)
(\alpha + Ge + Sn) [231].
                                        [233]
                                     \alpha \rightarrow \beta
88,25
                                                        90
                      [231]
[233],
                      [235, 237, 238],
        \alpha \rightarrow \beta.
(Ge_{1-x}Sn_x)_{1-y}Te_y
                                             [240],
                                                              . (\sim 1.5 \cdot 10^{21})
[238],
GeTe-SnTe
                                                  [236, 238].
(=0.06)
                                                                                  γ-
                                                  (Ge_{1-x}Sn_x)_{1-y}Te_y
                                                                      α, γ
                         γ-
                                                            > 0.25 \alpha
```


```
[238].
                                   GeTe-SnTe
                                          [194].
   3.1.13.
                    GeSe>PbSe.
[210, 226, 244]
[226],
GeSe
       PbSe
                         12
                               . %,
                        9
                              . % GeSe.
        [226]
80
        753 .
  ~ 40
           . % GeSe [244].
                                            • 1
           1270
                                            △ 2
                                            4 3
           1170
           1070
            970
           870
            770
            670
                     20
                            40
                                    60
                                          80
                                                 GeSe
              PbSe
                                . %
    . 3.12.
                                 PbSe-GeSe [210]: 1 -
                  , 2 –
                                        ; 3 –
            GeSe-PbSe
              Ge-Pb-Se.
                                 . 3.12
                                       GeSe-PbSe,
        [210]
                   PbSe
                                    ~ 10
                                                      793 .
            GeSe
                                             . %
```

```
GeSe -
         PbSe
                                       β-
    20
         . %.
                                                          GeSe
                                         PbSe.
                                                              GeSe
                                 PbSe GeSe
                                                              b,
                 [210]
66,67 . % GeSe.
                             [245],
                                                              PbSe,
                                      NaCl,
17 . % GeSe
                                                         a_0 = a_{\text{PbSe}} -
-(0.35-0.36)\cdot x, (Å), ( –
                                     GeSe).
   3.1.14.
                    GeTe>PbTe.
     [234, 250],
                       GeTe-PbTe
                       968 . [234]
                       GeTe
                                        840
           [248]
                                             843
                                                         60
GeTe;
           573
                                                         96
                                                    (968)
GeTe;
        Ge_{0.8}Pb_{0.2}Te.
                            873
       [248].
                                     « »,
                                                                 α,
               GeTe
                                                         Ge_{1-x}Pb_xTe
                          \approx 0.08 [247].
    770
                                     Ge_{1-x}Pb_{x}Te
                                                      = 0,9,
                            PbTe,
                           GeTe-PbTe.
```

```
[252].
                          Ge_{1-x}Pb_xTe_{1+y} ( = 0; 0,015; 0,025 = 0 ÷ 0,1)
                    GeTe
              PbTe
                         [252]
                                                               Ge_{1-x}Pb_xTe_{1+y}
    . 3.13).
(
      GeTe-PbTe
                      GeTe<sub>1.015</sub>-PbTe,
                                                           0,8
                                                                   . % PbTe,
                        1 . % PbTe.
                                                      GeTe<sub>1,025</sub>-PbTe ( -
    3)
                                                          1,2
                                                                  . % PbTe.
GeTe
                                   . 3.13
                                                             GeTe-PbTe
GeTe<sub>1.015</sub>-PbTe,
                     [255],
                                                            GeTe-PbTe
                                       Ge-Te-Pb
GeTe<sub>1.015</sub>-PbTe
                                   GeTe
                                                       GeTe-PbTe
251].
                 [234, 251],
                                              PbTe
                                             3
                                                . %
                                                             570 ,
                     . 3.13
                                                                        GeTe
[251]
       Ge_{0.99}Pb_{0.01}-Te,
                                                                         50,0
   51,4 . %.
                                     α-
```



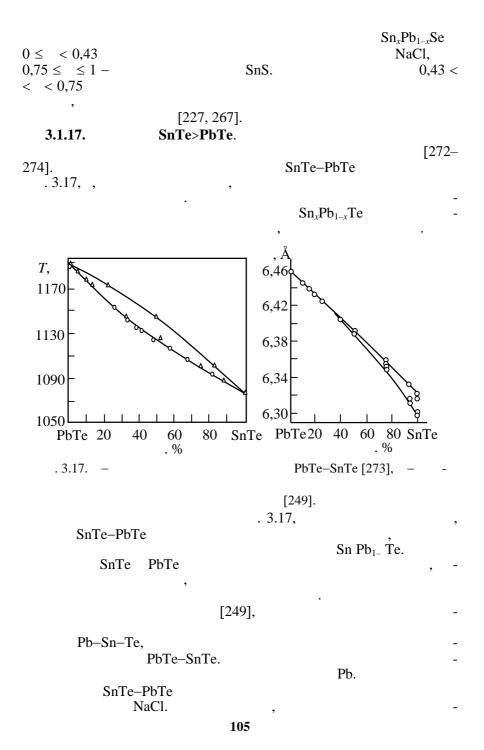
. 3.13.  $Ge_{1-x}Pb_{x}Te_{1+y}, \qquad 570 \text{ ( ) } 820 \text{ ( )}.$  1 - = 0; 2 - 0,015; 3 - 0,025) [252].



```
50,4 . %.
                                                             (\alpha + \gamma).
                                                                 50,8
                                                                         . %
         γ-
              . 3.14
                                                                          GeTe-PbTe.
                                                                           β-
            (Ge_{1-x}Pb_x)_{1-y}Te_y [231].
        \Leftrightarrow Ge +\beta
                                                                         PbTe
                        (\beta + Ge),
                                                PbTe -
                                                                             β-
                                                       (\beta + Ge) \beta-
                    (Ge_{1-x}Pb_x)_{1-y}Te_y
                                   GeTe-PbTe.
       (\beta_1 + \beta_2 + Ge) [231, 247].
                                              ~ 640
                                            : \beta_1 + Ge \Leftrightarrow \alpha_1 + \beta_2.
                        \alpha {\,\rightarrow\,} \beta
                                                                                  700
                                              Ge_{1-x}Pb_xTe
                                             675 \pm 3
                                 GeTe
                                                                                 = 0.04,
                                                           [251].
                        GeTe (
                                            0,5 %),
                GeTe.
    3.1.15.
                           SnS>PbS.
                                                       SnS-PbS
                    [226, 259-262].
                         Sn_xPb_{1-x}S
           17
                    . % PbS
                                   1111
                                              [259].
                                         PbS-SnS
                                                                      PbS-SnS [226]
                                   990
                                                           PbS
                                                                        910
       SnS,
                                       . % PbS
                              55
                                                          . % SnS.
                                                 10
                                                                               PbSnS<sub>2</sub>,
                    SnS-PbS
                                                                            [264].
             PbSnS<sub>2</sub>
                             a = 4,289, b = 11,353, c = 4,048 \text{ Å} ( D_{2h}^{16} =
= Pbnm).
                                SnS-PbS
                                                                    [261]
                                           102
```

```
SnS-PbS
            Sn-Pb-S,
                                                     . 3.15.
                                                                SnS-PbS
           SnS
                              PbS.
                                                                      SnS
                                                   ( 0 45
                                                                    . % PbS).
                             + β-SnS
               1270
                1070
                          β-SnS
                                         \beta\text{-}SnS + PbS
                        \alpha-SnS + \beta-SnS
                 870
                                             805
                 670
                                         \alpha-SnS + PbS
                           \alpha-SnS
                 470
                 270
                     SnS
                            20
                                   40
                                          60
                                                  80 PbS
                                       . %
              . 3.15.
                                                     SnS-PbS [261].
                                                                  SnS
    (~ 10 ),
                                                (SnS)
                          \beta-SnS \rightarrow \alpha-SnS
                                                          805 \div 863
                                                       SnS (863).
                                        (SnS)
SnS PbS
                                    10 . %,
                293
            973
                                        15
   3.1.16.
                       SnSe>PbSe.
                                                       SnSe-PbS
```

```
[267–270, 369].
SnSe-PbSe ( . 3.16)
         Pb-Sn-Se.
                                                      SnSe-PbSe
          [267, 268]
                                                          Pb_{0,3}Sn_{0,7}Se
             1153
                     [268].
                                                       [269, 270]
                                             SnSe-PnSe
                                          2
                                               5
             1270
                                              a 6
             1070
              870
                             670
                        20
                                                   SnSe
                 PbSe
                                40
                                       60
                                              80
                                     . %
      . 3.16.
                                         SnSe-PbSe [269, 270].
               : 1 - 500, 2 - 420, 3 - 650, 4 - 320, 5 - 600, 6 - 340.
                                                             1143
75
       . % SnSe
                            [267]
                                    1131
                                               70
                                                       . %,
[270].
                                    PbSe
                             1070
         SnSe
                                2
                                                             SnSe.
            PbSe
                    SnSe
```


PbSe

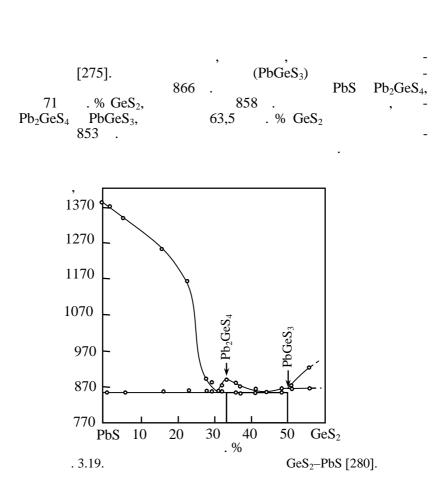
. % SnSe [270].

28

44 ÷ 46

. %.




```
2 %,
               [249, 273, 274]
                              .\,\,\bar{3}.17,
                                                             [249, 272–274, 277].
                                     SnTe,
PbTe-SnTe,
                                                       [276, 277].
Sn_{0,48}Pb_{0,52}Te
                       1033
                                          ,
SnTe.
                                PbTe
Te, Te<sub>2</sub>, SnTe<sub>2</sub>, Sn<sub>2</sub>Te<sub>2</sub>, PbSnTe<sub>2</sub>,
                            [276].
      3.2.
                                                             IV
                                                IV
                             Sn Pb
```

```
PbS-SiS<sub>2</sub>,
                                                                                             . 3.18 [6].
                                           PbS : SiS_2 = 3 : 2
                   Pb<sub>3</sub>Si<sub>2</sub>S<sub>7</sub>,
1010
           . 3.18,
                          Pb<sub>2</sub>SiS<sub>4</sub>,
   [278, 279].
                                                                 (Pb_2SiS_4)
         2_1/ .
                                                                                                           . 3.1.
                          1370
                          1270
                          1170
                          1070
                           970
                           870
                                          10
                                                    20
                                                              30
                                                                       40
                                                                                 50
                                                                                         SiS_2
                                 PbS
                                                                 . %
                         . 3.18.
                                                                                    SiS_2-PbS [6].
     3.2.2.
                                                                                                SiSe<sub>2</sub>-PbSe
                                 SiSe<sub>2</sub>-PbSe.
                                        [279]
                                                                                                           SiSe<sub>2</sub>
PbSe
                                                                                                         Pb<sub>2</sub>SiSe<sub>4</sub>.
Pb<sub>2</sub>SiSe<sub>4</sub>
                                                                        2_{1}/.
                        = 8,5670; b = 7,0745; = 13,6160 Å; \beta = 108,355.
     3.2.3.
                                      GeS<sub>2</sub>>PbS.
PbS-GeS<sub>2</sub>
                                                      [280]
                                                                                                         . 3.19.
                                                                                                   : PbGeS<sub>3</sub>
Pb<sub>2</sub>GeS<sub>4</sub>.
                                                   PbGeS<sub>3</sub> Pb<sub>2</sub>GeS<sub>4</sub>
                      Pb<sub>2</sub>GeS<sub>4</sub>
             894
```

SiS<sub>2</sub>>PbS.

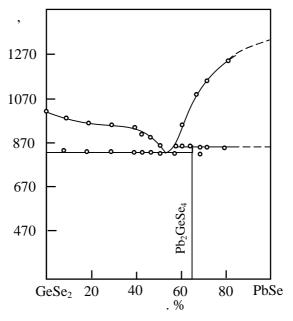
3.2.1.

| 1                                | •    |             |        | , Å    |                             | β,     |      | , / 3 | 1          |
|----------------------------------|------|-------------|--------|--------|-----------------------------|--------|------|-------|------------|
|                                  |      |             | q      | c      | •                           | •      | ٠    | ٠     |            |
| Dh. CiC.                         |      | 6,50        | 6,65   | 17,68  | ,                           | 115,5  | 5,44 | 5,51  | [278]      |
| 1 023134                         |      | 6,472       | 6,634  | 16,832 | $2_1/, Z = 4$               | 108,80 |      |       | [279]      |
| $Pb_2SiSe_4$                     |      | 8,567       | 7,074  | 13,616 | $2_{1}/,Z=4$                | 108,35 |      |       | [279]      |
| Dr.C.o.c.                        | 998  | 7,224       | 10,442 | 6,825  | •                           | 105,7  | 5,05 | 5,04  | [292]      |
| ruges3                           |      | 7,27        | 10,50  | 6,88   | $2_1/, Z = 4$               | 105,0  |      |       | [266]      |
| $SnGeS_3$                        | 988  | 7,269       | 10,220 | 6,873  | $2_{1}/,Z=4$                | 105,45 | 3,71 | 3,879 | [266, 293] |
| Decag                            | 1013 | 8,738       | 14,052 | 3,792  | ,                           |        | 5,96 | 6,01  | [283]      |
| F031133                          |      | 8,740       | 14,079 | 3,796  | nam, Z = 4                  |        |      |       | [265]      |
| Pb <sub>2</sub> GeS <sub>4</sub> | 894  | 7,974       | 8,925  | 10,876 | $2_{1}/\ , \mathbf{Z} = 4$  | 114,17 |      | 5,79  | [295, 296] |
| PbGa <sub>2</sub> S <sub>4</sub> | 1148 | 1148 20,706 | 20,380 | 12,156 | $Fddd - D_{2h}^{24}, Z=32$  |        | 4,6  | 4,92  | [300]      |
| DhG Co                           | 1053 | 21,37       | 21,47  | 12,73  | ,                           |        | 5,97 | 6,03  | [298]      |
| r 00a2354                        | 1054 | 21,28       | 21,54  | 12,72  | $Fddd - D_{2h}^{24}$ , Z=32 |        | 5,73 | 6,04  | [290, 294] |
| $Pb_2Ga_2S_5$                    | 1173 | 12,39       | 11,90  | 11,03  | Pbca, Z = 8                 |        | 5,99 | 5,85  | [289, 302] |
| S 65 48                          | 935  | 12,44       | 6,233  | 10,88  | ,                           |        | 4,30 | 4,23  | [303]      |
| JII2Ua2J5                        |      | 12,41       | 6,22   | 10,88  | $Pna2_1$ , $Z = 4$          |        | 4,30 | 4,25  | [306]      |
| $SnGa_4Se_7$                     | 886  | 6,59        | 12,37  | 7,60   | , Z = 2                     |        | 5,08 |       | [307, 308] |



**3.2.4. GeSe**<sub>2</sub>>**PbSe**. GeSe<sub>2</sub>-PbSe, 3.20, [281].

1123 , 8 .  $(PbSe)_x(GeSe_2)_{1-x}$  0,55 > x > 0,49.


573 4 .

673

 $\begin{array}{cccc} & & & , & PbSe-GeSe_2\\ & & & & Pb_2GeSe_4,\\ Pb_2GeS_4, & & & 863 & .\\ & 54 \ \% \ PbSe & & & 836 & . \end{array}$ 


3-

 $PbGeSe_{3} ( PbGeS_{3}) PbSe-GeSe_{2} .$ 



. 3.20.

GeSe<sub>2</sub>-PbSe [281].



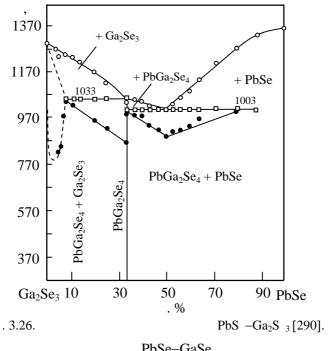
. 3.21.

GeSe<sub>2</sub>-PbTe [282].

```
GeS 2>PbTe.
    3.2.5.
PbTe-GeS 2
                         Ge-Pb-Se-Te
                                                       [282]
                             PbTe-GeS 2
( .3.21). 2 .%,
                                                    PbTe
                                                                300
                             GeS _2 – 1
                                                    . %.
                                                       PbT
           ~ 6
                   . %.
703,
                     58
                           . % GeS 2.
              GeSe<sub>2</sub> PbTe -
   3.2.6.
                      GeS_2>SnS.
                                                                           GeS2-
SnS,
                              . 3.22,
                                         [286].
                                                             . SnS
GeS_2
                                SnGeS_3,
          880
                                4
                                      . %
                                                      GeS_2 52
                                                                        . % SnS.
                                100
                                                                         β-GeS<sub>2</sub>.
SnGeS<sub>3</sub>
                 2_{1}/
                                        PbGeS<sub>3</sub> ( . 3.1) [266, 291, 293].
                1070
                                       SnGeS<sub>3</sub>
                1020
                970
                          \alpha-GeS<sub>2</sub> +
                                                    α-SnS +
                920
                870
                         \alpha-GeS<sub>2</sub> + SnGeS<sub>3</sub>
                    GeS_2 20
                                     40
                                             60
                                                      80
                                                            SnS
                                            . %
              . 3.22.
                                                       GeS<sub>2</sub>-SnS [286].
   3.2.7.
                         GeSe<sub>2</sub>>SnSe.
SnSe-GeSe_2 ( . 3.23)
                                                      [287].
     45,1
           . % GeSe<sub>2</sub>
                                                        853 .
```

1070 970  $GeSe_2 +$ SnSe + 870  $GeSe_2 + SnSe$ 770 GeSe<sub>2</sub> 20 40 60 80 SnSe . % . 3.23. GeSe<sub>2</sub>-SnSe [287]. 3.2.8.  $PbS-SnS_2$ SnS<sub>2</sub>>PbS. Pb-Sn-S [283]. PbS-SnS<sub>2</sub>  $1013 \pm 5$ PbSnS<sub>3</sub>. PbSnS<sub>3</sub> NH<sub>4</sub>CdCl<sub>3</sub> ( nma) = 14,052 Å [283].= 8,738, b = 3,792973 PbSnS<sub>3</sub> PbS  $SnS_2$  $770 \div 1070$ 2 [265]. 1170 6  $S_3$ 3.2.9. SnSe<sub>2</sub>>PbSe. [284, 285]. SnSe<sub>2</sub>–PbSe Pb-Sn-Se [284] [285] . 3.24, SnSe<sub>2</sub>-PbSe

SnSe

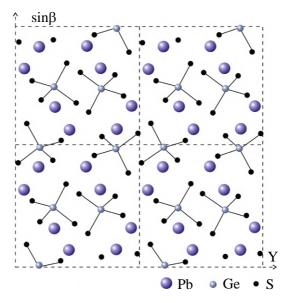

~ 35 .% PbSe 844 SnSe<sub>2</sub> PbSe 713 5 . %, 2 PbSe  $SnSe_2$ . %. SnSe. 808 493 1170  $\alpha$  + 970 770  $808 \pm 5$  $\alpha + \beta +$ 570  $493\pm 5$  $\alpha + \beta$  $\alpha + \beta + \delta$ 370 ĎbSe 40 20 60 80  $SnSe_2$ . % . 3.24. PbSe-SnSe<sub>2</sub> [285]. 3.2.10. PbS>Ga<sub>2</sub>S<sub>3</sub>. PbS-Ga<sub>2</sub>S<sub>3</sub> [288, 289]. PbS-Ga<sub>2</sub>S<sub>3</sub> ( . 3.25).  $T^1 = 1178$ 41,5 69,5 . % PbS  $T^2 = 1033$ 1:1 (PbGa<sub>2</sub>S<sub>4</sub>), $= 1148 \pm 5$  . [304]. PbGa<sub>2</sub>S<sub>4</sub> = 20,70, b = 20,38= 12,15 Å,

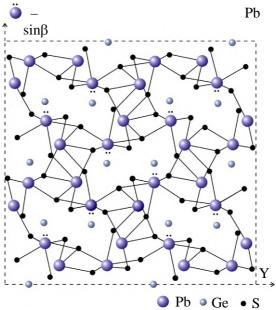
```
189 / 2.
                  (100)
                                                                           [288],
                                                                                      50,9
                               PbGa<sub>2</sub>S<sub>4</sub>
                                                                         49,4
                                                                                                    . % PbS,
                                                                                                     PbGa<sub>2</sub>S<sub>4</sub>
                                                                                       PbS, Ga<sub>2</sub>S
                                                                              [301].
                                                          1170
                                                                                   PbGa<sub>2</sub>S<sub>4</sub>
1370
1270
                                                          1120
                          PbGa_2S_4
              +Ga<sub>2</sub>S
                                                                                                      + PbS
1170
                                                                                         x
                                                          1070
                                                                         \beta + x
                                                + PbS
1070
            \beta-Ga<sub>2</sub>S<sub>3</sub> + x
                                                          1020
                                                                                                   x + PbS
                                      x + PbS
 970
                                   60
                                             80 PbS Ga<sub>2</sub>S<sub>3</sub>
                                                                                         50
                                                                                                     52 PbS
                                                                            48
                          40
                                 . %
                                                                                      . %
                                                                                    PbS-Ga<sub>2</sub>S<sub>3</sub>;
                      . 3.25,
                                                                   PbGa<sub>2</sub>S<sub>4</sub> [288].
                                                . 3.25,
PbS-Ga<sub>2</sub>S<sub>3</sub>
                    Pb<sub>2</sub>Ga<sub>2</sub>S<sub>5</sub>,
                                                                                               Ga<sub>2</sub>S<sub>3</sub> PbS
           = 1146 [289, 302].
                                                                    Pb<sub>2</sub>Ga<sub>2</sub>S<sub>5</sub>
                                                                        = 12,39, b = 11,90, c =
= 11,03 \text{ Å} ( Pbca).
                                                                                                    Pb<sub>2</sub>Ga<sub>2</sub>S<sub>5</sub>
                                     [GaS_4] (Ga-S 2,23-2,30 Å),
[Ga_4S_{10}]_n^{8n-},
(100)
               (Ga-Ga 3,52, 3,82 Å).
                                                                              Pb.
8-
                                                         S (Pb-S 2,79-3,60 Å).
                      Pb
                                                                                             (100)
        [PbS]_n
                                   [GaS_4]-
```

(100).

```
3.2.11.
                                 PbSe>Ga<sub>2</sub>Se<sub>3</sub>.
                                                                            [290, 294]
                                                                                           PbSe-Ga<sub>2</sub>Se<sub>3</sub>
    GaSe-PbSe
                                                       Pb-Ga-Se
                    . 3.26).
                                                    PbSe-Ga<sub>2</sub>Se<sub>3</sub>
              (
                                                         (PbGa<sub>2</sub>Se<sub>4</sub>),
                                               1153 . PbGa<sub>2</sub>Se<sub>4</sub>
PbSe
                                                          1004
                                                                                      33
                                                                                                 . %.
                PbGa<sub>2</sub>Se<sub>4</sub>
                  = 21,37, b = 21,47 = 12,73 \text{ Å}
                                                                                               5,73
                                                  PbSe Ga<sub>2</sub>Se<sub>3</sub>
                                                                                           14,9
[298].
                                                                                                         . %,
                                                                             ZnS;
```

5,427 5,403 Å.





PbSe–GaSe 973 50 . % GaSe.

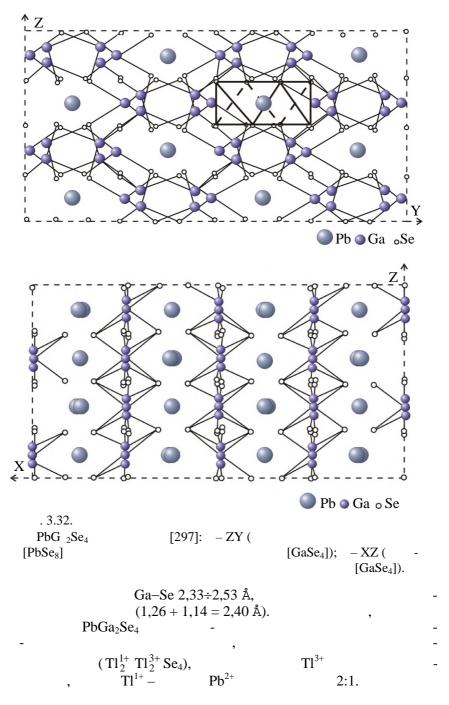
```
3.2.12.
                              SnS>Ga<sub>2</sub>S<sub>3</sub>.
                                                                                  SnS-Ga_2S_3 [303].
                                               SnS
                                                          Ga_2S_3
                                                                     873 \div 1073
                SnGa_6S_{10}
                                 Sn_2Ga_2S_5,
                                 1050
                                                                                     932
      n = \text{Sn/(Sn + Ga)} = 0,66
                         Sn_2Ga_2S_5
                                                                Pb<sub>2</sub>Ga<sub>2</sub>S<sub>5</sub>,
                                                          : a = 12,41, b = 6,22 = 10,88\text{Å}
[306].
                      Ga
          (Ga-S 2,55-2,304 Å).
                                                                                 (100).
                                                                             Sn.
                                                 5
                                                                       S (Sn-S 2,628-3,443 Å).
                                                     6
                                                                             Sn
\mathrm{Sn}^{2+} 5\mathrm{s}^2.
                                                                 Sn
               (Sn-Sn 3,492 Å)
(100).
    3.2.13.
                               SnSe>Ga<sub>2</sub>Se<sub>3</sub>.
                                                                                  Ga-Sn-Se
                                 SnSe-Ga<sub>2</sub>Se<sub>3</sub>, SnSe<sub>2</sub>-Ga<sub>2</sub>Se<sub>3</sub>, SnSe-GaSe.
                                                                                               1373
                                                                                             [307, 308]
                                                                      SnSe-Ga<sub>2</sub>Se<sub>3</sub>,
                                     SnGa<sub>4</sub>Se<sub>7</sub>,
                                          = 6.59, b = 12.37 = 7.60 \text{ Å}.
SnSe-Ga<sub>2</sub>Se<sub>3</sub>
                                                         n = 0.55 (n = \text{Sn/(Sn+Ga)},
                                              953
    )
                                                                              SnGa<sub>4</sub>Se<sub>7</sub>
                                                    838
                       838
                                 988
                                           : SnGa_4Se_7 \Leftrightarrow SnSe + Ga_2Se_3,
                                                                                                    988
                                                : SnGa_4Se_7 \Leftrightarrow SnSe +
                      SnSe-GaSe
                                         SnSe<sub>2</sub>-Ga<sub>2</sub>Se<sub>3</sub>
           969
                                                              n = 0.60 \div 0.70 (n - 1.00)
                                                                         Ga-Sn-Se
                  ).
```

 $Ga_2Se$ ,  $Se_2$  Pb.

```
= 943
                                                                Ga_{0,24}Sn_{0,23}Se_{0,53},
                                                            \rightarrow SnGa<sub>4</sub>Se<sub>7</sub> \Leftrightarrow GaSe + SnSe
[307, 308].
            3.3.
                                                       AB^{IV}C_3^{VI} A_2B^{IV}C_4^{VI}
    3.3.1.
                                 Pb<sub>2</sub>GeS<sub>4</sub>.
                                               [295, 296],
                   Pb<sub>2</sub>GeS<sub>4</sub>
                               2_{1}/^{'}.
                     . 3.1.
                                                                       Pb • Ge • S
           .3.27.
                                                 Pb_2GeS_4
                                                                                XZ.
                                                                                     [GeS<sub>4</sub>] [295].
                                                          Pb<sub>2</sub>GeS<sub>4</sub>
                                                                                     [GeS_4] (4
          ),
                                                       [ PbS<sub>5</sub> ]. . 3.27
        ψ-
                                          [GeS_4]
         XZ. . 3.28
                b \sin \beta,
                                            . 3.28,
                                                    . 3.28,
                         [GeS_4],
                                                                                          [ PbS<sub>5</sub>],
                                                  117
```






. 3.28. 
$$Pb_{2}GeS_{4} \qquad \qquad b \; sin\beta \; (4 \quad ): \; - \\ [GeS_{4}]; \; - \qquad \qquad \psi - \\ [PbS_{5}E], \qquad \qquad [GeS_{4}] \; [295] \; .$$

```
2,18-2,22 Å,
                                                 Ge-S
                                                                        (1,22 + 1,04 =
= 2,26 Å), S^{2-} Pb-S - 2,81-3,25 Å. S^{2-} Pb<sup>2+</sup> (1,82 + 1,26 = 3,08 Å).
                                                                            PbGeS<sub>3</sub>,
    3.3.2.
                                                     [291, 292].
= 7,224, b = 10,442,
=6.825 \text{ Å}, \beta = 105.7, Z = 4)
                                                                          [GeS_4],
                 Z( .3.29, ).
                                                                                        1/3
                                                     Ge-S
                                                                               2,24-2,25
Å
(
                                                    ) 2,17-2,18 -
                  ).
                                                   z^{\uparrow}
    Z
                                                                                      Y
                                                            ● Pb • Ge • S
        . 3.29.
                                                              PbGeS<sub>3</sub>
   XY [291]:
                                                                                [GeS_4];
                                                                        [PbS_5E].
                                          [GeS_4] «
                                                               . 3.29,
```

```
[GeS<sub>4</sub>].
3,02 Å, 2,74 Å
                                                                                                 Pb-S
                        2,74
ψ-
                                                        [PbS_5E],
                                    ψ-
       [309] (
                                                              l_2O, Tl_3BO_3,
                                     GeS, CsSnJ<sub>3</sub>, SnCl<sub>2</sub>,
            As_2S_3 . .).
                               [309].
                                                                                                ψ-
                   ψ-
                                                                                       Na_4Ge_9O_{20}
K_3HGe_7O_{16}\cdot 4H_2O
                                              \begin{array}{c} PbGeS_{3} \\ Ge^{II} \end{array}
          Ge_2S_3 = Ge^{II}Ge^{IV}S_3,
                                                                                          PbGeS<sub>3</sub>,
                                                                          GeS [ GeS<sub>5</sub>E].
                                                Sn
                                                              Ge
                                                                           • S
             . 3.30.
                                                                                     SnGeS<sub>3</sub>
                   bc \sin \beta.
                                                                                ψ-
         [SnS_5E],
                        [GeS_4],
                                                                                     [291].
                                                    120
```

```
SnGeS<sub>3</sub>
                                                                                2_1/c
= 7,269; b = 10,220; c = 6,873 A, \beta = 105,45^{\circ} Z = 4 [291, 293].
                                SnGeS<sub>3</sub>
                                                                        bc \sin \beta
              Ge
                                  [GeS_4]
                                                                               Sn
                                                    [SnS_5E],
                            ψ-
PbGeS<sub>3</sub>.
                          Sn
                                                             S
                                                                                                                  2,63
                                                    Sn
2,94 Å.
                                     PbGeS<sub>3</sub>,
                                                                         SnGeS<sub>3</sub>
      β-GeS<sub>2</sub>, PbGeS<sub>3</sub> Pb<sub>2</sub>GeS<sub>4</sub>
                                                                 [GeS<sub>4</sub>]
                               PbGeS<sub>3</sub>
                                                                                                             [GeS_4],
Pb<sub>2</sub>GeS<sub>4</sub>
                                    [GeS<sub>4</sub>]
                                                             GeS_2
                                                                        PbGeS<sub>3</sub>
                                                                                                              Pb<sub>2</sub>GeS<sub>4</sub>
                                              [GeS_4]
                                                                                                         ψ-
[PbS_5E].
      3.3.3.
                           PbGa<sub>2</sub>Se<sub>4</sub>
         PbGa<sub>2</sub>S<sub>4</sub>
                                                                                                               PbGa<sub>2</sub>Se<sub>4</sub>
Fddd-D_{2h}^{24}.
                                                                                     = 21,37, b = 21,47,
= 12,73 \text{ Å}, Z = 32, [297, 298].
                                                   PbGa<sub>2</sub>Se<sub>4</sub>
          SrIn<sub>2</sub>Se<sub>4</sub>,
                                                             TlSe.
```

```
( . 3.31
X, Y Z -
3.32).
                                                                         YZ
      1/4
                          Χ,
                                                                  XY
            Z YZ
                                        X.
1/4
                          1/4
                                                       T1^{1+}
TlSe.
                                                                !Y
            Ϋ́X
                                                Pb Ga · Se
     . 3.31.
                      XY (
  PbG _2Se_4
                    [PbSe<sub>8</sub>]
                                         a b) [297].
                                Pb-Se
[PbSe<sub>8</sub>] 3,06÷3,29 Å.
                                                       (I
                                                           II
       3,17 Å, 3,28 Å,
                                                           (III)
        - 3,06 Å; 3,10 Å; 3,25 Å 3,29 Å,
               (1,26 + 1,93 = 3,19 \text{ Å}).
                     X
                                      [PbSe<sub>8</sub>]
                                4
                                                                   [GaSe<sub>4</sub>],
```

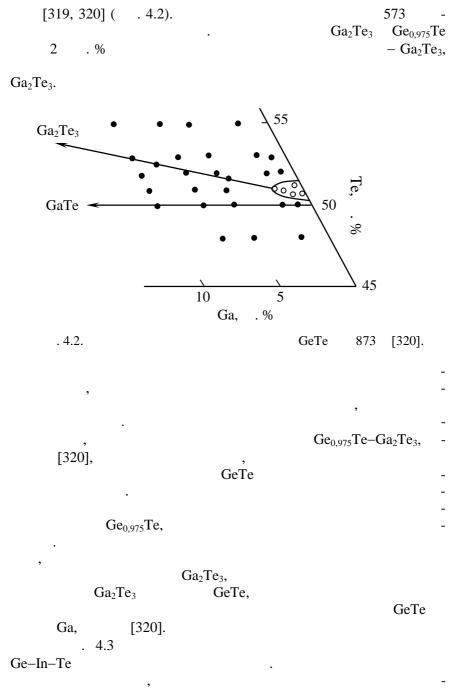


|                | • |
|----------------|---|
|                | • |
| $A^{IV}B^{VI}$ | > |

 $A^{IV}B^{VI} - A^{IV}B^{VI} - A^{I$ 

[310]. 1 ÷ 2 . .). [311, 312]. 125

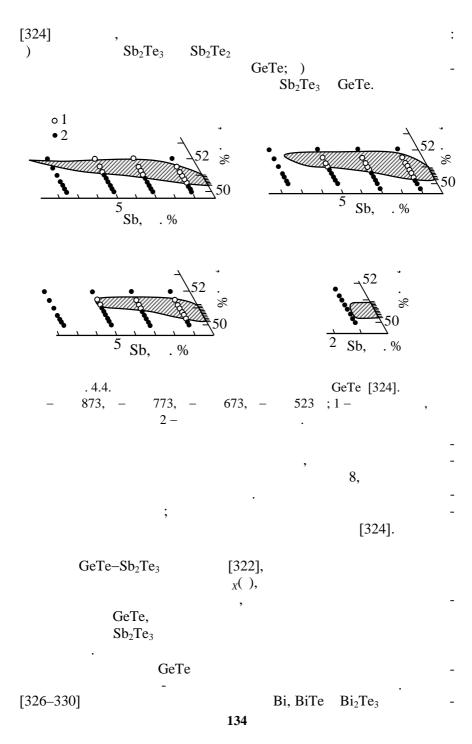
```
[311].
                                                              C_x B_y^{VI}
[312].
         ),
                                             A^{IV}B^{VI}
             4.1.
                                                               GeTe
                         , 1-
                                          – Na, Ag, Cu –
```


```
- Sb, Bi -
                      5-
                        GeTe
                                Ge_{0,97}Te.
         GeTe
                                             . % [313].
       2
         3 . %,
                                        1,5
                               0,4
GeTe
                    1,39 1,50 Å
                                                ).
                        Cu, Sb, Bi
               Cu_{2}Te
      820
                                       1,5 . % [313].
                      600
                                          GeTe-Cu
                                           α-
                               GeTe [314].
```

```
[313]
                                             GeTe
                                                                  4,5\cdot10^{20} -3
[313]
      GeTe ([V_{Ge}] = 1/2 \cdot = 3,2 \cdot 10^{20} -3)
                                                       ([V_{Ge}]^{'} = 1/2 \cdot = 1,0 \cdot 10^{20}
               \sim 2, 2 \cdot 10^{20} <sup>-3</sup>, ...
                                                                                        [313]
                N_{\rm Cu} \approx 5.8 \cdot 10^{20} <sup>-3</sup>,
                                                                                      GeTe
                                                  , ~ 40 %
                     ~ 20 %
     [313]
                                                                                          GeTe-Cu
                                                 \alpha \rightarrow \beta
[315].
                                                                                         [313],
```

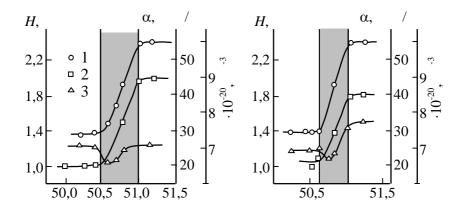
```
,
GeTe
                                              Ge<sub>0, 975</sub>Te–Cu<sub>2</sub>Te
        Cu_2Te
                                                [316],
                                                                 838
                    Cu_2Te
3
    5
            . %.
                                                                     . 4.1).
             853
                                  Ge_{0.97}Te-Cu_2Te 3
                                                                . % Cu
                                       51 \div 49,5 . %
                                                                (.4.1,).
     573
                                             573
                                                                            ~ 2,5
                                                                                       . %
     . 4.1, ).
(
                                                                Te
              Te
                                                             52
                                    0 ⊗ 1
                                                                             0
                                      • 2
   Ge<sub>0.975</sub>Te,
                                                                                   Cu<sub>2</sub>Te
                                   Cu<sub>2</sub>Te
48 Z
Ge<sup>0</sup>
                                               48
                2
Cu,
                                            Ge 0
                        . %
                                                                         . %
                                                                 Cu,
       . 4.1 .
                                                         Ge<sub>0,97</sub>Te [316].
             853 ( ) 573 ( ).
                                              :1-
                                                                  , 2 –
                                                                                    Cu_2Te
                                      GeTe
                                                                           . Cu_2Te
            GeTe
                                                                                     [313]
                                 Cu_2Te
                                                                             GeTe
                                                             Cu<sub>2</sub>Te.
```

```
Cu_2Te
                                                                                       GeTe,
                                       GeTe.
GeTe-Cu<sub>2</sub>Te
                                       [316],
Ge_{0.975}Te
                                                  Cu<sub>2</sub>Te,
                                    GeTe.
                                                                                A^{IV}B^{VI},
                                          Al, Ga In
                   Ш
                             III
Pb, Ge, Sn.
                                                                                  ).
                                   [317]
                                GeTe-GaTe GeTe-Ga<sub>2</sub>Te<sub>3</sub> 7
                                                                                  5
                                                                                          . %
                                         [318, 319]
                           [318, 319]
        Ge_{0,975}Te-Ga_2Te_3.
Ge-Ga-Te
            Ge<sub>0,975</sub>Te-Ga<sub>2</sub>Te<sub>3</sub>
                                                                           873
                                                                     . % Ga<sub>2</sub>Te<sub>3</sub>
0,5
          . %
                            [318]
                                             130
```

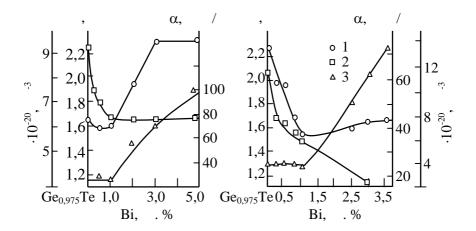

 $Cu_{2}Te$ 

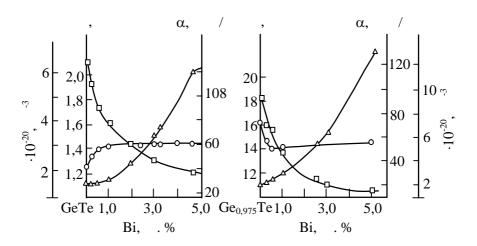


```
InTe
                                                                                          In_2Te_3
                      GeTe-In<sub>2</sub>Te<sub>3</sub>
                                                  ) [321].
                        (Ge)
                                                                            GeTe
                                                                GeTe-In<sub>2</sub>Te<sub>3</sub> (\Delta r/r \approx 5 %).
                                                    GeTe
                                                                             Ge-In-Te
           GeTe-In_2Te_3 [321], . .
                In
                                                                                   In.
                                                                              In<sub>3</sub>Te<sub>4</sub>
                                                                      InTe
   In,
                                                       10
                                In_2Te_3
                                          In,
              52
                                                                  55
                                                                                60
                                                  50
                                  . %
                                                                                . %
Ge_{0,975}Te
                                                  Ge<sub>0,975</sub>Te
              . 4.3.
                                                                      Ge-In-Te [321].
    1 - 473; 2 - 573; 3 - 673; 4, 5 - 823.
           Ge_{0,975}Te-InTe
                           (Ge \rightarrow In),
                                                              Ge_{0,975}Te-In_2Te_3-
                                                     (3Ge \rightarrow 2In + \Box,
```


```
) [321].
                                                  Ge_{0.975}Te-In_2Te_3.
Ge_{0.975}Te-In_2Te_3
                      (Ge-2In),
    GeTe-In
                                                                             Ge,
                                                           In
                   In
                                                 [314].
                                                                                      [322],
                                                                       GeTe-InTe
                                                    Ge,
In,
                                          GeTe-In_2Te_3
                                          [312, 322].
                                                          GeTe-InTe GeTe-In<sub>2</sub>Te<sub>3</sub>
                             ~ 6 . % In.
                                                                                         , In
                           GeTe-In<sub>2</sub>Te<sub>3</sub>
                              3 \text{ Ge} \rightarrow 2 \text{ In}
                                                                                  [312].
                 Ge-Sb-Te
                                                          [323-325]
      GeTe-SbTe GeTe-Sb<sub>2</sub>Te<sub>3</sub>.
       GeTe-Sb<sub>2</sub>Te<sub>3</sub>
                                                 5 \div 7 . %,
                                        . 4.4
                                           GeTe
                                                                       (7,5)
873 )
                                          Ge_{0,975}Te-Sb_2Te_3.
                                                         523
                                          GeTe (
                                 [324].
                                                         Sb_2Te_3 Ge_{0,975}Te
```

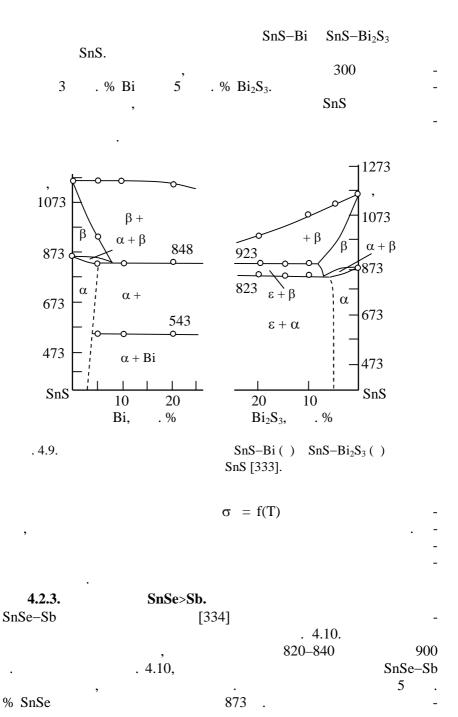
133





```
GeTe.
                                           GeTe
                    < 1 . % -
Ge,
                    > 1 . % -
    Ge. . 4.5
                 Bi 0,5 . %
GeTe Ge -
Te ( ~ 50,3 Ge-Te 50,6 . % Te
Ge-Bi-Te.
   0,5 . % Bi),
                                  Te.
                     GeTe
                                    Ge-Bi-Te
                     [326],
                                   ~ 6,8 . % Bi
               Ge_{0,975}Te-Bi_2Te_3
820 4,2 . % Bi 770 .
                                         BiTe 3 Bi<sub>2</sub>Te<sub>3</sub>
                             4,0
             Bi, . %
               2,0
                       51,6
   50,0
            <sup>↓</sup>50.8
                    Te, . %
     Ge_{0,975}Te
                                    Ge-Bi-Te 1043 [328].
   . 4.5.
                                                          Bi
      (.4.6),
                          [328]
( ).
                           (.4.7)
                   Bi ( ~ 1 . %),
```

135



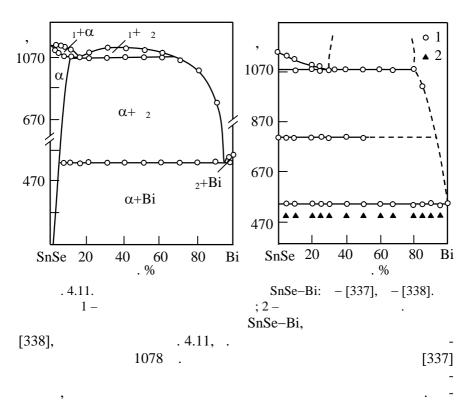






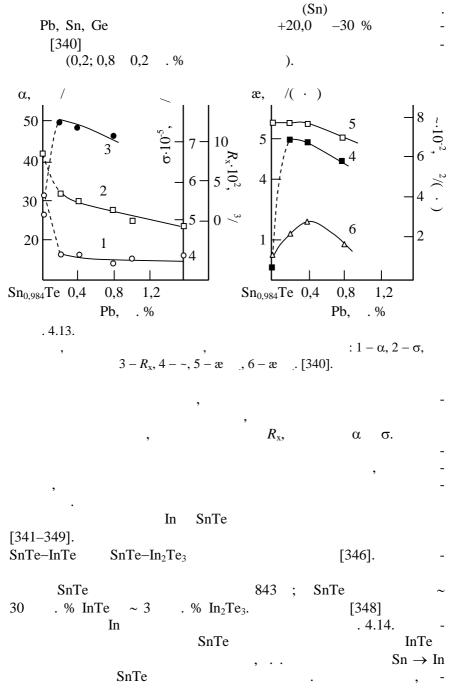

```
Bi_2Te_3
                                      GeTe,
                                                   Ge_{0,975}Te
                     ~ 1
                                                          Bi_2Te_3
                                        [328]:
                                                          Ge \rightarrow Bi
                                                       Ge \rightarrow Bi
                                                             (
                Ge Bi),
      Bi_2Te_3
                Bi_2Te_3
Ge \rightarrow Bi,
[326],
                                     4 ( . 4.5)
                                          [328].
                                                ~1 .% .
     4.2.
                                                 SnS(Se)-Sb(Bi)
   4.2.1.
                   SnS>Sb.
                     [331]
SnS-Sb ( . 4.8),
         Sn-Sb-S.
                                                  200
                                                            620 .
                                   SnS-Sb
                            Sb (96
                                     . % Sb)
             888 .
                                      SnS-Sb
                                     β-
                                        (β-
                                138
```

```
SnS).
                                                              848
                                                                        SnS.
                    SnS
                                      2
                                            . %.
 SnS
                                                                  Sb_2S_3.
    SnS-Sb_2S_3
                                    [332],
                                           SnS.
                                                             673
       ~ 7
               . % Sb_2S_3.
             1070
                                  +\beta
              870
                                     \beta + Sb
                       \dot{\beta} + \alpha
              670
                        α
                                   \alpha + Sb
              470
              270
                 SnS
                          80
                                  60
                                         40
                                                  20
                                                        Sb
                                        . %
                . 4.8.
                                                     SnS-Sb [331].
               [331]
         α-
                                                 0,5; 1,0 1,5
                                                                    . % Sb
                                   300-800
                                     1,2
                                             (
0,5
        . % Sb)
                    1,05
                                                                     . % Sb).
                                                             1,5
                                                              SnS
   4.2.2.
                      SnS>Bi.
                                                                   SnS-Bi
SnS-Bi_2S_3
                                              [333].
                                                             . 4.9
```




SnSe, 4 . % Sb. Sb  $(SnS)_{1-x}Sb_x$ SnS, Sb. [334] , 1170 970  $\alpha$ + 2  $_2 + Sb$ 770  $\alpha + Sb$ 570 SnS 80 60 40 20 Sb . 4.10. SnSe-Sb [334].  $(SnS)_{1-x}Sb_x$ = 0,5. % [335]. n, 0,96 SnSe 0,76 (4 . % Sb).  $SnSe-Sb_2Se_3$ 

[336].  $\alpha$ -SnSe Sb<sub>2</sub>Se<sub>3</sub> 6  $\pm$  1 . %.


**4.2.4.** SnSe>Bi. SnSe-Bi

SnSe-Bi, [337, 338], ( .4.11, [337] SnSe-Bi ). Sn-Se-Bi. SnSe-Bi ( . 4.11, ).  $0 \div 1,5$  . % Bi α-SnSe. 15 ÷ 65 . % 1073 . % Bi 0-95 533 . α-5 . % SnSe.



```
Bi.
                538 .
                                                                      808
                                             SnSe.
          . % SnSe
                                                          Bi.
                                                 SnSe
1÷99
                                                          (SnSe)<sub>1-</sub> Bi
                                                   SnSe
                            Bi
                                           BiSe.
                                                                      . % BiSe
                       (SnSe)_{1-} (BiSe)
                                                               4
[338].
                          Bi_2Se_3
                                    β-SnSe
                                                          35 \pm 3
                                                                        . %
               943
                           Bi_2Se_3 \alpha-SnSe
                                                            12 \pm 2
                                                                        . %
               723
                      [339].
             4.3.
                                                             SnTe
                                      (
                                                                ) [321]
(\sim 10^{20} - 10^{21} <sup>-3</sup>).
                                                                     [340-344],
                                                                   (
                                                                       )
                                       [340, 341]
                          III (In, Ga), IV (Pb, Sn, Ge) V (Sb, Bi)
(Sn_{0.984}Te)
Sn-Te,
                                                        (
                         ) \sim 1.6
                                     . %
                                             870
                                                                 300
                                                       - . . . α,
                                        R_{\rm x}
                                                                        (æ
           σ,
                               (æ
```

```
. 4.12.
                                        IV
                . 4.12
                                                                Ge
                                                                       Pb
  α.
~ 0,2
                                          Sn
                                                                            - ~ 0,7 · %.
          . %,
                                    (\alpha, \sigma, \alpha, R_x \sim)
                                                                                   Sn_{0,984}Te,
                      Pb.
                                                                           R_{\rm x}, ~
                   \alpha
                          σ,
                                                                                        æ
(
     . 4.13).
                                                       40
   700
                                                      30
   600
                                                      20
   500
                                                       10
  Sn_{0,984}Te
                0,4
                          0,8
                                   1,2
                                                     Sn<sub>0,984</sub>Te 0,4
                                                                             0,8
                    M,
                         . %
                                                                     M,
                                                                            . %
                                                    ( )
     . 4.12.
   ( )
                                                                        : 1 - Pb, 2 - Sn,
                                       3 – Ge [340].
                                                                 IV
         Pb<sup>2+</sup>, Sn<sup>2+</sup>, Ge<sup>2+</sup>
                                                               1,22; 1,02
                                                                               0,69 [345]),
```



SnTe,  $In_2Te_3$ InTe 8,0 7,0 In, .% 5,0 4,0 3,0 2,0 1,0 49 50 √ 51 52 53 Te, . %  $Sn_{0,994}Te$ . 4.14. (823) Sn-In-Te [348]. Sn-In-Te In, In, SnTe. ( ), ( ) - . . . (α) In ( . 4.15) SnTe $(0.5 \div 1)$  ~ (0.5 ÷ 1) . % In ; 2)  $SnTe-In_2Te_3$ In  $\alpha$ 1, ; 3) α In SnTe-In<sub>2</sub>Te<sub>3</sub> In (a ( )  $(\alpha)$ 

SnTe,

In,

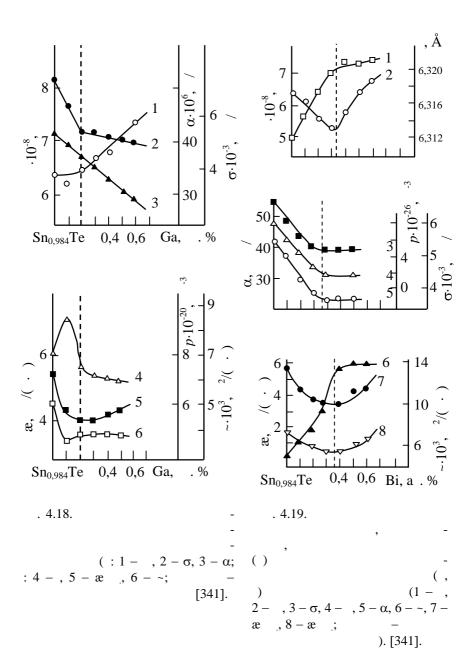
 $SnTe-In_2Te_3$   $Sn_{0.984}Te-In_2Te_3$ 

```
In (> \sim 1 . %) \alpha
                                                                                 , . . In_2Te_3
                                                                      InTe,
                             SnTe,
[348].
                                                                               SnTe-In<sub>2</sub>Te<sub>3</sub>
                                                                                       In
                                                                                       (In^{1+}
                Sn \rightarrow In
In^{3+}),
        \alpha \cdot 10^5, /
                                                                       \alpha \cdot 10^5, /
                                 ·10<sup>-8</sup>,
                                                  ·10<sup>-8</sup>.
                                                                o 1
      3
                                                   8
             . %
                   2
                              6
                                    8
                                                     0
                                                           2
                                                                           8 In,
      In,
         \alpha \cdot 10^5,
                                 \cdot 10^{-8}
                                                                     \alpha \cdot 10^5, /
                                                  \cdot 10^{-8},
                                                 11
                                                 10
                                                  9
                                        6
      1
             . % 2
                              6
                                                                     6
                                                                           8 In,
      In,
                                                                       (1),
     . 4.15.
         - . . . (2)
                                               (3)
                                                                       In
                          -50.2; -50.4; -50.6; -50.8 . % [348].
                                                                 SnTe-Sb
[350]
     SnTe-Sb
                                                                                850
                                  15
                                            . % SnTe
823
                              Sb SnTe
                                                                1
                                                                     3
                                                                         . %.
                                                                         SnTe
Sn-Sb-Te
                                            [351–354].
```

```
. 4.16.
                                   Sb
                                        SnTe
                                                            SnTe
                          Sn_{0,984}Te-Sb_2Te_3;
Sb ~9 . % [351].
                                [352],
                                                       Sb
                                                            SnTe
    ~ 10 . %
                                                                78
                      823 .
                                        [355]
    SnTe,
              <sup>119</sup>Sb.
                                                       Sb
                                              SnTe
         Sn,
                              Te,
                       Sb,
                              10
              50,5
                    52,0
Te, . %
                               54,0
      . 4.16.
                                     (823)
                                                      Sn-Sb-Te [351].
   SnTe
                    Sn-Sb-Te
                                         [353],
                                              Sb,
          Sb
                                                                Sb_2Te_3
                                     Sn_{0,984}Te-Sb_{2}Te_{3}
```

Sb<sub>2</sub>Te<sub>3</sub>,

Sb


Sn-Te. Sn-Sb-Te SnTe Sb  $Sb_2Te_3$ . Sn-Sb-Te SnTe Sb [350].  $Sn_{0,984}Te-Sb_2Te_3$ , SnTe-Sb<sub>2</sub>Te<sub>3</sub>, Sb<sub>2</sub>Te<sub>3</sub>: Sn-Te, 60 6,320 8 6,316 5 ರ, 6,312 20  $Sn_{0,984}Te = 0,6$ 1,0 Sb,  $Sn_{0,984}Te = 0,6$ 1,0 Sb, . % . 4.17. ( ) ( )  $(1 - , 2 - , 3 - , 4 - \sim, 5 - \sigma, 6 - \alpha;$ ). [341]. In, Ga Sb  $Sn_{0,984}Te$ 

),  $\mu,\, \mathfrak{x}$   $\mathfrak{x}$  . Ga Sb

Ga

( . 4.17, 4.18).

 $0,1 \div 0,2$  . %) ,



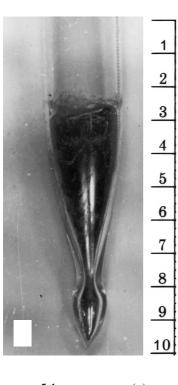
```
In.
                                   In Sb
                               Ga
      , \sigma, \alpha, \sim æ .
               In, Ga Sb
                         Sb
                     In
                                         [341].
                                      æ
              Bi
                                              , σ, α, æ
( .4.19).
                                                     In
 Sb,
                    æ
[341]
                                SnTe
Ga
                              G
                   æ
   [341].
```

, (  $\dot{Bi}$ ), (  $\dot{Ai}$ ), (  $\dot{Ai}$ ), (  $\dot{Ai}$ ), (  $\dot{Ai}$ ), (

|        |                |                                             | A <sup>IV</sup> B <sup>VI</sup> | $^{ m V}$ B $_2^{ m VI}$                     |             |
|--------|----------------|---------------------------------------------|---------------------------------|----------------------------------------------|-------------|
|        | 5.1.           |                                             | A <sup>IV</sup> B               | vi iv B                                      | VI<br>2     |
| 5.1.1. |                |                                             | ,                               | •                                            | -           |
|        |                |                                             | A <sup>IV</sup> B <sup>VI</sup> | $^{\mathrm{IV}}\mathrm{B}_{2}^{\mathrm{VI}}$ | -           |
|        |                | ,                                           | : )                             |                                              | -           |
| ; )    |                |                                             | ; )                             |                                              | -<br>-<br>- |
|        |                |                                             | ,                               | ,                                            | -,          |
| ,      | $A^{IV}B^{VI}$ | $^{\text{IV}}$ $\mathbf{B}_2^{\text{VI}}$ . | _                               |                                              | -           |
| 5÷30   | [13, 48, 57,   | 132, 133, 16                                | 8, 357–363],                    | _                                            | -           |
|        |                |                                             |                                 |                                              |             |

```
1,8÷2,2 . ~ 133
15÷20
                                              [364]
                         680÷928
                                               - 820÷863
                                         3÷4 /
                                                12–15 ,
     820÷850
                                         2÷3 /
                         24 ,
                                          ).
           20÷22
                                           (3÷5)
                                  (
                                        )
```

[356].  $H_2S$  $GeCl_2 + H_2S \leftrightarrows GeS + 2HCl.$ (5.1)GeS<sub>2</sub>:  $GeH_4 + 4S \leftrightarrows GeS_2 + 2H_2S$ . (5.2)< 2)  $GeO_2$  $H_2S$ 1070 :  $GeCl_4 + 2H_2S = GeS_2 + 4HCl;$  $K_2GeO_3 + 2H_2S + 2HCl = GeS_2 + 2KCl + 3H_2O;$ (5.3) $GeO_2 + 2H_2S \leftrightarrows GeS_2 + 2H_2O$ .  $GeS_2$  – 3,03 /  $GeO_2$  $SO_2$ . GeS. 720÷750  $GeS_2$ GeS. GeS<sub>2</sub> HNO<sub>3</sub>  $H_2SO_4$ GeO<sub>2</sub>.


```
H_2S
                               SnCl<sub>2</sub>:
                                  Sn + H_2S = SnS + H_2.
                                                                                  (5.4)
                                      H_2S
                                SnCl_2 + H_2S \leftrightarrows SnS + 2HCl.
                                                                                 (5.5)
SnS_2
         Sn,
(
                HCl),
             ).
                                            12
                           H_2S
                                                    (2,28 \cdot HCl pH \sim 0,5)
                                                             H_2[Sn(OH)_6],
SnCl<sub>4</sub>
                                              SnS_2 \cdot 2H_2O \cdot OH.
                                                  Sn_2S_2\cdot H_2O,
310
                                                                         1000-1020
      H_2S -
                          H_2[SnCl_6] + 2H_2S \leftrightarrows SnS_2 + 6HCl;
                        H_2[Sn(OH)_6] + 2H_2S - SnS_2 + 6H_2O;
                                                                                  (5.6)
                    (NH_4)_2SnS_3 + 2HCl = SnS_2 + 2NH_4Cl + H_2S;
                     Na_{2}SnS_{3} + H_{2}SO_{4} = SnS_{2} + Na_{2}SO_{4} + H_{2}S.
                                                           SnS_2
                 SnS_2 \cdot SnCl_4 SnS_2 \cdot SnI_4.
                                                                      SnS_2
               SnO_2 SO_2.
                     SnS_2
                                                                             HCl,
                                                          NH<sub>4</sub>OH,
                      SnS_2 + 4HC1 \leftrightarrows SnCl_4 + 2H_2S;
                3SnS_2 + 6KOH = 2K_2SnS_3 + K_2[Sn(OH)_6];
                                                                                  (5.7)
```

```
SnS_2 + Na_2S( Na_2Se) = Na_2SnS_3 (
                                                            Na<sub>2</sub>SnSe<sub>3</sub>);
                    SnS_2 + 2Na_2S = Na_4SnS_4.
5.1.2.
1)
2)
                                  IV
                                 A^{IV}B^{VI} \\
                                                                  «
                                                                                  >>
```

2÷3 10÷15 ( .5.1, ). ),  $Sn_xPb_{1-x}Te$ [371]. 16 1273

3

18 .







( , )

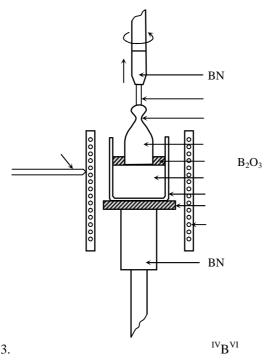
GeS [13].





|                                                                    | 1 | •   | $-12 \div 15, -40 \div 50$ [13] | -12÷15, [133, -30÷40 366] | -15, [360, 50÷60 365] | -20 [129]                        | [367]            | $\begin{bmatrix} -10, \\ -20 \div 30 \end{bmatrix}$ [164] | $\begin{bmatrix} -10, \\ 70 \div 80 \end{bmatrix}$ [411] | -16 [370]                                     | $-15 \div 20$ , [275, $-60 \div 70$ ] 385] | $\begin{bmatrix} -15 \div 20, \\ -60 \div 70 \end{bmatrix}$ [275] |
|--------------------------------------------------------------------|---|-----|---------------------------------|---------------------------|-----------------------|----------------------------------|------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|
| $\mathbf{B}_2^{	ext{VI}}$                                          |   |     |                                 |                           | l                     |                                  |                  | 1                                                         | 1                                                        |                                               |                                            |                                                                   |
| $A^{\mathrm{IV}}B^{\mathrm{VI}}  A^{\mathrm{IV}}B_2^{\mathrm{VI}}$ |   |     | 6)                              |                           |                       |                                  |                  |                                                           |                                                          |                                               |                                            |                                                                   |
| A                                                                  |   | ,   | 0,015÷0,02                      | 0,015÷0,02                | 0,01÷0,05             | 6,3                              | $0.02 \div 0.08$ | 0,2                                                       | 0,12                                                     | 0,04                                          | 0,014÷0,04                                 | 0,014÷0,04                                                        |
|                                                                    |   | Δ,, | 20÷30                           | 30÷60                     | 10÷40                 | 50                               |                  | 180                                                       | 12                                                       | 3,5                                           | 20÷60                                      |                                                                   |
|                                                                    | - | ,   | 086                             | 1150                      | 1080                  |                                  |                  |                                                           |                                                          |                                               | 900÷910                                    | 930÷940                                                           |
| 5.1.                                                               | 1 |     |                                 |                           |                       |                                  |                  |                                                           |                                                          |                                               |                                            |                                                                   |
|                                                                    |   |     | GeS                             | $\alpha	ext{-GeS}_2$      | GeSe <sub>2</sub>     | $\mathrm{Si}_{2}\mathrm{Te}_{3}$ | $4H$ -SnS $_2$   | 2 -SnSe <sub>2</sub>                                      | $\mathrm{Sn}_x\mathrm{Pb}_{1-x}\mathrm{Te}$              | $\mathrm{Sn}_{x}\mathrm{Pb}_{1-x}\mathrm{Te}$ | $PbGeS_3$                                  | $\mathrm{Pb}_{2}\mathrm{GeS}_{4}$                                 |

| _ |   |
|---|---|
| _ |   |
| V | _ |


| 1   | [374]                                  | [377]                     | [373]                                      | [277]                                                 | [378]                | [372]             | [412]                                | [370]                                                           |
|-----|----------------------------------------|---------------------------|--------------------------------------------|-------------------------------------------------------|----------------------|-------------------|--------------------------------------|-----------------------------------------------------------------|
| • • | - 25,<br>- 70,<br>- 125÷150            | _ 9,5,<br>_ 150,<br>_ 200 | - 20÷22,<br>- 40                           | $\begin{array}{c} -9.5, \\ -150, \\ -200 \end{array}$ | – 25,<br>– 75.       | 10×8×0,2          | - 18,<br>- 200,<br>- 300             |                                                                 |
|     |                                        |                           |                                            |                                                       |                      |                   |                                      |                                                                 |
|     |                                        | 15                        | 15                                         | 15                                                    |                      | 13                | 20                                   |                                                                 |
| 1 , |                                        | 25÷75                     | 30                                         | 25÷75                                                 |                      | 10                | 0,8÷3,0                              | $0,01 \div 0,1$                                                 |
| 1 1 |                                        | 866                       |                                            | 1078                                                  |                      | 1013              |                                      |                                                                 |
| 1   | ,13<br>; B <sub>2</sub> O <sub>3</sub> | Ar<br>3 .                 | , 300<br><br>B <sub>2</sub> O <sub>3</sub> | Ar ,                                                  | $N_2, 1$ .; $B_2O_3$ | $B_2O_3$          | Ar, $0,7$ $B_2O_3$                   | $B_2O_3$                                                        |
| ı   |                                        |                           |                                            |                                                       |                      |                   |                                      |                                                                 |
| 1   | GeTe                                   | GeTe                      | SnTe                                       | SnTe                                                  | PbTe                 | $\mathrm{GeSe}_2$ | Sn <sub>x</sub> Pb <sub>1-x</sub> Te | $\operatorname{Sn}_{x}\operatorname{Pb}_{1-x}\operatorname{Te}$ |

```
40÷90
22÷55 / .
                                              [13, 129, 360, 363–371]
                                                                  GeS, GeSe, GeS2,
GeSe<sub>2</sub>, Si<sub>2</sub>Te<sub>3</sub>, PbGeS<sub>3</sub> Pb<sub>2</sub>GeS<sub>4</sub>
0,01 \div 0,02 /,
3÷5 / ( .5.1).
                                                        , GeSe.
          GeS
                   GeSe<sub>2</sub>,
                         . 5.1.
                                                         [13, 359].
                      [335]
                                                                                   SnSe
                                             n-
          SnS_2
                                                              0,02 \div 0,08
  ),
          ) [367].
                                                                     -S-Sn-S-
```

IV

[372–378], . 5.3.

 $B_2O_3$  ( ),



. 5.3. [374].

[370, 371] PbTe  $Sn_{x}Pb_{1-x}Te$ 

```
SnTe, PbTe Sn_xPb_{1-x}Te
Ta-Nb -
       Sn_xPb_{1-x}Te
                                  = 0.25
                                                                                 100
                                                          70 ,
                 15
                  \sim (1 \div 5) \cdot 10^{19} <sup>-3</sup>.
                                                         4.10^{4}
    10^6 -2
                                                                     A^{IV}B^{VI} \\
5.1.3.
                                                                     ).
                                                                                         IV
                                      A^{IV}B^{VI} \\
```

```
IVA
                                     [357–362, 379–386].
                        A^{IV}B^{VI} \\
                                                 30÷40
                                      (
                                          .).
                                      ),
(Δ )
                     . 5.2).
                   165
```

5.2.

 $A^{IV}B^{VI} \quad A^{IV}\,B_2^{VI}$ 

| 1      | 1 | 1 6            | 1              |             |   | •                           | 1             |
|--------|---|----------------|----------------|-------------|---|-----------------------------|---------------|
| 1      | 2 | 3              | 4              | 5           | 9 | 7                           | 8             |
| GeS    |   | 860÷880        | 770÷790        | 20÷24       | , | 20×15×0,2                   | [358,<br>363] |
| GeS:In |   | 900÷910        | 810÷820        | 8÷10        |   | - 10÷30,<br>-<br>0,005÷0,01 | [438]         |
| GeSe   |   | 096<br>086÷026 | 810÷820<br>910 | 20÷24<br>48 | , | 20×15×0,2                   | [13]<br>[381] |
| GeSe   |   | 0,6÷2          | 923÷928        |             |   | 10×6×4                      | [57]          |
| GeTe   |   | 026            | 870            |             |   | 9                           | [384]         |
| SnS    |   | 1100÷1110      | 1010÷1020      | 20÷24       |   | 8×6×0,2                     | [13]          |
| SnSe   |   | 1100÷1110      | 1040÷1050      | 20÷24       |   | 8×6×0,2                     | [13]          |

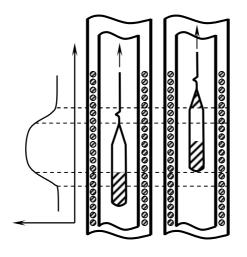
| 1                                  | 2 | 3                | 4               | 5            | 9 | 7                         | 8                   |
|------------------------------------|---|------------------|-----------------|--------------|---|---------------------------|---------------------|
| PbTe                               |   | 1140÷1240        | 990÷1180        | 40÷70        |   | 08                        | [415]               |
| 2H-SnS <sub>2</sub>                |   | 1070÷1085<br>873 | 950÷1020<br>773 | 17÷20<br>500 |   | 10×10×0,1                 | [168, 361]<br>[386] |
| SnSSe                              |   | 873              | 773             |              |   | 10×10×0,1                 | [386,<br>418]       |
| 2 <i>H</i> -SnSe <sub>2</sub>      |   | 773÷1023<br>973  | 773÷873<br>773  | 50÷100       |   | 10×10×0,1                 | [386]<br>[418]      |
| β-GeS <sub>2</sub>                 |   | 1073<br>943      | 873<br>813      |              |   | 6×6×0,4                   | [135]<br>[364]      |
| β-GeSe <sub>2</sub>                |   | 900÷970          | 850÷900         | 24÷36        |   | 15×10×0,2                 | [132,<br>360]       |
| β-GeSe <sub>2</sub>                |   | 973              | 873             | 24           |   | $10 \times 10 \times 0,1$ | [364]               |
| $\mathrm{Si}_2\mathrm{Te}_3$       |   | 1103             | 1023÷1073       | 70÷80        |   | - 20,<br>- 0,2            | [129,<br>144]       |
| GeS <sub>x</sub> Se <sub>1-x</sub> |   | 860÷880          | 760÷780         | 24           |   | 20×15×0,2                 | [13, 205]           |

Ge Sn ( . 5.2) ( ).  $^{IV}\,B_{\,2}^{\,VI}$  $A^{IV}B^{VI} \\$ ), ), ( ),

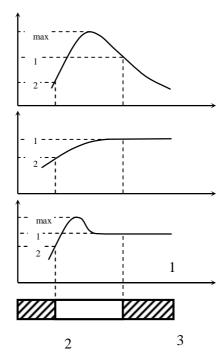
```
)
                                                                                                  A^{IV}B^{VI}
                                                                                                 16÷20
          (
                      2,0 \div 2,2
                                                                     ).
                                                    1
                    [390]
          GeSe-GeI<sub>4</sub> (
                                                                              15
                                                                                                   150
                                                                                   793
                                                                                             693
                              GeSe, GeI<sub>2</sub>, GeI<sub>4</sub>, I, I<sub>2</sub>, Se<sub>n</sub> (n = 1 \div 8)
                                   GeSe
                                                                       GeI_4
                 GeI_2
                                                           GeI_{2} (
                              Se_2
GeSe (
```

```
Ge() + GeI_4() = 2GeI_2(),
                                                                      (5.8)
                                                                          Ge
Sn.
                           (5.8)
                                                                   Ge
               GeX( ) + GeI_4( ) \Leftrightarrow 2GeI_2( ) + \frac{1}{2} _2( ).
                                                                      (5.9)
                          GeX.
GeSe:GeI<sub>4</sub> [393]
                    GeSe_2( ) = GeSe( ) + 1/2Se( ),
                                                                    (5.10)
                                  Se_2(),
                                                                GeSe
~ 1
                                   Ge-Se-I
                                      GeSe ().
                                      GeSe
         GeSe-GeI<sub>4</sub>
                                                               793
                                                                          0
               693
15
             [390].
              GeSe
(010)
      [388].
                                                            [387],
(
                 GeSe_{2}() + 2I_{2}() = GeI_{4}() + Se_{2}(),
                                                                     (5.11)
```

```
GeI_{2}\left(\ \right)+Se_{2}\left(\ \right)=GeSe_{2}\left(\ \right)+I_{2}\left(\ \right).
                                                                                    (5.12)
                             GeI_4 ( )
    GeI_2()
                  I_2 ( ).
(5.11).
      SnS_2
                                                          [392].
SnI_4
                                                                                   SnS_2
                                              ~ 500 ,
                           0,01 1
                                                 \mathrm{SnI}_4
                                                                0,4
                                                                             190
                                 3÷115 .
                           : 648÷723, 798÷723, 923÷823 .
                                                                                      SnI_4
        648÷732
0,3÷150 .
                                                                                   SnI<sub>4</sub>, SnI<sub>2</sub>,
I_2, I, S_2, S_3, S_4, S_5, S_6, S_7 S_8
                                                    » SnS<sub>2</sub>
SnS<sub>2</sub>,
                      \Delta P^* = P^* (\mathrm{SnS}_2)_{T_1} - P^* (\mathrm{SnS}_2)_{T_2}, \qquad 2 > 1.
                                                                              SnS_2
                                                  [422].
```


```
SnS_2
                                 5
45×20×0,2 )
                                                SnS_2-SnI_4, SnS_2-I_2,
GeSe-GeI<sub>4</sub>, GeSe-Xe,
                                                        [394].
                                    GeSe-Xe
GeSe
                 GeSe 1÷2
                                                          [395, 396].
                   [389]
                              SnTe
                                      PbTe
      SnTe-Br_2 PbTe-Br_2
                                            [398].
                               {111}
                                       {100},
                                 172
```

```
Ge_xPb_{1-x}Te Sn_xPb_{1-x}Te.
                                                                           [401]
                                            5 \cdot 10^{-7}
                                                                    1073÷1167
                35
              Pb_xSn_{1-x}Te
                                        125 ,
                   10^{3}
                  5.3
                                           IV
5÷10
                                                 GeSe, GeSe<sub>2</sub> GeTe,
                                      [384, 387, 398],
                                     A^{IV}B^{VI} \\
           )
                                              [359, 417]
```


| ı       | 8 | [397]                                                 | [387]             | [387]                    | [387]             | [362]                   | [398]                 | [366]            | [141]                    | [387]               |
|---------|---|-------------------------------------------------------|-------------------|--------------------------|-------------------|-------------------------|-----------------------|------------------|--------------------------|---------------------|
| ,       | 7 | $10 \times 1 \times 0,01$<br>$8 \times 8 \times 0,05$ | 3÷7               | $15 \times 5 \times 0,1$ | 4×6               | $8 \times 5 \times 0.1$ | $0.8 \div 1.2$        | 0,5              | $10 \times 7 \times 0,2$ |                     |
|         | 9 | ,                                                     |                   |                          |                   |                         |                       |                  |                          |                     |
| , 1     | 5 |                                                       |                   |                          |                   | 24                      | 5                     |                  | 24                       |                     |
| 1 1 *   | 4 | 693                                                   | 723               | 693                      | 713               | 820                     | 683÷743               | 840              | 750÷800                  | 673                 |
| 1 6     | 3 | 753                                                   | 843               | 793                      | 863               | 920                     | 1028÷1073             | 950              | 800÷850                  | 823                 |
| - ' 3 ' | 2 | $I_2$                                                 | $I_2(0,8\div1,7)$ | $\mathrm{GeI}_4$         | $I_2(1,0\div1,5)$ | $I_2$                   | $Br_2 (1,4 \div 1,8)$ | $I_2(0,4)$       | $I_2$                    | $I_2(0.9 \div 1.2)$ |
|         | 1 | GeS                                                   | GeSe              | GeSe                     | GeTe              | SnS                     | SnTe                  | $\mathrm{GeS}_2$ | $\beta$ -GeSe $_2$       | GeSe <sub>2</sub>   |

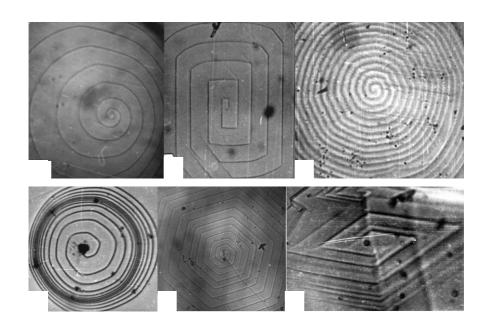
| 1                                 | 2        | 3         | 4               | 5      | 9 | 7                               | 8             |
|-----------------------------------|----------|-----------|-----------------|--------|---|---------------------------------|---------------|
| SuS                               | [, (5)   | 1073      | 973             |        |   | 4×4                             | [419]         |
| 7 0110                            | 12 (5)   | 550÷800   | 500÷700         | 20÷200 |   |                                 | [386]         |
| SuS.                              | 1,       | 096       | 870             |        |   |                                 | [168]         |
| 2 - Sui32                         | 12       | 970÷1450  | $870 \div 1150$ |        |   |                                 | [413]         |
| 18R-SnS <sub>2</sub>              | $I_2$    | 953       | 913             |        |   |                                 | [160]         |
| $SnSe_2$                          | $I_2$    | 973       | 873             |        |   | $10 \times 10 \times 0,1$       | [418]         |
| 2H-SnSe <sub>2</sub>              | $I_2$    | 863       | 843             |        |   |                                 | [160]         |
| SnSe <sub>2</sub>                 | $I_2$    | 773       | 673             |        |   | $10 \times 10 \times 0,1$       | [418]         |
| SnSSe                             | $I_2$    | 873       | 773             |        |   | $10 \times 10 \times 0,1$       | [386]         |
| $\mathrm{SnS}_x\mathrm{Se}_{1-x}$ | $I_2$    | 873       | 793             | 20     |   | 10×10×0,1                       | [220]         |
| ${ m SiSe}_2$                     | $I_2$    | 1080      | 1000            |        |   | $-10 \div 15,$<br>$-0,1 \div 1$ | [414]         |
| $SnS_{2x}Se_{2(1-x)}$             | $I_2$    |           |                 |        |   | 10×10×0,1                       | [229,<br>230] |
| $Ge_xPb_{1-x}Te$                  | $I_2$    | 1167      | 1073            | 840    |   | 10                              | [401]         |
| $Sn_{x}Pb_{1-x}Te$                | $ m I_2$ | 1163÷1053 | 883÷723         |        | • |                                 | [400]         |

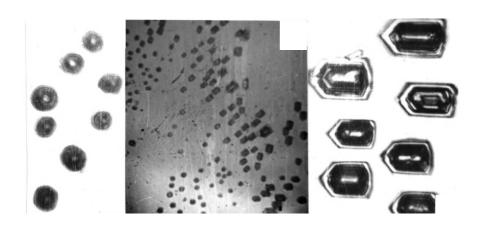
```
A^{IV}B^{VI} \\
[363, 380, 403–409].
                                                          PbS
      [403]
                              ),
                                         ( . 5.4, ),
( . 5.4. ),
                 (
                           25÷40
                                      )
                                                           Ge
                                                                 Sn
                                         . 5.5)
                                     (
                                                  [380].
          ( )
```



. 5.4. GeS [380]: - ; - -




. 5.5. [380].


|                                                            | ,       | [363, x40 380, | [604] | [380] |       |                       |                                |                                         | 81                                      | 81                                            | 81                                            |
|------------------------------------------------------------|---------|----------------|-------|-------|-------|-----------------------|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------|
|                                                            | •       | 20×40          |       |       | 10÷18 | 10÷18                 | 10÷18                          | 10÷18                                   | 10÷18                                   | 10÷18                                         | - 10÷18<br>6×3×0,3                            |
| $\mathbf{A^{IV}B_2^{VI}}$                                  | •       | 0,01÷0,2       |       |       |       |                       |                                |                                         |                                         |                                               | 4                                             |
| $A^{\text{IV}}B^{\text{VI}}  A^{\text{IV}}B_2^{\text{VI}}$ |         | 25             |       | 5÷20  | 5÷20  | 5÷20<br>0,6 /<br>5÷30 | 5÷20<br>0,6 /<br>5÷30<br>10÷30 | 5÷20<br>0,6 /<br>5÷30<br>10÷30<br>30÷50 | 5÷20<br>0,6 /<br>5÷30<br>10÷30<br>30÷50 | 5÷20<br>0,6 /<br>5÷30<br>10÷30<br>30÷50<br>30 | 5÷20<br>0,6 /<br>5÷30<br>10÷30<br>30÷50<br>30 |
|                                                            |         | - 40           |       | 853   | 853   | 853<br>723<br>923     | 853<br>723<br>923<br>1113      | 853<br>723<br>923<br>1113               | 853 723 923 1113 1180                   | 853 723 923 1113 1180 1043                    | 853 723 923 1113 11180 1043 1273              |
|                                                            | •       | 793÷853        |       | 933   | 933   | 933 943 973           | 933<br>943<br>973<br>1155      | 933<br>943<br>973<br>1155               | 933<br>943<br>973<br>1155               | 933<br>943<br>973<br>1155                     | 933<br>943<br>973<br>1155<br>1073             |
| 5.4.                                                       | - (5.5) | ,              |       |       |       |                       |                                |                                         |                                         |                                               |                                               |
|                                                            |         | GeS            |       | GeSe  | GeSe  | GeSe<br>GeSe<br>GeTe  | GeSe<br>GeTe<br>SnS            | GeSe GeTe SnS                           | GeSe GeTe SnS SnSe                      | GeSe GeTe SnS SnSe SnSe SnSe                  | GeSe GeTe SnS SnSe SnSe PbS GeSe              |

```
( )
                             ( )
                                                                        ( )
( ).
                                          GeS
                       20
                                       120 ,
                            . . . [380, 404].
                                                           : 1 -
2 -
            5
                                                                     25
                                                793÷853 ,
                 40
                                                       0,2 / .
                                                      4,238 / <sup>3</sup>. GeS
                                          [406].
                                                GeS
                                                SnS_xSe_{1-x}
                                                                        [410].
SnS
                                         SnS + S SnSe + Se
        973
                           7
                                                               SnS_{0,85}Se_{0,15}
                         88
                              <sup>2</sup>/ · .
```

```
5.2.
                          ^{IV}B^{VI}
   5.2.1.
     [424-428].
                 [426, 427].
                                          [426–428]: )
                                                                [427].
[429-432].
```

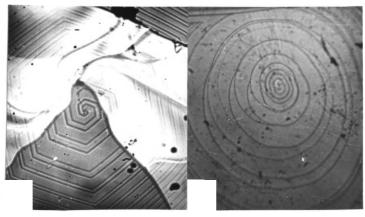
```
,
[357, 429–432]
                                            (001)
              (001)
                                                                Ge
                                                                       Sn
5.6, ,
                              (001)
                                                                . 5.6,
             (
                                                          (001)),
                                          . 5.6, , ).
```





. 5.7. (001) GeSe: 
$$, - \times 1500, - \times 250 [13, 432].$$

```
. 5.7,
                                                                  (001)
    ( .5.7, )
                                           ( . 5.7, )
                                                                N
10^4 \div 10^5 <sup>-1</sup>. , ( . 5.7, ).
                                        (001)
                                           [425, 427].
                                       [424-428].
         (2r_c, r_c -
                                                                      GeS
                                                             . 5.8,
                                                             ).
                                     . 5.8, ).
```


( . 5.8, ). [427],  $y = 4\pi r_{\rm c}$ .  $r_{\rm c}$ . 5.8. (,) ( ) × 400 [13, 432]. . 5.9. (,) (), (001) GeS  $\times$  400 [13, 432]. , [427]. . 5.9.

() () . 5.10.  $2\pi r$ . , . 5.10, **>>** [427]. . 5.10. (001) GeS ( )  $GeSe_2$  ( ). × 400 [13, 432]. ( . 5.6, 5.10, ) [427, 433]. . 5.11,  $2\pi r$ [427]. [425, 427],

 $l > 2\pi r$ 

, « »

. 5.11, .



 $.5.11. - SnS_2,$  (001)

 $2 r_{\rm c} \times 300 [168, 432].$ 

( . 5.12, ). [434],


, IVBVI [432].

 $^{IV}B^{VI}$   $^{IV}B_{2}^{VI}$ 

1000 Å,

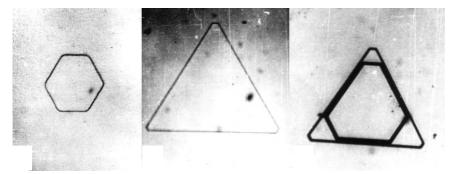
[432].

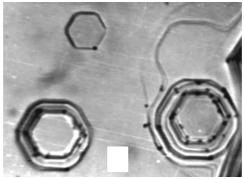




. 5.12.

 $GeSe_2\left(\ \right) \quad GeS\left(\ \right) \times 400\ [13,432].$ 


[424, 427].


0,1 %

 $\Delta = 100 \div 120$ ( . 5.13). IVBVI, ( . 5.14) [13]. GeS GeSe, [435]. (110), (001), [435] 5.2.2.



. 5.13. GeS  $\times$  5 [13, 432].





```
[436, 437].
      . . [436, 437].
         [438]
                    GeS:In.
                                                     GeS:In
                                                 900÷940
             810÷820 ,
                                                    10÷20 .
                                          GeS:In
. 5.15.
          [010],
                               b
                      GeS:In
                                                    30
                                              10
  0,01
                               0,005
                                       0,01
          1,0
                                       [436].
                        (1953-1955
```

[437]

[436].

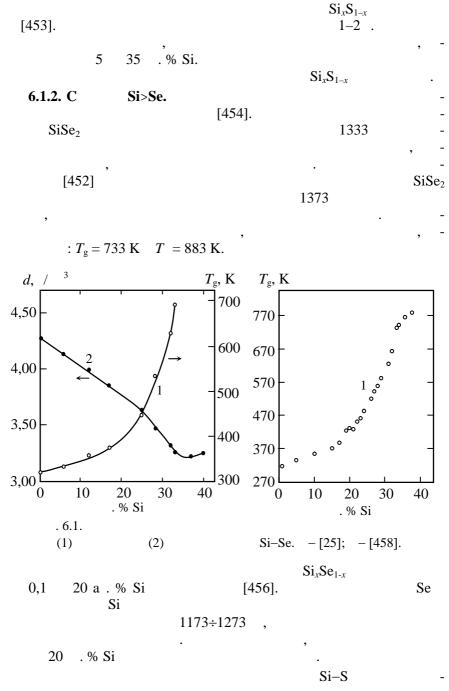
**».** 



. 5.15. GeS:In  $\times$  2 [438]. GeS:In [438] 0,06

```
Ge:In
                         [438]
                         [437],
                                                       «
                                                                 »,
                                    » GeS:In,
                                         »,
In.
                             GeS:In
                                                                (001)
                                                                In
                                           ,
GeS:In
    (001).
                             , In
             GeS:In
                               GeS_2
  [439]
                                              ,
GeS<sub>2</sub>
~ 5
               ~ 100
»)
(«
                                                               GeS<sub>2</sub>,
                                                    α-
  «
               >>
```

| 6.1. | $\mathbf{A^{IV}}\text{-}\mathbf{B^{VI}}$ |  |
|------|------------------------------------------|--|
| ,    | ,                                        |  |
|      | ,                                        |  |
| ,    | , , , , , , , , , , , , , , , , , , ,    |  |
|      |                                          |  |
|      | ,                                        |  |
| I –  | , , ,                                    |  |
| -    |                                          |  |
| ,    |                                          |  |
| ,    | [440],                                   |  |
|      | 193                                      |  |


```
, As_2S_3, As_2Se_3,
SiS_2, SiSe_2, GeS_2, GeSe_2.
                           :, As, Si, Ge,
                                                      III
               IV
                                                                : B, Ga,
                               [442],
(8-N)»,
                                        (8-N),
(8-N)
                                                     N-
                                       [441],
                                          [441],
           [443]
                                                            [444]
                                                [441]:
                                                                )
```

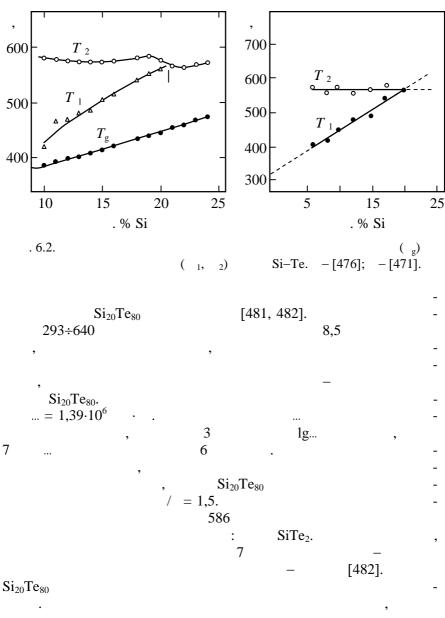
[445]. [445] [443] ( ) , [446] [447]

[448],

 $G_{\eta}(T_{\rm i})/RT_{\rm i}$ 

```
[449]
                                                                        [450].
                                                           [449].
                                                                                «
  IV_ VI
   6.1.1. C
                        Si>S.
                                              Si,
                                                          Ge,
o GeX<sub>2</sub> SiX<sub>2</sub>(
                       = S, S)
                       [SiX_4].
                                   Si-X
                            Si-S
                                        SiS
                                                   1323
       ) [451].
                                                                                      SiS_2 \\
                                                           1–2 ,
          [452]
                            1373
                                                                    T = 815 \text{ K}.
                              T_{\rm g} = 726 \; {\rm K}
```




```
[24, 25, 457, 458]. Si_xSe_{1-x}
1298 K,
                          12÷13 ,
0 40 . % Si.
                            Si-Se
     = 0.12 \quad 0.40,
[24, 25].
         . 6.1
                                             Si_xSe_{1-x}.
                            = 0.33 \sim 0.22.
   6.1.3. C
                    Si-Te.
      Si-Te
                                            [459].
                                           G –
                                                     Si-
                                  . 1.3 1.7)
                                        Si_2Te_3
                                  (682)
                                                                 17÷18
. % Si,
G – .
      [447].
                                      , Si_{20}Te_{80} [464, 465].
[448],
           Si_xTe_{1-x}
```

```
Si-Te
                                                                Si_{20}Te_{80}
                                                             300
                                                   [464, 470].
        2 .
                                 Si_{20}Te_{80}
                                                              ~ 100 Å
[470].
                                                    1273 K
               [460]
                                       25 . % Si.
                                 15
                                 (15÷23(25) . % Si )
                     [461, 468, 469],
      (180 / )
                                    22 . % Si [447].
                              10
                150÷200
                                                   (
    ~ 250 / )
                               Si-Te
                                         10
                                               27,5 a . % Si [463-467,
                                                        [472–475],
526].
       Si_xTe_{1-x}
                   (melt-spinning),
        Si_xTe_{1-x}
                                                 33,3 . %
                                            6
[471]
       10
                40 . %,
                                    [463].
                               Si_xTe_{1-x}
                                                          . % Si [461,
                                                  2 \div 40
462];
    5÷50 . % Si)
                [477];
```

```
133.10-6
                                                                    323 (
0÷82 . % ) [478]
        SiO<sub>2</sub> [479].
A_{15}^{\mathrm{IV}}\mathrm{Te}_{85}
               A^{IV} = Si, Ge, Sn, Pb,
                                                                            Z
A^{IV}
                                                                                    [480].
                                                    \boldsymbol{Z}
              A^{IV}
                                                  A<sup>IV</sup> [480].
                                     Si_x Te_{1-x}
              [471–476].
                                                                                    . 6.2)
                                        = 0.2 [472].
     = 0,1 0,2
                                                                           SiTe_2 ( / =
                                     0,2 < \le 0,28
= 1,558).
                 (
                      . 6.2)
                                                                      Te + Si_2Te_3.
                                    Si
```

,

= 0,2.



```
SiTe<sub>2</sub>.
                  (
  6.1.4. Ge>S(Se).
    Ge-Se Ge-Se
                                              [483]
              Ge-S
                                                            [484]
                              0
                                 45 . %
                       GeS<sub>2</sub>,
           [485].
   : 15 30 . % Ge [486], 28 37 . % Ge [487] 39,2
   43,5 . % Ge [488].
                                ( 10 33,3
                                                   40 44 . %
                            [489-491].
Ge),
                                                      (\sim 100 \text{ K/c}),
              [492, 493]
                        Ge-S: 10 50 . % Ge.
                          GeS
                                          Ge-Se,
                       [498],
                  25 . % Ge [499, 500],
                  40 . % Ge,
                                             [501].
GeSe GeSe<sub>2</sub>
                                                             Ge_{x-}
                 [488, 570].
Se_{1-x}
               0 < < 0.33 \quad 0.388 < < 0.417,
      [504].
         20÷30 ,
    ~ 2 / .
                                  Ge-Se
```

[505-508]. 43÷45 . % Ge-S Ge-Se Ge-Se :  $GeX GeX_2(X = S,Se)$ . [510, 511].  $GeSe_2$ 1263 , GeSe GeSe

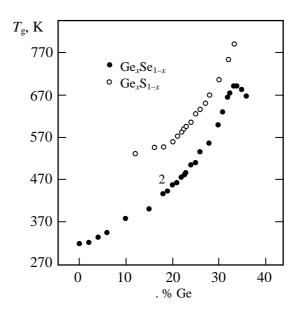
```
( . 2.2).
           β-
                                                           (
          β-
                                                                                    ).
                                                                                   \beta-GeS<sub>2</sub>
(\beta-GeSe<sub>2</sub>).
                                             [GeX_4],
     \beta-GeS<sub>2</sub> β-GeSe<sub>2</sub> [13].
                 GeS<sub>2</sub> GeSe<sub>2</sub>
                                                      [495–497, 512],
        GeS_2
                                                                                    17
(
                  10
                                              ) [494].
                                GeS_2 GeSe_2
                                     1,25÷40 /
                                                         [538].
                              219 298 / .
```

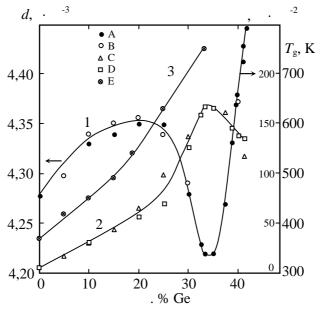
```
GeS_2(GeSe_2)
                      Ge,
                                             GeS_{2.06}
                                                  50÷200
                                               ~ 3 / [494].
         GeS-GeS_2 GeSe-GeSe_2
            Ge_2S_3 Ge_2Se_3,
                                 [488].
                                                                       Se-GeSe<sub>2</sub>
S-GeS<sub>2</sub>
                [512],
                                                 Se(Se)_{2/2}
     [GeS<sub>4</sub>] [GeSe<sub>4</sub>],
                         8 . % G,
                                                        [508].
                                       8÷10 . % Ge
                                                                     Ge-Se
                                           [GeSe_4]
                                 Ge_xSe_{1-x}
                                                                               [502]
Se Ge,
                                                  SeO<sub>2</sub>, GeO, GeO<sub>2</sub>
```

Ge-S(Se) ,

, « – -»

» 100 [513].


« – », . . . ,


•

Ge-S Ge-Se.  $T_{\rm g}$ , K 3,2 A В 700 3,0 D 600 2,8 2,6 500 2,4 400 2,2 300 2,0 10 20 30 40 . % Ge . 6.3. (1), (3) Ge-S. **-[13]**,

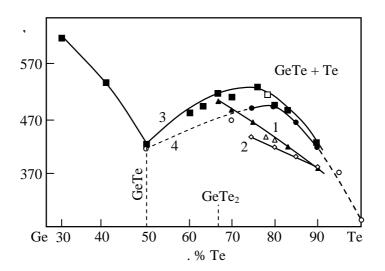
(2) (3) Ge-S., -[13]. , D - [488].

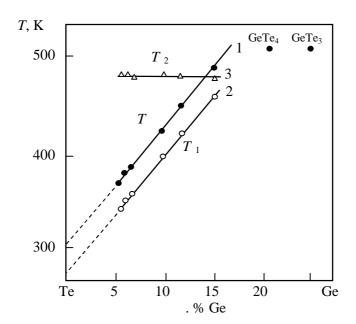
 $Ge_xS_{1-}$   $Ge_xSe_{1-x}$  ,





```
(1.4 1.5)
                                                                 GeS_2 GeSe_2.
                                                                  GeSe_2
4,26 / ^{3},
                          2,1 %
                                   4,35 / <sup>3</sup> [505].
                                                [417, 490, 491, 497, 503, 508,
540, 541, 574].
                              Ge-Se,
                (~ 80 . % Se),
                                                                        [13, 490,
508]
                                                     Ge_xSe_{1-x}
                                                                         T_{
m g}
                                                                        \overline{m},
             T_g = \exp(3,42 \cdot \overline{m} - 3) [455].
                         [449, 514].
```


```
[449, 514].
                                        Ge-Se
        (III),
                                    .)
                        [449, 514].
                       10 . %
          Ge-Se
                                  10
                                                  GeSe<sub>2</sub>.
                                  10
                                        . % Ge
                    [449, 514],
             )
    Ge_xSe_{1-x}
                                                                  573÷873
                           0 < < 0.3
[500, 515, 516, 519].
     0 < < 0,08
                                                         Ge
                                        Se.
0.08 < < 0.1
                                        0,1 <
                                                 < 0,3
                     [GeSe<sub>4</sub>],
                                                                           Se;
```


```
Ge_xSe_{1-x}
                                                         [517].
                                                            (\Delta \quad \Delta').
                                     Ge_xSe_{1-x}
                                           (=0.0,04 \quad 0.04.0,12),
         SeSe<sub>2/2</sub> [GeSe<sub>4</sub>]
=0.04 \div 0.12
                                           12
                                                     . % Ge,
                                         Ge-S Ge-Se.
                                 Ge_xSe_{1-x} (0,1 < x < 0,4),
                           [518].
                                                                673 ,
                         GeSe<sub>2</sub>,
                β-
           α-
β-
        GeSe_2.
   6.1.5.
                      Ge>Te.
                                                                 Ge-Te
        (splat-cooling) [520].
                    \sim 10^{5} /.
                                                       [520]
                                    Ge-Te
   10
          25 . % Ge.
```

```
(\sim 10^3 / ),
                                               [509, 521].
        (spray-cooling),
Ge_xTe_{1-x}
                   = 0.15 \div 0.20 [522].
                                  [523, 526]
                                                              [524],
                                       Ge-Te
                  10(12)
                                  . % Ge
                                                      28
                            25
                                               15
                                                           . % Ge
                                                                  Ge-Te
           [447, 525, 528].
Ge_{18}Te_{82},
       180
                                                                  Ge-Te
                                                      10
                                                            23
                                                                 . % Ge
[447, 525],
                                         373
                                                433 .
                  Ge-Te
          0
                29 . % Ge [532].
5-6
                      20-40
                                                               5
                                                                     100
  . % G [509, 536].
                                               Ge-Te
             GeTe<sub>2</sub>,
                                            Ge-Te [449, 514].
             GeTe_2
                                                 β-
                                                                   SiO<sub>2</sub>,
473
                                                    [527].
```

```
523
                                     GeTe_2
                                                                    GeTe
                                                                            Te.
                                      GeTe_2
                                                         [449]
                       GeTe<sub>3</sub>,
                                                              Ge_xTe_{1-x}
                                            Ge_xTe_{1-x}
                                                                                     [523,
528-534].
                                                                 Ge_{0,15}Te_{0,85}
                                    (β)
(T_g),
                                   ( ),
                                                              ( )
K_{gl} = (
           -T_{\rm g})/(
                       -T) [533, 534].
                                                                                T_g
                                                  80 /
                                        1,25
                                                                              T_g
                 27
                           42
                        [533].
                                                        β,
                              T_g
                                           β,
                                                        [533]
                                                             \beta = 1.
                              K_{gl},
Ge_{0,15}Te_{0,85}
                                                                              [531],
                                                                           \Delta g_a,
                                             ρ
                                                    ρ
\Delta g_a \sim \ln(...c/...).
                                                                           Ge_{15}Te_{85}
                                        451
                                                                             411 )
                                           212
```

```
[539].
                                        193 / ,
                                                          Ge
                        GeTe
           ,
5
                                    Ge_xTe_{1-x}
  . 6.5,
                                                          T_g (
1, 2) T (
                3)
    Ge-Te.
80 . % [523].
                                           Ge_xTe_{1-x}
~10 / .
       1 ( . 6.5, ).
       GeTe<sub>4</sub> GeTe<sub>3</sub>
      ~ 1 /
   2.
( . 6.5, ).
                                Ge_x Te_{1-x}
                                                          ),
                                                          623 )
                           GeTe.
                                                           Te + GeTe
[528].
               Ge
                                                   [530]
```





. 6.5. 
$$-$$
 (1, 2) Ge–Te ( 1, 3 – [509]; 2, 4 – [523]); – Ge–Te. U , / .: 10 (1) 1 (2, 3) [532].

```
Ge_xTe_{1-x} (0,1< < 1),
                       > 2/3
[536].
        653
                                          Ge
                                                GeTe
                                        NaCl.
                                                              < 1/3
                                                              GeTe
    443 .
                                                     Ge (1/3 < <
< 2/3)
                                      GeTe
      = 443
                                   = 653
           Ge
                                         GeTe
                   NaCl).
       6.2.
                                            IV
```

```
1)
   2)
                                                                        IV
   3)
                                    IV, V
                                                                      [9, 12].
   1)
                                                         Ge-S-Se
                 GeS_{2x}Se_{2-2} [541];
   2)
                                                                            Pb-Ge-S
                                                             (
              PbGeS<sub>3</sub> [542]);
   3)
Ge-Sb-Se [543]).
      6.2.1.
                Si-S>Se.
                                                                  Si-S-Se
            [544]
                                                           SiS<sub>2</sub>-SiSe<sub>2</sub>.
                                 SiS_{2x}Se_{2-2x} (x = 0.00; 0.12; 0.25; 0.37; 0.50;
```

```
0,70 1,00)
                                                        1370
   1÷2,
    40÷60
                                                                    SiS_{2x}Se_{2-2x}
                                                   SiS_{2x}Se_{2-2x}
                                                  [Si(S_{4-N}Se_N)].
                 Si>Se>Te.
Si-Se-Te
                                                 [545]
                              0,333 \le 0,43 \quad 0 \le 0,6
Si_x(Se_{1-\nu}Te_{\nu})_{1-x}
                                                 (Si
                                                                       99,999 %
                                                        Te
133.10-3
                                                  8
     6
                                                                 1÷2 .
                                        1370
                                                                               60
                                                                       [545]
Si_x(Se_{1-y}Te_y)_{1-x}.
                                                        = 0
                                           [SiSe<sub>4</sub>],
                                                                    ),
         SiSe<sub>2</sub>.
               [Si(Se,Te)_4]
 ≥ 0,35
         Si(Se,Te)_{6/2},
                                                          SiSe<sub>2</sub>.
               Ge>S>Se.
                                         [546–549].
                                                                 [546]
                Ge-S-Se
                                                       1023÷1273 .
                                                                                5
                                                    5
                Ge-S-Se
                                                 . 6.6, .
```

```
(I)
    )
                               (II)
GeS_{1,5}–GeSe_{1,5} (
                                                         40
                                                               . % Ge).
                   Ge
                                                         Ge
                            60
                                                60
   GeS
                             80
        20
                       60
                                    Se
                                                      60
                                                             40
               40
                                                          . %
                    . %
                                           . 6.6.
                    S
                              ∘ 1
• 2
                                           Ge-S-Se
                                                        [546] ( )
                                                                     [547] ( )
                                              [548] ( ). 1 -
                         80
                                               ; 2 -
                                              II -
                                         ) I
                            60
                               40
       60
                                                                  ; ) I
                                                                           II -
                                                     ; III -
         20
                40
                      60
                             80
                                                                   ; IV –
  Ge
                                    Se
                    . %
Ge-S-Se
                                                     . 6.6, .
                     [547],
```

```
10÷12 , -
      [546]
         Ge-S-Se
                                    [547]
                                                   . I
                                                               45
37 . %,
                                         (1÷2 / .). II
38 32 .%.
                    III
     30÷32 . %
Ge-S Ge-Se.
   Ge-S-Se,
                   GeS<sub>2</sub>-GeSe<sub>2</sub>, GeS-GeSe
S-Se.
                                   GeS_{2x}Se_{2-2x} [218, 541].
             ( . 6.6)
Ge_2S_3-Ge_2Se_3 [554],
Ge-S Ge-Se.
                                      Ge-S-Se
```

```
),
(
               GeS<sub>2</sub> GeSe<sub>2</sub>,
                                             Ge-S-Se
                                  [546],
                613÷633 ,
                                             599÷654
 [547].
       378÷475 ( 5 10 . %
     [547].
                   [546, 548],
     [546].
    Ge-S-Te.
    Ge-S-Te
                                 [550]
             ( .6.7, ),
    ),
                  [550]
   0,5 .
                273, 673, 873 1273 .
                                          12 .
                             5 /
                                     Ge-Te
                           GeS. . 6.7, ,
                              Ge-S-Te,
    (
```

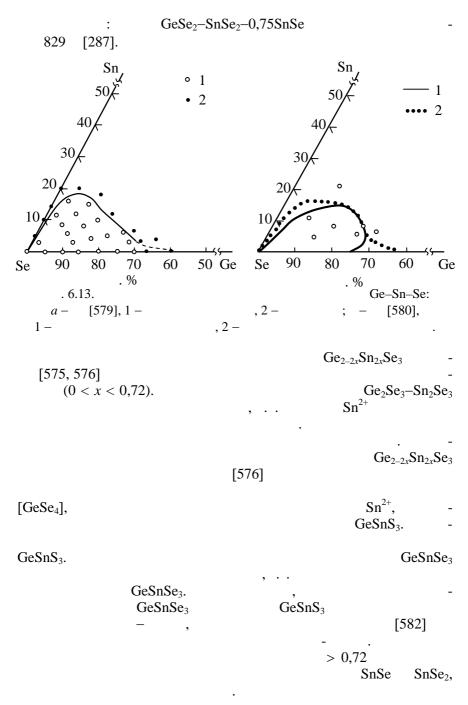
```
GeTe-GeS<sub>2</sub>
             Ge
                                                              1
 a
                                                               2
                       GeS
 GeTe
                                                            40
                                       60
                         GeS_2
                                                               20
                                    80
                      VI
                                         20
                                              40
                                                          80
Te
                            S
                                   Ge
                                                    60
                                                                Te
                                                  . %
                                    . 6.7.
                        • 1
                                 Ge-S-Te
                                             [550] (a),
                                                         [548] ( )
                       Δ 2
                                   [551] ( ). 1 –
         20
                       GeTe
   GeS
                        40
GeS
                                                          ).
                                           ) I
                                                II –
                      80
     20
           40
                            Te
                                 Ge-S-Te
   [548, 551].
                                                           5,
                                          1023÷1273
                                     5,
                                                       .) [551].
     1÷2 / .,
                                          (7÷10 /
```

```
Ge-S-Te
                                                             [463],
                            [550],
                             ( . 6.7, ).
                            [550, 551],
                    Te-GeS<sub>2</sub>
                GeS<sub>2</sub>-Te
              [553].
                                            1058 .
                     Ge-S-Te
                                I
                                                                604
                                                        369
                                                                    401
   766
                    II
                                             573
                                                    673,
                                                                 673
                                       Ш
713 ,
                                               50
                                                      IV
623
       673
            523
                                                          [549, 551].
     V
                                                  VI
                                                       GeTe,
                           GeS_2
                                     GeS.
               Ge-S-Te
                                     [553].
                                                            . 6.7, ).
              Ge-Se-Te.
```

Ge-Se-Te [555]. 1173 . [556] 1223 1073÷1123 . Ge-Te GeSe ( . 6.8, ). Ge Ge **-** 2 40 GeSe GeSe GeTe GeTe GeTe<sub>2</sub> 100 TeSe 40 60 80 Se 20 Te Se Te . % Se 1 • 2 . 6.8. Ge-Se-Te [556] ( ), [509] [548] ( ). 1 – ( ) 60 ; 2 – ) I II -60 ; ) I -, II -20 80 ; ) I II -Ge 20 40 60 80 Te . % [557] GeSe<sub>2</sub>-Te.

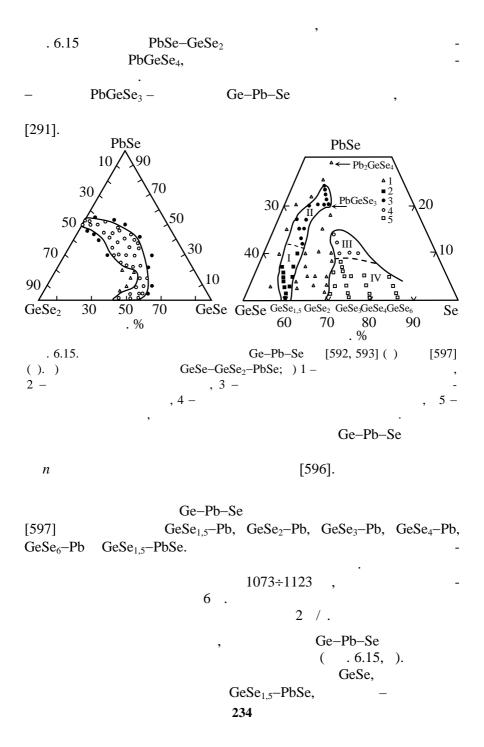
```
10÷12 ,
                                                           8 /),
                                                      0 \le \le 30
         [559]
                                (GeSe_2)_{100-x}Te_x
                     «
                                              »,
                                  «
 »,
                                                             [560].
              Ge-Se-Te
                     GeSe<sub>2</sub>–GeSe GeTe–Te,
                                        e Ge-Se-Te
               [509, 548, 558, 561, 562].
        1223 .
16
              1
           ( . 6.8, ).
              (1 \div 2 / .)
                         ( . 6.8, ).
                                 362 609 K
                                     Ge-Se-Te
                [509, 564].
           Ge–Se
                         (5÷20 . % Ge),
```

```
Ge_{20}Se_{40}Te_{40}
                                               g,
                                                                  GeSe<sub>2</sub>,
- Te.
                                              [509]
                       Ge-Se
                                                 Ge_{20}Se_5Te_{75}
                                                                   492, 556, 591
  601
        513
                          Te + GeTe -
                                                                573, 598, 608
                 560÷640
                                            1,02 \pm 0,12 .
                                         Ge_{20}Se_5Te_{75}
               [563]
      GeSe<sub>2</sub>-GeTe<sub>2</sub>
GeSe_{2x}Te_{2-2x}
                                                              0,4 \le 1,0.
       6.2.2.
                                             Si, Sn
                                                        Pb
               Ge-Si-S.
                       Ge-Si-S
                                                                      [565, 566].
                                                            Si_xGe_{1-x}S_v,
= 0.05; 0.1; 0.2
                        0,3,
                                                             1,28 \div 3,6.
                                  [565, 566]
             (623)
              (1173).
48,
                                                              1173
                                                                         24,
                                           723
```


3,  $Si_xGe_{1-x}S_y$ ,  $0.05 \le$  $\leq$  0,3;  $1,28 \le y \le 3,6.$ 30 . % 1400 . 6.9 Ge-Si-S. Si 4 . % S 60÷66 . % ( III). 4÷10 . % Si ( II). I 35 Si Ge 5 15 25 Si, . % . 6.9. Ge-Si-S [565, 566]. I -; II – III -. 6.9 SiS<sub>2</sub>-GeS<sub>2</sub>, [567]  $\leq 1 (Si_xGe_{1-x}S_2).$  $0 \le$  $Si_xGe_{1-x}S_2$ 

```
[SiS_4] [GeS_4],
                                         SiS_2 GeS_2.
          Si(Ge) Ge(Si)
                                                   [SiS_4] [GeS_4].
                                          Si-Ge-S
[568]
                                           (Si_xGe_{1-x}) S_{1-}  0 \le \le 1;
0,30 \le
        \leq 0.36, . .
           SiS<sub>2</sub>-GeS<sub>2</sub>.
             Ge-Si-Te.
                                                           Ge-Si-Te
                  [468, 569–571].
                                                          1273÷1473 K
         24
                  10-20
                Ge-Si-Te (
                               .6.10
                                                        Si-Te Ge-Te.
                                        60
                       30
                   20
                                               80
                10
                             30
                     40
                                                      Te
             Ge⁴
                                     20
                                              10
           . 6.10.
                                               Ge-Si-Te [468].
           ~ 80
                    . %
```

```
[571]
          Ge_{20}Te_{80}-Si_{20}Te_{80}.
                 200÷250 / .
                     Ge_{20}Te_{80}\!\!-\!\!Si_{20}Te_{80}.
                         [468, 571]
                                            Ge
          Ge-Si-Te.
Si-Te
           373-389
                        (85
                                            427÷435
                                                          (75
                                                                  . %
                                . %
                                       )
                                                                         ).
                                                           443
       Ge_{16}Si_7Te_{77}.
                Ge>Sn>S.
                                                                   Ge-Sn-S
         [572, 573, 587].
        GeS<sub>2</sub>-GeS-SnS
                            GeS (
                                      . 6.11).
                                        SnS
                                   20
                                                   60
                            60
                                                           20
                                                              GeS
                  GeS_2
                              20
                                      40
                                             60
                                                     80
                                             . %
                                                  GeS<sub>2</sub>-GeS-SnS [572, 573].
         . 6.11.
                                                            10
                                         70
                                                               . 6.11
                 SnS_2 (
         SnS
                                                           1011
        GeS
                 GeS<sub>2</sub> (870 ).
                                                                      47,5
                                                                                 . %
```


```
SnS (20 . % Sn).
                                                               SnS
                                                                         10
                                                                                 47,5
    . %
                                              548
                                                        508 K.
                      T_{\rm g}
                                                                             GeS
SnS
         ~ 20
                    . % SnS,
(SnS)_{0,46}(GeS)_{0,24}(GeS_2)_{0,30} [573].
SnS-GeS-GeS<sub>2</sub>
                                             [573, 587]
                                               Sn
                           SnGeS<sub>3</sub>
        Sn
                                                      +2,
Sn(4+)
                    800
                   T, K
                    700
                    600
                    500
                                                     0,5 0,6 0,7
                             0,1 0,2
                                        0,3
                                              0,4
              . 6.12.
                                                        (T_1)
                                                                        Ge_{2-}
                            ( g)
                                           [572, 573]
                                            GeS_2-SnS,
                                                                           [291]
                                                    (SnGeS<sub>3</sub>)
                                               [291],
                     SnGeS<sub>3</sub>
                                                                     3,56 /
                                 3,71 /
                                            T_{\rm g} = 599 \, {\rm K}.
                                       . 6.11
```

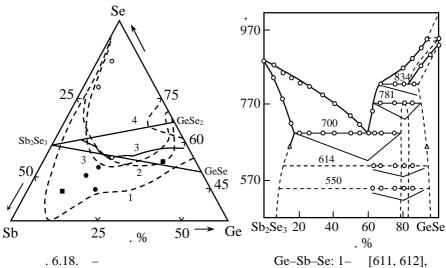
```
Ge_2S_3-Sn_2S_3,
                              [575, 577].
        Ge_{2-2x}Sn_{2x}S_3 (0 < < 0,62) ( . 6.12).
                                                              [577]
                           < 0.25
                                                Ge_2S_3
                                                                     GeS
                         NaCl.
                                       > 0,25
SnGeS<sub>3</sub>.
                                                 Ge_{2-2x}Sn_{2x}S_3
                                                               ≤ 0,25
                                      :
                                     > 0,25
[577].
                                                                Ge-Sn-S
                                                                 SnGeS<sub>3</sub>,
                            GeS.
                                                        GeS<sub>2</sub>,
                                                                          β-
               GeS<sub>2</sub>.
              Ge-Sn-Se.
       Ge-Sn-Se
                                              [578–580]
                                                                 Ge-Sn-Se
    . 6.13.
                            [578]
1223 ,
                             13 . % Sn.
                                                                      [579]
             [578]
                                                        10,
                                                                 Ge-Sn-Se
( . 6.13, ).
[580] ( . 6.13, ).
GeSe_2-SnSe_2 Ge_2Se_3-Sn_2Se_3,
[546–550].
                                       . 6.13, ,
                                                               399÷591
             ë
                                                         [578],
                   70÷80 . % Se.
Ge-Sn-Se
```



```
Ge_{1-x}Sn_xSe_{2,5} (0 < x \le 0.6)
                                [585, 586]
                                                                               (\sigma)
T_{\rm g}
                Ge-Pb-S.
                                 Ge-Pb-S Ge-Pb-Se [587-596]
                                                        Ge-Pb-S
    . 6.14.
                                                               PbS
                                  1
                                                Pb<sub>2</sub>GeS<sub>4</sub>
                             80
            20
                                              PbGeS<sub>3</sub> 60
                                                                              60
                                   60
                                              20
60
 Ge
              20
                          40
                                      Pb GeS<sub>2</sub> 80
                                                            60
                                                                   40
                                                                           20 GeS
                     . %
                                                                 . %
                                                                 [590] (
      . 6.14. a –
                                                   Ge-Pb-S
       ),
            [588] (
                             ),
                                                           PbS-GeS-GeS<sub>2</sub> [588].
                                                                         [587-590].
                     [588]
                        10÷20
                                                                               30÷47
     . % PbS, 20÷45 . % GeS, 26÷45
                                                  25÷35
                                                               . % GeS<sub>2</sub>
                                                   50-100
```

```
[588, 590]
                                                           PbS-GeS-GeS<sub>2</sub>.
                                                     PbS-GeS<sub>2</sub>
                             - Pb<sub>2</sub>GeS<sub>4</sub> PbGeS<sub>3</sub>, -
                                 [542],
                                                                              PbGeS3
1123÷1173 ,
      10÷12 .
                                                   PbGeS<sub>3</sub>
                                              -4,90 / ^{3}.
                     525 ,
                                                    PbGeS<sub>3</sub>
[291, 542, 591].
                                                       Ge-Pb-S
                                        11 . %.
          PbS-GeS-GeS<sub>2</sub>
                                            533-563 K [588].
                 Ge>Pb>Se.
                                                                          Ge-Pb-S
                          [592–597].
                                                                               . 6.15,
PbSe-GeSe-GeSe<sub>2</sub>
                                                                   GeSe_2 - 24 \div 38,
GeSe - 30 \div 55 PbSe - 15 \div 46
                                           . %.
                                                                   (
                                                                                      )
                                            Ge-Se
                                                                                22
%
                                                          8
1070÷1120
                                                                              (8 \text{ K/})
               10
                                                                      50÷100
                 (PbSe)_{0,4} (GeSe)_{0,3} (GeSe_2)_{0,3}
      1
                                                                            [594].
                       [592–594]
                                          509÷517 .
```




```
GeSe_3-Pb.
                                               GeSe_2-Pb GeSe_2-PbSe.
    (12 \div 17)
                . %)
                                   GeSe<sub>2</sub>-Pb (\sim 22 . %),
GeSe_2-PbSe
GeSe<sub>3</sub>-Pb
                          0
                                10÷12, 20
                                                     23 . %
                                                           23 . % Pb.
                                Ge-Pb-Se
                                                              [597].
                                                   503
                                                            523 .
    GeSe<sub>1.5</sub>-Pb, GeSe<sub>1.5</sub>-PbSe GeSe<sub>2</sub>-Pb
                                                 ~ 523 ,
                               -5,60 /c^{-3}).
        PbGeSe<sub>3</sub> (
                       Ge-Pb-Se
                          [592].
                                                                         NaOH
                                                               A^{IV}-B^V-C^{VI}
       6.2.3.
               Ge-Sb-S.
                                           [598–604],
    . 6.16).
                                                 Ge-Sb-S
                                         GeS_2-Sb_2S_3 [598].
                                                  GeS_2 Sb_2S_3
                   [598],
                       45
                               68
                                      . % GeS<sub>2</sub>.
                                      235
```

```
[604,
                                                             GeS_2-Sb_2S_3,
605]
                            Sb_2S_3.
                                      5,
Sb_2S_3
                         100 / .
                Sb
                        10
                              20
                                    30
                                               50 \rightarrow Ge
                                     . %
                                          Ge-Sb-S: 1 - [598], 2 -
      . 6.16.
    [599], 3 – [603], 4 –
                             [600, 601], 5 - [603, 604], 6 - [605].
      Ge-Sb-S-J
                                   [599]
                                           . 6.16).
                                                               [599],
                                                 Ge-Sb-S
         Ge-S
Ge-Sb-S
                                         [600-603].
                                 5 .
                               Ge-S
                                        Sb-S
                                                                  973
1273 .
                                                  100 K/
                                                   (GeS-GeS_2-Sb_2S_3),
                                                                    Sb_2S_3
```

```
( . 6.16).
                          [600],
Ge-Sb-S
                                            55÷80 . % S, 10÷40 . % Ge,
5÷40 . % Sb.
                Ge-Sb-S
Sb-S.
                                                                      GeS_2-Sb_2S_3
                              GeS-Sb_2S_3-Sb-
            T, K
                                                                   4,4
            1100
                                                                   4,0
             900
                                                                   3,6
             700
                                                                   3,2
             500
                GeS_2
                          80
                                   60
                                             40
                                                      20
                                                               Sb_2S_3
                                            . %
                                    х,
        . 6.17.
            (1),
                                     (2),
                                                       (3)
                                                                          (4)
                                   (GeS_2)_x(Sb_2S_3)_{100-x}.
                      (GeS_2)_x(Sb_2S_3)_{100-x}
                                                                     . 6.17.
                                                   T_{\rm g} = 768 \, {\rm K}.
                                              Sb_2S_3
T_{\rm g}.
                                                                                T_{\rm g},
                                       ≤ 30
                              0 \le
                                              80 ≤
                                                          \leq 100
(GeS_2)_x(Sb_2S_3)_{100-x} ( . 6.17)
                 [GeS<sub>4</sub>]
                                                                   [SbS_3]
```

```
[SbS_3],
[GeS_4]
4, . 6.17)
Ge-Sb-S
630
              Ge_{35}Sb_{16,25}S_{48,75}
                                                                   Ge<sub>7,5</sub>Sb<sub>23,12</sub>S<sub>69,38</sub> [602,
                                         495
603].
GeS, GeS<sub>2</sub>, Sb<sub>2</sub>S<sub>3</sub>.
                                                               (GeS_2)_{0.3}(Sb_2S_3)_{0.7}
                                                        [641].
                  Ge-Sb-Se.
                                                                                           Ge-
Sb-Se
                                                                           [606–618, 634].
                                                                                        Ge-Se
     . 6.18, ).
(
                                    Ge-Sb-Se
              10÷20 . %
                                                 20 . % [614].
GeSe_2-Sb_2Se_3.
                                                                    GeSe_2
                    20 . % Sb
                     GeSe<sub>2</sub>–Sb<sub>2</sub>Se<sub>3</sub> [615, 617, 618] GeSe–Sb<sub>2</sub>Se<sub>3</sub> ( . 6.18,
 ) [642].
                      GeSe_2-Sb_2Se_3
```

745 . % GeSe. GeSe–Sb<sub>2</sub>Se<sub>3</sub>  $65 \div 65 \qquad . \% \text{ GeSe} [642].$ 

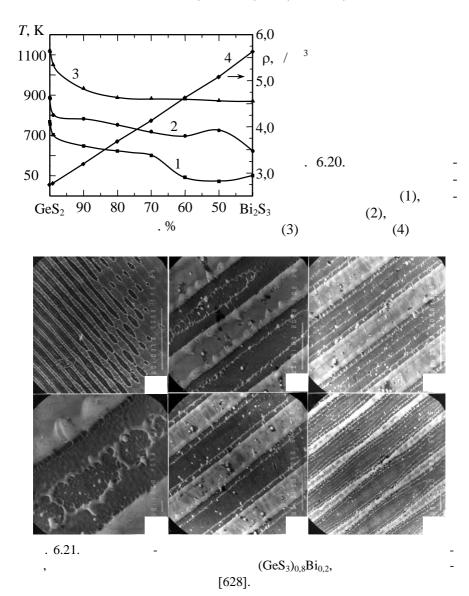


. 6.18. – Ge–Sb–Se: 1– [611, 612], 2 – [608], 3 – [609], 4 – [613]; – GeSe–Sb<sub>2</sub>Se<sub>3</sub> [642].

(SeSe<sub>2/2</sub>, GeSe<sub>4/2</sub>, SbSe<sub>3/2</sub>, GeSe<sub>2/2</sub> .) [616].

-. .

GeSe-GeSe<sub>2</sub>, GeSe-Sb<sub>2</sub>Se<sub>3</sub>


Ge-Sb-Se,

 $GeSe_2$ - $Sb_2Se_3$ .

```
Ge-Sb-Se
                                                                           GeSe-Sb<sub>2</sub>Se<sub>3</sub>-Se
       GeSe, Sb<sub>2</sub>Se<sub>3</sub>
                                                                    Ge<sub>4</sub>Sb<sub>2</sub>Se<sub>7</sub>,
                                         GeSe-Sb<sub>2</sub>Se<sub>3</sub> [615, 642].
                                                                                 Ge-Sb-Se
                                                                                             Ge-Sb-Se
                                                                                        Sb<sub>2</sub>Se<sub>3</sub>, GeSe,
GeSe_2 Ge_4Sb_2Se_7 [614, 617].
                                                                      Ge-Sb-Se
                          [613],
                                               Ge-Sb-S.
                                                                                                         T_{\rm g}
                                                                             Ge-Sb-S
              Ge-Sb-Se
                                                                                                  GeSe<sub>2</sub>-
Sb<sub>2</sub>Se<sub>3</sub>,
                         [GeSe<sub>4</sub>]
                                        [SbSe<sub>3</sub>]
                                                   GeSe<sub>2</sub>-Sb<sub>2</sub>Se<sub>3</sub>
                                                    [543, 616].
                                                                             Ge-Sb-Se
                                                      [617, 618].
  () = _{0} \cdot \exp(-E/RT),
                                                       R -
                                                      10^6 \div 10^{16}
            Sb,
                                                                               74÷227
                                                                                     n
                                                         1,1\div2,5,
                    Ge-Bi-S.
                                                                                    Ge-Bi-S
                     [619-625].
                                                  973÷1273 ,
                                  4÷15
```

```
773÷973 .
                                                                            . 6.19.
                                                               Ge-Bi-S
                                                                   Ge-S
             GeS<sub>3</sub>–Bi [624], GeS<sub>3,5</sub>–Bi [631]
                                                             Ge_{20}Bi_xS_{80-x} [630].
GeS<sub>3</sub>
                                  16 . % Bi [624].
                         Ge
      a
                                                                                      928
                 60
                                 40
                                                     870
             70
                                      30
                                                                            765
                                                     670
        80
                                          20
                                                                         488
                                                                                              494
                                                     470
   90
                                               10
                                                  Bi Bi<sub>2</sub>S<sub>3</sub> 20
 S
                                        40
                                                                         40
                                                                                  60
                                                                                           80 GeS
          10
                    20
                              30
                         . %
                                                                                 . %
        . 6.19.
                 Ge-Bi-S: 1 -
                                             [620], 2 - [623], 3 - [621];
                                                              GeS-Bi<sub>2</sub>S<sub>3</sub> [643].
                            [619, 620] ( . 6.19)
                                    GeS<sub>2</sub>-Bi<sub>2</sub>S<sub>3</sub>
                                                        [621],
                                                                            GeS_2
                          GeS<sub>2</sub>-Bi<sub>2</sub>S<sub>3</sub>
          . % Bi_2S_3.
50
                        (GeS_2)_{0.6}(Bi_2S_3)_{0.4}
                                                                                             [621].
                                                               (GeS_2)_x(Bi_2S_3)_{1-x}
             0,9 \le
                       \leq 1,0.
            5÷7.
~ 200
          /c.
                                                                             (GeS_2)_{0.4}(Bi_2S_3)_{0.6}
[625, 626].
                                                                                           T_{\rm g},
                                                                                     . 6.20.
                            (GeS_2)_x(Bi_2S_3)_{1-x}
```

 $0.9 \le \le 1.0 \quad 0.4 \le \le 0.7.$ 



Ge–Bi–S  $Bi_2S_3 \quad GeS_2,$  1–2

```
[623].
                 636 .
                                  Bi<sub>2</sub>S<sub>3</sub>
(GeS_2)_{0,5}(Bi_2S_3)_{0,5}
                                                            [622].
                                                       0,083 0,83 / .
                                                             f(\alpha) = \alpha^m (1-\alpha)^n
                                                      , m = 0.56, n = 1.21.
    \alpha –
                                            (GeS_3)_{1-x}Bi_x (0 \le x \le 0.2)
               [628].
                                                           . 6.21),
       GeS_2 Bi_2S_3.
              Ge-Bi-Se.
                                       Ge-Bi-Se,
                   [632, 633].
                      1223
          2÷3 ,
100
                                                                    . 6.22,
(
                     ).
                                                                         [635,
636],
                                                                          1323
                                                      48 .
                                                                    [635, 636]
       Ge–Bi–Se ( . 6.22, ).
                                              [623, 638]
                  Ge-Bi-Se 15 . % Bi.
                                                                            20
   30
       . % Ge
                       70 80 . % Se.
                                                                GeSe_2-Bi_2Se_3
```

( . 6.22, ). ~ 60 . % GeSe<sub>2</sub>, - 863 [644]. Ge-Bi-Se 351 569 Ge Bi [632, 633]. . % Bi. a Ge 40 970 10 30 920 20 870 10 30 820 Bi 70 80 90-Se Bi<sub>2</sub>Se<sub>3</sub> 20 40 60  $80 \text{ GeSe}_2$ . % . % . 6.22. Ge-Bi-Se: 1 - [632], 2 -[636]; - $GeSe_2$ - $Bi_2Se_3$  [644]. ( . 6.18 6.22), Ge-Sb-Se Ge-Bi-Se Ge-Bi-Se 7 Ge-Sb-Se [632].  $As \rightarrow Sb \rightarrow Bi$ 

> Ge–Bi–Se -, -Bi.

 $Bi_2Se_3$  GeSe<sub>2</sub> [633].

Ge-Bi-Se,

, *n*- [635–640].

```
, 1967. – 175 .
2.
3.
                                                      PbTe, PbSe PbS. –
            1967. - 384.
4.
                                1987. - 208.
5.
                            , 1978. – 112 c.
6.
       Si, G, Sn, Pb). - .:
7.
        , 1986. – 103 .
8.
             : , 1981. – 284 .
9.
                 . 3.
                              , 1984. – 174 .
10.
                               B. C.
                                                         1976. - 280.
                                . –
11.
            . 1984. – 176 .
12.
           1986. - 556.
13.
                                   . . - , 1984. – 447 .
14.
                        , 1962. – 1488 .
15.
   303 .
16.
    CCP, 1958. - 131 .
17. Emons H.-H., Theisen L. Dampfaruckmessungen
                                                         an
                                                             Siliciummo-
   chalkogenide // Monatsh. Chem. – 1972. – Bd. 103. – 1. – S.62–71.
18. Emons H.-H., Theisen L. Über das Siliciummonoselenid // Z. anorg. allg.
   Chem. – 1968. – Bd. 361. – 5-6. – S. 321–327.
19. Kohlmeier E. S., Retzlaff H. W. Über Aluminiumsulfide, Siliciumsulfide und
```

1.

das System Al–Si–S // Z. anorg. Ghem. – 1950. – Bd. 261. – S. 248–260. 20. Schumb W. C., Bernard W. J. The formation of silicon monosulfide //

J. Amer. Chem. Soc. – 1955. – V. 77. – 4. – P. 904–905.

- 21. Emons H.-H., Hellmold P., Möhlhenrich S. Über die Chemie der Siliciummonochalkogenide // Z. Chem. 1975. Bd. 15. 7. S. 249–258.
- 22. Peters J., Krebs B. Silicon disulphide and silicon diselenide: a reinvestigation // Acta Crystallogr. B. 1982. V. 38. 4. P. 1270–1272.
- 23. Silverman M. S., Soulen J. R. High pressure synthesis of new silicon sulfides // Inogran. Ghem. 1965. V. 4. . 1. P. 129–130.
- 24. Griffiths J. E., Malyj M., Espinosa G. P., Remeika J. P. Grystalline SiSe<sub>2</sub> and Si<sub>x</sub>Se<sub>1-x</sub> glasses: Syntheses, glass formation, structure, phase separation, and Raman s ct // Phys.Rev. B. 1984. V. 30. 12. P. 6978–6990.
- 25. Johnson R. W., Susman S., McMillan J., Volin K. J. Preparation and characterization of  $Si_xSe_{1-x}$  glasses and determination of the equilibrium phase diagram // Mater. Res. Bull. -1986. V. 21. 1. P. 41-47.
- 26. Gabriel H., Alvarez-Tostado . Silicon disulfide and silicon diselenide // J. Amer. Chem. Soc. 1952. V. 74. 1. P. 262–264.
- 27. Hillel R., Cueilleron J. Preparation et étude du séléniure de silicium: SiSe<sub>2</sub> // Bull. Soc. Chim. France. 1971. V. 15. 2. P. 394–398.
- 28. Weiss A., Weiss A. Die Kristallstruktur des Siliciumdiselenids // Z. Naturforsch. B. 1952. Bd.7. 8. S. 483–484.
- 29. Bailey L. G. Preparation and properties of silicon telluride // J. Phys. Chem. Solids. 1966. V. 27. 10. P. 1593–1598.
- 30. Legendre B., Souleau C., Hancheng C., Rodier N. The ternary system gold–silicon–tellurium; a contribution to the study of the binary systems silicon–tellurium and gold–silicon, and the structure of  $Si_2Te_3$  // J. Chem. Res. Synop. 1978. 5. P. 165–169.
- 32. Petersen K. E., Birkholz U., Adler D. Properties of crystalline and amorphous silicon telluride // Phys. Rev. B. 1973. V.8. 4. . 1453–1460.
- 33. Exsteen G., Drowart J., Van der Auwera-Mahieu A., Callaerts R. Termodynamic study of silicon sesquitelluride using a mass spectrometer // J. Phys. Chem. 1967. V.71. 12. . 4130-4131.
- 34. Brebrick R. F. Si–Te system: partial pressures of  $Te_2$  and SiTe and thermodynamic properties from optical density of the vapor phase // J. Chem. Phys. -1968.-V.49.-6.-P.2584-2592.
- 35. Smirous ., Stourac L., Bednar J. Die halbleitende Verbindung SiTe // Czech. J. Phys. 1957. Bd. 7. 1. S. 120–122.
- 36. Weiss A., Weiss A. Siliciumchalkogenide. IV. Zur Kenntnis von Siliciumditellurid // Z. anorg. allg. Chem. 1953. Bd. 273. 3–5. S. 124–128.
- 37. Lambros A. P., Economou N. A. The optical properties of silicon ditelluride // Phys. Status Solidi (b). 1973. V. 57. 2. P. 793–799.
- 38. Rau J. W., Kannewurf C. R. Intrinsic absorption and photoconductivity in single crystal SiTe<sub>2</sub> // J. Phys. Chem. Solids. 1966. V. 27. 6/7. P. 1097–1101.

```
39.
                                  . – 1963. – .151. – 6. – . 1335–
   1338.
40. Ross L., Bourgon M. Thermal analysis of germanium (II) sulfide // Canad. J.
  Chem. – 1968. – V. 46. – 14. – P. 2464–2468.
41. Viaene W., Moh G. H. The condensed germanium-sulfur system // Neues
  Jahrbuch für Mineralogie. – 1970. – Bd. 21. – 6. – S. 283–285.
42.
                Ge-S //
                                                      . - 1971. -
          8. – . 1441.
43. Novoselova A. V., Zlomanov V. P., Karbanov S. G., Matveyev O. V.
  Gas'kov A. M. Physico-chemical study of the germanium, tin, lead chalco-
  genides // Prog. Solid State Chem. – Oxford: Pergamon Press, 1972. – V. 7. –
  P. 85–115.
44.
                    45.
                                                          //
                            . – 1970. – . 6. – 1. – . 125–126.
46. Maneglier-Lacordaire S., Rivet J., Khodadad P., Flahaut J. Le systéme
  ternaire germanium-tellure-soufre // Bull. Soc. chim. France. - 1974. -
     11. – Part 1. – P. 2451–2452.
47.
                       . .,
                                  GeS-GeSe // .
  858.
48.
         513.
49.
                           B. C.,
                     GeS-SnS GeSe-SnSe
                          764.
50. Spandau H., Klanberg P. Über das thermiche Verhalten der Sulfide des Ger-
   maniums // Z. norg. llg. Chem. - 1958. - Bd. 295. - 5-6. -
  S. 291–296.
51. Feltz .
      // Tagungsber. Conf. Amorphous semiconductors' 74. – Reinhardsbrunn,
   1974. – Teil I. – S. 113–122.
52.
        IV-Se ( IV-Ge, Sn, Pb)
                         . - 1984. - . 20. - 9. - . 1476–1482.
53.
                       . – 1962. – . 7. – 9. – . 1259–2161.
```

```
//
                                            . – 1962. – .146. – 5. –
   1092–1093.
55.
                        //
                                                           . – 1968. – .9. –
      3. - .96 - 98.
56.
                 Ge-Se //
              10. – . 1752–1756.
57.
                     . 531–534.
58.
                               Se-Ge
                                                 GeSe-GeSe<sub>2</sub> //
         . – 1968. – . 13. – 7. – . 2029.
59. Ross L., Bourgon M. The germanium-selenium phase diagram // Canad. J.
   Chem. – 1969. – V. 47. – 14. – P. 2555–2559.
60. Quenez P., Khodadad P., Ceolin R. Étude complémentaire du diagramme
   Ge-Se et sa nouvelle interprétation // Bull. Soc. him. France. – 1972. –
   - P. 117-120.
61. Ipser H., Cambino M., Schuster W. The germanium-selenium phase diagram
   // Monatsh. Chem. – 1982. – V.113. – 4. – P. 389–398.
62. Wiedemei r H., Siemers P. A. The thermal expansion and high temperature
   transformation of GeSe // Z. norg. llg. Chem. – 1975. – Bd. 411. –
   S. 90–96.
63. Klemm W., Frischmuth G. Das system Germanium-Tellur // Z. anorg. Chem.
   – 1934. – Bd. 218. – S. 249–251.
64. McHugh J. P., Tiller W. A. The germanium-tellurium phase diagram in the
   vinicity of the compound GeTe // ns. Metallurg. Soc. IME. – 1960. –
   V. 218. – 1. – P. 187–188.
65.
                                                                Ge-Te
                                                  . - 1965. -
                                                              . 10. –
                                                                          5.
    . 1200–1205.
66. Strauss A. J., Brebrick R. F. Deviations from stoichiometry and lattice de-
   fects in IV-VI compounds, and theier alloys. Ceneral features and experi-
   mental methods // J. Phys. – 1968. – V. 29. – 11–12. – P. 21–33.
67.
   1969. - . 5. - 7. - . 1171–1174.
68. Legedre ., Souleau C. Gontribution a l'étude du diagramme d'équilibre des
   phases du systéme germanium-tellure autour de Ge 1+ // C. . Acad. Sci. C.
   – 1977. – V. 284. –       7. – P. 315–318.
69.
                                  P.
                                                         . – 1977. – . 13. –
      12. - . 2160-2164.
```

54.

```
70.
                                                                   //
                                 -1969. -5. -
                                                    9. – . 1508–1512.
71.
                        Ge-Te
                        . - 1985. - . 21. -
72.
                                    B. C.,
                                    . – 1979. – . 16. –
                                                         10. –
73.
            P. P.
                                                            Ge
                                                                  //
                                . – 1976. –     . 12. –
                                                     5. – . 835–837.
74.
                                                     . E.
   //
                                              . – 1977. – . 13. –
                                                                         10. –
     . 1757–1762.
75.
                 O.
   //
                                            . – 1978. –
                                                        .14. –
   455.
                                                                    P. P.
76.
                                . – 1981. – . 17. – 12. – . 2162–2167.
77.
                                         . – 1968. – T. 182. –
   833.
78.
                           P. P.
                                GeTe //
   - 1984. -      20. -
                        7. - .1098 - 1102.
79.
      . – 1982. – . 18. –
                                . 581–585.
80.
                                    B. C.,
                                           Ge
                           . 11. –
                                    11. – . 1974–1978.
81.
                       . – 1986. – T. 31. – 8. – . 1240–1247.
82. Colin R., Drowart J. Thermodynamic study of germanium monotelluride us-
   ing mass s ct meter // J. Non-Cryst. Solids. - 1964. - V. 68. - P.428-
   435.
83. Tsunetomo ., Sugishima ., Imura ., Osaka Y. Stability of metastable
   GeTe<sub>2</sub> in thin films // J. Non-Gryst. Solids. – 1987. – V. 95–96. – Pt. 1. –
```

84. Albers W., Schol . The >T>x phase diagram of the system Sn–S // Philips Res. Repts. -1961. - V. 16. - 4. - P. 329–342.

P. 509–516.

| 85. | Albers W., Haas C., Vink H.J., Wasscher J.D. Investigations on SnS // J. Appl. Phys. – 1961. – V. 32. – 10. – P. 2220–2225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | - //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | . 2. – 6. – . 991–996.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 87. | Chattopadhyay T., Pannetier J., Von Schnering H. G. Neutron diffraction study of the structural phase transition in SnS and SnSe // J. Phys. Chem. Solids. – 1986. – V. 47. – 9. – P. 879–885.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 88. | Fano V., Ortalli I. Properties of binary tin chalcogenides determined by Mössbauer spectroscopy // J. Chem. Phys. – 1974. – V. 61. – 12. – P. 5017–5021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 89. | Orr R. L., Christensen A. U. High temperature heat contents of stannous and stannic sulfides // J. Phys. Chem. – 1958. – V. 62. – 1. – P. 124–125.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 90. | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 91. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | VI // .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 93. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 1955. – . 25. – 13. – . 2380–2388.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 94. | Bo L. D, ns I A. Preparation of double metal sulphides of the type $AB_2S_4$ . Part.II. Compounds of tin // J. South Afric. Chem. Inst. – 1957. – V. $10.$ – $2.$ – $P.49$ – $53.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 05  | V. 10. – 2. – P.49–53.<br>Mootz D., Puhl H. Die Kristallstruktur von Sn <sub>2</sub> S <sub>3</sub> // Acta Crystallogr. – 1967.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | – V. 23. –     3. – P. 471–476.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Sn-S Sn-Se // .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Albers W., Verberkt J. The $SnSe-SnSe_2$ eutectic: a $p-n$ multiplayer structure $1/2$ J. Mater. $1/2$ Sci. $1/2$ P. $1$ |
| 98. | Rau H. High temperature equilibrium of atomic disorder in SnS $/\!/$ J. Phys. Chem. Solids. $-1966V.274P.761-765.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 99. | Lichanot A., Gromb S. Domaine d'existence du sulfure d'etain et phenomene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ,,, | d'associations des lacunes d'etain // J. Phys. Chem. Solids. – 1971. – V. 32. – 8. – P. 1947–1957.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 | Sn–Se //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 1982. – . 18. – 6. – . 913–916.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101 | SnSe–Se //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1077 12 2 227 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

```
102.
                    SnSe //
                                                               . – 1981. –
    . 17. – 1. – . 169–171.
103.
  -1966. -1.2. -1.186-1189.
104.
                   . – 1968. – 3. – . 48–51.
105.Schnering H. G., Wiedemeier H. The high temperature structure of β-SnS
   and \beta-SnSe and the 16-to-B33 type \lambda-transition path // Z. Kristallogr. –
   106.
                                                   SnSe //
     . – 1961. – . 3. – 5. – . 1619–1620.
107.
                                             SnSe // .
   1963. - . 8. - 4. - . 1025–1026.
108.Dumon A., Lichanot ., Gromb S. Proprietes electroniques du seleniure
   d'etain SnSe fritte: domaine d'existence // J. hys. Chem. Solids. – 1977. –
   V. 38. – 3. – P. 279–288.
109.
                                                                    PbTe,
                                                      . – 1970. – . 6. –
   SnTe GeTe // .
     10. – . 1792–1797.
110.Minagawa . mmon polytypes of SnS<sub>2</sub> and SnSe<sub>2</sub> // J. Phys. Soc. Japan. –
   1980. – V. 49. – 6. – P. 2317-2318.
111.Likhter A. I., Pel E. G., Prysyazhnyuk S. I. El ktrical properties of tin
   diselenide under prossure // Phys. Status Solidi (a). - 1972. - V. 14. -
   P. 265–270.
112.Lichanot A., Gromb S. Propriétés électroniques du sulfure d'étain fritté //
   J. chim. phys. et phys.-chim. biol. – 1970. – V. 67. – 6. – P. 1239–1251.
113.Brebrick R. F. Deviations from stoichiometry and electrical properties in
   SnTe // J. Phys. Chem. Solids. – 1963. – V. 24. – 1. – P. 27–36.
114.
                                             Sn-Te
   SnTe // .
                           . - 1964. - . 9. - 8. - . 1879–1882.
115.
                                                         Sn-Te
                                       . – 1963. – . 8. – 7. – . 1792.
              SnTe // .
116.
                             (SnTe)_{1-x}(PbTe)_x \leq 0,1 //.
                     . – 1976. – . 12. – 9. – . 1681–1684.
117.
     . – 1991. – . 27. – 2. – . 267–270.
```

```
– 1986. – V. 97. –         2. – P. K131–K133.
120.
                                               . – 1979. – . 53. – 6. –
    . 1441–1445.
121.Lin J., Ngai T. L., Chang Y. A. Thermodynamic properties and defect
   structure of semiconducting compound phasses: thin telluride // Metallurgical
   Transactions. – 1968. – V. 17A. – 7. – P. 1241–1245.
122.
                                     pex
    . 1336-1338.
123. Fano F. V., Fedeli G., Ortalli I. Phase transition in SnTe by Mössbauer spec-
   troscopy // Solid State Commun. – 1977. – V. 22. – 7. – P. 467–470.
124. Iizumi M., Hamaguchi Y., Komatsubara K. F., Kato Y. Phase transition in
   SnTe with low carrier concentration // J. Phys. Soc. Japan. – 1975. – V. 38. –
      2. – P. 443–449.
125.Kabayashi K. L. I., Kato Y., Katayama Y., Komatsubara K. F. Resistance
   anomaly due to displacive phase transition in SnTe // Solid State Commun. –
   1975. – V. 17. – 7. – . 875–879.
126.Kobayashi K. L. I., Kato Y., Katayama Y., Komatsubara K. F. Carriercon-
   centration-dependent phase transition in SnTe // Phys. Rev. Lett. – 1976. –
   V. 37. – 12. – P. 772–774.
127.Prewitt C. T., Young H. S. Germanium and silicon disulfides: structure and
   synthesis // Science. – 1965. – V. 149. – 3683. – P. 535–537.
128.
                    Si<sub>2</sub>Te<sub>3</sub>. //
                               . – 2004. – 9. – . 22–25.
129.Ploog K., Stetter W., Nowitzki A., Schönherr E. Crystal growth and struc-
   ture detrmination of silicon telluride Si<sub>2</sub>Te<sub>3</sub> // Mater. Res. Bull. – 1976. –
              8. – P. 1147–1154.
130.Gregoriades P. E., Bleris G. L., Stoemenos J. Electron diffraction study of
   the Si<sub>2</sub>Te<sub>3</sub> structural transformation // Acta Crystallogr. B. – 1983. – V. 39. –
     4. – P. 421–426.
131.
               132.
                                             . - 1979. - . 24. - 1. - . 83-
                  GeSe<sub>2</sub> //
   89.
                                     253
```

119.Baltrünas D., Motiejünas S., Rogacheva E. I. Effect of the deviation from stoichiometry on the Mössbauer parameters of SnTe // Phys. Status Solidi (a).

SnTe //

. – 1986. – . 22. – 1. – . 41–44.

118.

```
133.
   -1987. - .32. - .385-393.
134.Zachariasen W. H. The crystal structure of germanium disulphide //
   J. Chem. Phys. – 1936. – V. 4. – P. 618–619.
135. Rubenstein M., Roland G. A monoclinic modification of germanium disul-
   fide, GeS<sub>2</sub> // Acta Crystallogr. B. – 1971. – V. 27. – 2. – P. 505–506.
136.
                                              GeS_2 - GeSe_2 //
                        .-1976.- .12.- 8.- .1484-1485.
137.Dittmar G., Schäfer H. Die Kristatllstruktur von H. T.-GeS<sub>2</sub> // Acta Crystal-
   logr. B. – 1975. – V. 31. – 8. – P. 2060–2064.
138.Dittmar G., Schäfer H. Die Kristallstruktur von L. T.-GeS<sub>2</sub> // Acta Crystal-
   logr. B. – 1976. – V. 32. – 4. – P. 1188–1192.
139.Shimada M., Dachille F. Crystallization of amorphous GeS<sub>2</sub> and GeSe<sub>2</sub> un-
   der pressure // Inorganic Chemistry. – 1977. – V. 16. – 8. – P. 2094–2097.
                                                // .
140.
                                                                     . - 1940. -
    . 10. – 21. – . 1813–1818.
141.Burgeat J., Roux G., nac A. Sur une nouvelle forme crystalline de GeSe<sub>2</sub>
   // J. Appl. Cryst. – 1975. – V. 8. – 2. – P. 325–327.
142.Dittmar G., Schäfer H. Die Kristallstruktur von germanium diselenid // Acta
   Crystallogr. B. – 1976. – V. 32. – 9. P. 2726–2728.
143.Goldlewsky E., La Rnelle P. Relabions structurales entre GeSe<sub>2</sub> et GeS<sub>2</sub>.– H.
   T. // J. Appl. Cryst. - 1977. - V. 10. - 1. - P. 202-204.
144.Hatta I., Kobayashi K. L. I. A mean-field behavior of the specific heat at the
   phase transition of SnTe with a low carrier concentration // Solid State Com-
   mun. – 1977. – V. 22. –       12. – P. 775–777.
145. Valassiades O., Economou N. A. On the phase transformation of SnTe //
   Phys. Status Solidi (a). – 1975. – V. 30. – 1. – P. 187–195.
                                                                       , 1976. –
146.
```

391 .

147. . 1969. – 274 .

148.Ramsdell L. S. Studies on silicon carbide // Amer. Miner. – 1974. – V. 32. – 1. – P. 64–82.

149. //

. - 1939. - . 23. - 2. - . 171-175. 150.

//

1945. - . 48. - 1. - . 40-43.

151.Sato H., Toth R. S., Honjo G. Long period stacking order in close packed structures of metals // J. Phys. Chem. Solids. - 1967. - V. 28. - 1. -P. 137-160.

- 152.Prasad R. Present state of polytypism in cadmium iodide crystals // Phys. Status Solidi (a). 1976. V. 38. 1. P. 11–44.
- 153.Hazen R. M., Finger I. W. The crystal structures and compressibilities of layer minerals at high pressure. I. SnS<sub>2</sub> berndtite // Amer. Miner. 1978. V. 63. 3–4. P. 289–292.
- 154.Acharya S., Srivastava O. N. Occurrence of polytypism in SnSe<sub>2</sub> // J. Cryst. Growth. 1981. V. 55. 2. P. 395–397.
- 155.Palosz B. Reasons for polytypism of crystals of the type  $MX_2$ . II. Classification of faults and structural series of polytypes; conditions of polytypic growth of  $CdI_2$ ,  $PbI_2$ ,  $CdBr_2$ ,  $SnS_2$ ,  $SnSe_2$  and  $Ti_{1,2}S_2$  // Phys. Status Solidi (a). -1983.-V.80.-1.-P.11-41.
- 156.Polosz B., Steurer W., Schulz H. Refinement of SnS<sub>2</sub> polytypes 2H, 4H and 18R // Acta Crystallogr. B. 1990. V. 46. 4. P. 449–455.
- 157.Guenter J.R., Oswald H.R. Neue polytype Form von Zinn-(IV) sulfid // Naturwissenschaften. 1968. Bd. 55. 4. S. 177.
- 158.Mitchell R. S., Fujiki Y., Ishizawa Y. Structural polytypism of SnS<sub>2</sub> // Nature. 1974. V. 247. 5442. P. 537–538.
- 159. Whitehouse C. R., Balchin A. A. Polytypism in tin disulphide // J. Cryst. Growth. 1979. V. 47. 2. P. 203–212.
- 160. Minagawa T. Common polytypes of  $SnS_2$  and  $SnSe_2$  // J. Phys. Soc. Japan. – 1980. – V. 49. – 6. – P. 2317–2318.
- 161.Palosz B., Palosz W., Gierlotka S. Polytypism of crystals of tin disulphide; structures of 21 polytypes of  $SnS_2$  // Acta Crystallogr. C. 1985. V. 41. 6. P. 807–811.
- 162.Bacewicz R., Palosz B., Palosz W., Gierlotka S. Absorption edge of SnS<sub>2</sub> polytypes // Solid State Commun. 1985. V. 54. 3. P. 283–285.
- 163.Palosz B., Salje E. Lattice parameters and spontaneous strain in AX<sub>2</sub> polytypes: CdI<sub>2</sub>, PbI<sub>2</sub>, SnS<sub>2</sub> and SnSe<sub>2</sub> // J. Appl. Cryst. 1989. V. 22. 6. P. 622–623.
- 164.Busch G., Fröhlich C., Hulliger F. Steigmeier E. Struktur, elektrische und thermoelektrische Eigenschaften von SnSe<sub>2</sub> // Helv. Phys. Acta. 1961. Bd. 34. 4. S. 359–368.
- 165.Frank F. C. The growth of carborundum: dislocations and polytypism // Phil. Mag. 1951. V. 42. 3. P. 1014–1021.
- 166. Jagodzinski H. Fehlordwungsersheinugen und ihr zuzammenhag mit derb polytytie des SiC // Neues Jahrb. Mineral. Monatsh. 1954. Bd. 3. 1. S. 49–65.
- 167.Schneer C. J. Polytypism in one dimention // Acta Crystallogr. 1955. V. 8. 1–2. P. 279–285.

- 171.Mak . W, Cong-Du-Zhou. Crystallography in Modern Chemistry. J. Wiley-Interscience, 1992. – 1323 p.
- 172.Bissert G., Hesse K.-F. Verfeinerung der Struktur von Germanium (II)-sulfid, GeS // Acta Crystallogr. B. 1978. V. 34. 4. P. 1322–1323.
- 173.Wiedemeier H., Schnering H. G. Refinement of the structures of GeS, GeSe, SnS and SnSe // Z. Kristallogr. 1978. Bd. 148. S. 295–303.
- 174. Okazaki A. The crystal structure of germanium selenide GeSe // J. Phys. Soc. Japan. 1958. V. 13. 10. P. 1151–1155.
- 175. Kannewurf C. R., Kelly A., Cashman R. J. Comparison of three structure determinations for germanium selenide, GeSe // Acta Crystallogr. 1960. V. 13. 6. P. 449–450.
- 176. Dutta S. N., Jeffrey G. A. On the structure of germanium selenide and related binary IV/VI compounds // Inorganic Chemistry. 1965. V. 4. 9. P. 1363–1366.
- 177. Asanabe S., Okazaki A. Electrical properties of germanium selenide, GeSe // J. Phys. Soc. Japan. 1960. 6. P. 989–997.
- 178. Okazaki A., Ueda I. The crystal structure of stannous selenide SnSe // J. Phys. Soc. Japan. 1956. 4. P. 470–472.
- 179. Chattopadhyay T., Von Schnering H. G., Grosshans W. A., Holzapfel W. B. High pressure X-ray diffraction study on the structural phase transitions in PbS, PbSe and PbTe with synchrotron radiation // Physica. BC. 1986. V. 139–140. P. 356–360.
- 181.Wiedemeier H., Siemers P. A. The thermal expansion of GeS and GeTe // Z. anorg. allg. Chem. 1977. Bd. 431. 4. S. 299–304.
- 182. Wiedemeier H., Csillag F. I. The thermal expansion and high temperature transformation of SnS and SnSe // Z. Kristallogr. 1979. Bd. 149. 1–2. S. 17–19.
- 183. Schiferl D. Bonding and crystal structures of average-valence <5> compounds: A spectroscopic approach // Phys. Rev. B. 1974. V. 10. 8. P. 3316–3329.
- 184. Littlewood P. B. The crystal structure of IV–VI compounds: I. Classification and description // J. Phys. C: Solid State Phys. 1980. V. 13. 5. P. 4855–4873.
- 185. Littlewood P. B. The crystal structure of IV–VI compounds: II. A microscopic model for cubic/rhombohedral materials // J. Phys. C.: Solid State Phys. 1980. V. 13. 5. P. 4875–4892.

|                                                                                                                                                                | GeS // 1982                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| . 24. – 5 1562–1563                                                                                                                                            |                                                                               |
| 187.Schubert K., Fricke H. Kristallstruktur v Bd. 6. – 12. – S. 781–782.; Schubert Metall: Diskussion und Untersuchung tr                                      | K., Fricke H. Kristallchemie der Brigonal verzerrten NaCl-strukturen //       |
| Z. Metallkunde. – 1953. – Bd. 44. – 9                                                                                                                          | 3. 43/-401.                                                                   |
| 188, $\alpha$ -GeTe //                                                                                                                                         | . – 1967. – . 12. – 1. – . 37–                                                |
| 189. Goldak J., Barrett C. S., Innes D., You<br>J. Chem. Phys. – 1966. – V. 44. – 9. –                                                                         |                                                                               |
| •                                                                                                                                                              | 1978. – . 20. –                                                               |
| 191                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          |
| 192,,                                                                                                                                                          |                                                                               |
| // .<br>. 26. – 2. – . 270–274.                                                                                                                                |                                                                               |
| 193. Mariano A. N., Chopra K. L. Polymorj duced by high pressure and thin-film ep – 1967. – V. 10. – 10. – P. 282–284.                                         |                                                                               |
| IV–VI                                                                                                                                                          | a //                                                                          |
| . – 1968. – . 10. – 3. – . 733–7<br>195. hattopadhyay T., Werner A., Schner<br>and pressure induced phase transition<br>Appl. – 1984. – V. 19. – 9. – P. 807–8 | ing H. G., Pannetier J. Temperature in IV–VI compounds // Rev. Phys.          |
| 196.Chattopadhyay T., Boucherle J. X., Votion study on the structural phase transiti Phys. – 1987. – V. 20. – 10. – P. 1431                                    | on Schnering H. G. Neutron diffrac-<br>on in GeTe // J. Phys. C.: Solid State |
| 197,,                                                                                                                                                          | ., ., .,                                                                      |
| 300 //                                                                                                                                                         | $3 \text{ TISbS}_2$<br>1976 10 1                                              |
| 198.Fujii Y., Kitamura K., Onodera A., Yar of PbTe above 16 GPa // Solid State C. 135–139.                                                                     | nada Y. A. New high-pressure phase<br>Comun. – 1984. – V. 49. – 2. –          |
| 199,,                                                                                                                                                          | ,                                                                             |
| . 13–17.                                                                                                                                                       |                                                                               |
| 200.Bhatia K. L., Parthasarathy G., Gopal E crystalline semiconductors GeS doped w // J. Phys. Chem. Solids. – 1984. – V                                       | rith Ag, P impurities at high pressure                                        |

186.

| transition in layered crystalline semiconductor GeSe to metallic phase // Phys. Rev. B. – 1986. – V. 32. – 2. – P. 1492–1494.                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 201.Onodera A., Fujii Y., Sugai S. Polymorphism and amorphism at high pressure // Physica BC. – 1986. – V. 139–140. – P. 240–245.                                                                                                   |
| 202.                                                                                                                                                                                                                                |
| 203                                                                                                                                                                                                                                 |
| 204 H.                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                     |
| 205,,,,,,,,                                                                                                                                                                                                                         |
| 206. Koren N. N., Krasnova V. V., Matyas E. E. Investigation of alloys of the system GeS–GeSe // Phys. Status Solidi (a). – 1978. – V. 46. – P. K1–K3.                                                                              |
| 207.Koren N. N., Kindyak V. V., Matyas E. E. Phase diagram of the system GeS–GeSe // Phys. Status Solidi (a). – 1983. – V. 80. – 1. – P. K105–K108.                                                                                 |
| 208,,, $GeS_xSe_{1-x}$ //                                                                                                                                                                                                           |
| 209,,                                                                                                                                                                                                                               |
| 210, PbSe-GeSe GeSe-GeTe //                                                                                                                                                                                                         |
| 211.Muir J. A., Cashman R. G. The system Ge–Te–Se and the preparation and properties of the new non-stoichiometric compound GeSe <sub>0,75</sub> Te <sub>0,25</sub> // J. Phys. Chem. Solids. – 1967. – V. 28. – 6. – P. 1009–1016. |
| 212,,, -                                                                                                                                                                                                                            |
| //                                                                                                                                                                                                                                  |
| 213.Muir J. A., Beato V. Phase transformations in the system GeSe–GeTe // J. Less- ommon Metals. – 1973. – V. 33. – 3. – P. 333–340.                                                                                                |
| 214,,,,,, $Ge_{0.98}$ Te–GeSe                                                                                                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                               |
| 215 , , , $Ge_{1-y}(Te_{1-x}Se)_y //$                                                                                                                                                                                               |

Bhatia K. L., Parthasarathy G., Gopal E. S. R. Pressure induced first-order

```
216.
                        GeTe-GeSe<sub>2</sub>
                                                       Ge-Te-Se //
                          . – 1985. – . 21. – 10. – . 1659–1663.
217.
                                 Ge_{1-y}(Te_{1-x}Se_x)_v //
              . – 1984. – . 20. – 1. – . 33–37.
218.
                       . - 1981. - . 26. - 1. - . 35-40.
   //
219.
                  SnSe_2-GeSe_2 // .
   1976. - . 12. - 8. - . 1486–1487.
220.
                  . – 1976. – . 12. – 5. – . 942–944.
221. Albers W., Hass C., Ober H., Schödder G. R., Wasscher J. D. Preparation
   and properties of mixed crystals SnS_xSe_{1-x} // J. Phys. Chem. Solids. – 1962. –
   V. 23. – 3. – P. 215–220.
222.
                                  Sn-S-Se
                              . – 1971. – . 7. – 2. – . 502–503.
223.Elli M. // Atti Acad. naz Lincei. Rend Cl. Sci. fis., mat. e nature. - 1963. -
   V. 35. – 6. – P. 538-547.
224.
                          SnTe-Sn(Se, S) //
         . - 1969. - . 5. - 2. - . 380-382.
225. Totani A., Okazaki H., Nakajima S. // Trans. Metallurg. Soc. AIME. - 1968.
   - V. 242. - 4. - . 709-712.
```

- 226. Krebs H., Langner D. Über Struktur und Eigenschaften der Halbmetalle. XVI. Mischkristallsysteme zwischen halbleitenden Chalkogeniden der virten Hauptgruppe. II // Z. anorg. allg. Chem. 1964. Bd. 334. 1–2. S. 37–49.
- 227.Krebs H., Grün K., Kallen D. Über Struktur und Eigenschaften der Halbmetalle. XIV. Mischkristallsysteme zwischen halbleitenden Chalkogeniden der virten Hauptgruppe // Z. anorg. allg. Chem. 1961. Bd. 312. 5–6. S. 307–313.
- 229.Harbec J. Y., Paouet Y., Jandl S. Crystallography and temperature dependance of the resistivity of  $SnS_{2-2x}Se_{2x}$  solid solutions // Can. J. Phys. 1978. V. 58. 9. P. 1136–1139.
- 230.Al-Alamy F. A. S., Balchin A.A. The growth by iodine vapour transport and the crystal structures of layer compounds in the series  $SnS_xSe_{2-x}$  ( $0 \le x \le 2$ ),  $Sn_xZr_{1-x}Se_2$  ( $0 \le x \le 1$ ), and  $TaS_xSe_{2-x}$  ( $0 \le x \le 2$ ) // J. Cryst. Growth. 1977. V. 38. 2. P. 221–232.

```
231.
   GeTe-SnTe GeTe-PbTe Ge-Sn(Pb)-Te //
                . – 1986. – . 22. – 7. – . 1109–1114.
232.
         GeTe-SnTe //
                                      . - 1958. - . 123. - 2. - . 279-
   281.
233.Bierly J. N., Muldawer L., Beckman O. The continuous rhombohedral-cubic
   transformation in GeTe-SnTe alloys // Acta Metallurg. - 1963. - V. 11. -
      3. – . 447–454.
234.Mazelsky R., Lubell M. S., Kramer W. E. Phase studies of the group IV-A
   tellurides // J. Chem. Phys. – 1962. – V. 37. – 1. – P. 45–47.
               . Chem. Phys. – 1702.
235.
       . – 1974. – . 16. – 12. – . 3610–3613.
236.
            GeTe-SnTe // .
                                                               . – 1980. –
    . 16. – 2. – . 241–246.
237.
                                                     GeTe-SnTe //
                                . – 1969. – . 5. – 11. – . 1895–1898.
238.
                                        (Ge_{1-x}Sn_x)_{1-\nu}Te_{\nu} //
                      . – 1990. – . 26. – 7. – . 1416–1420.
239.Hatta X., Rehwald W. Specific heat of Sn<sub>x</sub>Ge<sub>1-x</sub>Te crystals of the structural
   phase transition // J. Phys. C.: Solid State Phys. – 1977. – V. 10. – 12. –
   P. 2075–2081.
240.Clarke P. X-ray study of the structural phase transition in Sn<sub>x</sub>Ge<sub>1-x</sub>Te //
   Phys. Rev. B. – 1978. – V. 18. – 9. – . 4920–4926.
241.
   \gamma \rightarrow \beta
                242.Lefkowirz I., Shields M., Dolling G. Crystalgrowth and neutron studies of
   large single crystals of the alloy series SnTe-GeTe // J. Cryst. Growth. -
   1970. – V. 6. –       2. –     . 143–146.
243.Rehwald W., Lang G. K. Ultrasonic studies of phase transitions in the tin tel-
   luride-germanium telluride system Sn_xGe_{1-x}Te // J. Phys. C.: Solid. State
   Phys. – 1975. – V. 8. – 20. – P. 3287–3296.
244.Nikoli P. M. Solid solution of lead-germanium chalcogenide alloys and
   some of their optical properties // Brit. J. Appl. Phys. D. – 1969. – V. 2. –
      3. - .383 - 388.
245.
                     PbSe-GeSe //
   1986. – . 22. – 11. – . 1808–1811.
246.
            PbSe-GeSe //
   1964. – 1. – . 180–183.
```

```
247. Hohnke D. K., Holloway H., Kaiser S. Phase relations and transformations
            in the system PbTe–GeTe // J. Phys. Chem. Solids. – 1972. – V. 33. – 11.
            - P. 2053-2062.
248. Woolley J. C., Nikoli P. Some properties of GeTe-PbTe alloys //
           J. Electrochem. Soc. – 1965. – V. 112. – 1. – P. 82–84.
249.
           Pb-Sn-Te
                                                                                                                                                                         PbTe-SnTe // .
                                                                                   . – 1970. – . 6. – 9. – . 1584–1588.
250.
                                                                                                                                               PbTe-GeTe //
                                                             . - 1969. - . 5. - 2. - . 270–274.
251.
                                                              . ., . .,
                                                                                                                                                                                                  GeTe-PbTe
                                                                                                                        GeTe // .
                     . – 1981. – . 17. – 9. – . 1586–1560.
252.
                                                                                                                          // .
            1983. - . 19. - 6. - . 893-895.
253.Takaoka S., Murase K. Anomalous resistivity near the ferroelectric phase
            transition in (Pb, Ge, Sn) Te alloy semiconductors // Phys. Rev. B. – 1979. –
            V. 20. – 7. – P. 2823–2829.
254.
           GeTe-PbTe // .
                                                                                                                         12. – . 2089–2091.
255.
256.
                                                                                                                            Pb_{1-x}Ge_xTe
                                                                                   . – 1987. – . 23. – 1. – . 161–163.
257.Massimo M., Cadoff I.B. Pb<sub>1-x</sub>Ge<sub>x</sub>Te solubilites, electrical and optical prop-
            erties // J. Electrochem. Mater. – 1976. – V. 5. – 6. – P. 601–605.
258.Parker S.G., Pinnel J.E., Swink. Determination of the liquides-solidus curves
            for the system PbTe–GeTe // J. Mater. Sci. – 1974. – V. 9. – 11. – 1829.
                                                                                                                                                                                         SnCl_2 + PbS \Leftrightarrow SnS +
                                                                                   - . SnCl_2 + PbS \Leftrightarrow 
            + PbCl<sub>2</sub> // .
260.
                                                                                                          . – 1964. – . 9. – 5. – . 1201–1206.
261.
                                                                                        SnS-PbS // .
            1976. – . 12. – 2. – . 206–209.
262.
                                                            Pb_{1-x}Sn_xS
                                                                                                                            . - 1986. - . 22. - 2. - . 204-207.
```

```
263.Hoffman V. W. Ergebnisse der Strukturbestimung komplexez sulfide //
   Z. Kristallogr. – 1935. – Bd. 92. – S. 161–164.
264.
                           . - .: - , 1960. - . 1.
265. Yamaoka S., Okai B. Preparations of BaSnS<sub>3</sub>, SrSnS<sub>3</sub> and PbSnS<sub>3</sub> at high
   pressure // Mater. Res. Bull. – 1970. – V. 5. – 10. – P. 789–794.
266.Fenner J., Mootz D. Die Kristallstruktur von SnGeS<sub>3</sub>. Ein neuer Strukturtyp
   // Naturwissenschaften. – 1974. – Bd.61. – 3. – S. 127.
267. Woolley J. C., Berolo O. Phase studies of the Sn<sub>x</sub>Pb<sub>1-x</sub>Se alloys // Mater.
   Res. Bull. – 1968. – V. 3. – 5. – P. 445–450.
268.
   PbSe-SnSe // .
                                                     . – 1971. – . 7. – 8.
   - . 1331–1333.
269.Zlomanov V. P., White W. B., Roy R. Phase relation in the system
   Pb-Sn-Se // Metal. Trans. - 1971. - V. 2. - 1. - P. 121-125.
270.
                                     PbSe-SnSe //
   224–227.
271.
                      Pb-Sn-Se // .
   1973. - . 9. - 8. - . 1431–1432.
272.
       SnTe-PbTe // . . . . - 1958. - . 3. - 7. - . 1632-
   1636.
273. Wagner J., Woolley J. C. Phase studies of the Sn<sub>x</sub>Pb<sub>1-x</sub>Te alloys // Mater.
   Res. Bull. – 1967. – V. 2. – 11. – P. 1055–1062.
274.Bis R. F., Dixon J. R. Applicatibity of vegard's law to the Pb<sub>x</sub>Sn<sub>1-x</sub>Te alloys
   system // J. Appl. Phys. – 1969. – V. 40. – 4. – P. 551-555.
275.
                                                          PbGeS<sub>3</sub> Pb<sub>2</sub>GeS<sub>4</sub>
                                        . – 1990. – . 26. – 3. –
   //
    . 509–514.
276.
                             PbTe-SnTe PbTe-PbSe // .
   1966. – . 40. – 7. – . 1637–1638.
277.
                                        PbTe-SnTe //
                 . – 1969. – . 5. – 2. – . 275–278.
```

- 278. Hagenmuller P., Párez G. L'orthothiosilicate de plomb  $Pb_2SiS_4$  // C. r. Acad. sci. – 1965. – V. 260. – 1. – P. 167–169.
- 279.Iglesias J. E., Steinfink H. Thernary Chalcogenide compounds  $AB_2X_4$ : The crystal structures of  $SiPb_2S_4$  and  $SiPb_2Se_4$  // J. Solid State Chem. 1973. V. 6. 1. P. 93–98.
- 280.Elli M., Mugnoli A. Sui solfogermanati di plombo: sistema PbS-GeS<sub>2</sub> // Atti Accad. nac. Lincei. Rend. Cl. sci. fis., mat. e nature. 1962. V. 33. 5. P. 315–319.
- 281.Feltz A., Ludwig W., Senf L., Simon C. Glass formation and properties of chalcogenide systems XII. The phase diagram of the system PbSe–GeSe<sub>2</sub> and

- on the compound  $Pb_2GeSe_4$  // Kristall und Technik. 1980. Bd. 15. 8. S. 895–901.
- 283.Jumas J.-C., Ribes M., Philippot E., Maurin M. Sur le systéme SnS<sub>2</sub>–PbS. Structure crystalline de PbSnS<sub>3</sub> // C. r. Acad. sci. C. 1972. V. 275. 4. P. 269–272.
- 284. . ., PbSe-SnSe<sub>2</sub> // . . . . . . . . . . . . . . .
  - 1971. . 7. 11. . 2092–2094.
- 286.Feltz A., Ludwig W., Seiss R. Über Glasbildung und Eeigenschaften von Chalkogenidsystemen (XII). Das Phasendiagramm SnS–GeS<sub>2</sub> // Krist. und Technik. 1978. Bd. 13. 4. S. 405–408.
- 287.Baldé L., Khodadad P. Etude du systéme Ge-Sn-Se: description des équilibres entre GeSe<sub>2</sub>, SnSe<sub>2</sub> et SnSe // C. r. Acad. sci. C. 1974. V. 278. 4. P. 243–246.
- 289.Chilouer A., Mazurier A., Guittard M. Systeme Ga<sub>2</sub>S<sub>3</sub>-PbS. Diagramme de phase, etude cristallographiqu // Mater. Res. Bull. 1979. V. 14. 9. P. 1119–1124.
- 290.Eholie R., Flahaut J. Étude de quelques sections du systeme ternaire Pb-Ga-Se // Bul. Soc. chim. France. 1972. V. 4. 4. P. 1245–1249.
- 291.Bletskan D. I., Kabacij V. N., Sakal T. A., Stefanovych V. A. Structure and vibrational spectra of  $M^{II}A^{IV}B_3^{VI}$ -type crystalline and glassy semiconductors // J. Non-Cryst. Solids. 2003. V. 326–327. P. 77–82.
- 292.Ribes M., Qlivier-Fourcade J., Philippot E., Maurin M. Structure Cristalline d'un Tiogermanate de Plomb a Chaines Infinies (PbGeS<sub>3</sub>)<sub>n</sub> // Acta Crystallogr. B. 1974. V. 30. 6. P. 1391–1395.
- 293.Fenner J., Mootz D. Über Sulfide der vierten Hauptgruppe vom Typ A<sup>II</sup>B<sup>IV</sup>S<sub>3</sub> und die Kristallstruktur des SnGeS<sub>3</sub> // Z. anorg. allg. Chem. 1976. Bd. 427. 2. S. 123-130.
- 294.Eholié R., Kamsu K. J., Flahaut J. Etude des systemes PbSe–Ga<sub>2</sub>Se<sub>3</sub> et PbSe–GaSe // C. r. Acad. sci. C. 1969. V. 268. 8. P. 700–702.
- 295.Bletskan D. I., Voroshilov Yu. V., Durdinets L. M., Migalko P. P., Stefanovich V. A., Kabacij V. N. Crystal structure and specific features of formation of vibrational spectra of  $Pb_2GeS_4$  // Crystallog. Reports. 2003. V. 48. 4. P. 573–575.
- 296.Susa K., Steinfink H. Ternary sulfide compounds  $AB_2S_4$ : the crystal structures of  $GePb_2S_4$  and  $SnBa_2S_4$  // J. Solid State Chem. 1971. V. 3. 1. P. 75–82.
- 297.Bletskan D. I., Voroshilov Yu. V., Durdinats L. M., Kabacij V. M., Holovey V. M. Structure and photo-electric properties of crystals  $PbGa_2S_4$  and  $PbGa_2Se_4$  // . C . . 1999. 4. . 168–176.

298.Klee W., Schäfer H. Zur Kenntnis von PbAl<sub>2</sub>Se<sub>4</sub> und PbGa<sub>2</sub>Se<sub>4</sub> // Mat. Res. Bull. – 1980. – V. 15. – 7. – P. 1033–1038. 299. Eholie R., Gorochov O., Guittard M., Mazurier A., Flahaut J. Les composés de type  $PbGa_2Se_4$ :  $EuM_2X_4$ ,  $SrM_2X_4$  et  $PbM_2X_4$  (avec M = Al, Ga et X = S, Se) // Bull. Soc. chim. France. – 1971. – V. 9. – 3. – P. 747–750. 300.Peters T. E., Baglio J. A. Luminescence and structural properties of thiogallate phosphors Ce<sup>3+</sup> and Eu<sup>+2</sup> – activated phosphors. Part I // J. Electrochem. Soc.: Solid-State Science and Technology. – 1972. – V. 119. – P. 230–236. 301. 302. Mazuries P. A., Jaulmes S., Guittard M. Structure du Pentasulfure de Digallium et de Diplomb // Acta rystallogr. B. – 1980. – V. 36. – 9. – P. 1990– 303. Thévet F., Dagron C., Flahaut J. Contribution á l'étude du systéme formé par les sulfures de gallium et d'étain II. Mise en évidence de deux sulfures mixtes: SnGa<sub>6</sub>S<sub>10</sub> et Sn<sub>2</sub>Ga<sub>2</sub>S<sub>5</sub> // C. r. Acad. sci. – 1981. – Ser. 2. – V. 293. – 4. – P. 275–277. 304. PbG  $_2$ S<sub>4</sub> // . 1981. - . 17. - 3. - . 540-541. 305. , 1986. 7 . ( 09.06.86. 1295– ). 306.Mazuries P. A., Thevet F., Jaulmes S. Structure du pentasulfure de digallium et de Diétain, Ga<sub>2</sub>Sn<sub>2</sub>S<sub>5</sub> // Acta Crystallogr. C. – 1983. – V. 39. – 7. – P. 814–816. 307. Alapini F., Guittard M., Julien-Pouzol M. Systéme Ga<sub>2</sub>Se<sub>3</sub>-SnSe: composé SnGa<sub>4</sub>Se<sub>7</sub> // C. r. Acad. sci. C. –1980. – V. 290. – 22. – P. 433–435. 308. Alapini F., Fluhaut J., Fourcroy P. H., Guittard M., Pouzol J. M. Diagramme de phases du systeme ternaire GaSe-SnSe-Se. Domaine formateur de verres // Ann. chim. (France). – 1981. – V. 6. – 6. – P. 501–504. 309. . – .: , 1975. – 278 . 310. , 1981. – 215 . 311. . - 1981. - . 17. - 12. - . 2194-2198. 312. . – 1977. – . 13. – 4. – . 591–594. 313. Cu<sub>2</sub>Te // . – 1982. – . 18. – 4. – . 586–590. 314.

```
315.
          - . 16. - 1. - . 31–35.
      316.
      . ., . .,
                   GeTe-A^{III}Te // . . -
       . – 1970. – .4. – 7. – . 1359–1364.
     318.
                              . – 1974. –
. 10. – 7. – . 1226–1229.
        . – 1976. – . 12. – 4. – . 605–609.
                         - .: , 1977. –
  //
. 78–80.
               . – 1977. – . 13. – 4. – . 636–640.
      GeTe //
. – 1974. –     . 10. –      2. –        213–216.
323.
            // . .
                           . – 1969. – . 3.
 - 4. - . 604–607.
324.
  Bi<sub>2</sub>Te<sub>3</sub>-GeTe //
                           . – 1965. –
. 1. – 1 . – . 57–60.
326.
                         // .
      . – 1972. – . 8. – 5. – . 808–811.
327.
           . - 1981. - . 17. - 12. - . 2168-2175.
328. . .,
                                GeTe
```

```
329.
      BiTe
                        . – 1983. – . 19. – 4. – . 578–582.
                           330.
                                ., SnS-Sb //
331.
                              . – 1987. – . 23. – 11. – . 1796–
  1798.
332.
                SnS-Sb_2S_3 // .
  1972. - . 8. - 1. - . 173–174.
333.
                                                   SnS c -
     SnS\text{-Bi}(Bi_2S_3) \hspace{0.1cm} / \hspace{0.1cm} . \hspace{1.5cm} . \hspace{0.5cm} -1985.- \hspace{0.1cm} .21.
    1. – . 142–143.
334.
                                                    SnSe-Sb //
                          . – 1985. – . 21. – 9. – . 1471–
  1472.
335.Umeda J. Electrical properties of Sb-doned n-type SnSe // J. Phys. Soc.
  Japan. – 1961. –V. 16. –       1. – P. 124.
336.
          SnSe Sb_2Se_3 // .
. 11. – 7. – . 1211–1214.
               SnSe-Bi // .
1986. - . 22. - 5. - . 733-735.
     . ., . . Н,
         Sn-Bi-Se // .
   . 14. – 7. – . 1270–1276.
                      339.
                     . – 1974. – . 3. – . 285–287.
340.
                IV
     // .
                              . – 1981. – . 17. – 1. –
   . 34–38.
341.
    · · // .
                                   . – 1983. – . 19. – 9. –
  . 1457–1461.
342.
                                                     Ge_{1-x}Te
  Sn<sub>1-x</sub>Te //
                    , 1977. – . I. – . 286–290.
```

|                                                                          | .,<br>SnTe // .                                                 |               |                                                         | 1984                                    |
|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|---------------------------------------------------------|-----------------------------------------|
| . 20. – 5.                                                               | . 858–860.                                                      |               | .,                                                      | , -                                     |
| 2294–229                                                                 | // .                                                            |               | . – 1972. –                                             | . 6. – 11.                              |
|                                                                          |                                                                 | . 1           | 071                                                     |                                         |
| 345                                                                      |                                                                 | : , 1         | 9/1.                                                    | T. T.                                   |
| $\begin{array}{ccc} 346. & & \\ In_2Te_3 & SnTe \\ 9 & .170 \end{array}$ |                                                                 |               | . – 19                                                  | InTe<br>75. – . 11. –                   |
| 347.                                                                     | .,                                                              | .,<br>SnTe    | ,<br>e Sn-<br>12. – 11. –                               | <br>-In-Te // .<br>1960-1963            |
| 348.                                                                     | ., .                                                            | SnTe          | ,                                                       | , -                                     |
|                                                                          | - 4 573 <del>-</del> 5                                          | •             |                                                         | . –                                     |
| 349                                                                      | ,                                                               | ,             |                                                         | -<br>//                                 |
| 275.                                                                     | •                                                               |               | 1. – . 27. –                                            | 2. – . 2/1–                             |
| 350. SnTe–Sb                                                             | SnTe-SnSb                                                       | · ·, 1968 · 4 | Sb-Te-St<br>10 1670                                     | o // .<br>0–1675.                       |
| 351.                                                                     |                                                                 | ,             | ,                                                       |                                         |
|                                                                          | Sn-Sb-Te //<br>11 1830-1834                                     |               |                                                         | . – 1987.                               |
|                                                                          | ., .,                                                           |               | .,<br>SnTe                                              | SnTe-Sb <sub>2</sub> Te <sub>3</sub>    |
| // .<br>353                                                              | . – 1985. –                                                     | . 31. – . 2   | 3–27.                                                   | -                                       |
| SnTe<br>1 45-                                                            |                                                                 |               | . – 198                                                 | 86. – . 22. –                           |
| 354,                                                                     | • •                                                             |               | .,                                                      |                                         |
|                                                                          | - 6 955-9                                                       |               |                                                         | . –                                     |
| lidification of                                                          | nbe S. A site distri<br>SnTe and SnSb b<br>lys. – 1981. – V. 75 | y Mössbauer e | dilute <sup>119</sup> Sb and mission spectros 463–2465. | Te on so-<br>scopy of <sup>119</sup> Sn |
| 356,<br>560 .                                                            | ٠                                                               |               | . – .: , 1                                              | 971. – . 1. –                           |
| 357                                                                      | .,                                                              | .,<br>GeS,    | ,                                                       | , -                                     |
|                                                                          |                                                                 | 267           |                                                         |                                         |

```
//
   1975. – . 20. –
                      5. – . 1008–1012.
358.
                                                       . – 1976. – . 12. –
     . 202-205.
359.
                                                         Sb //
                         . - 1989. - . 25. -
                                                10. – . 1623–1627.
360.
                                                                      GeSe<sub>2</sub>,
   - 1985. -      21. -
                        2. - . 214-220.
361.
                          SnS<sub>2</sub> //
              9. – . 1454–1458.
362.
                         . - 1974. - . 10. - 4. - . 735-736.
363.
                                                                   -2000. – .
            6. - . 663-671.
364.
                         . - 1967. - . 3. - 11. - . 2092-2094.
365.
                                    . – 1967. – . 1. – 7. – . 1099–1101.
366.
                                                       GeS<sub>2</sub> //
                        . - 1981. - . 17. - 3. - . 538–539.
```

- 367.Mikkelsen J. C. Polytype characterization of  $SnS_2$  crystals grown from Snrich melts // J. Cryst. Growth. -1980.-V.49.-2.-P.253-260; Mikkelsen J. C. Tree-zone Bridgman–Stockbarger crystal growth furnace // Rev. Sci. Instrum. -1980.-V.51.-11.-P.1564-1566.
- 368.Lefkowitz I., Shields M., Dolling G. Crystal growth and neutron studies of large single crystals of the alloy series SnTe–GeTe // J. Cryst. Growth. 1970. V. 6. 2. P. 143–146.
- 369.Calawa A. R., Hatman T. C., Finn M., Youtz P. Crystal growth, annealing, and diffusion on lead-tin chalcogenides // Trans. Metallurg. Soc. AIME. 1968. V. 242. 3. P. 374–383.
- 370.Kobayashi K. L. I., Kato Y., Komatsubara K. F. Crystal growth and assessment of Sn<sub>x</sub>Pb<sub>1-x</sub>Te mixed crystals // Progr. Cryst. Growth and Charact. 1978. V. 1. 2. P. 117–149.
- 371.Huang Yu., Debram William J., Fripp Archibald L. Interface shaps during vertical Bridgman growth of (Pb, Sn)Te crystals // J. Cryst. Growth. 1990. V. 104. 2. P. 315–326.
- 372.Bensoussan M., Brenac A., Thomas J., Tronc P. Elaboration de monocristaux de  $GeSe_2$  // J. Cryst. Growth. -1972.-V.15.-1.-P.79-80.

| 373,                                                                     | ,                                                |                                      |                              | -                |
|--------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|------------------------------|------------------|
| SnTe                                                                     |                                                  | // .                                 |                              | -                |
| . – 1973. – . 9. – . 7                                                   |                                                  |                                      |                              |                  |
| 374.Baughman R. J., Lefever<br>SnTe and PbTe single cry<br>P. 721–726.   | R. A. Czoch<br>stals // Mat.                     | ralski encapsula<br>Res. Bull. – 196 | tion growth of 59. – V. 4. – | f GeTe,<br>10. – |
| 375.Hiscocks S. E. R. The ca<br>Sci. – 1969. – V. 4. – 4                 | pillary seed to<br>. – P. 310–31                 | echnique in crys<br>2.               | tal pulling // J.            | Mater.           |
| 376,                                                                     | ٠.,                                              | $Pb_{1-x}Sn_xTe$                     |                              | -                |
| //<br>– 1976. – .                                                        | . 24. – . 38–                                    | 41.                                  |                              | · -              |
| 377.Weller P. F. Single crysta<br>1966. – V. 113. – 1. – I               | al growth of S                                   |                                      | / J. Electroche              | m. Soc.          |
| 378.Metz E. P. A., Miller R. C<br>tals of volatile materials //<br>2017. |                                                  |                                      |                              |                  |
| 379.Irene E. A., Wiedemeier // Z. anorg. allg. Chem. –                   |                                                  |                                      | _                            | crystals         |
| 380.Schönherr E. The growtl<br>and Properties. Springer. I               | h of large cry                                   | ystals from the                      |                              | - Growt          |
| 381.Kyriakos D. S., Karkosta<br>monoselenide single cryst<br>226.        | as T. K., Eco                                    | onomou N. A. C                       |                              |                  |
| 382.Schönherr E. Measureme from the vapor in closed a – P. 604–608.      | -                                                | •                                    |                              | -                |
| 383,                                                                     | ,                                                | ,                                    |                              | ,                |
| ٠.,                                                                      | $\overset{\cdot}{A^{IV}}\overset{\cdot}{B^{VI}}$ | ,                                    |                              | -                |
| //                                                                       | 25                                               | 2117 2125                            |                              | . –              |
| 384. , .,                                                                | 177. — 25                                        | 3117–3125.                           |                              |                  |
| 15 12 2106                                                               | <br>// .<br>5.2108                               |                                      |                              | – 1979.          |
| 385.                                                                     | ,                                                |                                      |                              |                  |
| PbGeS <sub>3</sub> // . 1890–1892.                                       | ,                                                | . – 1983.                            | 27                           | 12. –            |
| 386.Lévy F. Single-crystal g                                             | rowth of lave                                    | ered crystals // ]                   | Nuovo Ciment                 | o. B. –          |
| 1977. – V. 38. – 2. – P.                                                 | •                                                | 2100 01300010 // 1                   | . La vo Cimon                | <b>D</b> .       |
| 387. Wiedemeier H., Irene I                                              | E.A., Chaudl                                     |                                      |                              |                  |
|                                                                          |                                                  |                                      |                              |                  |

387. Wiedemeier H., Irene E.A., Chaudhuri A.K. Crystal growth by vapor transport of GeSe, GeSe<sub>2</sub> and GeTe and transport mechanism and morphology of GeTe // J. Cryst. Growt. – 1972. – V. 13/14. – 1. – P.393–396.

388.Wiedemeier H., Irene E. A. The chemical transport rates and crystal morphology of GeSe  $/\!/$  Z. anorg. allg. Chem. - 1973. - Bd. 400. - 1. - S. 59–66.

- 389.Wiedemeier H., Klaessig F., Irene E. A., Wey Song J. Crystal growth and transport rates of GeSe and GeTe in micro-gravity environment // J. Cryst. Growth. 1975. V. 31. P. 36–43.
- 390.Wiedemeier H., Chandra D., Klaessig F. C. Diffusive and convective vapor transport in the GeSe–GeI<sub>4</sub> system // J. Cryst. Growth. 1980. V. 51. 2. P. 345–361.
- 391.Palosz V., Wiedemeier H. On the mass transport properties of the  $GeSe-GeJ_4$  system under normal and reduced gravity conditions // J. Cryst. Growth.-1988.-V.89.- 2-3. P. 242-250.
- 392.Wiedemeier H., Csillag F. J. Transport properties of the systems SnS<sub>2</sub>–SnJ<sub>4</sub> and SnS<sub>2</sub>–J<sub>2</sub> // J. Cryst. Growth. 1979. V. 46. 2. P. 189–197.
- 393.Buchan N. I., Rosenberger F. Mass spectroscopic characterization of the GeSe:GeI<sub>4</sub> vapor transport system // J. Cryst. Growth. 1987. V. 84. 3. P. 359–370.
- 394. Wiedemeier H. Vapor transport processes of metal chalcogenide-halide systems under normal and reduced gravity conditions // High Temp. Lamp Chem. Proc. Symp. Sci. and Technol. Toronto. May, 12–17, 1985. Pennington, 1985. P. 38–46.
- 395.Wiedemeier H., Trivedi S. B., Zhong X. R., Whiteside R. C. Crystal growth and transport rates of the GeSe-xenon system under microgravity conditions // J. Electrochem. Soc. 1986. V. 133. 5. P. 1015–1021.
- 396.Wiedemeier H., Trivedi S. B. Initial observations of GeSe-xenon transport experiments performed on the D1 space flight // Naturwissenschaften. 1986. Bd. 73. 7. S. 375–377.
- 397. Van den Dries J. G. A. M., Lieth R. M. A. Growth rate and some electrical properties of GeS single crystals // Phys. Status Solidi (a). 1971. V. 5. 3. P. K 171–173.
- // , 1973. – . 10–14.
- 400. . ., . ., . ., . ., . .,
  - // . .: , 1972. .9.- .231–235.
- 401.Parker S. C., Pinnell J. E., Johnson R. E. Growth of large crystals of (Pb, Ge)Te and (Pb, Sn)Te // J. Electron. Mater. 1974. V. 3. 4. P. 731–746.
- 402. . ., . .,  $Pb_{1-x}Sn_xSe$ ,
  - . 1975. . 2. 3. . 546–547.
- 403.Pizzarello F. Vapor phase crystal growth of lead sulfide crystals // J. Appl. Phys. 1954. V. 25. 6. P. 804–805.

- 404.Schönherr E., Stetter W. Growth of germanium monosulfide single crystals by sublimation // J. Cryst. Growth. 1975. V. 30. 1. P. 96–98.
- 405.Hartmann E., Schönherr E. Determination of crystal growth rates from the vapour by relaxation // J. Cryst. Growth. 1981. V. 51. 1. P. 140–142.
- 406.Lauck R., Schönherr E. One dimensional diffusion model of crystal growth from the vapor in a cone // J. Cryst. Growth. 1984. V. 66. 1. P. 121–124.
- 407.Hrubý A. A technique of growing bulk single crystals by means of vapour phase transport // Czech. J. Phys. B. 1975. V. 25. 12. P. 1413–1415.
- 409.Yu J. G., Yue A. S., Stafsudd O. M. Growth and electronic properties of the SnSe semiconductor // J. Cryst. Growth. 1981. V. 54. 2. P. 248–252.
- 410. Albers W., Verberkt J. Isothermal substitutional growth of single crystals // Philips Res. Repts. - 1970. - V. 25. - 1. - P. 17–20.
- 411. . ., . ., . ., . ., . .

## PbTe-SnTe

1976. - . 12. - 5. - . 838-842.

- 413.Matsumoto K., Kaneko S. Characterization of SnS<sub>2</sub> films formed from the vapour phase in a closed tube // Thin Solid Films. 1984. V. 121. 3. P. 227–232.
- 414.Hauschild E. A., Kannewurf C. R. Optical transmission in single crystal silicon diselenide // J. Phys. Chem. Solids. 1969. V. 30. 2. P. 353–357.
- 415. . ., . ., . ., . .

- 416.Kinoshita K., Miyazawa S. Large homogeneous Pb<sub>1-x</sub>Sn<sub>x</sub>Te single crystal growth by vapor-melt-solid mechanism // J. Cryst. Growth. 1982. V. 57. P. 141–144.
- 418.Nakata R., Yamaguchi M., Zemautsu S., Sumita M. Crystal growth and photoconductive effects of stannic chalcogenides // J. Phys. Soc. Japan. 1972. V. 32. P. 1153–1157.
- 419.Greenaway D. L., Nitsche R. Preparation and optical properties of group  $IV-VI_2$  chalcogenides having the  $CdI_2$  structure // J. Phys. Chem. Solids. 1965. V. 26. 9. P. 1445-1458.

| 420.Rau H. Thermodynamische Messungen an SnS // Ber. Bunsenges phys Chem. – 1965. – Bd. 69. – 8. – S. 731–736.                                                                                             |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 421,,,                                                                                                                                                                                                     |   |
| SnTe // . 1985 30 5                                                                                                                                                                                        | - |
| 422.Al-Alamy F. A. S., Balchin A. A. Applications of the temperature oscilation method to the growth of layer compounds by iodine vapour transport / J. Cryst. Growth. – 1977. – V. 39. – 2. – P. 275–286. |   |
| 423,                                                                                                                                                                                                       | - |
| 424.Franc F. C. The influence of dislocations on crystal growth // Disc. Faraday Soc. – 1949. – V. 5. – P. 48–54.                                                                                          | / |
| 425, ., ., .                                                                                                                                                                                               | - |
| .: , 1959. – . 11–109.<br>426.                                                                                                                                                                             |   |
| 426,                                                                                                                                                                                                       | - |
| 427                                                                                                                                                                                                        |   |
| <ul> <li>- 1961 73 2 227–331.</li> <li>429.Schönherr E., Stetter W. Growt spirals on a GeS crystal // J. Cryst. Growth - 1973 V. 20 2 P. 158–159.</li> </ul>                                               |   |
| 430.Hartmann E., Mecseki A., Schönherr E. The relaxation curve of a crystal–vapour system using BCF theory // J. Cryst. Growth. – 1982. – V. 57. – 3. – P. 616–617.                                        |   |
| 431, ${}^{\text{IV}}B^{\text{VI}}$                                                                                                                                                                         | - |
| . 1436–1441.<br>432                                                                                                                                                                                        |   |
| $^{\text{IV}}$ B $_2^{\text{VI}}$ //                                                                                                                                                                       |   |
| . 1321–1325.                                                                                                                                                                                               |   |
| 433,,                                                                                                                                                                                                      |   |
| 434                                                                                                                                                                                                        | - |
| , 1968. – 188 . 435.<br>Karakostas T. H. Planar defects in GeSe and GeS crystals // J. Meter. Sci 1988. – V. 23. – 9. – P. 3099–3105.                                                                      | - |
| 436.                                                                                                                                                                                                       |   |
| : , 1977. – 304 c.<br>437.                                                                                                                                                                                 | - |
| . 42–114.                                                                                                                                                                                                  | - |
| 438,                                                                                                                                                                                                       | - |

- 442.Hume-Rothery W. The crystal structure of elements of the B-sybgroups and their connection with the Periodic Table and atomic structures // Phil. Mag. 1930. V. 7. 9. P. 65–71.
- 443.Zachariasen W. H. The atomic arrangement in glasses // J. Amer. Chem. Soc. -1932.-V.54.-10.-P.3841-3851.
- . III . . . .- .: , 1960. . 61–71.
- 446.Smecal A. On the structure of glass // J. Soc. Glass Technol. 1951. V. 35. P. 411–414.
- 448. . .

- 450. : : // . . . 1992. - . 18. - 6. - . 3-9.
- 451.Barrow R. F., Jevons W. The band spectrum of silicon monosulphide and its relation to the band spectra of silimar molecules // Proc. Roy. Soc. London A. 1939. V. 169. P. 45–65.
- 452.Tenhover M., Hazle M. A., Grasselli R. K. Atomic structure of  $SiS_2$  and  $SiSe_2$  glasses // Phys. Rev. Letters. 1983. V. 51. 5. P. 404–406.
- 453.Tenhover M., Hazle M. A., Grasselli R. K. Raman-effect studies of  $Si_xS_{1-x}$  glasses // Phys. Rev. B. -1984. V. 29. 12. P. 6732-6735.
- 454.Weiss A., Weiss A. Zur Kenntnis von Siliciumdiselenid–Glas (III Mitt. über Siliciumchalkogenide) // Z. Naturforsch. 1953. Bd. 8b. 2. S. 104–105.
- 455.Koós M., Kósa Somogyi I. Photoluminescence and distribution of  $T_{\rm g}$  values in the  ${\rm Ge_xSe_{1-x}}$  system // J. Non-Cryst. Solids. 1985. V. 77–78. P. 1145–1148.

| 456.                                               | ,                                                         | Si–Se //                                 | .,                                                  |                                             | 10 1                                  |
|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------------------------|
| 3 37                                               |                                                           | SI-Se //                                 |                                                     | . – 197                                     | 78. – . 4. –                          |
|                                                    | n D., Bresser V<br>dow and stiffnes<br>1999. – V. 111.    | ss transitions                           | s in chalcoge                                       | oodman B. Ti<br>enide glasses /             | hermally re-<br>// Solid State        |
| 458.Selvanathan glasses from                       |                                                           | . J., Boolch<br>ring and tem             | and P. Stiffi                                       | dulated diffe                               | rential scan-                         |
| 459.Hilton A. R<br>T. D. Non-o<br>ies // Phys. G   | R., Jones C. E., I<br>xide IVA–VA–<br>Chem. Glasses.      | VIA chalco                               | genide glass                                        | es. Part 3. Str                             | M., George uctural stud-              |
| 460.                                               | ,                                                         | ,<br>Si–Te                               |                                                     | ••,                                         |                                       |
| «                                                  | <b>»</b>                                                  | 107                                      | 0 4                                                 | 11. – . 221                                 | /                                     |
| 461.Petersen K<br>phous silico<br>1461.            | . E., Birkholz \on telluride // Pl                        | U., Adler D                              | . Properties                                        | of crystalline                              | e and amor-                           |
|                                                    | ., Just T., Zirke<br>n alloys // . 6<br>975.<br>, 1976. – | _                                        | l and bondir<br>                                    | ng studies of                               | glassy tellu-<br><br>-                |
| 463.Bartsch G. tellurium–si P. 65–75.              | E. A., Bromme licon alloys // .                           |                                          |                                                     |                                             |                                       |
| 464.                                               | ,                                                         | ,                                        | ,                                                   |                                             | .,                                    |
| ,<br>Si-                                           | -Te // .                                                  |                                          | - 1988. –    .                                      | 14. – 3. –                                  | . 413–417.                            |
| 465                                                | .,                                                        | .,                                       | ,                                                   | ,                                           |                                       |
| "                                                  | -                                                         | ,                                        | -89". –                                             | //<br>, 1989                                | <br>9. – . 1. –                       |
| . 136–138.                                         |                                                           | 0.34111                                  | D . TT . N.                                         | 1. E.G. G                                   | . D.D                                 |
| 466.Andreev A Turaev E. E tems // Amo 1977. – P. 4 | Eutectic glassy sorphous and Liq                          | emiconduct                               | ors in the Anductors; 7th                           | dinov F. S., S  III –Te and A  Intern. Conf | eregin P. P.,  V – Te sys- Edinburgh, |
| 467                                                | .,                                                        | .,                                       | ,                                                   | ,                                           | ,                                     |
| ,                                                  | · · · · · · · · · · · · · · · · · · ·                     | ,                                        |                                                     | ,                                           | • •                                   |
|                                                    | . − .: A <sup>III</sup> (A                                | A <sup>IV</sup> )–Te <i>A</i><br>, 1985. | A <sup>III</sup> –A <sup>IV</sup> –To<br>– . 145–14 | e //<br>l6.                                 | -                                     |
|                                                    | Maul W., Schön<br>Isystemen. II. Z<br>Te // Z. anorg.     | Zur Glasbild                             | lung in den                                         | Systemen As                                 | s-Ge-Si-Te                            |

- 471. Vengrenovitch R. D., Podolyanchuk S. V., Lopatniuk I. A., Stasik M. O., Tkachova S.D. Preparation of amorphous  $Si_xTe_{1-x}$  alloys and their crystallization // J. Non-Cryst. Solids. -1994.-V.171.-P.243-248.
- 472.Asokan S., Parthasarathy G., Gopal E. S. R. Crystallization studies on bulk  $Si_xTe_{100-x}$  glasses // J. Non-Crystal. Solids. 1986. V. 86. 1–2. P. 48–64.
- 473.Asokan S., Parthasarathy G., Gopal E. S. R. Evidence for a cristical composition in group-IV–VI chalcogenide glasses // Phys. Rev. B. 1978. V. 35. 15. P. 8269–8272.
- 474.Asokan S., Parthasarathy G., Gopal E.S.R. Double glass transition and double stage crystallization of bulk Si<sub>20</sub>Te<sub>80</sub> glass // J. Mater. Sci Lett. 1985. V. 4. 5. P. 502–504.
- 475.Gauer M. K., Dézsi I., Gonser U., Langouche G., Ruppersberg H. The crystallization of amorphous  $Si_xTe_{1-x}$  // J. Non-Cryst. Solids. 1989. V. 109. 2–3. P. 247–254.
- 476.Norban B., Pershing D., Enzweiler R. N., Boolchand P., Griffiths J. E., Phillips J. C. Coordination-number-induced morphological structural transition in a network glass // Phys. Rev. B. 1987. V. 36. 15. P. 8109–8114.

477. ., ., ., ., .,

- 478.Shufflebotham P. K., Card H. C., Kao K. C., Thanailakis A. Amorphous silicon–tellurium alloys // J. Appl. Phys. 1986. V. 60. 6. P. 2036–2040.
- 479.Tsunetomo K., Shimizu R., Imura T., Osaka Y. EXAFS and X-ray diffraction studies on the local structure of sputterdeposited amorphous Si<sub>x</sub>Te<sub>1-x</sub> alloy // J. Non-Cryst. Solids. 1990. V. 116. 2–3. P. 262–268.
- 480.Lasocka M., Matyja H. Thermal stability of chalcogenide glasses  $Te-A^{IV}$  in relation to the atomic number of the  $A^{IV}$  element // Phys. Status Solidi (a). 1974.-V.26.-2.-P.671-680.
- 481.Asokan S., Gopal E. S. R., Parthasarathy G. Pressure-induced polymorphous crystallization in bulk  $Si_{20}Te_{80}$  glass // J. Mater. Sci. 1986. V. 21. 2. P. 625–629.
- 482.Asokan S., Parthasarathy G., Subbanna G. N., Gopal E. S. R. Electrical transport and crystallization studies of glassy semiconducting  $Si_{20}Te_{80}$  alloy at high pressure // J. Phys. Chem. Solids. 1986. V. 47. 4. P. 341–348.

- 484.Hilton A. R., Jones C. E., Brau M. New high temperature infrared transmitting glasses: II // Infrared Phys. 1964. V. 4. 4. P. 213–221.
- 485.Nielsen S. Note on the preparation and properties of glasses containing germanium disulphide // Infrared Phys. -1962.-V.2.-4-6.-P.117-119.
- 486.Savage J. A., Nielsen S. Paper 105. Proc. VIIth International Congress on Glass, Brussels. Belgium. 1965. P.4. Institut National du Verre. Charleroi. Belgium, 1966.
- 487.Imaoka M. Chalcogenide glasses of germanium disulfide systems // Asahi Garasu Kagyo Gijutsu Shoreikai Kenhyu Hokoku. 1967. V. 13. P. 421–432.
- 488.Feltz A., Burckhardt W., Sene L., Voigt B., Zickmüller K. Über Glasbildung und Eigenschaften von Chalcogenidsystemen. IX. Zur Struktur der GeS/GeS<sub>2</sub>- und GeSe/GeSe<sub>2</sub>- Gläser // Z. anorg. allg. Chem. 1977. Bd. 435. 8. S. 172–178.
- 489.Kawamoto Y., Tsuchihashi S. Glass-forming regions and structure of glasses in the system Ge-S // J. Amer. Ceram. Soc. 1969. V. 52. 11. P. 626–627; Kawamoto Y., Tsuchihashi S. Properties and structure of glasses in the system Ge-S // J. Amer. Ceram. Soc. 1971. V. 54. 3. P. 131–135; Kawamoto Y., Tsuchihashi S. Thermal analysis of Ge-S glasses // J. Amer. Ceram. Soc. 1971. V. 54. 10. P. 526–527.

- 492. ervinka L., Hrubý A. Structure and glassforming regions in amorphous GeS<sub>x</sub> // Amorphous and Liquid Semiconduct. Proc. 5-th Int. Conf. Carmisch-Partenkirchen. 1973. V. 1. London, 1974. P. 431–438.
- 493.Hrubý A. Glass-forming tendency in the  $GeS_x$  system // Czech. J. Phys. B. 1973. V. 23. 11. P. 1263–1272.
- 494.Voigt B. Über Glasbildung und Eigenschaften von Chalkogenid-systemen. XVII. Zur Glaschemie des Germaniumdisulfides // Z. anorg. allg. Chem. 1978. Bd. 447. 10. S. 153–160.
- 495.Illekova E., Kubi ar L. Softening and crystallization kinetics of Ge–S system glasses // Acta Phys. Slov. 1978. V. 28. 4. P. 292–300.
- 496.Málek J., Klikorka J. Crystallization kinetics of glassy GeS<sub>2</sub> // J. Thermal Analisis. 1987. V. 32. P. 1883–1893; Málek J. The glass transition and crystallization of germanium–sulphur glasses // J. Non-Cryst. Solids. 1989. V. 107. P. 323–327.
- 497. . ., . ., . ., . . . . .

```
. - 1961. - 6. -
    . 48-53.
499
                              GeSe_x // .
     4. - .774 - 777.
500.
                                                                          //
                  . - 1964. - . 37. - 5. - . 1020–1024.
501.
           . – 1969. – . 5. – 10. – . 1667–1669.
502.Ležal D., Srb I. Synthesis of chalcogenide glasses of the Se-Ge and Se-As
   systems without traces of oxygen // Collect. Czech. Chem. Communs. –
   1971. – V. 36. – 6. – P. 2091–2097.
503.
                           - . 1480–1484.
504.Feltz A., Lippmann F.-J. Über Glasbildung und Eigenschaften von
   Chalkogenidsystemen. III. Zur Glasbildung im System Germanium-Selen //
   Z. anorg. allg. Chem. – 1973. – Bd. 398. –       2. – S. 157–166.
505. Azoulay R., Thibierge H., Brenac A. Devitrification characteristics of Ge<sub>x</sub>.
   Se_{1-x} glasses // J. Non-Cryst. Solids. – 1975. – V. 18. – 1. – P. 33–53.
506.Boolchand P., Bresser W. J. Mobile silver ions and glass formation in solid
   electrolytes // Nature. - 2001. - V. 410. - P. 1070-1073.
507.Ota R., Yamate T., Soga N., Kunugi M. Elastic properties of Ge-Se glass
   under pressure // J. Non-Cryst. Solids. – 1978. – V. 29. – 1. – P. 67–76.
508.
                         GeSe.
      . - 1978. - . 23. - 7. - . 1106-1112.
509.Sarrach D. J., De Neufville J. P., Haworth W. L. Studies of amorphous
   Ge-Se-Te alloys (I): preparation and calorimetric observations // J. Non-
   Cryst. Solids. – 1976. – V. 22. – 2. – P. 245–267.
510.Uemura O., Sagara Y., Muno D., Satow T. The structure of liquid As<sub>2</sub>Se<sub>3</sub>
   and GeSe<sub>2</sub> by neutron diffraction // J. Non-Cryst. Solids. – 1978. – V. 30. –
      2. – P. 155–162.
511.
                              . – 1976. – . 12. – 7. – . 1106–1112.
            //
512.
                                                . – 1965. – . 10. –
                    Ge-Se //
    . 1657–1660.
513.
                                                                          //
                     . – 1980. – . 25. – 1. – . 291–299.
```

515.Laugier A., Chaussemy G., Fornazero J. Viscosity of the glass-forming Ge—Se liquid solutions // J. Non-Cryst. Solids. – 1977. – V. 23. – 2. – P. 419–429.

- 516.Ruska J., Thurn H. Change of short-range order with temperature and composition in liquid  $Ge_xSe_{1-x}$  as shown by density measurements // J. Non-Cryst. Solids. 1976. V. 22. 2. P. 277–290.
- 517.Saiter J. M., Assou A., Grenet J., Vautier C. Relaxation processes and structural models in glassy chalcogenide materials. Application to the  $Se_{1-x}Ge_x$  alloys // Phil. Mag. B. -1991. V. 64. 1. P. 33-47.
- 518.Okabe T., Nakamura K., Nakagawa M. Local arrangement of amorphous GeSe<sub>2</sub> from the viewpoint of crystallization sequence by electron microscopic observations // J. Non-Crystal. Solids. 1990. V. 117–118. 1. P. 215–218.
- 519.Chaussemy G., Fornazero J., Laugier A. Les mesures de viscosité des liquides Ge<sub>x</sub>Se<sub>1-x</sub> dans les compositions a vitrification aisee et le concept d'association // Rev. phys. Appl. 1977. V. 12. 5. P. 687–690.
- 520.Luo H. L., Duwez P. Metastable amorphous phases in tellurium-base alloys // Appl. Phys. Letters. 1963. V. 2. 1. P. 21–23.
- 521.De Neufville J. P. Chemical aspects of glass formation in telluride systems // J. Non-Cryst. Solids. 1972. V. 8/10. P. 85–105.
- 523.Takamori T., Roy R., McCarthy G. J. Structure of memory-switching glasses. I. Crystallization temperature and its control in Ge–Te glasses // Mater. Res. Bull. 1970. V. 5. 7. P. 529–540.
- 524.Savage J. A. Glass formation and D. S. C. data in the Ge-Te and As-Te memory glass systems // J. Non-Cryst. Solids. 1972. V. 11. 2. P. 121–130.
- 525.Cornet J. Préparation, caractérization et propriétés des verres  $Ge_xTe_{1-x}$  application au stockage optique de l'information // Ann. chim. (France). 1975. V. 10. 4–5. P. 239–251.
- 527.Fukumoto H., Tsunetomo K., Imura T., Osaka Y. Structural changes of amorphous  $GeTe_2$  films by annealing. (Farmation of metastable crystalline  $GeTe_2$  films) // J. Phys. Soc. Japan. -1987.-V.56.-1.-P.158-162.

528.

- 529.Asokan S., Parthasarathy G., Gopal E. S. R. Crystallization studies on bulk  $Ge_xTe_{100-x}$  glasses // Int. J. Rapid Solidificat. 1987. V. 2. 4. P. 257–271.
- 530.Oleszak D., Dobrowski B., Matyja H. Crystallization studies on Te–Ge amorphous alloys // J. Mater. Sci. Lett. 1989. V. 8. 10. P. 1131–1134
- 531.Kaczorowski M. Morphological aspects of crystallization of chalcogenide glasses obtained by rapid cooling from the liquid state // J. Mater. Sci. 1982. V. 17. 10. P. 3045–3051.

532. . ., . ., . ., -

- . 20. - 2. - . 163–170.

533.Lasocka M. Normalized value of  $K_{gl}$  parameter of glass formation ability // J. Mater. Sci. – 1976. – V. 11. – 9. – P. 1770–1771.

534. . ., . .

Te–Ge,

, 1982. – . 159–163.

- 535.Moss S. C., De Neufville J. P. Thermal crystallization of selected thin films of Te-based memory glasses // Mater. Res. Bull. 1972. V. 7. 5. P. 423–441.
- 536.Okabe T., Nakagawa M. Crystallization behavior and local order of amorphous  $Ge_xTe_{1-x}$  films // J. Non-Cryst. Solids. 1986. V. 88. 2–3. P. 182–195.
- 537.Boolchand P., Bresser W. J. The structural origin of broken chemical order in GeSe<sub>2</sub> glass // Phil. Magazine B. 2000. V. 80. 10. P. 1757–1772.
- 538.Voigt B., Ludwig W. Untersuchung der Kristallisation unterkühlter  $GeX_2$  Schmelzen (X = O, S Se) durch DTA // J. Therm. Anal. 1982. Bd. 25. 2. S. 341–346.
- 539.Nishi Y., Kawakami M., Mikagi K. Isothermal crystallization on the surface of Te 15 at. % Ge alloy glass // J. Mater. Sci. 1987. V. 22. P. 554-556.
- 540.Bletskan D. I., Boiko S. A., Terekhova S. F. Exciton absorption of germanium diselenide // Phys. Status Solidi (b). 1978. V. 90. P. K49–K52; Lisitsa M. P., Boiko S. A., Bletskan D. I., Terekhova S. F. Absorption edge of amorphous, glassy and single crystalline GeSe<sub>2</sub> // Amorphous Semiconductors 78. Pardubice. Czechoslovakia. 1978. V. 2. P. 456–458.

541. . ., . . . . . . . . . .

 $GeS_{2x}Se_{2-2x}$  // -82. - ( ), 1982. - . 68–70.

| 542,                                                                                                           | ,                                           | ,                  | , -              |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|------------------|
|                                                                                                                | PbGe                                        | eS <sub>3</sub> // | -                |
|                                                                                                                | . 2–4                                       | . 1985. – .:       | - ,              |
| 543,                                                                                                           | ,                                           |                    | -                |
| GeSe-Sb <sub>2</sub> Se <sub>3</sub> -GeSe <sub>2</sub> // . 485-490.                                          |                                             | . – 1982. –        | . 27. – 2. –     |
| 544.Tenhover M., Harris J.<br>tronic substitution in Si<br>V. 69. – 2–3. – P. 249<br>545.Malyj M., Espinosa G. | $i(S_xSe_{1-x})_2$ glasses $9-259$ .        | // J. Non-Cryst. S | olids. – 1985. – |
| al modes in vitreous $Si_x$ – P. 3672–3679.                                                                    |                                             |                    |                  |
| 546,                                                                                                           | ,                                           | //                 |                  |
| 1978 4                                                                                                         | 4 411–415.<br><br>979 5 3.                  | 287–290.           | Ge-S-Se //       |
| 548,<br>Ge-S-Se, Ge-S-T<br>1980 16                                                                             | · · ·<br>e Ge–Se–Te //                      |                    |                  |
| 549,                                                                                                           | ,<br>Ge–S–Se //                             |                    | . – 1989. –      |
| . 15. – 6. – . 857–6<br>550.Maneglier-Lacordaire S<br>glasses in the germanium<br>1975. – V. 18. – 3. –        | S., Besancon P., Ri<br>m–tellurium-sulphu   |                    | -                |
| 551,                                                                                                           | ,                                           | · ·,<br>- // .     |                  |
| 552,                                                                                                           | . 490–492.                                  |                    | -                |
| II. – .: 553.Maneglier-Lacordaire S naire germanium-tellure – Part 1. – P. 2451–2452                           | S., Rivet J., Khoda<br>e–soufre // Bull. So |                    | Le systéme ter-  |
| 554,<br>Ge <sub>2</sub> S <sub>3</sub> –C<br>1954-1958.                                                        | $\operatorname{Ge}_2\operatorname{Se}_3//$  | <br>. – 1977.      | 22 12.           |
| 555.Muir J. A., Cashman genide glass // J. Opt. So                                                             |                                             |                    |                  |

- 557.Bordas S., Geli M., Casas-Vazquez J., Clavaguera N., Clavaguera-Mora M. T. Diagramme des phases et domaine de formation de verres dans le systéme pseudobinaire GeSe<sub>2</sub>-Te // Rev. Phys. Appl. 1977. V. 12. 5. P. 677–680.
- 558.Bordas S., Geli M., Clavaguera-Mora M. T., Clavaguera N. Calorimetric study of crystallization in (GeSe<sub>2</sub>)<sub>x</sub>(GeTe<sub>4</sub>)<sub>1-x</sub> glasses // J. Non-Cryst. Solids. 1983. V. 57. 1. P. 195–198.; Bordas S., Clavaguera-Mora M. T., Balek V. Characterization of Ge–Se–Te glasses by emanation thermal analysis and DTA // Thermochim. acta. 1985. V. 93. P. 263–266.
- 560.Minaev V. S. Criterion of glass formation in chalcogenide systems // Amorphous Semiconductors 78. Pardubice. Czechoslovakia. 1978. V. 1. P. 71–74.
- 561.Noda M., Maruno S. Formation and microstructure of the glasses in the germanium–selenium–tellurium system // Yogyo Kyokaishi. J. Ceram. Soc. Japan. 1974. V. 82. 944. P. 234–240.
- 562.Wieder J., Aronson S. Properties of Ge–Se–Te glasses // J. Non-Cryst. Solids. -1979.-V.33.-3.-P.405-409.
- 563.Boolchand P., Bresser W. J., Suranyi P., De Neufville J. P. Direct evidence for intrinsically broken chalcogen chemical order in GeSe<sub>2x</sub>Te<sub>2-2x</sub> alloy glasses // Nucl. Instrum. and Meth. Phys. Res. 1982. V. 199. 1–2. P. 295–299.
- 564.Mousa M. A., Ahmed M. A., Crystallization kinetics of amorphous  $Ge_{20}Se_5Te_{75}$  // J. Cryst. Growth. 1988. V. 92. 1–2. P. 259–262.
- 565.Št pánek B., Hrubý A. Glass formation in the Ge–Si–S system // Amorphous Semiconductors 78. Pardubice. Czechoslovakia. 1978. V. 1. P. 88–91.
- 566.St pánek B., Hrubý A. Formation of glass in the Ge–Si–S system // J. Non-Crystal. Silids. 1980. V. 37. 3. P. 343–347.
- 567.Tenhover M., Hazle M. A., Grasselli R. K.  $Si_xGe_{1-x}S_2$  glasses: networks of separate molecular clusters // Phys. Rev. B. -1983. V. 28. 10. P. 5897-5900.
- 568.Tenhover M., Hazle M. A., Grasselli R. K. Raman effect studies of isoelectronic substitution in Si–Ge–S glasses // J. Phys. C.: Solid State Phys. 1985. V. 18. 10. P. 2025–2031.
- 569.Feltz A. Struktur und Reaktivität kovalenter Halbleitergläser // Festkörperchemie. Beitr. Forsch. und Prax. Leipzig, 1973. S. 361–363.

- 570.Feltz A., Büttner H. J., Lippmann F. J., Maul W. About the vitreous systems GeTeI and GeTeSi and the influence of microphase separation on the semi-conductor behaviour of Ge–Se glasses // J. Non-Cryst. Solids. 1972. V. 8–10. P. 64–71.
- 571.Andreev A. A., Ablova M. S., Manukian A. L. et al. Physico-chemical, electrical and optical properties of glass semiconductors Si–Ge–Te and As–Se over a wide range of temperature // Proc. Intern. Conf. amorphous semiconductors. 1976. Balatonfüred, 1976. P. 429–435.
- 572.Feltz A., Voigt B., Schlenzig E. Structure and properties of glasses formed in the system SnS–GeS–GeS<sub>2</sub> and PbS–GeS–GeS<sub>2</sub> // Amorphous and Liquid Semiconduct. Proc. 5th Int. Conf. Garmisch-Partenkirchen. 1973. V. 1. London, 1974. P. 261–266.
- 573.Feltz A., Schlenzig E. Arnold D. Über Glasbildung und Eigenschaften von Chalkogenidsystemen. V. Glasbildung im System SnS–GeS–GeS<sub>2</sub> und die Mössbauer-Spectren der Gläser // Z. anorg. allg. Chem. 1974. Bd. 403. 3. S. 243–250.
- 574. . .
- 575.Ruffolo D., Boolchand P. Origin of glass formation // Phys. Rev. Lett. 1985. V. 55. 2. P. 242–245.
- 576.Enzweiler R. N., Boolchand P. The unusual glass forming tendency in the  $Ge_{2-2x}Sn_{2x}Se_3$  ternary // Hyperfine Interact. 1986. V. 27. 1–4. P. 393–396.
- 577.Lemon G. H., Boolchand P. Molecular structure and crystallization behavior of chalcogenide glasses // J. Non-Cryst. Solids. 1987. V. 91. 1. P. 1–7.
- 579.Fukunaga T., Tanaka Y., Murase K. Glass formation and vibrational properties in the (Ge,Sn)–Se system // Solid State Commun. 1982. V. 42. 7. P. 513–516.
- 580.Haruvi I., Dror J., Mendleovic D., Croitoru N. Optical fibers for infrared from vitreous Ge–Sn–Se // Disorder and order in the solid state. Concepts and devices. Pergamon Press, 1988. P. 247–254.
- 582.Enzweiler R. N., Boolchand P. GeSnSe<sub>3</sub> glass a novel exception to the Ioffe–Regel rule // Solid State Commun. 1987. V. 62. 3. P. 197–200.
- 583.Stevens M., Grothaus J., Boolchand P., Hernandez J. G. Universal structural phase transition in network glasses // Solid State Commun. 1983. V. 47. 3. P. 199–202.

- 584. Stevens M., Boolchand P., Hernandez J. G. Universal structural phase transition in network glasses // Phys. Rev. B. – 1985. – V. 31. – 2. – P. 981– 991.
- 585.Griffiths J. E., Espinosa G. P. Local structure and phase separation in Ge<sub>1-x</sub>Sn<sub>x</sub>Se<sub>2.5</sub> photoactivy glasses // Solid State Commun. – 1987. – V. 64. – 7. – P. 1021–1023.
- 586.Ksendzov A., Pollak F. H., Espinosa G. P., Phillips J. C. Optical absorption tails and structural disorder in Sn<sub>r</sub>Ge<sub>1-r</sub>Se<sub>2.5</sub> and other chalcogenide alloy glasses and liquids // Phys. Rev. B. – 1987. – V. 35. – 6. – P. 2740–2743.
- 587.Feltz A. Über den Einbau von Schwermetallen in Chalkogenidgläser // Wiss. Z. F. Schiller-Univ. Jena. Math.-naturwiss. R. – 1974. – Bd. 23. – 2. – S. 327–340.
- 588.Feltz A., Voigt B. Über Glasbildung und Eigenschaften von Chalkogenidsystemen. IV. Bleithiogermanat (II, IV) – Gläser und ihre Eigenschaften // Z. anorg. allg. Chem. – 1974. – Bd. 403. – 1. – S. 61–71.
- 589.Feltz A., Voigt B., Senf L., Dresler G. Über neue infrarotdurchlässige optische Gläser // I. Internationales Otto-Schott-Kolloquium. Jena. 10–14. Juli. 1978. Wiss. Z. F. Schiller. Univ. Math. Naturwiss. R. – 1979. – Bd. 28. - 2-3. - S. 327-338.
- 590.

Ge-Pb-S // , 1975. – . 1. – . 70–78.

591.

-89" , 1989. – . 81–83.

- 592.Feltz A., Senf L. Über Glasbildung und Eigenschaften von Chalkogenidsystemen. Zur Glasbildung im System PbSe-GeSe-GeSe<sub>2</sub> // Z. Chem. – 1975. – Bd. 15. – 3. – S. 119–120.
- 593.Feltz A., Burckhardt W., Senf L., Künzel B. New vitreous semiconductors //

1976. – . 24–31.

- 594.Feltz A., Senf L. Über Glasbildung und Eigenschaften von Chalkogenidsystemen. XVI. Bleiselenogermanat-Gläser und ihre Eigenschaften // Z. anorg. allg. Chem. – 1978. – Bd. 444. – 7. – S. 195–210.
- 595.Linke D., Gitter M., Krug F. Eigenschafts-Korrelationen bei Chalkogenidgläsern. V. Glasbildung und Phasentrennung in den Systemen Ti-Ge-Se und Pb-Ge-Se // Z. anorg. allg. Chem. – 1978. – Bd. 444. – 7. - S. 217-236.

| ducting chalcog<br>ids. – 1987. – V                    |             |                   |                   | Se // J. Non-            | Crystal. Sol- |
|--------------------------------------------------------|-------------|-------------------|-------------------|--------------------------|---------------|
| 597.                                                   | ٠,          |                   | ••                |                          |               |
|                                                        |             |                   | - //              | •                        |               |
| 1988. – . 14. –                                        | 6. –        | . 848–852.        |                   |                          |               |
| 598.Elli M., Malve<br>Atti Acad. Naz.<br>1. – P. 55–65 | . Lincei. R |                   |                   |                          |               |
| 599.Turjanitsa I. D.                                   | ., Miholine | ets I. M., Ko     | perljos B. M.,    | Kopinets I.              | F. Investiga- |
| tion of the glass<br>Silids. – 1972. –                 | s-forming   | region of the     | Ge-Sb-S-J         | _                        | _             |
| 600.Frumar M., Tie                                     | chá H., Bi  | ures M., Kou      | delka L. Halb     | oleitende Glä            | iser des Sys- |
| tems Ge-Sb-S                                           | // Z. Chem  | n. – 1975. – E    | 3d. 15. – 5.      | - S. 199-200             | 0.            |
| 601.Frumar M., Tio                                     |             |                   |                   |                          |               |
| genide glasses                                         |             |                   | onductors-74.     | Reinhardsb               | runn. Acad.   |
| Wiss. DDR. – 1                                         | 974. – S. Z | 236–239.          |                   |                          |               |
| 602,                                                   |             | ., .              |                   |                          | -             |
|                                                        | ,           |                   |                   |                          | // . 6-       |
| •                                                      | •           | •                 |                   | , 1970                   | -<br>-6. –    |
| 255.                                                   |             |                   |                   | , 157                    | 5 251         |
| 603.Linke D., Böc<br>Das System Ger<br>– Bd. 419. –    |             | Antimon-Sc        |                   |                          |               |
| 604.                                                   | .,          | ,                 | ,                 |                          |               |
| . – 1988. –                                            | . 33. –     | 3 437-            | $(GeS_2)_x(Sb_2)$ | $({}_{2}S_{3})_{1-x}$ // |               |
| 605                                                    | ,           | ,                 | ,                 | ,                        |               |
| ,<br>Sb–S //<br>– . 933–937.                           |             |                   |                   | . – 1989. –              | . 25. – 6.    |
| 606.                                                   |             |                   |                   |                          | _             |
|                                                        | •           | //                | .:                |                          | . –           |
| .: .: ,                                                | 1965. – .   | 174–177.          |                   |                          |               |
| 607.                                                   | .,          |                   |                   |                          | -             |
| 1968. – . 41. –                                        | 6. –        | c<br>. 1200–1206. | Sb-Ge-Se          | : // .                   |               |
| 608.Johnson R. E.,<br>Publ. 1965.                      | Patterson   | R. I. Pat. 3.3    | 360.649 (USA      | .). Semicond             | ucting glass. |
| 609.                                                   | .,          |                   |                   |                          |               |
| <br>- 98–103                                           | -           | //                |                   | : .                      | . – 1965.     |

596. Tohge N., Matsuo H., Minami T. Electrical properties of n-type semicon-

- 611.Haisty R. W., Krebs H. Elektrische Leitfähigkeit und Chalkogenideglass-Bildung in Schmelzen von Ge-As-Se und Ge-Sb-Se // Angew. Chem. 1968. Bd. 80. 23. S. 999–1000.
- 612.Haisty R. W., Krebs H. Electrical conductivity of melts and their ability to form glasses. I. The germanium–antimony–selenium system // J. Non-Crystal. Silids. 1969. V. 1. 5. P. 399–426.
- 613.Linke D., Heyder F. Eigenschafts-Korrelationen bei Chalkogenidgläsern. II. [I]. Das System Germanium-Antimon-Selen // Z. anorg. allg. Chem. 1976. Bd. 425. 2. S. 155–168.

1976. - . 62–66.

- 617.Bordas S., Clavaguera-Mora M. T., Clavaguera N. Crystallization kinetics of some Ge–Sb–Se glasses // Thermochim. acta. 1988. V. 133. Pt A. P. 293–298; Bordas S., Clavaguera-Mora M. T., Clavaguera N. Glass formation and crystallization kinetics of some Ge–Sb–Se glasses // J. Non-Cryst. Solids. 1990. V. 119. 2. P. 232–237.
- 618.Bordas S., Clavaguera-Mora M. T. Phase diagram of the thernary system Ge–Sb–Se // Thermochim. acta. 1982. V. 56. 2. P. 161–182.
- 619.Frumar M., Koudelka L, Tichá H., Faimon J., Tichy L. Some physical properties of Ge–Bi–S system glasses // Amorphous Semicond: 76. Proc. Int. Conf. Balatonfüred. 1976. Budapest, 1977. P. 271–276.
- 620.Frumar M., Tichá H., Koudelka L., Faimon J. Semiconducting glasses of the Ge–Bi–S system // Mater. Res. Bull. 1976. V. 11. 11. P. 1389–1396.
- 621.Tichý L., Tichá H., Beneš L., Málek J. The glass-forming region and electrical conductivity of Ge–Bi–S glasses // J. Non-Cryst. Solids. 1990. V. 116. P. 206–218.
- 622.Tichý L., Nagels P. Non-isothermal crystallization of  $Bi_2S_3$  from glassy  $(GeS_2)_{0,5}(Bi_2S_3)_{0,5}$  // Phys. Status Solidi (b). 1988. V. 107. 2. P. 769–774.
- 623.Nagels P., Tichý L., Tichá H., T iska A. *n*-Type conduction in noncrystalline chalcogenides // Physics of Disordered Materials. (Ed. by D. Adler, Fritzsche

| 1985. – P. 645–662.                                                                         | n Publishing    | Corporation.                                                | new fon     | k. – Lon          | uon,                   |
|---------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------|-------------|-------------------|------------------------|
| 624,                                                                                        | ٠.,             | ,<br>(GeS <sub>3</sub> ) <sub>100-x</sub> Bi <sub>x</sub> / |             |                   | . –                    |
| 1985 30 4 8                                                                                 | 328-835.        | 37100 %                                                     |             |                   |                        |
| 625,<br>Ge–Bi–S                                                                             |                 | 1                                                           | 987. –    . | 13. –             | 3. –                   |
| . 359–363.                                                                                  |                 |                                                             |             |                   |                        |
| 626,                                                                                        | ,               | ,                                                           |             | ••                | -                      |
| GeS <sub>2</sub> –Sb(Bi) <sub>2</sub> S <sub>3</sub> // -89".                               | . "             |                                                             |             |                   | -                      |
| ,                                                                                           | . –             | , 1989. –                                                   | . 76–78     | <b>.</b>          |                        |
| 627,                                                                                        | ,               | ,                                                           | Ge          | $eS_2 - A_2^{V}S$ | -<br>S <sub>3</sub> // |
|                                                                                             |                 | - 1992. –                                                   | . – 1. –    | . 36–4            | 1.                     |
| 628,                                                                                        | ٠.,             | ,                                                           |             |                   | -                      |
| , $(GeS_3)_{100\rightarrow x}Bi_x$ // 1842.                                                 |                 | - 1985    . 3                                               | 0. – 12     | 2. – . 18         | -<br>-336              |
| 629.Bletskan D. I., Kabacij V conductivity of <i>n</i> -type Ge-Czechoslovakia. – 1989. – 1 | -Bi-S. // Sol   |                                                             |             | •                 |                        |
| 630.Nagels P., Tichý L., T isk<br>the Ge–Bi–Sb–Se and Ge<br>V. 59–60. – P. 1015–1018.       | a A., Tichá     | _                                                           | _           | _                 |                        |
| 631, .                                                                                      |                 |                                                             |             |                   | -                      |
| . – 1984. – . 18.                                                                           |                 | Ge-S-Bi //<br>348-350.                                      | •           | •                 | -                      |
| 632,                                                                                        |                 |                                                             |             |                   | -                      |
| //<br>1969 22 4                                                                             | . 140–144.      | . – .                                                       |             |                   | . –                    |
| 633,                                                                                        | ,               |                                                             |             |                   | _                      |
| Bi-Ge-Se                                                                                    |                 |                                                             | // .        |                   |                        |
|                                                                                             | 70. – . 6. –    | 5 884-                                                      | -887.       |                   |                        |
| 634,                                                                                        | <br>(<br>, 1971 | )–<br>. – . 95–97.                                          | -           | //                | -                      |
| 635 Tohge N Vamamoto V                                                                      | *               | Tanaka M                                                    | Preparation | on of n-          | tvne                   |

635.Tohge N., Yamamoto Y., Minami T., Tanaka M. Preparation of *n*-type semiconducting Ge<sub>20</sub>Bi<sub>20</sub>Se<sub>70</sub> glass // Appl. Phys. Letters. – 1979. – V. 34. – 10. – P. 640–641.

- 636.Tohge N., Minami T., Yamamoto Y., Tanaka M. Electrical and optical properties of *n*-type semiconducting chalcogenide glasses in the system Ge–Bi–Se // J. Appl. Phys. 1980. V. 51. 2. P. 1048–1053.
- 637.Tohge N., Minami T., Tanaka M. Preparation and conduction mechanism of *n*-type semiconducting chalcogenide glasses chemically modified by bismuth // J. Non-Cryst. Solids. 1980. V. 38–39. P. 283–288.
- 638.Tichý L., Tichá H., T iska A., Nagels P. Is the *n*-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation // Solid State Commun. 1985. V. 53. 4. P. 399–402.
- 639.Vikhrov S., Nagels P., Bhat P. K. *n*-type conduction in chalcogenide glasses of the Ge–Se–Bi system // Recent developments in condensed matter physics (Ed. J. T. Devreese et al.). New York: Plenum Publ. Corp., 1981. V. 2. P. 333–340.
- 640.Frumar M., Tichý L. *N*-type conductivity in chalcogenide glasses and layers // J. Non-Cryst. Solids. 1987. V. 97–98. P. 1139–1146.
- 641. Ryšava N., Barta C., Tichý L. On the crystallization of  $Sb_2S_3$  in glassy  $(GeS_2)_{0,3}(Sb_2S_3)_{0,7}$  // J. Mater. Sci. Lett. -1989.-V.8.-1.-P.91-93.

- - 4.- . 143–144.

| IV > VI                                                                    |         | 1.   |
|----------------------------------------------------------------------------|---------|------|
| Si-S                                                                       |         | 1.1. |
| Si-S                                                                       |         | 1.2. |
| Si-Te                                                                      |         | 1.3. |
| Ge-S                                                                       |         | 1.4. |
| Ge-S                                                                       | . (     | 1.5. |
| Ge-Te                                                                      | j. (    | 1.6. |
| Sn–S                                                                       |         | 1.7. |
| Sn-Se                                                                      | s. S    | 1.8. |
| Sn-Te                                                                      | . S     | 1.9. |
| Si, Ge,                                                                    |         | 2.   |
|                                                                            |         | Sn.  |
|                                                                            |         | 2.1. |
| •                                                                          |         | 2.2. |
|                                                                            | 2.2.1.  |      |
|                                                                            | 2.2.2.  |      |
|                                                                            |         | 2.3. |
| $A^{IV}B^{VI}$                                                             | •       | 2.4. |
| ,                                                                          | •       | 3.   |
| IV                                                                         |         |      |
| -                                                                          |         | 3.1. |
| $^{\text{IV}}$ $^{\text{VI}}$ $^{\text{VI}}$ $^{\text{VI}}$ $^{\text{VI}}$ | IV V    |      |
| . GeS-GeSe                                                                 | 3.1.1.  |      |
|                                                                            | 3.1.2.  |      |
|                                                                            | 3.1.3.  |      |
|                                                                            | 3.1.4.  |      |
| 2 2                                                                        | 3.1.5.  |      |
|                                                                            | 3.1.6.  |      |
| SnS-SnTe                                                                   | 3.1.7.  |      |
|                                                                            | 3.1.8.  |      |
|                                                                            | 3.1.9.  |      |
|                                                                            | 3.1.10. |      |
|                                                                            | 3.1.11. |      |
|                                                                            | 3.1.12. |      |

| 4.2.1. SnS-Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3.1.13.           | GeSe-Pbs               | Se                            |                       | 98         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------------------|-------------------------------|-----------------------|------------|
| 3.1.16. SnSe-PbSe 3.1.17. SnTe-PbTe  3.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 3.1.14.           | GeTe-Pb'               | Те                            |                       | 99         |
| 3.1.17. SnTe-PbTe  3.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3.1.15.           | SnS-PbS                |                               |                       | 102        |
| IV  3.2.1. SiS <sub>2</sub> -PbS 3.2.2. SiSe <sub>2</sub> -PbSe 3.2.3. GeS <sub>2</sub> -PbSe 3.2.4. GeSe <sub>2</sub> -PbSe 3.2.6. GeS <sub>2</sub> -SnS 3.2.7. GeSe <sub>2</sub> -SnSe 3.2.8. SnS <sub>2</sub> -PbSe 3.2.9. SnSe <sub>2</sub> -PbSe 3.2.10. PbS-Ga <sub>2</sub> S <sub>3</sub> 3.2.11. PbSe-Ga <sub>2</sub> Ss <sub>3</sub> 3.2.12. SnS-Ga <sub>2</sub> Ss <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Ss <sub>3</sub> 3.2.14. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.3. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.1. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.3. GeTe 4.1. GeTe 4.2. SnS(Se)-Sb(Bi) 4.2.1. SnS-Sb 4.2.2. SnS-Bi 4.2.3. SnSe-Bi 4.3.3.5. 5. IVBVI IVBVI  5.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 3.1.16.           | SnSe-PbS               | Se                            |                       | 103        |
| 3.2.1. SiS <sub>2</sub> -PbS 3.2.2. SiSe <sub>2</sub> -PbSe 3.2.3. GeS <sub>2</sub> -PbSe 3.2.4. GeSe <sub>2</sub> -PbSe 3.2.5. GeS <sub>2</sub> -PbTe 3.2.6. GeS <sub>2</sub> -SnS 3.2.7. GeSe <sub>2</sub> -SnSe 3.2.8. SnS <sub>2</sub> -PbS 3.2.9. SnSe <sub>2</sub> -PbSe 3.2.10. PbS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.11. PbSe-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.12. SnS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.12. SnS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Se <sub>3</sub> 3.3.1. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.2. 3.3.3.  Pb <sub>2</sub> GeS <sub>4</sub> 3.3.2. 3.3.3.   4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3.1.17.           | SnTe-Pb7               | Ге                            |                       | 105        |
| 3.2.1. SiS <sub>2</sub> -PbS 3.2.2. SiSe <sub>2</sub> -PbSe 3.2.3. GeS <sub>2</sub> -PbS 3.2.4. GeSe <sub>2</sub> -PbSe 3.2.5. GeS <sub>2</sub> -PbTe 3.2.6. GeS <sub>2</sub> -SnS 3.2.7. GeSe <sub>2</sub> -SnSe 3.2.8. SnS <sub>2</sub> -PbS 3.2.9. SnSe <sub>2</sub> -PbSe 3.2.10. PbS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.11. PbSe-Ga <sub>2</sub> Se <sub>3</sub> 3.2.12. SnS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Se <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Se <sub>3</sub> 3.3.1. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.3.  AB <sup>IV</sup> C <sub>3</sub> <sup>IV</sup> A <sub>2</sub> B <sup>IV</sup> C <sub>4</sub> <sup>IV</sup> 3.3.1. GeTe 4.1. GeTe 4.2. SnS-Sb 4.2.1. SnS-Sb 4.2.2. SnS-Bi 4.2.3. SnSe-Sb 4.2.4. SnSe-Bi 4.3. SnTe 5. IVB <sup>VI</sup> IVB <sub>2</sub> <sup>VI</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2. |                   | ,                      |                               |                       |            |
| 3.2.2. SiSe <sub>2</sub> -PbSe 3.2.3. GeS <sub>2</sub> -PbS 3.2.4. GeSe <sub>2</sub> -PbSe 3.2.5. GeS <sub>2</sub> -PbTe 3.2.6. GeS <sub>2</sub> -SnS 3.2.7. GeSe <sub>2</sub> -SnSe 3.2.8. SnS <sub>2</sub> -PbSe 3.2.9. SnSe <sub>2</sub> -PbSe 3.2.10. PbS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.11. PbSe-Ga <sub>2</sub> Se <sub>3</sub> 3.2.12. SnS-Ga <sub>2</sub> Sa <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Se <sub>3</sub> 3.2.13. SnSe-Ga <sub>2</sub> Se <sub>3</sub> 3.3.1. Pb <sub>2</sub> GeS <sub>4</sub> 3.3.2. 3.3.3.  4. iv <sub>B</sub> vi 4.1. GeTe 4.2. SnS(Se)-Sb(Bi) 4.2.1. SnS-Sb 4.2.2. SnS-Bi 4.2.3. SnSe-Bi 4.3.3. SnTe 5. iv <sub>B</sub> vi |      |                   | IV                     |                               |                       | 106        |
| 3.2.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                   | _                      |                               |                       | 107        |
| 3.2.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                   |                        |                               |                       | 107        |
| 3.2.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                   | GeS <sub>2</sub> –PbS  |                               |                       | 107        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.4.            | GeSe <sub>2</sub> –PbS | se                            |                       | 109        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.5.            | GeS <sub>2</sub> –PbT  | ſе                            |                       | 111        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.6.            | $GeS_2$ - $SnS$        |                               |                       | 111        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.7.            | GeSe <sub>2</sub> –SnS | Se                            |                       | 111        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.8.            | SnS <sub>2</sub> -PbS  |                               |                       | 112        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.9.            | SnSe <sub>2</sub> -PbS | e                             |                       | 112        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.10.           | PbS-Ga <sub>2</sub> S  | <b>3</b> <sub>3</sub>         |                       | 113        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.11.           | PbSe-Ga <sub>2</sub>   | Se <sub>3</sub>               |                       | 115        |
| 3.3. $AB^{IV}C_{3}^{IV}  A_{2}B^{IV}C_{4}^{IV} \dots$ 3.3.1. $Pb_{2}GeS_{4} \dots$ 3.3.2. $3.3.3.$ 4. $I^{V}B^{VI} -$ 4.1. $GeTe \dots$ 4.2.1. $SnS-Sb \dots$ 4.2.2. $SnS-Bi \dots$ 4.2.3. $SnS-Bi \dots$ 4.2.4. $SnSe-Bi \dots$ 4.3. $SnTe \dots$ 5. $I^{V}B^{VI}  I^{V}B_{2}^{VI} \dots$ 5.1. $I^{V}B^{VI}  I^{V}B_{2}^{VI} \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.12.           | SnS-Ga <sub>2</sub> S  | <b>3</b> <sub>3</sub>         |                       | 116        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.2.13.           | SnSe-Ga <sub>2</sub>   | 2Se <sub>3</sub>              |                       | 116        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3. |                   |                        |                               |                       |            |
| 3.3.2. 3.3.3.  4. $I^{V}B^{VI} = \frac{1}{1}$ 4.1. $GeTe = \frac{1}{1}$ 4.2.1. $SnS-Sb = \frac{1}{1}$ 4.2.2. $SnS-Bi = \frac{1}{1}$ 4.2.3. $SnSe-Sb = \frac{1}{1}$ 4.3. $SnSe-Bi = \frac{1}{1}$ 5. $SnTe = \frac{1}{1}$ 5. $I^{V}B^{VI} = I^{V}B_{2}^{VI} = \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | $AB^{IV}C_3^{IV}$ | $A_2B^{IV}C_4^{IV}$    |                               |                       | 117        |
| 3.3.3.  4. : "B <sup>VI</sup> - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3.3.1.            | $Pb_2GeS_4$            |                               |                       | 117        |
| 4. IVBVI — : GeTe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3.3.2.            |                        |                               |                       | 119        |
| 4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3.3.3.            |                        |                               |                       | 121        |
| 4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.   |                   | ***                    |                               |                       |            |
| 4.2.1 SnS(Se)–Sb(Bi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   | $^{1V}B^{V1}$ –        |                               |                       | 124        |
| 4.2.1. SnS-Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                   |                        |                               |                       | 126        |
| 4.2.2. SnS-Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2. |                   | a a a:                 |                               |                       | 138        |
| 4.2.3. SnSe–Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                   |                        |                               |                       | 138        |
| 4.2.4. SnSe–Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                   |                        |                               |                       | 139        |
| 4.3. SnTe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   |                        |                               |                       | 140        |
| 5. $\mathbf{r}_{\mathbf{B}^{\mathbf{V}\mathbf{I}}}$ $\mathbf{r}_{\mathbf{B}_{2}^{\mathbf{V}\mathbf{I}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12   |                   | Snse-bi                |                               |                       | 141<br>143 |
| $\mathbf{I}^{\mathbf{V}}\mathbf{B}^{\mathbf{V}\mathbf{I}} \qquad \mathbf{I}^{\mathbf{V}}\mathbf{B}_{2}^{\mathbf{V}\mathbf{I}} \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | •                 |                        | Sinte                         | •••••                 | 143        |
| 5.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٥.   |                   |                        | IV <sub>D</sub> VI            | IV <sub>D</sub> VI    | 152        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ 1  |                   |                        | Ď                             | <b>D</b> <sub>2</sub> | 153        |
| $^{1V}B^{VI}$ $^{1V}B_2^{VI}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1. |                   | 137 371                | 117 27                        | -                     |            |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                   | $^{1V}B^{V1}$          | $^{1V}$ $\mathbf{B}_{2}^{VI}$ |                       | 153        |

|      | 5.1.1.                                   | ,                                            | 1.50 |
|------|------------------------------------------|----------------------------------------------|------|
|      | 5 1 O                                    |                                              | 153  |
|      | 5.1.2.                                   |                                              | 157  |
|      | 5.1.3.                                   |                                              | 164  |
| 5.2. |                                          | W                                            |      |
|      | $^{\mathrm{IV}}\mathrm{B}^{\mathrm{VI}}$ | $^{\mathrm{IV}}\mathrm{B}_{2}^{\mathrm{VI}}$ | 180  |
|      | 5.2.1.                                   | ••••                                         | 180  |
|      | 5.2.2.                                   |                                              |      |
|      |                                          |                                              | 188  |
| 6.   |                                          | -                                            |      |
|      |                                          |                                              | 193  |
| 6.1. | •                                        |                                              |      |
|      |                                          | $A^{IV}$ – $B^{VI}$                          | 193  |
|      |                                          |                                              | 193  |
|      | 6.1.1.                                   | Si–S                                         | 196  |
|      | 6.1.2.                                   | Si–S                                         | 197  |
|      | 6.1.3.                                   | Si–Te                                        | 198  |
|      | 6.1.4.                                   | Ge–S(Se)                                     | 202  |
|      | 6.1.5.                                   | Ge–Te                                        | 210  |
| 6.2  | •                                        |                                              |      |
|      |                                          | IV                                           | 215  |
|      | 6.2.1.                                   | -                                            |      |
|      |                                          |                                              | 216  |
|      | 6.2.2.                                   | , -                                          |      |
|      |                                          | Si, Sn Pb                                    | 225  |
|      | 6.2.3.                                   | $A^{IV}$ $-B^V$ $-C^{VI}$                    | 235  |
|      |                                          |                                              | 246  |

Si, Ge, Sn

Si, Ge, Sn

(

. .

. .

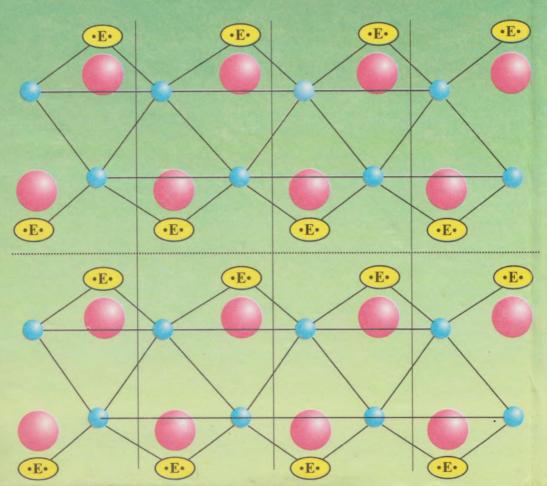
16.08.2004. 60×90/16. . "Times". . . . 18,25. .- . . 18,75

. . 18,56. . 1138. 1200 .

1548 29.10.2003 .

88011, . , . , 42/1

E-mail: vidzak@tn.uz.ua


2

621.315.592 22.37



## Дминрий Иванович ВИСИКАН

доктор физико-математических наук, профессор, лауреат Государственной премии Украины в области науки и техники. Автор более 150 научных работ, 20 патентов Украины и ряда учебных пособий. Круг его научных интересов технология и физика сильноанизотропных слоистых кристаллов, халькогенидные стеклообразные полупроводники. В последнее время вместе со своими учениками занимается усовершенствованием промышленной технологии выращивания кристаллов сапфира для наноэлектроники.

