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Preface 

Analytical toxicologists encounter difficulties with the continuous addition of new drugs, pesticides, and 
other substances, which present novel challenges in the analysis and interpretation of results. The 
accurate measurement of xenobiotics in complex biological matrices greatly depends upon the sample 
treatment and extraction techniques used prior to instrumental analysis. Therefore, sample preparation is 
the most critical and challenging step in any analytical methodology as it determines the quality of the 
results obtained. 

In the past few years, significant advances have been made in the development and application of 
microextraction techniques and are becoming alternatives to classical methods such as solid-phase 
extraction. Some of the basic driving factors for the development of microextraction techniques are 
elimination of sample treatment steps, minimizing sample amount, and a significant reduction in 
consumption of hazardous reagents and solvents. Microextraction techniques came into existence with 
the introduction of solid-phase microextraction (SPME) in the 1990s and gained much attention from 
the scientific community leading toward its commercialization. In later years, other microextraction 
techniques based on solid and liquid formats have emerged. These microextraction techniques are 
characterized by better extraction efficiencies, higher enrichment factors, and reduced consumption of 
toxic organic solvents in comparison to classical extraction methods. 

Despite the complexity of biological matrices encountered in analytical toxicology laboratories, 
microextraction techniques have been applied for various analytes, ranging from gaseous poisons, 
volatile organic chemicals, drugs of abuse and metabolites, therapeutic drugs, pesticides, alkaloids, and 
endogenous compounds. No doubt, these microextraction techniques will be routinely used in analytical 
laboratories in the future and will replace traditional extraction techniques; however, it will take time. 

This book aims to provide principles and practical information about technical know-how and 
implementation of microextraction techniques in laboratories – for the analysis of drugs, poisons, and 
other relevant analytes in biological specimens, especially pertaining to analytical toxicology. The book 
itself is structured around the robust anatomy of the subject. Following a basic introduction (Chapter 1), 
which includes a brief theory and overview of microextraction techniques from the perspective of 
analytical toxicology, chapters onward (Chapters 2–6) are dedicated to applications of sorbent-based 
microextraction techniques in analytical toxicology. This part includes solid-phase microextraction, 
micro solid-phase extraction, stir bar sorptive extraction, microextraction by packed sorbents, and thin- 
film solid-phase microextraction. Liquid-phase microextraction techniques are compiled in Chapters 
7–10, where single drop microextraction (SDME), liquid-phase microextraction, dispersive liquid-liquid 
microextraction (DLLME), and electromembrane extraction are presented. SDME is the first liquid- 
based microextraction technique that has reduced the volume of a solvent to a single drop of microliter 
level, whereas DLLME is the most popular, easy, and cost-effective microextraction technique in this 
format. Chapter 11 covers a relatively new microextraction technique, introduced in 2014, named fabric 
phase sorptive extraction (FPSE). Here, extraction of target analytes takes place on a FPSE membrane 
coated with sol-gel derived sorbent. The porous surface of fabric in the FPSE membrane offers a high 
primary contact surface area between analyte and sorbent material. Further, Chapters 12–15 compile 
some special topics such as molecularly imprinted polymer-based microextraction, green solvent-based 
microextraction (ionic liquids and deep eutectic solvents), and microextraction techniques coupled with 
a derivatization approach. 

The primary readership is expected to be forensic and clinical toxicologists, researchers, and 
academicians. The secondary readership is anyone curious about analytical toxicology, including 
undergraduates and professionals in other fields. It is designed to equip the reader with the ability to 
coherently appraise the merits or otherwise of any of the analytical techniques. 
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The authors of the chapters are pioneers in their field. Their expertise, wisdom, knowledge, and active 
collaboration have made this book possible. As editors, we feel pleased and honored to work with such 
distinguished scientists and academicians. 
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1.1 Introduction to Analytical Toxicology 

Analytical toxicology involves detection, identification, and quantification of xenobiotic compounds 
(exogenous compounds), such as drugs, pesticides, poisons, pollutants, and their metabolites in various 
complex sample matrices, such as ante- and postmortem blood, urine, tissue, or vitreous humour (VH), 
or alternative samples, such as hair, nail, meconium, sweat, oral fluid, etc. Analytical toxicologists play 
an important role in diagnosis, management, and prevention of poisoning by detecting, identifying, and 
measuring the unknown drug or poison in the biological specimens (Maurer 2007; Maurer 2010). In 
most cases of analytical toxicology and doping control, the nature of the target analyte is usually 
unknown prior to analysis. Additionally, the presence of endogenous biomolecules and other xenobiotic 
compounds makes the matrix more complex, which raises the need for highly selective and sensitive 
analytical methods to determine unknown toxicants. Moreover, drugs and their metabolites are generally 
present at very trace levels in biological fluids, which further makes the whole analysis a daunting task. 
Since the analysis is usually untargeted and sample availability is also limited, sample preparation 
methodologies that require the least amount of sample and are capable of removing insoluble residues 
and interfering compounds are of the utmost importance in analytical toxicology (Flanagan 2007; 
Jain and Singh 2016). 

1.2 Nature of Specimens in Analytical Toxicology 

Various disciplines, such as clinical toxicology, forensic toxicology, therapeutic drug monitoring 
(TDM), screening of drugs of abuse, as well as occupational and environmental toxicology are 
covered under the aegis of analytical toxicology. However, there is considerable overlap between 
all the disciplines. Therefore, the specimens commonly encountered in analytical toxicology are 
basically of biological origin obtained under different conditions, which may range from liquid 
(e.g., pure solutions of a drug, blood, urine, cerebrospinal fluid, oral fluid) to semi-solid and 
solid material (e.g., tissue and pharmaceutical tablets). Analysis of liquid samples is generally 
easier in comparison to solid samples, which generally require homogenization, digestion, and 
protein precipitation. 

1.2.1 Blood 

Blood is the sample of choice in living humans as analyte concentrations in blood are closely related 
with their dose and biological effect. Beside blood, plasma and serum are also used for analysis of 
drugs. In postmortem toxicology, two blood specimens are collected: one from the heart and another 
from a peripheral site, e.g., femoral or ileac vein. These specimens may be significantly decomposed or 
contaminated from chest fluid, pericardial fluid, and gastric contents in the case of traumatic death 
(Jones 2008; Kerrigan and Levine 2020). Beside quantification, blood samples are also useful for 
screening of xenobiotics if their concentration is high enough. Postmortem blood has a high degree of 
haemolysis, and therefore direct analysis of whole blood is preferred. 

1.2.2 Urine 

Urine is an important specimen for targeted and non-targeted comprehensive screening of drugs and 
xenobiotic compounds as it represents a major route for their elimination from the body. Additionally, the 
collection process of urine samples is non-invasive, and the concentration of drugs is relatively high. 
Analysis of a urine specimen is also relatively simple as it comprises more than 99% water and is devoid of 
lipids, circulating serum proteins, and large molecular weight compounds due to the glomerular filtration 
process, which facilitates its analytical investigation by immunoassay, spot-tests, or sample preparation for 
instrumental analysis (Dinis-Oliveira et al. 2010). However, in forensic postmortem toxicology, urine is 
available only in 50% of deaths as the bladder usually voids during the dying process (Jones 2008). 

2                                                                               Techniques in Analytical Toxicology 
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1.2.3 Saliva / Oral Fluid 

There has been growing interest in using saliva as a diagnostic medium of drug abuse since it can be 
obtained quickly and non-invasively without privacy violation, unlike urine sample collection. Saliva 
contains the free form of the drug, and its concentration can be correlated to the free drug concentration 
in plasma. For many drugs, only free fraction is physiologically active; therefore, saliva can better 
indicate the state of intoxication (Schramm et al. 1992). 

1.2.4 Hair and Nails 

Analysis of hair and nails is particularly useful for retrospective information of drug abuse and metal 
poisoning. The circulating drugs in the blood stream get incorporated into the cells of the hair and 
nails and get trapped when they are keratinized. The advantage of hair and nail testing is their non- 
invasive and easy collection, storage at room temperature, and small sample size requirement for 
analysis. The growth rate of nails is slower, which makes them suitable for retrospective analysis of 
drug abuse. Various drugs of abuse (e.g., amphetamines, cannabinoids, benzodiazepines, morphine, 
heroin, cocaine), trace elements (e.g., arsenic), and doping substances (e.g., ephedrine), etc., can be 
detected in hair and nails and can establish their chronic exposure (Daniel et al. 2004). 

1.2.5 Vitreous Humour (VH) 

VH is located between the lens and the retina of the eye and fills the eye chamber. VH is basically a salt 
solution that consists 99% of water and contains very little protein. Hence, any drug and metabolite present 
in VH can be easily extracted. VH is resistant to putrefactive changes as it resides in an anatomically 
isolated area; therefore, it has been used widely for estimation of ethanol and other drugs in postmortem 
forensic toxicology. The main drawback of VH is its small volume, i.e., up to 3–4 mL in each eye. 

1.2.6 Liver 

The liver is one of the most important and primary solid tissue used in postmortem toxicology for 
the analysis of drugs and poisons. The liver is the main metabolic organ of the body, where a higher 
concentration of basic drugs can be found in comparison to other body organs. The collection and 
sample preparation of the liver is easier; it is available in sufficient quantities for analysts, and unlike 
blood, it is not affected by postmortem redistribution as the concentration of drugs is relatively stable 
after death (Jones 2008; Dinis-Oliveira et al. 2010). 

1.2.7 Stomach Contents 

Stomach or gastric contents are mainly important for qualitative analysis in the case of oral overdose of 
drugs and poisons, especially when the specimen is obtained soon after the intoxication. The con-
centration of drug after oral ingestion may be high in the stomach contents; therefore, it is suitable for 
toxicological screening of xenobiotics. The drugs that are difficult to be detected in blood due to their 
extensive distribution can be easily detected in their parent form in stomach contents. In some cases 
where death occurred within a short time after oral ingestion, unabsorbed tablets or capsules may be 
detected in their intact form (Jones 2008; Dinis-Oliveira et al. 2010). 

1.2.8 Other Tissues 

When administration of drugs or poisons takes place by inhalation or intravenous routes, as in the case 
of solvent abuse, their high concentrations may be detected in lung specimens. It also depends on the 
properties of xenobiotics. Some specific poisons, such as paraquat, are accumulated in lung tissues in 
high quantities. 
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The kidney is a useful body organ for identification of drugs and poisons as most of them are passed 
through the kidney and then excreted in urine. In cases of heavy metal poisoning, kidney specimens are 
particularly useful as heavy metal accumulation takes place in the kidney. Quantitative analysis of 
xenobiotics in the kidney is not of much significance and is only important in accessing the overall body 
burden of a xenobiotic. 

The brain is a relatively protected and isolated organ and remains unaffected by postmortem 
redistribution of drugs, unlike centrally located organs (e.g., liver). Therefore, the brain is a useful 
specimen in cases of death due to trauma to the chest and abdomen. Additionally, the brain is 
relatively lesser prone to decomposition, which also makes it a specimen of choice for detection and 
quantitation of xenobiotics in decomposed bodies (Rohrig and Hicks 2015). Some other organs, 
such as the spleen, are used as a secondary specimen. The spleen is generally rich in blood 
and therefore is particularly useful in the analysis of carbon monoxide and cyanide poisoning. 
Quantitation of xenobiotics in such specimens generally contributes to the assessment of their 
overall body burden. 

1.3 Microextraction Techniques in Analytical Toxicology: Classification, 
Theory, and Practical Applications 

1.3.1 Classification of Microextraction Techniques Used in Analytical Toxicology 

Microextraction techniques were developed as a green alternative to classical extraction techniques, 
such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE). As the name implies, micro-
extraction techniques employ a very small volume of the extraction phase compared to the volume of 
the sample (Lord and Pawliszyn 2000). Subsequent to the introduction of solid-phase microextraction 
(SPME) by Professor Janusz Pawliszyn and his group in 1987, a large number of microextraction 
techniques were introduced during the last three decades. Microextraction techniques can be classified 
into two major classes based on the nature of the extracting phase: (a) sorbent-based microextraction 
techniques and (b) solvent-based microextraction techniques (Figure 1.1). Noteworthy members of 
sorbent-based microextraction techniques include: (1) SPME; (2) micro SPE (µSPE); (3) stir bar 
sorptive extraction (SBSE); (4) microextraction by packed sorbent (MEPS); (5) thin-film micro-
extraction (TFME); (6) electro membrane extraction (EME); (7) fabric phase sorptive extraction 
(FPSE); and (8) molecularly imprinted polymer-based microextraction. Major members of the solvent- 
based microextraction family include: (1) single drop microextraction (SDME); (2) liquid-phase mi-
croextraction (LPME); (3) ionic liquid-based microextraction; and (4) deep eutectic solvent-based 
microextraction. It is noteworthy to mention that, unlike extraction techniques, microextraction tech-
niques are governed by the equilibrium between the donor phase (primarily aqueous sample) and the 
acceptor phase (the extracting phase). Due to their green nature and miniaturized format, micro-
extraction techniques have found many new applications in the field of analytical toxicology, where the 
available sample volume is often limited. 

1.3.2 Theoretical Considerations 

1.3.2.1 Solvent-Based Microextraction 

Solvent-based microextraction techniques have numerous variants. One popular technique is a two- 
phase LPME technique consisting of one donor phase and one acceptor phase. Jeannot and Cantwell 
proposed a general model for equilibrium and mass transfer in a two-phase system. The rate constant K 
for the equilibrium is given by the equation: 
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where Ai = Interfacial area between the organic and the aqueous phase 
βoo = Overall mass transfer coefficient for the organic phase in cm/s 
βo = Mass transfer coefficient of the organic phase in cm/s 
βw = Mass transfer coefficient of the aqueous phase in cm/s 
Vo = Volume of the organic phase 
Vw = Volume of the aqueous phase 
Kow = Distribution ratio between the organic and the aqueous phases 
As can be deduced from the equations, the time required for accomplishing the equilibrium would be 

the minimum if:  

1. Ai, βo, and βw are maximized;  

2. Vw is minimized. 

As such, if the mass transfer coefficient values (β values) from water to the organic phase are maximized 
and water volume is kept at the minimum possible value, the equilibrium will be reached faster. 
However, the absolute mass of the analyte in the organic phase may remain too low for the analytical 

Microextraction Techniques Used in Analytical Toxicology

Sorbent Based Microextraction 
Techniques

Solvent Based Microextraction 
Techniques

Solid Phase Microextraction (SPME)

Micro Solid Phase Extraction (µSPE)

Stir Bar Sorptive Extraction (SBSE)

Microextraction by Packed Sorbent 
(MEPS)

Single Drop Microextraction (SDME)

Liquid Phase Microextraction

Ionic Liquid-Based Microextraction

Deep Eutectic Solvent Based 
Microextraction

�in Film Microextraction (TFME)

Electro Membrane Extraction (EME)

Fabric Phase Sorptive Extraction 
(FPSE)

Molecularly Imprinted Polymer
Based Microextraction

FIGURE 1.1 Classification scheme of microextraction techniques used in analytical toxicology.  
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instrument to be able to detect. Therefore, the overall sensitivity of the technique must be given 
appropriate consideration. 

1.3.2.2 Sorbent-Based Microextraction 

Sorbent-based microextraction techniques, such as SPME, SBSE, and TFME, utilize a thin film of a 
polymeric-extracting phase to selectively isolate and pre-concentrate the analytes of interest from the 
sample when it is exposed directly to the sample (direct immersion extraction) or the headspace of the 
sample resides in a confined container (headspace extraction) for a predetermined time. Although not 
all the microextraction techniques have been designed to extract the analytes in both the headspace ex-
traction mode and the direct extraction mode, in principle all are capable of performing in both the 
extraction modes. The mass transfer of analytes from the bulk of the sample to the extracting sorbent of 
the microextraction device begins immediately when the sorbent is exposed to the sample, either directly 
(direct immersion extraction) or indirectly (headspace microextraction). Since the mass transfer 
in microextraction techniques is governed by the distribution equilibrium between the sample matrix and 
the extracting phase, the mass transfer continues until the equilibrium is reached. As such, under equi-
librium extraction conditions, the maximum amount of the extractable analyte is fixed and independent of 
the extraction time once the extraction equilibrium is reached. Therefore, the maximum sensitivity of a 
microextraction technique can be achieved only when it is performed under equilibrium conditions. 

Extracted analytes from the microextraction devices can be desorbed thermally (thermal desorption) 
or by exposing them to an organic solvent (solvent desorption) for eluting the analytes from the mi-
croextraction device and the subsequent introduction into the chromatographic system. 

1.3.3 Sorbent-Based Microextraction Techniques 

1.3.3.1 Solid-Phase Microextraction (SPME) 

SPME undoubtedly deserves credit for the beginning of a new era of microextraction technologies 
characterized with miniaturization and solvent-free or solvent-minimized sample preparation. SPME 
extracts analytes by absorption or adsorption into a polymeric coating immobilized on the surface of a 
fibre (fibre-SPME) or inside of a fused silica capillary (in-tube SPME). Subsequent to the extraction 
of analyte either in headspace extraction mode or in direct immersion extraction mode, the analytes 
are desorbed by exposing the SPME fibre into a gas chromatography (GC) inlet for thermal desorption 
or into a special interface in high-performance liquid chromatography (HPLC) for solvent-mediated 
desorption. Due to the lack of chemical bonding between the polymeric coating and the fibre, solvent- 
mediated desorption is not a common practise. The majority of the applications developed with SPME 
are based on thermal desorption in the GC inlet. Recent introduction of biocompatible SPME coatings 
has positioned the technique to be better equipped for toxicological analysis. SPME, due to its nu-
merous advantageous features, enjoys enormous popularity in analytical toxicology (Ulrich 2000;  
Pragst 2007; Kataoka 2015). 

1.3.3.2 Micro Solid-Phase Microextraction (µSPE) 

µSPE is a miniaturized format of classical SPE that is based on the use of a cartridge (spin column 
µSPE, SC-µSPE) or pipette tip (pipette tip µSPE, PT-µSPE) packed with different sorbent materials, 
including C18, C8, etc. As a new format of conventional SPE, µSPE is an exhaustive or near-exhaustive 
sample preparation technique. The analyte extraction process in µSPE begins by drawing the sample 
solution into the tip (PT-µSPE), followed by dispensing back into the sample tube. These two cumu-
lative steps are defined as one aspirating/dispensing cycle. By replicated aspirating/dispensing cycles, 
the extraction procedure will reach to equilibrium. Finally, the absorbed analytes are eluted using an 
appropriate solvent (Beckett et al. 2021; Napoletano et al. 2012). µSPE enjoys all the advantageous 
features of SPE, such as simplicity, rapidity, and the ability to achieve a high enrichment factor. The 
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new format also allows handling a small volume of biological samples, an inevitable criterion in 
analytical toxicology as the available sample volume is often limited. 

1.3.3.3 Stir Bar Sorptive Extraction (SBSE) 

SBSE was introduced primarily to address the poor sensitivity of SPME attributed to the minuscule 
amount of extraction sorbent (∼0.5 µL). SBSE utilizes a glass tube to house a cylindrical bar magnet, 
and the extracting sorbent is immobilized on the outer surface of the glass tube. Due to the high 
volume of the extracting sorbent, SBSE claims to be 1000× more sensitive to SPME fibre. The 
extraction is carried out by immersing the stir bar inside the sample in a sample vial on a magnetic 
stirrer. The stir bar rotates at a given rpm and continues collecting the analytes until the equilibrium 
of the analyte between the sample and the stir bar is reached. The analytes are desorbed using a 
thermal desorption unit, and the sample vapour enters into the GC via an interface. Due to the 
viscous nature of the polymeric sorbent (polydimethylsiloxane and polydimethylsiloxane/ethylene 
glycol mixed), the sample must be clean and particle free. As such, the application of SBSE in 
analytical toxicology is limited. 

1.3.3.4 Microextraction by Packed Sorbent (MEPS) 

MEPS is a miniaturized format of SPE that allows sample volume of as little as 10 µL. MEPS utilizes 
approximately 1–2 mg of the solid sorbent, such as C2, C8, and C18, packed inside a syringe barrel as a 
plug or between the barrel and the needle as a cartridge. Due to the integration of solid sorbent inside the 
syringe, MEPS can be connected online to a GC or liquid chromatography (LC) without any mod-
ification. The extraction is carried out via draw-eject cycle of the sample through the sorbent using an 
autosampler. At the end of the pre-determined draw-eject cycle, the sorbent is washed to remove any 
unwanted compounds or matrix interferents. Subsequently, the adsorbed analytes are eluted with an 
organic solvent or the mobile phase (if HPLC is used for the analysis), and the eluant is injected into the 
chromatographic system. The entire process is automated and therefore compatible with high 
throughput analytical/bioanalytical laboratories (Abdel-Rehim 2010). 

1.3.3.5 Electromembrane Extraction (EME) 

EME combines the benefits of electroanalysis and LPME. An EME device consists of a hollow 
fibre impregnated with a supported liquid membrane (SLM), an acceptor phase placed in the lumen 
of the hollow fibre, and two platinum electrodes – one placed inside the hollow fibre and the other 
one placed inside the sample. The sample volume typically ranges between 150 and 500 µL. The 
volume of the acceptor phase depends on the dimension of the hollow fibre. The pH of the acceptor 
phase is adjusted to a value so that the analytes remain in a charged state. During analyte extraction 
in EME, the electrodes are connected to a power supply to create an electric field across the SLM, 
where SLM functions as a resistor. The applied electric potential across the SLM can be kept 
between 1 and 300 V. Instead of classical alternate current, direct current obtained from common 
batteries (9 V) can be used as the power source. When extracting cations, the cathode is placed in 
the acceptor phase, and the anode is placed inside the sample solution. During extraction of anions, 
electrodes are positioned in the reverse direction. The applied voltage forces the charged analytes 
to migrate from the sample solution, through the SLM, toward the electrode placed inside the 
acceptor phase. The inherent advantages of EME have drawn substantial attention from the tox-
icologists and clinical chemists. The technique has made electro-assisted extraction of acidic and 
basic (ionized or ionizable compounds) drugs simple, rapid, and convenient (Jamt et al. 2012;  
Petersen et al. 2011). 
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1.3.3.6 Fabric Phase Sorptive Extraction (FPSE) 

FPSE represents a major breakthrough invention in separation science since the invention of SPME in 
1987. FPSE has successfully combined the extraction principle of two major yet competing sample 
preparation techniques: SPE, governed by the exhaustive extraction principle, and SPME, governed 
by the equilibrium extraction principle. The integration of the two extraction principles into a single 
sample preparation technique in FPSE has positioned itself as an inevitable component of modern 
analytical and bioanalytical laboratories. FPSE utilizes a porous and permeable fabric as the substrate 
to host sol-gel derived advanced material systems as the extracting sorbent. Instead of the physical 
coating process used for immobilizing sorbent polymers in classical microextraction techniques, 
FPSE utilizes the advantages of a sol-gel synthesis process that chemically binds the polymeric 
network of the extracting sorbent to the fabric support and consequently provides remarkably high 
thermal, solvent, and chemical stability to the FPSE device. As such, the FPSE membrane can be 
exposed to high temperatures or any organic or organo-aqueous solvent for desorbing/eluting the 
adsorbed analyte without compromising the integrity of the device. Due to the flexibility of the FPSE 
membrane and its planar geometry, the FPSE device can be inserted directly into the biological 
sample matrix without requiring any sample pre-treatment, such as protein precipitation, filtration, 
centrifugation, etc. FPSE has also eliminated the post-extraction steps, such as solvent evaporation 
and sample reconstitution, from the sample preparation workflow. The simplification sample pre-
paration workflow in FPSE not only saves money, solvent, and labour but also minimizes analyte loss 
and improves the overall quality of the analytical data. 

FPSE can be carried out in immersion extraction mode as in SPME fibre. FPSE membrane can be 
used as an SPE disk, too. FPSE can also be used as a better alternative to a dried blood spot card. The 
numerous advantages of FPSE have been exploited in many recent toxicological studies (Kabir et al. 
2017; Locatelli et al. 2018, 2019, 2020; Taraboletti et al. 2019; Tartaglia et al. 2020). 

1.3.3.7 Molecularly Imprinted Polymer-Based Microextraction 

Molecularly imprinted polymers (MIPs) are a new class of compounds that have drawn enormous 
interest in recent years in many fields, including analytical toxicology. MIPs are synthetic antibodies 
created using one or multiple template molecules. MIPs recognize the template molecules in terms of 
their shape, size, and functional composition of the templates. MIPs demonstrate very high selectivity 
and binding capacity toward the template molecule. In addition, MIPs demonstrate high chemical, 
mechanical, and thermal stabilities. Because of the inherent selectivity toward the template molecule, 
MIPs are highly favourable in analytical toxicology, where isolation of the target analyte from a highly 
complex sample matrix is always challenging (Ansari and Karimi 2017). 

1.3.4 Solvent-Based Microextraction Techniques 

1.3.4.1 Single Drop Microextraction (SDME) 

SDME utilizes a single drop of a water-miscible extracting solvent, where the analytes are partitioned 
between the single drop of solvent and the aqueous solution based on the analyte’s partition coefficient 
between the two liquid phases. The single drop of the solvent, formed at the tip of a GC or LC syringe, 
is exposed to the aqueous sample during analyte extraction. At the end of extraction, the solvent drop is 
retracted back into the syringe needle and is injected into the chromatographic system. 

1.3.4.2 Liquid-Phase Microextraction (LPME) 

LPME, a miniaturized form of liquid-liquid extraction, generally utilizes sub-microliter volume of the 
solvent for the extraction process. Since its introduction two decades ago, many new formats have 
emerged, such as single drop microextraction, hollow-fibre microextraction, electromembrane extrac-
tion, and dispersive liquid–liquid microextraction. Regardless of the format, analytes are extracted from 
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the aqueous phase to the organic phase based on the partition coefficient of the analyte between the 
organic phase and the aqueous phase. At the end of the extraction, the organic phase is separated from 
water and is injected into the chromatographic system. 

1.3.4.3 Ionic Liquid-Based Microextraction 

Ionic liquids (ILs), often known as liquid salts, are considered to be a promising alternative to the 
conventional organic solvents traditionally used in liquid-phase extraction and microextraction due to 
their low volatility, low flammability, and good thermal and solvent stability. To extract the target 
analytes from the biological sample, a water-immiscible IL is added to the aqueous sample to form two 
distinct phases. The cloudy sample solution is often vortexed and centrifuged to separate the IL from the 
aqueous phase. The IL enriched with the analytes is then injected into the chromatographic system. 

1.3.4.4 Deep Eutectic Solvent-Based Microextraction 

Deep eutectic solvents (DESs), a subclass of ILs, have drawn enormous interest in LPME due to their 
facile synthesis procedures, low cost, and biodegradability as well as the inclusion of hydrogen bond 
acceptor (HBA) and hydrogen bond donor (HBD) in their chemical structure. Typically, in micro-
extraction using DES, a water-miscible DES is added to water to form a homogeneous solution. 
Subsequently, an emulsifier solvent, such as tetrahydrofuran, is added to convert the homogeneous 
solution into a turbid solution. An ultrasonic bath is often used to disperse the aggregated DES 
droplets into the aqueous sample. At the end of extraction, the DES containing the analytes is col-
lected by an external magnet, whereas the aqueous phase is decanted. Finally, the analytes are eluted 
by an appropriate solvent, and an aliquot of the eluant is injected into the chromatographic system. 

1.4 Conclusion and Future Trends 

Sample preparation remains the most important step in the overall analytical workflow in the broad field 
of analytical toxicology. Limited and overwhelmingly complex sample composition; the ever-changing 
list of the target analytes, including designer drugs; ultra-low concentration of the target analytes; and 
other factors pose unprecedented challenges to analytical toxicologists. Thanks to the development of 
new microextraction-based sample preparation technologies in recent years, the analytical workflow has 
been substantially simplified. Many redundant and error-prone steps have been eliminated, and the use 
of toxic organic solvents has been minimized/eliminated. The recent improvements in the hardware for 
gas-phase and liquid-phase separation techniques, mass spectral detection, and powerful computing 
software for rapid data collection and analysis can be fully exploited only when a sample is prepared 
properly, truly represents the original sample, and is free of matrix interferents and other components 
that potentially harm the performance of the analytical instrument. Microextraction techniques have 
successfully demonstrated their inevitability in the progress of analytical toxicology. It is expected that 
the development of both the solvent- and sorbent-based microextraction techniques will continue in 
years to come, with a focus on automation and advanced materials. 
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2.1 Introduction 

Analytical toxicology is a branch of science that deals with qualitative and quantitative determination 
xenobiotic and toxic compounds in complex biological matrices with the aim of resolving various 
research questions. Analytical toxicology plays a vital role in the identification and prevention of 
poisoning (Flanagan et al., 2007; Wille and Lambert, 2007). The most important part of the analytical 
method of development is sample preparation, and it probably could be treated as the backbone of the 
analytical toxicology. Sample preparation is the key to resolve the complexity of the matrices, which 
is always a big challenge for analytical chemists, especially in the case of analytes that are present in 
traces (Pragst, 2007). Sample preparation methods are categorized as traditional, or old, extraction 
techniques and modern, or miniaturized, extraction techniques. Liquid-liquid extraction (LLE), 
Soxhlet extraction, and solid-phase extraction (SPE) are examples of traditional techniques that are 
excellent sample preparation methods for isolation and determination of chemical entities from 
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different environmental, biological, and food matrices (Jha et al., 2017, 2018a). These techniques are 
frequently used in various research laboratories for routine analysis of samples, even today. However, 
there are certain limitations associated with these methods, such as the requirement of (i) large amount 
of samples, (ii) large amount of extraction solvents (mostly toxic), (iii) lengthy extraction time, and 
(iv) multi-step procedures. Additionally, these techniques are neither cost-effective nor en-
vironmentally friendly. These limitations associated with traditional sample preparation methods are 
overcome by miniaturized extraction methods. Liquid-liquid microextraction (LLME), dispersive 
liquid-liquid microextraction (DLLME), single droplet microextraction (SDME), and solid-phase 
microextraction (SPME) are some examples of modern sample preparation techniques (Jha et al., 
2018b; Kumari et al., 2015). These methods require a very small amount of samples (mL or mg and 
even in µL and µg), for which microliters of extraction solvent are enough to successfully extract 
the target analytes from matrices. Further, the microextraction method is quick, cost-effective, and 
eco-friendly, too. 

SPME was first introduced in the 1990s by Arthur and Pawliszyn. SPME features simultaneous 
extraction and pre-concentration of analytes directly from aqueous and gas samples. This technique is 
very fast, easy to use, portable, and it has high extraction efficiency for the targeted analytes (Frison 
et al., 2001). The working principle of SPME is the use of the extracting phase in the assistance of solid 
support, which is kept in contact with the sample phase for a period until equilibrium exists between the 
sample phase and the extraction phase. SPME in combination with an analytical instrumentation 
technique, such as gas chromatography-mass spectrometry (GC-MS), becomes a very influential tool for 
the investigation of the various chemical entities as the SPME fibre laden with the chemical analytes 
through the extraction process could be directly inserted into the injector port of the GC-MS (Pragst, 
2007; Risticevic et al., 2009). The direct injection of the SPME fibre lowers the time of sample pre-
paration and further reduces the analyte loss during the pre-concentration process, offering superior 
extraction efficiency of the targeted analytes. The coupling of SPME with GC-MS makes it a solvent- 
free extraction method as none of the solvent is involved in the extraction and pre-concentration process 
(Dong et al., 2013). Hence, SPME is the most appropriate technique for the analysis of volatile and 
semi-volatile compounds using GC-MS. 

SPME can be categorized into three different groups based on the mode of action, such as (a) direct 
immersion SPME (DI-SPME), (b) headspace SPME (HS-SPME), and (c) membrane-protected SPME 
(MP-SPME). In the DI-SPME mode, the analyte of interest is directly transferred to the coated fibre of 
SPME after insertion into the sample matrix, and the transfer takes place until equilibrium is achieved 
between the sample matrix and the extractant phase. The DI-SPME mode is assisted with agitation for 
smooth transfer of analytes to the extractant phase (fibre coating), and the extent of agitation depends 
on the nature of the samples. In the case of liquid samples, fast agitation may be required, which could 
be achieved by the stirrer, and the level of agitation could be controlled with the RPM of the stirrer. 
On the other hand, for gaseous samples, a gentle agitation is enough for complete and smooth transfer 
of the analyte of interest from the matrix to the fibre. In HS-SPME, the analyte of interest passes 
through the air barrier prior to reaching the coating of the fibre (Lord and Pawliszyn, 2000; Abdulra’uf 
et al., 2012). The fibre coated with the organic polymer is subjected to the HS just above the sample, 
where volatilized targeted analytes are adsorbed on the fibre, and once extraction is completed, the 
fibre could be directly injected into the analytical instrument of choice for analysis. SPME in HS 
mode offers a very short time of analysis with high sensitivity of analytes up to femtograms. Further, 
in the HS-SPME mode, fibres have long durability as they are prevented from higher molecular mass 
and several interferences. Additionally, factors affecting the extraction efficiency of the analytes, such 
as salt addition and pH for the sample matrix, could be adjusted without damaging the fibre in the HS- 
SPME mode. The analytes having low volatility when present in the dirty sample matrix could be 
extracted using MP-SPME, where a membrane is used to protect the fibre of the SPME from the 
matrix impurities (Lord and Pawliszyn, 2000). In MP-SPME, the fibre is not in direct contact with the 
sample matrix, which increases the life span of the fibre, and also the membrane in most of the cases 
provides further selectivity of the analytes by allowing analytes of interest to reach the fibre through 
its pores (Zhang et al., 1996). 
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The SPME fibre is coated with polymeric material, which is designed according to the chemical com-
pounds to be analyzed. The sample solution, where the SPME fibre is immersed for extraction purposes, is 
continuously stirred for maximum and uniform adsorption of the analyte on the fibre, completing the 
extraction procedure until equilibrium is attained (Lord and Pawliszyn, 2000). There are several polymeric- 
coated silica fibres commercially available today, including polyethylene glycol (PEG), divinylbenzene 
(DVB), polydimethylsiloxane (PDMS), polyacrylate (PA), and carboxen (CW). These coatings are avail-
able in different thicknesses and dimensions, which could be used as per the analysis required (Spietelun 
et al., 2010). Most of the polycyclic aromatic hydrocarbons (PAHs), pesticides, and aromatic amines could 
be extracted using PDMS coated fibre while VOC and metals can be extracted either with CW or with 
PDMS. Hence, users have numbers of SPME fibres available for volatile and semi-volatile compounds, and 
they can choose the fibre as per their requirement. Further, different approaches have been used in the 
discovery of a new coating of the fibre for extraction of specific analytes for which molecularly imprinted 
polymer, sol-gel, ionic imprint, on-fibre derivatization, and immunosorbent techniques have been used 
(Dietz et al., 2006). 

There are certain variable parameters that may affect the extraction efficiency of the targeted 
analytes using SPME such as pH, ionic strength of the sample solution, speed of agitation, time of 
extraction to attain equilibrium, temperature, fibre coating material, and fibre dimensions (especially 
fibre thickness) (Spietelun et al., 2013). All these parameters need to be optimized for a set of ex-
periments in order to achieve the best extraction efficiency of the analyte of interest, which can be 
achieved either using the one time one variable method or some statistical application, such as design 
of experiments. By adjusting pH and ionic strength, affinity of the analyte toward the SPME fibre can 
be enhanced, resulting in high extraction of the targeted analytes. Similarly, speed of agitation pro-
motes transfer of analytes from the sample matrix to the extractant phase. In the case of gas samples, 
gentle agitation provides the smooth transfer of analytes, whereas in the case of liquid samples, 
medium to high agitation is required to achieve the best extraction efficiency (Lord and Pawliszyn, 
2000). Once equilibrium is attained between the sample phase and the extractant phase, further in-
creases in extraction time may decrease the extraction efficiency. Additionally, a less stable or un-
stable analyte should be immediately subjected for analysis after equilibrium. The choice of fibre and 
its dimensions are the most significant aspects while performing SPME, as the fibre is generally 
specific to a class of compounds. 

The present chapter is mainly focused on applications of SPME for the analysis of pesticides, drugs of 
abuse, cannabinoids, cocaine (COC), amphetamines, volatile organic compounds, and therapeutic drugs 
in various biological matrices. Particular focus is made on protocol parts of the cited studies in order to 
help the reader get insights on practical aspects of the SPME technique. 

2.2 Applications of SPME in Analytical Toxicology 

2.2.1 Analysis of Pesticides 

SPME has been extensively applied for analysis of pesticides from various matrices, such as fruits, 
vegetables, soil, and water (Abdulra’uf et al., 2012). However, applications of SPME for the de-
termination of pesticides from biological samples, such as blood and postmortem (PM) tissues, are 
limited (Pragst, 2007). SPME is suitable for extraction of pesticides from biological samples due to their 
relatively hydrophobic nature (Pragst, 2007). HS-SPME was used for monitoring 18 organochlorine 
(OC) pesticides from human serum samples of 1,904 adults. About 1 mL of serum sample was diluted 
with high-performance liquid chromatography (HPLC) grade water followed by the addition of 0.1 g 
NaCl (for salting out effect) and 0.02 g of K2CO3 (for pH adjustment to 11). SPME fibre with 85 µm of 
PA coating was exposed to the HS of the sample for 50 min at 90 °C under constant stirring of 
500 rpm. This was followed by desorption of analytes into a heated GC-MS injection port at 280 °C 
for 2 min. Hexachlorobenzene was the most frequently detected OC pesticide in all the tested samples 
(Kim et al., 2013). 
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An HS-SPME method in combination with GC-MS-MS was reported for trace-level determination of 
11 organophosphorous (OP) and OC pesticides in the whole human blood, such as lindane, hexa-
chlorobenzene (HCB), chlorpyrifos, endosulfan, etc. The procedure was simple and consisted of dilution 
of the blood sample with ultrapure water (1:1 v/v). The sample was then pre-heated at 90 °C for 30 min, 
and then HS-SPME was performed using PA fibre for 30 min. This was followed by drying the fibre and 
desorption of analytes into the GC injection port at 240 °C for 4 min. Limit of detection (LOD) was 
found to be in the range of 0.02–3 ng mL−1 (Hernandez et al., 2002). 

Tsoukali et al. developed and validated an analytical method based on HS-SPME followed by GC 
with nitrogen phosphorous detection (NPD) for determination of methyl parathion (MP) in PM samples, 
such as whole blood, liver, and kidney. Prior to SPME, tissue samples were homogenized, and 300 µL 
of homogenate was used for extraction. The sample was pre-incubated for 15 min, followed by HS- 
SPME with 85 µm PA fibre for 20 min. A small amount of NaCl was added in order to increase the ionic 
strength of the sample. The method successfully detected MP in the PM blood sample of a 21-year-old 
women who had committed suicide by injecting MP intravenously. The concentration of MP in the 
blood sample was found to be 24 µg mL−1 (Tsoukali et al., 2004). 

2.2.2 Analysis of Benzodiazepines 

Benzodiazepines are one of the most frequently prescribed tranquilizers, sedatives, and hypnotic 
drugs and are commonly encountered in clinical and forensic cases. Five common benzodiazepines, 
namely oxazepam, diazepam, nordiazepam, flunitrazepam, and alprazolam, were analyzed by 
SPME-GC-MS in human urine and plasma samples. Before performing DI-SPME, octanol was 
immobilized on a PA fibre for improved enrichment of benzodiazepines. Extraction was performed 
in a direct immersion mode for 15 min at room temperature under slightly acidic conditions. SPME 
parameters were optimized using a design of experiment strategy. The method was found to be 
sensitive with LODs in the range of 0.01–0.45 µg mol-1 and 0.01–0.48 µg mol-1, respectively, in 
urine and plasma samples (Reubsaet et al., 1998). Another method was described for determining 
midazolam in human plasma by SPME-GC-MS. The author first deproteinized plasma samples and 
performed SPME with 85 µm PA fibre at 50 °C for 10 min. LOD for midazolam was found to be 
1 ng mL−1 (Frison et al., 2001). 

A biocompatible SPME fibre was designed by coating alkyldiol-silica (ADS) on a stainless-steel wire. 
An epoxy binding agent for immobilization of ADS on stainless steel wire was used. This specially 
fabricated fibre was able to fractionate the protein and analyte component from the biological sample; 
hence, no blood protein precipitation was required, resulting in minimized sample preparation time. The 
ADS-SPME fibre was directly immersed into the blood sample for extraction of diazepam and its major 
metabolites N-desmethyldiazepam, oxazepam, and temazepam. After extraction, the fibre was rinsed 
with water and interfaced with LC-MS for desorption and separation of extracted analytes (Walles 
et al., 2004). 

2.2.3 Analysis of Amphetamines and Related Substances 

Amphetamines are powerful central nervous system stimulants and the second most commonly 
used illicit drug worldwide. Some popular examples are amphetamine (AMP), methamphetamine 
(MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, or 
ecstasy), and 3,4-methylenedioxyethamphetamine (MDEA) (Jain and Singh, 2016a). SPME has been 
applied for determining amphetamines and other drugs of abuse from oral fluid samples. For this 
purpose, DI-SPME has been applied for extraction of AMP, MA, and MDMA, which has shown 
greater sensitivity in comparison to HS-SPME. Extraction was performed at room temperature under 
constant stirring of the sample using PDMS fibre (Fucci et al., 2003). In another similar application, 
AMP and MA were derivatized using butyl chloroformate directly in oral fluid samples. These de-
rivatized analytes were then extracted using PDMS fibre by directly immersing the fibre into 
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the sample (Yonamine et al., 2003). Both analytical methods have shown similar sensitivity for 
amphetamines in the range of 1–10 ng mL−1. 

Analytical methods for determining amphetamines in urine samples are generally based on their 
derivatization to improve volatility and decrease polarity. Ugland et al. described a method for deri-
vatization of amphetamines and ecstasy directly in urine samples using propylchloroformate reagent, 
which produced their water stable carbamate derivatives. Under alkaline conditions, these derivatives 
were extracted using 100 µm PDMS-coated SPME fibre in DI mode for 16 min. LODs of ecstasy, MA, 
and MDEA were found to be 5 ng mL−1, whereas they were 15 ng mL−1 for AMP and MDA (Ugland 
et al., 1999). Later on, Huang et al. utilized heptafluorobutyric anhydride and heptafluorobutyric 
chloride as derivatizing reagents for derivatization of AMP and MA. Here, derivatizing reagents were 
kept in a glass insert that was subsequently kept in a glass vial where SPME fibre was also exposed. The 
sample was heated at 100 °C for 20 min, and the vapours of analytes were diffused into the glass insert 
through the holes. In this way, vaporization, adsorption, and absorption could be achieved in a single 
step. The method has shown superior sensitivity, with detection limits of 0.3 and 1 ng mL−1 for MA and 
AMP, respectively (Huang et al., 2002). 

A different approach of derivatization of AMP and MA was described by Okajima et al. They used 
pentafluorobenzylbromide (PFBBr) as a derivatizing reagent. PFBBr was added directly into blood 
samples, and the sample was heated at 90 °C for 30 min. This was followed by HS-SPME of derivatives 
using 100 µm PDMS fibre for another 30 min and subsequent GC-MS analysis. Low detection limits of 
0.5 ng g-1 could be achieved by this approach (Okajima et al., 2001). 

2.2.4 Analysis of Cannabinoids 

Analysis of cannabinoids in various complex samples by microextraction techniques has been 
extensively reviewed by Jain et al. (Jain and Singh, 2016b). As far as SPME is concerned, oral fluid 
remains one of the preferred matrices of choice for testing cannabinoids due to its easy availability, 
non-invasive collection, and relatively low protein content. Anzillotti et al. compared the LC-MS- 
MS and SPME-GC-MS methods for quantitative analysis of ∆9-tetrahydrocannabinol (THC) in oral 
fluid samples for assessing driving under the influence of drugs (DUID). The authors analyzed 
70 samples by both techniques and concluded that SPME-GC-MS offered superior sensitivity in 
comparison to the LC-MS-MS method. For THC, the lower LODs were 0.5 and 2 ng mL−1 by 
SPME-GC-MS and LC-MS-MS, respectively. Additionally, along with THC, cannabidiol (CBD) 
and cannabinol (CBN) were also detected by SPME-GC-MS (Anzillotti et al., 2014). Recently, a 
pilot study was conducted for analysis of natural and synthetic cannabinoids, such as THC, CBD, 
CBN (natural) JWH 250, JWH 019, JWH 122, etc., in oral fluid samples. The authors compared the 
HS and DI mode of SPME and observed that most of cannabinoids could be extracted satisfactorily 
with the DI mode. The method was found suitable for confirmation of THC at low concentration 
levels in oral fluid samples as the LOD offered was 1 ng mL−1 against the cut-off limit of 2 ng mL−1 

(Anzillotti et al., 2019). 
A simple and rapid analytical method was reported by Emidio et al. for monitoring cannabinoids 

(THC, CBD, and CBN) in human hair samples. Initially, hair samples were decontaminated, followed 
by alkaline digestion with NaOH at 90 °C. Cannabinoids were extracted by HS-SPME using PDMS 
fibre for 40 min at 90 °C. The method did not require derivatization of cannabinoids for GC-MS 
analysis. Use of ion trap tandem mass spectrometry offered a very low quantitation limit for THC 
(0.062 ng mg−1), which was below the cut-off value set by the Society of Hair Testing (Emídio et al., 
2010). The protocol is shown in Figure 2.1. 

2.2.5 Analysis of Cocaine and Its Metabolites 

COC, its major metabolite benzylecgonine (BE), and cocaethylene (CE) (which is a transester-
ification product of COC formed when it is consumed with ethanol) have been analyzed in biolo-
gical samples such as urine, hair, and plasma by DI-SPME in combination with GC-MS. Analytes 
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were extracted with PDMS fibre under constant stirring of an alkaline sample solution for 20–25 min. 
In the case of the hair sample, prior decontamination with dichloromethane followed by long digestion for 
18 hours at 50 °C was required in order to liberate the drugs from the matrix. Plasma samples were 
also subjected to deproteinization with acetonitrile, and supernatant was used for extraction of drugs. 
These methods were sensitive enough to detect COC, BE, and CE in the range of 5–19 ng mL−1 and 
0.1–0.5 ng mg−1 (de Toledo et al., 2003; Yonamine and Saviano, 2006; Álvarez et al., 2007). 

2.2.6 Analysis of Opium Alkaloids and Opiates 

A highly sensitive analytical method based on electrically accelerated hollow fibre SPME (EA-HF- 
SPME) coupled with HPLC was reported by Rihai-Zanjani et al. Ethylenediamine was coated on 
carbon nanotubes (CNTs). These functionalized CNTs were coated on porous propylene hollow 
fibre. Adsorption and desorption of morphine from urine samples were aided by a specially designed 
electric device that could produce an electric voltage in the range of 0–30 V. Adsorbed analytes 
were desorbed in a washing solution of HPLC by reversing the electric voltage. The method was 
able to detect morphine in urine samples up to a very low concentration of 0.15 ng mL−1, which is 
significantly lower than previously reported methods (Riahi-Zanjani et al., 2018). Morphine, co-
deine, and 6-monoacetylmorphine were extracted using automated HS-SPME from hair samples. 
Prior to SPME, hair samples were digested by adding methanol and incubated for 18 hours at 
50 °C. The methanolic extract was evaporated, and silylation of analytes was performed using 
bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA + TMCS). The 
derivatives were then extracted using HS-SPME with PDMS fibre at 125 °C for 25 min. The method 
was proved to be sensitive and offered LODs in the range of 0.002–0.005 ng mg−1 (Moller 
et al., 2010). 

DI-SPME methods have been reported for determining methadone and its metabolite 2-ethylene-1,5- 
dimethyl-3,3-diphenylpyrrolidine (EDDP) from various biofluids, such as urine, oral fluid, and plasma 
samples. All methods comprised DI-SPME of these opiate drugs for 30 min at alkaline pH. LODs were 
achieved in the range of 0.04–6 ng mL−1 for methadone (Myung et al., 1999; Bermejo et al., 2000; dos 
Santos Lucas et al., 2000). 

Tramadol and fentanyl were analyzed by HS-SPME in plasma samples in two different applications. 
PDMS/divinylbenzene (PDMS/DVB, 65 µm) fibre was used for HS-SPME of tramadol at 100 °C for 
30 min and analyzed by GC-MS. Tramadol could be detected up to a concentration level of 0.2 ng mL−1 

FIGURE 2.1 Procedure for HS-SPME of cannabinoids from hair samples (reproduced with permission from  Emídio 
et al., 2010).  
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(Sha et al., 2005). Homemade sol-gel based PEG- and Ucon-coated SPME fibres were compared with 
commercial PDMS fibres for extraction of fentanyl from plasma samples under alkaline conditions. 
Although PEG- and Ucon-coated fibres exhibited better extraction efficiency for fentanyl, their stability 
was insufficient due to the presence of etheric functional group, which is susceptible to acidic and 
alkaline conditions and got exhausted after 20 extractions. The LOD for fentanyl was found to be 
0.03 ng mL−1 (Bagheri et al., 2007). 

2.2.7 Analysis of Therapeutic Drugs 

SPME has been widely applied for the analysis of various therapeutic drugs in biological samples. 
SPME parameters, such as choice of fibre coatings, extraction mode (HS or DI), extraction time, 
extraction temperature, pH, and ionic strength, have to be carefully optimized for better extraction 
efficiencies of therapeutic drugs. Some biological samples, such as blood and plasma, require a de-
proteinization step prior to SPME. For instance, blood samples were deproteinized with perchloric 
acid prior to DI-SPME for analysis of barbiturates and phenothiazines (Iwai et al., 2004; Kumazawa 
et al., 2000). However, for local anaesthetic drugs (lidocaine, mepivacaine, prilocaine, etc.), instead of 
deproteinization, blood samples were directly heated at a high temperature of 120 °C for HS-SPME 
from blood samples (Watanabe et al., 1998). 

Adjustment of pH is also a crucial factor for better extraction of drugs from biological matrices. 
According to SPME theory, analytes should be present in their neutral form in matrices; therefore, pH 
should be adjusted according to their pK values. Considering this fact, tricyclic antidepressant drugs 
were extracted from plasma samples at alkaline pH, i.e., 10 by using PDMS/DVB fibres (Cantú et al., 
2006). The fact of suitability of SPME fibre according to polarity of analytes has been exploited for 
some polar drugs, such as pregabalin, which was converted into a less polar derivative by ethyl 
chloroformate derivatization directly in urine samples. The derivative thus formed was extracted by 
DI-SPME with mid-polar fibre (PDMS/DVB) for GC-MS analysis (Mudiam et al., 2012). Similarly, 
valproic acid (VPA) has been derivatized directly in plasma samples with isobutylchloroformate to 
produce VPA ethyl ester, which was relatively non-polar than VPA followed by its HS-SPME using 
non-polar fibre (i.e., PDMS) at 80 °C for 20 min (Deng et al., 2006). 

2.2.8 Analysis of Volatile and Other Toxicants 

Trichloroethylene metabolites, i.e., dichloroacetic acid, trichloroacetic acid, and trichloroethanol, has 
been analyzed in human plasma samples of exposed industrial workers by HS-SPME, coupled with 
GC-electron capture detector (GC-ECD). In matrix derivatization of analytes was performed directly 
on plasma samples with methyl chloroformate. Derivatized compounds were extracted by HS-SPME 
using PDMS fibre for 22 min. The method offered good sensitivity, with LODs in the range of 
0.036–0.068 µg mL−1 (Mudiam et al., 2013). Ethyl alcohol has been analyzed in PM specimens, such 
as blood, urine, and vitreous humour by HS-SPME using PA fibre for 1 min at 60 °C. Samples were 
diluted with water, followed by the addition of ammonium sulphate to increase recoveries due to the 
salting out effect (De Martinis and Martin, 2002). 

Cyanide, a short-acting powerful toxicant, has been determined in PM blood samples of fire victims. 
Cyanide has been converted into hydrogen cyanide by the addition of phosphoric acid, followed by 
HS-SPME for 10 min at 30 °C with carbowax/PDMS fibre. The method was found to be sensitive and 
offered detection limits of 0.006 µg mL−1. It consumed less than 20 min for analysis. Under optimized 
conditions, cyanide was detected in PM blood samples at a concentration of 2 µg mL−1 (Frison et al., 
2006). Halothane was determined in PM biological samples (blood, liver, kidney, brain, urine, and bile) 
in a case of double homicide. Biological samples, along with ammonium sulphate and sulphuric acid, 
were pre-heated for 15 min at 100 °C, followed by HS-SPME for another 15 min. The method offered 
linearity in the concentration range of 0.1–100 mg kg−1, with a detection limit of 0.004 mg kg−1 for 
blood samples. The highest amount of halothane was detected in brain samples (91.5 and 94.4 mg kg−1;  
Musshoff et al., 2000). A method was reported based on HS-SPME-GC-MS for analyzing strychnine, a 
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toxic alkaloid in blood samples with a detection limit of 6.83 ng mL−1. In this method, only 100 µL of 
blood was used for analysis. The blood sample was diluted with water and subjected for DI-SPME with 
carbowax/PDMS fibre for 20 min. The optimized method was applied to blood samples obtained from 
persons intoxicated with strychnine. Strychnine was detected in the range of 1.03–2.39 µg mL−1 

(Barroso et al., 2005). 

2.3 Conclusion 

In recent years, SPME has found wide applications for the analysis of various drugs and poisons in 
biological specimens and PM matrices. The obvious advantages offered by SPME over conventional 
extraction techniques are its simplicity, low cost, ease of operation, high extraction efficiencies, com-
plete elimination of toxic organic solvents, and availability of a wide range of fibres for almost all kinds 
of analytes. Additionally, configurations of automated SPME with analytical instruments are proving to 
be time and cost saving for forensic and clinical laboratories. Fortunately, now plenty of literature on 
applications of SPME are available that cover almost all analytes that are routinely tested in analytical 
toxicological laboratories. Therefore, analytical laboratories should consider this green, rapid, and 
sensitive sample preparation method for their routine analytical work, which can save them cost and 
time of analysis as well as protect their health and the environment from toxic organic solvents. 
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3.1 Introduction 

Analytical toxicology is mainly concerned with qualitative and quantitative investigations of drugs and 
illegal compounds and their metabolites. The aim makes the treatment steps necessary for the samples 
regarding their complex matrices and low target concentrations in most cases. Sample preparation is of 
vital importance in forensic analysis since these kinds of matrices are often diverse and complicated. 
There are also some limitations due to small sample size, and considering the fact that forensic samples 
usually undergo rigorous legal scrutiny, making the selection of an appropriate custody preparation 
method is momentous. On the other hand, applying standardized analysis methods is difficult in such 
cases as each forensic sample is unique and requires exclusive studies. Thus, modern analysis ap-
proaches may be useful in analytical toxicology since the conditions are still under consideration. 

Among different known sample preparation methods, liquid-based and solid-based microextraction 
techniques are operational for analytical toxicology considering the limited availability of such samples, 
instead of traditional liquid-liquid extraction or solid-phase extraction. Solid-based pre-treatment methods 
are widely used for extraction of different types of analytes in various matrices as simple and relatively 
selective approaches. In this class of extraction techniques, a solid sorbent is used in order to isolate the 
analyte of interest from a given sample matrix. Depending on the sorbent types and amounts, the extraction 
could be classified into three main groups, including bulk solid-phase extraction (SPE), micro solid-phase 
extraction (µSPE), and solid-phase microextraction (SPME). Miniaturized designs of the extraction methods 
involve the advantages of small sample solution requirements, saving time and money, and being efficient, in 
some cases. µSPE could be an alternative to the disadvantages of SPE while offering unique benefits such as 
exhaustive or near-exhaustive recoveries in comparison with equilibrium-based SPME (Seidi et al. 2019). 

Different µSPE modes are available based on various designs for sorbent introductions into the 
sample solution, including dispersive µSPE (D-µSPE), membrane-protected µSPE (MP- µSPE), pipette 
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tip µSPE (PT-µSPE), and spin-column µSPE (SC-µSPE). These methods are schematically presented 
in Figure 3.1. 

This chapter discusses the present best practices and developments for analysis of forensic samples 
with a focus on those using the diverse modes of the µSPE technique. Although it is very challenging 
to cover all published works, all efforts have been made to include as many papers as possible. 
More details are available in the references. 

3.2 Dispersive µSPE 

Since sorbent-analyte interactions are limited in the SPE approach via sample flow rate, dispersive 
SPE has been introduced as an alternative. Thus, the close contact between the dispersed sorbent 
particles and the sample solution tremendously enhances the extraction kinetic and the overall process 
efficiency as a result (Anastassiades et al. 2003). The process includes dispersion of optimized 
amounts of the sorbent into the sample solution. Analytes were then isolated in a clean eluent via 
sorbent collection throughout the sample and its washing afterward. Extraction selectivity could also 
be raised by sorbent modification, eluent composition, and controlling the extraction conditions 
(Chisvert et al. 2019). 

The technique is also called dispersive micro solid-phase extraction (D-µSPE) when limited amounts 
of the sorbent (a few milligrams) are used, or it is referred to as dispersive solid-phase microextraction 
in some cases. Also, it could be known as magnetic solid-phase extraction if the sorbents have some 
magnetic properties (Chisvert et al. 2019). 

Dispersion of the sorbent could be performed via an auxiliary energy, such as ultrasound (Aghaie and 
Hadjmohammadi 2016; Dil et al. 2016; Krawczyk and Stanisz 2016; Krawczyk-Coda and Stanisz 2017) 
and vortex (Ojeda and Rojas 2018; Galán-Cano et al. 2013; Cai et al. 2017). These external energies 
could also enhance the analytes’ mass transfer and the extraction efficiency. Ultrasound radiation is 
a stronger auxiliary energy than the mechanical vortex agitation, and it may positively affect the ex-
tractability by increasing the analytes’ diffusion, reducing the sorbent particle size and raising its contact 
surface. Ultrasonication could also influence the extraction kinetic and extremely decrease the extraction 
time (Chisvert et al. 2019). However, uncontrolled radiation may diminish the extraction recovery duo, 
increasing the temperature. 

Vortex is simpler and lighter auxiliary energy that is widely used to enhance the extractability re-
garding its cost and availability. This technique offers a mechanical agitation for mass transfer re-
inforcement without the temperature increase problems faced by the ultrasound-assisted D-µSPE. Also, 
the back-and-forth movement of a glass syringe plunger was used for facilitation of sorbent dispersion 
into the sample solution, called air-assisted D-µSPE (Rajabi et al. 2016). 

FIGURE 3.1 Different types of micro solid-phase extraction methods.  
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Chemical solvents or chemical reactions may be used for sorbent dispersion or in situ formation of a 
dispersed sorbent. Jamali et al. chose benzophenone as the solid sorbent since it can be solved in some 
water-miscible organic solvents, such as acetonitrile and methanol. As benzophenone solvent entered 
the sample solution, tiny solid sorbent particles were formed throughout the aqueous sample (Jamali 
et al. 2013). In another work, in situ formation of carbon dioxide bubbles was used for sorbent dis-
persion in the sample solution, called effervescence-assisted D-µSPE (Lasarte-Aragonés et al. 2011). 

D-µSPE has a relatively fast kinetic, in comparison with other µSPE modes, regarding its large 
sorbent-sample contact surface. Although the dispersion strategy is the method bottle neck, the 
sorbent characteristics indicate the method selectivity, which influences its application for analysis of 
complicated forensic matrices. Various sorbents introduced for employment in this method include 
common micromaterials, nanostructured materials and nanoparticles, metal-organic frameworks, 
layered double hydroxides, molecular-imprinted polymers, hybrid materials, etc. A web search may 
result in many papers using this technique for analysis of different analytes in forensic samples since 
it is a simple and fast extraction method with controllable selectivity and pre-concentration. Table 3.1 
presents a summary of the recent works on D-µSPE for analysis of biological samples. In all works, 
sorbents are finally recovered by means of filtration, centrifugation, and applying a magnetic field in 
cases where magnetic sorbents are used. A typical D-µSPE procedure is shown in Figure 3.2. 

Another feature of D-µSPE that makes this method more interesting is its hyphenation with other 
sample preparation methods. Different goals are pursued from these combinations. For example, low 
sample clean-up is one of the main problems in solid-liquid extraction methods, such as microwave- 
assisted extraction (MAE), accelerated solvent extraction (ASE), and ultrasound-assisted extraction 
(USAE). Moreover, due to the large volume of the extracts, a solvent evaporation step is often used to 
enhance the pre-concentration factor and limit of detection (LOD) in these methods, which is time- 
consuming. To overcome these issues, an extra sample preparation method is often applied. Liquid- 
liquid extraction (LLE) and SPE are the common approaches used to this aim. However, these methods 
have some drawbacks, too, such as being time-consuming, having sorbent blockage, and using large 
amounts of hazardous organic solvents. Applying D-µSPE eliminates or reduces these drawbacks and 
thus has found considerable attention among researchers as a further sample clean-up procedure. 

Besides, D-µSPE has been combined with liquid-phase microextraction methods, such as dispersive 
liquid-liquid microextraction (DLLME) and ultrasound-assisted emulsification microextraction (USAEME). 
In this case, D-µSPE can be performed as both pre- and post-hyphenated extraction methods. In the pre- 
hyphenated approach, the eluent of the D-µSPE step (e.g., methanol, acetonitrile) is mixed with a microliter 
volume of a water-immiscible organic solvent, and the mixture is rapidly injected into a low volume of an 
aqueous solution (pH adjustment is required for the ionized analytes). Then, the resulted cloudy solution is 
collected by different approaches, such as centrifugation, withdrawn by a microsyringe, and injected to the 
analytical instrument for further analysis. This combination is useful, especially for the biological samples, 
due to enhancement of the sample clean-up and pre-concentration factor. 

In the post-hyphenated approaches, D-µSPE is applied to overcome the centrifugation challenge in 
DLLME and USAEME. By addition of the sorbent into the cloudy solution, the fine droplets of dis-
persed water-immiscible organic solvent are adsorbed on the surface of the dispersed sorbent, mainly a 
magnetic sorbent. Then, the sorbent is separated from the sample solution, eluted with a microliter 
volume of a suitable organic solvent, and injected to the analytical equipment. This strategy has created 
facilities for automation of dispersive liquid-phase microextraction methods. 

3.3 Porous Membrane-Protected µSPE 

As can be deduced from the method name, it is based on applying a piece of porous flat sheet membrane 
in which a small bag-shaped pocket is formed and filled with a few milligrams of a special sorbent. This 
method was first reported by Basheer et al., in 2006 (Basheer et al. 2006). The most useable pocket 
configuration is made by heat-sealing the three other edges of a folded sheet membrane (Figure 3.3a). A 
similar configuration (Figure 3.3b) can also be created by heat-sealing two edges so that the square 
membrane bends in the direction of one of its diameters and the two matching edges are closed by heat, 
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M
ag

ne
tic

 g
ra

ph
en

e 
ox
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e-

So
di

um
 

do
de

cy
l 
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lf
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e 

H
PL

C
-D

A
D

 
M

et
op

ro
lo

l, 
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en
ol

ol
, 
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no

lo
l 

Pl
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m
a 

an
d 

ur
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e 
10

 n
g 

m
L

−
1
 (m

et
op

ro
lo

l)
  

0.
8 

ng
 m

L
−

1
 

(a
te

no
lo

l)
 2

 n
g 

m
L

−
1
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ro

pr
an

ol
ol

) 

2.
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%
  

A
m

er
i 

A
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tia
r 

A
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et
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l. 
(2

02
1)

 

A
ce

tic
 a

ci
d-
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nc

tio
na

liz
ed
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e 2

O
3
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no
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rt

ic
le

s 
m

od
ifi

ed
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y 
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-a

m
in

o-
pr

op
yl
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tr

i-
et

ho
xy

 
si

la
ne

 

H
PL

C
/F

L
 

L
et

ro
zo

le
 

Pl
as

m
a 

23
 n

g 
m

L
−

1
 

<
15

%
  

Sh
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an
 e

t 
al

. 
(2

02
1)

 

C
18

 +
 p

ri
m

ar
y 

se
co

nd
ar

y 
am

in
e 

R
PL

C
-P

D
A

 
N

in
e 

bi
og

en
ic

 a
m

in
es

  
(B

A
s)

 
Fi

sh
-s

hr
im

p-
sh

el
lfi

sh
 

0.
08

–0
.2

5 
m

g 
kg

−
1
 

0.
44

%
–6

.8
3%

  
W

an
g 

et
 a

l. 
(2

02
1)

 

M
ix

ed
-m

od
e 

ca
tio

n 
ex

ch
an

ge
 

so
rb

en
t 

H
PL

C
-M

S 
V

et
er

in
ar

y 
dr

ug
s 

E
gg

 
0.

03
–0

.3
3 

μg
 k

g−
1
 

1.
2%

–9
.1

%
  

W
an

g 
et

 a
l. 

(2
02

1)
 

M
ag

ne
tic

 m
ul

tiw
al

le
d 

ca
rb

on
 

na
no

tu
be

s/
 F

e 3
O

4
 

@
po

ly
(2

-a
m

in
op

yr
im

id
in

e)
 

H
PL

C
-P

D
A

 
Ph

en
ol

ph
th

al
ei

n 
U

ri
ne

 
0.

01
 µ

g 
L

−
1
 

2.
7%

–3
.4

%
  

Ja
lil

ia
n 

et
 a

l. 
(2

02
1)

 

Po
ly

(i
on

ic
 l

iq
ui

d)
 

U
PL

C
-D

A
D

 
O

lig
on

uc
le

ot
id

es
 

Se
ru

m
 

0.
30

–0
.4

0 
μM

 
2.

31
%

–3
.0

9%
  

N
uc

ko
w
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i 

et
 a

l. 
(2

02
1)
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w
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t 
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D
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n 
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n 
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e 
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0.
07

, 
0.
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 µ

g 
L

−
1
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.4
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M
oh
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m

ad
i 

et
 a

l. 
 

(2
02

1)
 

G
ra

ph
en

e 
ox

id
e 

(G
O

) 
L

C
–E

SI
–M

S/
M

S 
14

5 
in

se
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ic
id

es
 

G
ut
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n 
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id
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<
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%

  
H

ry
nk

o 
et
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l. 
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02

1)
 

C
18

 s
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be
nt

 
G

C
-M

S 
m

ul
tiP

es
tic

id
es

 
Fi

sh
 

0.
00

1–
0.

02
9 

µg
 m

L
−

1
 

≤2
0%

  
M

an
da

l 
et

 a
l. 

(2
02

1)
 

Z
SM

-5
 z

eo
lit

e/
Fe

2
O

3
 

Sq
ua

re
-w

av
e 

an
od

ic
 

st
ri

pp
in

g 
vo

lta
m

m
et

ry
 

C
d 

U
ri

ne
 

0.
5–

1.
0 

μg
 L

−
1
 

<
14

  
B

ai
le

 e
t 

al
. 

(2
02

0)
 

G
ra

ph
en

e 
ox

id
e 

m
od

ifi
ed

 w
ith

 
so

di
um

 h
yd

ro
xi

de
 

IC
P-

A
E

S 
Pb

, 
C

d,
 B

a,
 Z

n,
 C

u,
 

an
d 

N
i 

Po
ul

tr
y-

po
rk

-b
ee

f 
0.

01
 a

nd
 0

.2
1 

µg
 g

−
1
 

1.
9%

  
M

an
ou

si
 e

t 
al

. 
(2

02
0)

  

H
PL

C
-U

V
 

1-
na

ph
th

ol
 a

nd
 2

-n
ap

ht
ho

l 
U

ri
ne

 
0.

3 
µg

 L
−

1
 an

d 
 

0.
5 

µg
 L

−
1
 

3.
1%

–9
.0

%
  

O
m

id
i 

et
 a

l. 
(2

02
0)

 

N
ic

ke
l 

m
et

al
 o

rg
an

ic
 m

od
ifi

ed
- 

A
l 2

O
3
 n

an
op

ar
tic

le
s 

H
PL

C
-U

V
 

A
to

rv
as

ta
tin

 
Pl

as
m

a 
0.

05
 n

g 
m

L
−

1
 

<
5%

  
B

ah
ra

ni
 e

t 
al

. 
(2

02
0)

 

Fe
3O

4
@

Si
O

2
 

G
C

-M
S 

V
al

pr
oi

c 
ac

id
, 

ph
en

ob
ar

bi
ta

l, 
le

ve
tir

ac
et

am
, 

pr
eg

ab
al

in
 

U
ri

ne
 

<
0.

11
 n

g 
m

L
−

1
 

4.
7%

  
M

oh
am

m
ad

i 
et

 a
l. 

(2
02

0)
 

PS
A

, 
M

gS
O

4,
 C

18
E

C
, 

Z
-S

ep
 

G
C

-M
S 

Sy
nt

he
tic

 m
us

ks
 a

nd
 

or
ga

no
ph

os
ph

or
us

 
pe

st
ic

id
es

 

H
um

an
 a

di
po

se
 ti

ss
ue

 
4–

9 
ng

 g
−

1
 1–

7 
ng

 g
−

1
 

<
14

%
  

So
us

a 
et

 a
l. 

(2
02

0)
 

V
in

yl
-f

un
ct

io
na

liz
ed

 C
O

U
-2

 
m

es
op

or
ou

s 
ca

rb
on

 
H

PL
C

-U
V

 
A

zo
le

 a
nt

if
un

ga
l 

dr
ug

s 
U

ri
ne

 a
nd

 p
la

sm
a 

0.
4–

1.
6 

µg
 L

−
1
 

7.
5%

–1
3.

4%
  

Y
ah

ay
a 

et
 a

l. 
(2

02
0)

 

M
ol

ec
ul

ar
ly

 i
m

pr
in

te
d 

po
ly

m
er

 
na

no
pa

rt
ic

le
s 

H
PL

C
-U

V
 

A
lb

en
da

zo
le

 s
ul

fo
xi

de
 

U
ri

ne
 a

nd
 p

la
sm

a 
0.

07
4 

ng
 m

L
−

1
 

2.
2%

–4
.4

%
  

A
lip

an
ah

po
ur

 D
il 

et
 a

l. 
(2

02
0)

 

M
es

op
or

ou
s 

si
lic

a 
so

rb
en

t 
H

PL
C

-U
V

 
L

am
ot

ri
gi

ne
 a

nd
 

ca
rb

am
az

ep
in

e 
U

ri
ne

 a
nd

 p
la

sm
a 

0.
02

 n
g 

m
L

−
1
 

4.
4%

–7
.9

%
  

B
eh

ba
ha

ni
 e

t 
al

. 
(2

02
0)

 

G
ra

ph
en

e 
ox

id
e 

H
PL

C
-F

D
 

O
ch

ra
to

xi
n 

C
hi

ck
en

 l
iv

er
 

0.
02

 n
g 

m
L

−
1
 

<
3.

0%
  

C
ui

 e
t 

al
. 

(2
02

0)
 

M
ol

ec
ul

ar
ly

 i
m

pr
in

te
d 

po
ly

m
er

 
L

C
-M

S 
A

fla
to

xi
ns

 
Fi

sh
 

0.
29

–0
.6

1 
μg

 k
g−

1
 

<
12

%
  

Ja
ya

si
ng

he
 e

t 
al

. 
(2

02
0)

 

T
et

ra
cy

cl
in

e-
gr

af
te

d 
po

ly
ac

ry
la

m
id

e 
po

ly
m

er
 

H
PL

C
-D

A
D

 
V

ita
m

in
 A

 a
nd

 E
 

M
ilk

 a
nd

 e
gg

 y
ol

k 
5.

71
 n

g 
m

L
−

1
 (v

ita
m

in
 

A
) 

14
.2

8 
ng

 m
L

−
1
 

(V
ita

m
in

e 
E

) 

3.
25

%
(v

ita
m

in
 A

) 
2.

85
%

 
(V

ita
m

in
e 

E
) 

 

K
ös

eo
ğl

u 
et

 a
l. 

(2
02

0)
 

M
ag

ne
tic

 r
es

tr
ic

te
d-

ac
ce

ss
  

ca
rb

on
 n

an
ot

ub
es

 
G

C
-M

S 
O

rg
an

op
ho

sp
ha

te
s 

(c
hl

or
py

ri
ph

os
, 

m
al

at
hi

on
, 

di
su

lf
ot

on
, 

pi
ri

m
ip

ho
s)

 

M
ilk

 
0.

36
–0

.9
5 

µg
 L

−
1
 

10
.4

7%
–1

9.
85

%
  

C
am

po
s 

do
 L

ag
o 

et
 a

l. 
(2

02
0)

 

(C
on
tin
ue
d

) 
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TA
BL

E 
3.

1
(C

on
tin

ue
d
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A
pp

lic
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ili
ty

 o
f 

D
-µ

SP
E

 m
et
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d 

fo
r 

qu
an

tit
at

iv
e 

an
al

ys
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 o
f 

di
ff

er
en

t 
an

al
yt

es
 i

n 
bi

ol
og

ic
al

 s
am

pl
es

   
   

   

So
rb

en
t 

In
st

ru
m

en
t 

A
na

ly
te

(s
) 

M
at

ri
x 

L
O

D
 

R
SD

%
 

R
ef

.  

M
ag

ne
tic

 m
ol

ec
ul

ar
ly

 i
m

pr
in

te
d 

po
ly

m
er

 
H

PL
C

-D
A

D
 

V
al

sa
rt

an
 a

nd
 a

to
rv

as
ta

tin
 

U
ri

ne
 

0.
1 

µg
 L

−
1
 (V

al
sa

rt
an

) 
0.

2 
µg

 L
−

1
 

(A
to

rv
as

ta
tin

) 

<
4%

  
A

bb
as

i 
et

 a
l. 

(2
02

0)
 

M
ag

ne
tic

 a
tta

pu
lg

ite
/p

ol
yp

yr
ro

le
/ 

Fe
3O

4
 

H
PL

C
-D

A
D

 
Fi

ve
 p

yr
et

hr
oi

ds
 

H
on

ey
 

0.
21

–0
.3

4 
µg

 L
−

1
 

81
.4

2%
  

Y
an

g 
et

 a
l. 

(2
02

0)
 

D
um

m
y 

m
ag

ne
tic

 m
ol

ec
ul

ar
ly

 
im

pr
in

te
d 

po
ly

m
er

 
U

H
PL

C
-M

S/
M

S 
G

lo
bo

tr
ia

os
yl
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ng
os

in
e 

Pl
as

m
a 

0.
01

nM
 

<
5.

2%
  

H
u 

et
 a

l. 
(2

02
0)

 

Fe
3O

4
-S

iO
2
-N

H
2
@

U
iO

-6
6 

H
PL

C
 

M
uc

on
ic

ac
id

 
U

ri
ne

 
0.
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1 

µg
 m

L
−

1
 

3.
7%

–4
.5

%
  

R
ah

im
po

or
 e

t 
al

. 
(2

02
0)

 

Fe
3O

4
@

m
ul

tiw
al

le
d 

ca
rb

on
 

na
no

tu
be

s 
U

H
PL

C
-H

R
M

S 
 

U
ri

ne
 

<
0.

03
μg

 L
−

1
 

<
12

%
  

A
rr

oy
o-

M
an

za
na

re
s 

et
 a

l. 
(2

02
0)

 

N
an

o 
gr

ap
he

ne
 o

xi
de

 p
ol
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yr

ol
le
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m
po

si
te

 
H

PL
C

-U
V

 
M

et
ha

m
ph

et
am

in
e 

U
ri

ne
 

9 
ng

 m
L

−
1
 

<
5.
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%

  
Ja

bb
ar

i 
et

 a
l. 

(2
02

0)
 

Z
eo
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e 

im
id

az
ol

e 
fr

am
ew

or
k@

 
hy

dr
ox
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pa

tit
e 
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m

po
si

te
 

H
PL

C
-V

W
D

 
B

en
zo

di
az

ep
in

es
 

U
ri

ne
 

0.
7–

1.
4 

ng
 m

L
−

1
 

3.
0%

–1
0.

3%
  

L
i 

et
 a

l. 
(2

02
0)

 

M
ol

ec
ul

ar
ly

 i
m

pr
in

te
d 

po
ly

m
er

 –
 

m
et

al
 o

rg
an

ic
 f

ra
m

ew
or

k 
U

PL
C

-P
D

A
 

T
et

ra
cy

cl
in

es
 

C
hi

ck
en

 m
ea

t 
<

0.
6 

ng
 g

−
1
 

<
4.

7%
  

M
a 

et
 a

l. 
(2

02
0)

 

G
ra

ph
en

e 
ox

id
e 

IM
S 

E
th

am
bu

to
l 

Pl
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m
a,

 s
al

iv
a,

 
br

ea
st

m
ilk

, 
an

d 
ar
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ci

al
 t

ea
rs

 

0.
4 

μg
 L

−
1
 

1.
6%

  
Sh

afi
ee

 e
t 

al
. 

(2
02

0)
 

M
ol

yb
de

nu
m

 d
is

ul
fid

e 
C

E
 

Ib
up

ro
fe

n 
U

ri
ne

 
0.

02
5 

μg
 m

L
−

1
 

<
2.

3%
  

N
ag
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i 

et
 a

l. 
(2

02
0)

 

Fe
3O

4
@

C
u-

Fe
 l

ay
er

ed
 d

ou
bl

e 
hy

dr
ox

id
es

 
G

C
-F

ID
 

T
ra

m
ad

ol
 

B
io

lo
gi

ca
l 

sa
m

pl
es

 
≤2

.4
 μ

g 
L

−
1
 

<
8.

1%
  

E
zo

dd
in

 e
t 

al
. 

(2
01

9)
 

Fe
3O

4
@

T
iO

2 
H

PL
C

–U
V

 
T

ol
ue

ne
 a

nd
 x

yl
en

e 
bi

om
ar

ke
rs

 
U

ri
ne

 
≤1

.0
 μ

g 
L

−
1
 

<
7.

0%
  

O
m

id
i 

et
 a

l. 
(2

01
9)

 

M
ag

ne
tic

 g
ra

ph
en

e 
ox

id
e/

 
po

ly
py

rr
ol

e 
U

V
 –

V
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M

et
ho

tr
ex

at
e 

H
um

an
 u

ri
ne

 s
am

pl
es

 
10

 n
g 

m
L

−
1
 

≤1
0.

2 
 

H
am

id
i 

et
 a

l. 
(2

01
9)

 

Su
lf

ur
-d

op
ed

 t
in

 o
xi

de
 

na
no

pa
rt

ic
le

s 
lo

ad
ed

 o
n 

ac
tiv

at
ed

 c
ar

bo
n 

H
PL

C
-U

V
 

G
lib

en
cl

am
id

e(
G

B
) 

U
ri

ne
 

≤0
.1

6 
m

g 
L

-1
 

1.
15

%
–6

.8
4%

  
E

ila
m

i 
et

 a
l. 

(2
01

9)
 

B
en

zo
ph

en
on

e 
H

PL
C

-U
V

 
D

ic
lo

fe
na

c 
H

um
an

 s
er

um
 

0.
47

 µ
g 

L
−

1
 

2.
1%

  
N

ak
ha

ei
 e

t 
al

. 
(2

01
9)

 

M
ag

ne
tic

 g
ra

ph
en

e 
ox

id
e 

E
A

A
S 

C
ob

al
t 

io
n 

Sa
liv

a 
an

d 
ur

in
e 

0.
02

3 
µg

 L
−

1
 

3.
8 

 
A

lK
in

an
i 

et
 a

l. 
(2

01
9)
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M
gS

O
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+
 m

od
ifi

ed
 b

io
ch

ar
 o

f 
C

oc
os

 n
uc

if
er

a 
hu

sk
 

G
C
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th
al

at
e 

es
te

rs
 

B
re

as
tm

ilk
, 

ur
in

e 
0.
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2–

0.
02

0 
µg

 L
−

1
 

<
20

%
  

A
de

nu
ga

 e
t 

al
. 

(2
02

0)
 

M
ul

tiw
al

le
d 

ca
rb

on
 n

an
ot

ub
es

 /
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3O

4
@
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(2
- 
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op
yr

im
id

in
e)

 

H
PL

C
-D

A
D

 
A

ci
di

c,
 b
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ic

, 
an

d 
am

ph
ot

er
ic

 4
 d

ru
gs

 
U

ri
ne

 a
nd

 p
la

sm
a 

≤3
.5
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g 

L
−

1
 

1.
4%

–1
0.

5%
  

Ja
lil

ia
n 

et
 a

l. 
(2

01
8)

 

Po
ly

do
pa

m
in

e-
co

at
ed

 F
e 3

O
4
 

na
no

pa
rt

ic
le

s 
w
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 m

ul
ti-

w
al

le
d 

ca
rb

on
 n

an
ot

ub
es

 

H
PL

C
 

A
nt

ie
pi

le
pt

ic
 d

ru
gs

 
B

io
lo

gi
ca

l 
m

at
ri

ce
s 

sa
m

pl
es

 
≤3

.1
 μ

g 
L

−
1
 

<
8.

2%
  

Z
ha

ng
 e

t 
al

. 
(2

01
8a

) 

PC
X

 
C

E
 

G
ly

co
py

rr
ol

at
e 

st
er

eo
is

om
er

s 
R

at
 p

la
sm

a 
2.

0 
μg

 L
−

1
 

<
13

%
  

L
iu

 e
t 

al
. 

(2
01

8)
 

M
ag

ne
tic

-n
yl

on
 6

 c
om

po
si

te
 

H
PL

C
-U

V
 

B
is

ph
en

ol
 A

 
M

ilk
 

3.
05

 n
g 

L
−

1
 

9.
1%

  
R

ey
es

-G
ar

cé
s 

et
 a

l. 
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leading to a triangular pocket device (Rozaini et al. 2017). However, recently, a new and more feasible 
configuration (Figure 3.3c) has been introduced by Sánchez-González et al., similar to what is used to 
prepare a filter paper (Sánchez-González et al. 2015). As a result, just one end of the proposed con-
figuration needs to heat-seal. It should be noticed that the type of the membrane used in MP-µSPE has a 
great deal of importance, and it should have special properties such as good chemical resistance in the 
sample solution and a different organic solvent, suitable flexibility, and proper heat-seal ability. 
Polypropylene is the most utilized membrane for the MP-µSPE purpose. Different membrane-protected 
micro solid-phase extraction (MP-µSPE) configurations and the preparation approaches are schemati-
cally shown in Figure 3.3 (Sánchez-González et al. 2015; Basheer et al. 2007). 

To carry out a MP-µSPE procedure, the prepared pocket should be cleaned and conditioned before use. To 
this aim, the pocket is dipped into a suitable organic solvent and sonicated for a specified time and then kept in 
the same organic solvent for further MP-µSPE experiments. During use, the fiber is first air-dried, located into 
the sample solution, and agitated for a specified period of time. Finally, the pocket is withdrawn from the 
sample solution, washed with ultrapure water, dried using a Kleenex, and put into a small vial for desorption of 
the extracted analytes using a suitable eluent. To improve the desorption efficiency, sonication is often applied. 
The schematic presentation of a typical MP-µSPE procedure is shown in Figure 3.4 (Sajid et al. 2016). 

One of the probable limitations in the conventional configuration of MP-µSPE is destruction of the 
heat-sealed edges of the prepared pocket due to contact with organic solvents, such as dichloromethane 
(Sánchez-González et al. 2015). Due to the possibility of preparing the filter-paper-like configuration 
with long length (Figure 3.3c), heat-sealing can be done in its upper part that is not in contact with the 
solvent (Sánchez-González et al. 2015). 

Compared to the conventional SPE, the main supremacies of MP-µSPE are (Sajid 2017): easy 
handling; cost-effectiveness; low usage of sorbent amount and hazardous organic solvents; acceptable 
robustness; high sample clean-up due to applying a porous membrane eliminating the required sample 
treatment step of the complex matrices and making it attractive for the biological fluids; decreasing the 
sorbent surface contamination in complex matrices and thus improving the adsorption efficiency and 
sorbent reusability; eliminating the sorbent blockage or back-pressure in cartridge-based SPE; elim-
inating the sorbent collection in dispersive SPE; providing higher pre-concentration factors due to 
desorption possibility with lower eluent volumes, and shortening the total extraction time. 

Considering the advantages of MP-µSPE, several developments have been reported in this research 
field of interest that can mainly be classified as three categories, including setup modification, appli-
cation of new sorbent types, and hyphenation with the other extraction or microextraction methods. 

The main factor in performing a successful extraction in all SPE methods is choosing the suitable 
adsorbent, so this factor can be called the heart of the method. The sorbent should have some 
properties, such as a large surface area and high adsorption capacity, adsorption selectivity, good 
chemical stability, good reusability, and fast adsorption kinetic. Besides these features, the sorbent 
should also have low tendency to stick to the membrane surface because it interferes with the effective 

FIGURE 3.2 Schematic presentation of a typical D-µSPE procedure ( Moyakao et al. 2018).  
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heat-sealing of the fabricated pocket membrane and opens it during extraction or desorption with a 
solvent (Lim et al. 2013). 

So far, different sorbent materials have been applied and reported in MP-µSPE. These sorbents in-
clude commercial materials, such as C2, C8, C18, activated carbon, carbograph, Haye-Sep A, 
Haye-Sep B, and natural sorbents (e.g. seed powder of Moringa oleifera); polymeric sorbents, such as 
molecularly imprinted polymers (MIP); and synthesized nanomaterials, such as single-wall carbon 
nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), graphene and graphene oxide, carbon 

FIGURE 3.3 Rectangular pocket shaped (a), triangular pocket shaped (b), and filter paper shaped configurations (c) of 
MP-µSPE. Reproduced with permission from  Basheer et al. (2007) and  Sajid et al. (2016).  
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fibers, mesoporous silica-based materials (e.g., SBA-15), layered double hydroxides (LDHs), zeolites, 
and metal organic frameworks. These nanomaterials have been used as bared, surface modified, and 
composite sorbents. Each of these sorbents can provide special type(s) of interaction(s) with the target 
analytes, such as hydrophobic interaction, п-п interaction, electrostatic interaction, hydrogen bonding, 
etc. As a result, when there is a wide range of compounds with different polarities in a sample, a 
combination of two or more adsorbents with different interaction mechanisms can be used to provide an 
effective extraction. For example, a combination of Haye-SepA and C18 has been reported by Basheer 
et al. for more effective extraction of persistent organic pollutants in human ovarian cancer tissues 
(Basheer et al. 2008). The recent MP-µSPE works based on different sorbent materials for pre- 
concentration of different analytes in biological samples are summarized in Table 3.2. 

Another aspect of MP-µSPE is devoted to setup development or its hyphenation with the other sample 
preparation methods to eliminate or compensate its shortcomings. These aspects are classified based on 
literature (Sajid 2017) and depicted in Figure 3.5. As discussed above, MP-µSPE can be performed 
using both pocket-shaped (rectangular and triangular) and filter-paper configurations (Basheer et al. 
2006; Rozaini et al. 2017; Sánchez-González et al. 2015). As can be seen in Figure 3.5, setup devel-
opments are focused on agitation approaches, including vortex-assisted MP-µSPE (VA-MP-µSPE) (Guo 
and Lee 2013), stir bar supported MP-µSPE (Sajid et al. 2017), handheld battery operated stirring MP- 
µSPE (Abidin et al. 2014), and magnetic sorbents-based MP-µSPE (Naing et al. 2016). 

The results showed that vortex agitation is more efficient than common magnetic stirring, leading to 
increasing the mass transfer rate and decreasing the extraction time (Guo and Lee 2013). In stir bar 
supported MP-µSPE, a stir bar beside the sorbent is located in the pocket membrane (Sajid et al. 2017;  
Sajid and Basheer 2016). This setup provides better immersion of the pocket membrane, more efficient 
agitation via motion and rotation, and consequently improved extraction recovery to save the analysis 
time (Sajid 2017). The handheld battery operated stirring MP-µSPE makes this method suitable for 
onsite sampling (Abidin et al. 2014). Applying a magnetic sorbent for performing MP-µSPE not only 
adsorbs the analyte but also promotes the agitation of the pocket membrane, and eliminates the need to 
use a stir bar, which simplifies the method (Sajid and Basheer 2016). 

One of the interesting aspects of the MP-µSPE is its hyphenation with other exhaustive (e.g., MAE, ASE) 
(Kanimozhi et al. 2011; Sajid et al. 2015; Jiao et al. 2015) or equilibrium-based sample preparation methods 
(e.g., DLLME, USAEME, SBSE) (Cai et al. 2019; Guo and Lee 2013; Tsai et al. 2009; Ge and Lee 2012;  
Mao et al. 2016). The main advantages of hyphenated methods are reducing the use of hazardous organic 
solvents; decreasing the required time for solvent evaporation; decreasing the extraction time; and im-
proving the pre-concentration factors, extraction efficiency, sample clean-up, and limit of detection. 

In MAE-MP-µSPE, besides the extraction solvent and solid sample, the pocket device is also located 
in the extraction vessel; thus, the µSPE procedure is performed simultaneously (Kanimozhi et al. 2011;  

FIGURE 3.4 Schematic presentation of a typical MP-µSPE procedure. Reproduced with permission from  Sajid (2017).  
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Sajid et al. 2015). In addition to other benefits mentioned above, this work decreases analysis steps and 
helps to prove higher recoveries and selectivity. Improving the extraction efficiency is due to the 
continuous and simultaneous adsorption of the analytes extracted from the sample matrix into the 
extraction solvent, which prevents solvent saturation (Sajid 2017). For MAE of non-polar analytes, 
extraction selectivity can be enhanced using a non-polar solvent, which decreases the extraction of polar 
interferences. Although non-polar solvents do not absorb microwaves, this problem is solved by 
absorbing the waves by the sorbent filled inside the pocket device as well as the sample matrix 
(Wang et al. 2013). This issue is one of the interesting advantages of simultaneous locating of the 
MP-µSPE pocket device inside the MAE vessel. 

As can be seen in the literature, the sorbent materials have also been dispersed into an extract or used as 
the packed material in a cartridge for further pre-concentration and clean-up (Huang et al. 2013; Yang 
2011). Compared to the dispersive approach, sorbent filled into the pocket membrane has the main ad-
vantages, including easy collection, low sorbent contamination with interferences, and more reusability. 
Also, despite the SPE cartridges, the sorbent blockage is eliminated by the pocket device. 

MP-µSPE has also been hyphenated with some microextraction methods, including DLLME, 
USAEME, and SBSE (Cai et al. 2019; Tsai et al. 2009; Ge and Lee 2012; Mao et al. 2016). As shown in 
Figure 3.5, MP-µSPE can be performed before and after DLLME and USAEME procedures. If MP- 
µSPE is first performed and then a DLLME or USAEME procedure is used, the main aims are elim-
inating the solvent evaporation step of the desorption eluent to reach the higher pre-concentration 
factors, save the analysis time, and improve the clean-up. On the other hand, applying MP-µSPE after a 
DLLME or USAEME procedure is mainly due to eliminating the centrifugation challenge in DLLME or 
USAEME and decreasing the required long extraction time (> 30 min) in MP-µSPE (Sajid 2017). The 
recent applications of MP-µSPE for pre-concentration of different analytes in biological samples are 
summarized in Table 3.2. 

3.4 Pipette Tip Micro Solid-Phase Extraction 

PT-µSPE is the miniaturized form of the conventional SPE introduced by William Brewer (University 
of South Carolina, USA) (Brewer 2003). The main goal of this technique is to reduce the amounts of 
sample and hazardous organic solvents as much as practicable in a highly efficient SPE process. 
Micropipettes utilized in PT-µSPE techniques are made of polypropylene, polyethylene, polytetra-
fluoroethylene, and polyolefin with a distal shape of one end and a conical shape of the other (Bordin 
et al. 2016). Desired sorbent is packed between two pieces of filter, which can be common frits or 
ungreased cotton. To eliminate the air bubbles inside the packed sorbent, the pipette tip should be 
sonicated precisely. Prior to an actual extraction process, the sorbent should be washed by an appro-
priate solvent-like deionized water to eliminate contaminants (Seidi et al. 2019). 

FIGURE 3.5 Setup development of MP-µSPE and its hyphenation with the other sample preparation methods 
( Lim et al. 2013).  
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In a PT-µSPE procedure, the target sample is aspirated into the pipette tip, while during this step the 
sample is passed through the packed sorbent, and analytes of interest are extracted by the sorbent. To make 
sure the highest possible extraction efficiencies are achieved, this step should be replicated several times. 
Afterward, the extracts can be desorbed into a desorption solvent (like methanol, acetonitrile, as well as 
acidic or basic solutions). Just like the previous step, several desorption cycles should be carried out by the 
same desorption solvent to make sure that the extracts are completely desorbed out of the pipette tip 
(Buszewski and Szultka 2012; Hasegawa et al. 2007). A typical PT-µSPE procedure is shown in Figure 3.6. 

PT-µSPE can bring about extraction efficiencies comparable with the conventional SPE procedures in 
which large SPE disks or cartridges are utilized. Interestingly, PT-µSPE does not have the practical 
challenges of the conventional SPE procedures. For instance, his technique does not require vacuum 
pumps for passing the sample or extraction solvent through the sorbent. Instead, sample or extraction 
solvent can be easily passed through the sorbent with the aid of a pipettor. In addition, this simple 
strategy can facilitate the automation of an SPE procedure (Kumazawa et al. 2010). On top of this, the 
overall amounts of material consumption comprising the target sample, extraction solvents, and sorbents 
are dramatically lower compared to a conventional SPE procedure (Pereira et al. 2013). Furthermore, 
PT-µSPE is a well-suited technique for the extraction of target analytes from very low sample volumes. 

PT-µSPE can be performed as other features: (1) locating the conventional SPME fibers into the 
micropipette tips (Xie et al. 2009); and (2) eliminating the upper frit of the sorbent in the pipette tip and 
a combination of the advantages of both dispersive µSPE and LLE (Fred D. Foster et al.). Moreover, 
PT-µSPE can be applied in combination with other extraction methods to decrease the drawbacks of 
enhancing the sample clean-up and extraction efficiency. For example, a PT-µSPE procedure was ap-
plied after accelerated solvent extraction for the efficient enrichment and analysis of atrazine and its 
degradation products in Chinese yam (Wu et al. 2021). 

Along with the mentioned advantages of PT-µSPE, this technique suffers a few drawbacks. The first 
and most important limitation of this technique is that PT-µSPE is a low-throughput extraction tech-
nique due to the low amounts of utilized sorbents. It should be noted that utilization of higher amounts 
of sorbent cannot tackle this problem, as the higher amounts of sorbent results in higher pipette tip 
pressure. The second limitation of this technique is that the packed sorbent can be easily clogged during 
the extraction of samples with various amounts of contaminants. This problem usually occurs during the 
extraction of analytes from biological samples with hundreds of thousands of biomolecules along with 
the target analytes (Seidi et al. 2019). The recent applications of PT‐µSPE for quantitative analysis of 
different analytes in biological samples are summarized in Table 3.3. 

FIGURE 3.6 Schematic presentation of a PT-µSPE procedure. Reproduced with permission from  Xie et al. (2009) with a 
brief modification.  
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3.5 Spin-Column Micro Solid-Phase Extraction (SC-µSPE) 

Spin column micro solid-phase extraction (SC-µSPE) is one of the most utilized and popular config-
urations of µSPE techniques. This technique differs from the other micro solid-phase extraction methods 
based on the method exploited for passing the sample through the solid extraction phase (Hansen and 
Pedersen-Bjergaard 2019). In SC-µSPE, a few milligrams of the desired solid sorbent is packed between 
two frit pieces to generate a column tip, which is subsequently inserted into a centrifuge microtube. Then, 
the sample solution containing the target analytes is loaded in the top of column tip followed by successive 
movement of sample through the adsorbent by the aid of a spinning rotator applying a centrifugal force. In 
this method, flow rate of sample solution across the solid phase can easily be manipulated by program-
ming of centrifuge speed, to attain efficient analytes isolation and prevent the prolonged extractions. 
However, in most cases, repeated cycles of sample aspiration and dispensing through the extraction phase 
are required to give the analyte enough time for interaction with the solid phase and maintain a favorable 
extraction efficiency (Seidi et al. 2019). SC-µSPE is schematically shown in Figure 3.7. 

SC-µSPE can be accounted as an alternative to PT-µSPE, which eliminates the manual handling of the 
sample solution during the extraction procedure and provides much better precision and capacity for 
analyte entrapment compared to PT-µSPE. On the other side, as the repeated sample aspirating/dis-
pensing cycles are needed to be performed manually and coupling of the centrifuge systems with 
analytical instruments is coming with several challenges, there is no report in the literature describing an 
automated SC-µSPE procedure. The latter issue imposes severe restriction on utilization of this method 
in routine laboratory tasks. Additionally, as another challenge associated with this technique, the 
possibility of column clogging where complicated sample matrices are in use should not be rolled out 
(Seidi et al. 2019). 

The developments in SC-µSPE have been mainly focused on the utilized sorbent and implementation 
of SC-µSPE procedures for extraction of a wide variety of analytes from diverse sample matrices. The 
type of solid phase sorbent can be considered as the most effective parameter on the efficiency of SC- 
µSPE, since the utilized extraction phase controls the back pressure in the spin column, the fouling of 
adsorbent surface during the extraction, the selectivity of extraction, and the capacity for quantitative 
analytes capture. 

So far, a great variety of adsorbents have been exploited in SC-µSPE procedures, which have de-
monstrated to have a remarkable effect on the extraction efficiency of target analytes. These utilized 
solid extraction phases are ranging from commercially available sorbents, including C18, Styrene- 
divinylbenzene-reverse phase sulfonated, cation exchanger (Svačinová et al. 2012), and metal oxides 
(La Barbera 2018), to synthetic adsorbents, such as monolithic silica rods with different modifications 
(Namera et al. 2008; Namera et al. 2012; Namera et al. 2011), metal organic frameworks (Esrafili et al. 
2020), as well as the electrospun nanofibers of polyamide-graphene oxide-polypyrrole (Seidi et al. 
2019), polyacrylonitrile/Ni-metal-organic framework 74 (Amini et al. 2020), and polyacrylonitrile/ 
metal-organic framework of MIL-53(Fe) (Amini et al. 2020). 

FIGURE 3.7 Schematic presentation of a SC-µSPE procedure. Reproduced with permission from ( Alwael et al. 2011).  
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Apart from the developments in type of solid phase adsorbents, there are a few reports in the literature 
dealing with improvement of the SC-µSPE performance through exploitation of multi-stage SC-µSPE 
and mix-mode SC-µSPE. In multi-stage SC-µSPE, a layer-by-layer packing of different sorbents is 
utilized to provide much higher clean-up and selectivity by removing the interferences of different types 
(Svačinová et al. 2012). In mix-mode SC-µSPE, different modifications are applied onto the adsorbent 
phase to enable simultaneous or sequential extraction of diverse analytes by a single spin column 
(Namera et al. 2012; Namera et al. 2011). 

To draw partial conclusions, although the research into SC-µSPE has been mainly dealing with the 
developments in the type of extraction phase, more developments for SC-µSPE are needed to alleviate 
some of the typical drawbacks of this method such as manual repeated aspirating/dispensing cycles of 
sample solution through exploration of new configurations and device designs capable of automated 
recycling of sample solution through the solid phase. The recent applications of SC‐µSPE for quanti-
tative analysis of different analytes in biological samples are summarized in Table 3.4. 

3.6 Concluding Remarks and Future Trends 

This chapter focused on the most well-known μSPE formats, which are useful in forensic sample 
analysis. Among these discussed extraction techniques, MP-μSPE offers the most sample clean-up since 
the process consists of analytes migration across the polymeric membrane and their adsorption on the 
solid sorbent afterward. Thus, it could be useful for analysis of complicated forensic samples. However, 
the fastest extraction mechanism belongs to D-μSPE, which benefited from the wide contact surface of 
nanoscaled sorbents. SC-μSPE has a simple setup, sorbent collection, and desorption approach. On the 
other hand, PT-μSPE is the most suitable μSPE mode for automation since a sample flow and an eluent 
flow may be applied for presenting the extraction process. μSPE could perform an appropriate sample 
cleanup, which reduces the matrix effect; regarding its dual extraction mechanism, it includes analytes 
adsorption on the solid sorbent and their further elution. The approach may consist of some washing 
steps for diminishing the interference effects. Also, miniaturized μSPE scale decreases the required 
sample size and eluent volume and may have a positive effect on extraction recovery and its rapidness. 
One of the main imaginable futures for all extraction methods is the automation possibility, which may 
be conducted in some μSPE modes in the close future. However, regarding the matrix of interest in this 
chapter, introducing some novel, selective, available, and inexpensive sorbents is the most important 
aim of solid-based extraction techniques. Due to the unique potential ability of each μSPE mode, the 
design of some lab-on-chip devices could be expected as the round goals. Finally, the combination of 
different µSPE methods with other extraction and microextraction methods is another interesting aspect 
that can provide considerable advantages, such as more sample cleanup, higher pre-concentration 
factors, and reduced analysis time. 
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4.1 Introduction 

Bioanalysis refers to the analysis and quantification of compounds (drugs, hormones, metabolites, etc.) 
in biological samples (blood, blood serum, urine, saliva, hair, tissues, etc.). Methods used for this 
purpose include: sample preparation, analyte separation, and further detection. Biological samples are 
complex matrices that are hard to handle due to the presence of a large variety of compounds, such as 
salts, phospholipids, fats, and proteins. In addition, the determination of analytes in trace levels requires 
very sensitive and precise analytical methods (Abdel-Rehim et al. 2020; Ocaña-González et al. 2016). 

Sample preparation is the most important and time-consuming stage of the analytical process. In fact, 
choosing the sample treatment technique is often considered more difficult than selecting the detection 
technique. The importance of this step is inextricably linked to the complexity of the samples analyzed and 
the detected concentration levels (Camino-Sánchez et al. 2014). Specifically, in real samples, and espe-
cially in biological fluids, analytes are often found in trace/ultra-trace amounts. The complixity of the 
matrix also limits the sensitivity and selectivity of the analysis and is a possible cause of matrix interfering 
effects. Taking into consideration all of the above, a clean-up process and a pre-concentration method are 
necessary before analyzing a biological matrix with the existing chromatographic methods (e.g., gas 
chromatography, GC; high-performance liquid chromatography, HPLC) (Camino-Sánchez et al. 2014;  
Hasan et al. 2020; Taghvimi and Hamishehkar 2019). Sample preparation methods should ideally be 
selective, efficient, reliable and robust, and environmentally friendly (Hasan et al. 2020). 

Current trends in analytical chemistry center on miniaturization of sample preparation procedures and 
environmental protection of the following basic principles of green analytical chemistry (GAC) (Kissoudi 
and Samanidou 2018). ‘Solvent-less’ or ‘solvent-minimized’ techniques are preferred over traditional ones 
(liquid-liquid extraction, LLE, or Soxhlet), due to their many advantages, such as minimum or no emission 
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of pollutants-toxic solvents into the environment, simplicity and miniaturization of the process, enhanced 
solute selectivity and recovery, and low sample volumes in agreement with the GAC principles. In fact, the 
reduction of solvent consumption is expected to contribute to environmental sustainability and minimize 
analytical costs (Hasan et al. 2020; Kissoudi and Samanidou 2018; Nogueira 2012; Ayazi and Matin 2016). 
Most commonly used techniques in biological matrices for drug extraction, over the years, have been LLE 
and solid-phase extraction (SPE) (Kassem 2011). However, those techniques use large volumes of organic 
toxic solvents, require large sample volumes, and are time-consuming (Taghvimi and Hamishehkar 2019). 
In order to overcome these disadvantages, new solventless sample preparation techniques have been in-
troduced, such as solid-phase microextraction (SPME), in-tube SPME, liquid-phase microextraction 
(LPME), micro liquid–liquid extraction (MLLE), dispersive liquid–liquid extraction (DLLE), and stir bar 
sorptive extraction (SBSE) (Camino-Sánchez et al. 2014; Hasan et al. 2020; Kassem 2011). 

These techniques reduce both waste and preparation time of the samples, as they combine extraction 
and concentration of analytes in only one step, allowing the direct extraction of analytes, even from 
complex matrices, such as biological fluids (blood, urine, hair, etc.), using small volumes of toxic 
solvents or none at all (Kassem 2011). Moreover, these sorption-based approaches have been demon-
strated to be highly sensitive and selective prior to the application of chromatographic techniques. 
Nowadays, these methods have gained more acceptance throughout the scientific community, especially 
for trace analysis of volatile and semi-volatile compounds, such as drugs, in biological fluids, due 
to easy manipulation and cost-effectiveness, with SPME and SBSE being the most effective and 
commonly used ones (Nogueira 2012). 

4.2 SBSE Principles 

SBSE has recently become very popular for drug analysis in biological samples at trace levels due to 
the high sensitivity it has exhibited and other significant advantages. The basic principles of SBSE are 
similar to SPME. However, it shows simplicity, higher extraction efficiency, sample clean-up, ro-
bustness capacity, and rapidity compared to SPME and the classic sample preparation techniques 
(Marques et al. 2019; Taghvimi 2019). 

SPME was developed in 1990, and it was considered a major breakthrough in sample preparation. An 
externally coated fibre was either immersed in liquid samples (immersion SPME) or exposed to the 
headspace of a solid or liquid sample (headspace SPME), leading to the extraction of organic compounds. 
The used external coating was polydimethylsiloxane (PDMS), a non-polar polymer that promotes hy-
drophobic interactions with target compounds (Nogueira 2012). It was observed that during the extraction 
of very apolar compounds (logKow > 5), sorption on PDMS was followed by adsorption on the Teflon- 
coated stir bar used for sample agitation and on the vessel wall. This led to the development of a stir bar 
coated with PDMS and a sample preparation method known as stir bar sorptive extraction (SBSE) (David 
et al. 2019), which was first introduced by Baltussen et al. in 1999 (Baltussen et al. 1999). SBSE was 
developed and commercialized under the trade name Twister by Gerstel GmbH & Co. KG. 

In SBSE, a glass-coated magnetic bar, coated with a layer (typically 0.5–1 mm) of sorptive, usually 
PDMS, as shown in Figure 4.1, is directly added to a vial containing the aqueous sample and is stirred 
for a certain time, until equilibrium of analytes concentration between the sample matrix and PDMS is 
reached. The organic compounds to be extracted are absorbed into the stirring bar. The retention me-
chanism occurs mainly through Van-der-Waals forces. However, the formation of hydrogen bonds with 
oxygen atoms of PDMS is likely to happen, depending on the molecular structure of the analytes 
(Nogueira 2012). After the sorption, the bar is rinsed with deionized water, dried, and transferred to a 
clean vial, where the captured compounds can be desorbed thermally for GC or into a liquid solvent 

FIGURE 4.1 Schematic presentation of a stir bar used in SBSE.   
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(LD) for liquid chromatography (LC) (Hasan et al. 2020; Kissoudi and Samanidou 2018; Talebpour 
et al. 2012). This technique is based on the partition of the solute between the sample and the absorbent 
phase, which in this case is the stir bar and not the fibre, like in SPME (Marín-San Román et al. 2020). 
New applications are constantly being developed, and improvements are still being made (Camino- 
Sánchez et al. 2014). 

4.2.1 SBSE Methodology 

The SBSE technique has two extraction modes: immersion SBSE and headspace SBSE (HS-SBSE). 
Immersion is used in liquid samples. The stir bar is directly introduced into the sample. A certain agitation 
time is required to maintain the equilibrium between the absorbent phase and the sample. On the other 
hand, HS-SBSE is used in liquid, solid, and gaseous samples. The stir bar, in this case, is introduced into 
the vial adapted for the headspace. The sample is agitated and sometimes heated so that equilibrium 
between the sample and the gas phase can be achieved faster (Marín-San Román et al. 2020). 

The methodology requires two steps: extraction and desorption. During the extraction, the Twister is 
immersed into the sample, using one of the modes mentioned above. Once equilibrium occurs, the stir 
bar is removed, then inserted into a glass, and transferred to the thermal desorption unit (TDU), or 
desorbed by a liquid solvent (LD). If the mode used is immersion, the Twister itself works as a stirrer. If 
the chosen method is HS-SBSE, the sample is stirred with a magnet. After its removal from the sample, 
the Twister must be cleaned with deionized water so that the remains of proteins, salts, sugars, or other 
undesirable sample constituents are removed. The parameters that should be optimized at this step are 
both the kinetic (extraction time, agitation speed, dilution, and volume of the sample) and the ther-
modynamic parameters (temperature, pH, the addition of salts, and organic modifiers). 

Into the TDU, the analytes are thermally desorbed and transferred to the gas chromatography-mass 
spectrometry (GC-MS). Since absorption is a weaker process than adsorption, heat during thermal 
desorption (TD) is applied at lower temperatures in order to avoid losses of thermolabile solutes. 
During TD, desorption temperature, pressure, time, and flow are some variables that should be op-
timized. On the other hand, during liquid desorption (LD, or back extraction), the immersion of the 
stir bar into the glass vial must be performed under sonication or mechanical treatment to improve 
desorption efficiency. Solvent type (e.g., methanol, acetonitrile, mixtures), immersion time, and the 
number of desorption steps are parameters that should be taken into consideration (Marín-San Román 
et al. 2020; Nogueira 2012). 

Comparing the two desorption approaches, TD is an on-line approach since the direct and quantitative 
transfer of extracted solutes introduction into the GC system is possible. That leads to higher sensitivity and 
the possibility of automatization. LD is an off-line, cost-effective approach, with the advantage of combining 
with GC, HPLC, or capillary electrophoresis (CE) systems (Nogueira 2012). SBSE is mostly combined with 
TD due to the remarkable thermostability of PDMS. However, novel coatings that have been developed are 
not as thermal steady as PDMS, so recently, LD has been highly applied in combination with LC. Sensitivity 
is reduced when using the LD method because only a fraction of the extract is analyzed by LC or GC. 

4.2.2 SBSE Applications in Toxicology Studies 

SBSE has a broad spectrum of applications to biological matrices (blood, blood serum, urine, hair, etc.) 
(Camino-Sánchez et al. 2014). It is rapid, simple, cost-effective, easily automated, and in agreement 
with the principles of GAC, as the use of organic-toxic reagents is the least possible. It requires small 
sample amounts, which is very useful in the toxicological analysis of biological fluids, where sampling 
in large amounts is often prohibitive, for obvious reasons. In addition, SBSE is used for trace, or even 
ultra-trace (parts per trillion, ppt) analysis of semipolar or non-polar species (log Kow > 3) with low 
limits of detection, whereas sampling of hydrophilic or highly polar compounds is still challenging 
(Camino-Sánchez et al. 2014; Hasan et al. 2020; Marques et al. 2019; Talebpour et al. 2012). 
Concerning the quantitative extraction, in SBSE, it is acquired at a significantly lower K due to the 
lower phase ratio β. Moreover, as sampling takes place simultaneously with the stirring, competitive 
sorption from an additional stirrer, which was the main limitation in SPME and was the fact that led to 
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the development of SBSE, can be avoided (Moein et al. 2014). Calibration in SBSE can still be done, 
even if the extraction is incomplete with the use of water samples with known concentrations of target 
analytes, for example (Baltussen et al. 1999). One of the most useful and interesting features of this 
technique is that each stir bar can be reused several times without leading to any degradation of the 
PDMS coating. However, before being reused, the stir bars must be cleaned up with suitable solvents 
(e.g., acetonitrile) or through TD treatment (Nogueira 2012). 

Recently, SBSE has been efficiently used for the extraction of carbamazepine from serum samples 
(Vilarinho et al. 2019; Alvani-Alamdari et al. 2019) and fluoxetine (Marques et al. 2019) in plasma, as well as 
for the determination of endocrine-disrupting chemicals in biological fluids, including cord blood, placenta, 
amniotic fluid, maternal urine, and breastmilk, as it has already been reviewed (Jiménez-Díaz et al. 2015). 

4.2.3 SBSE Optimization Factors 

Several parameters have to be evaluated during sample preparation with SBSE techniques, including 
the type of coating as well as its thickness, pH, ionic strength, temperature, agitation, extraction time, 
and analyte desorption. During thermal desorption of the analyte, the flow rate of gas is a parameter 
that should be taken into consideration. In order to reduce the desorption time, a high flow rate (up to 
100 mL/min) is recommended (Lancas et al. 2009). 

4.2.4 SBSE Advantages, Limitations, and Novel Strategies 

SBSE exhibits several advantages, such as increased sensitivity, simpleness, and rapidity enabling 
robust extraction and concentration in a single step while minimizing the use of organic solvents and 
sample volumes. 

Although SBSE is considered the most useful and interesting sorption-based technique and has shown 
significance among other techniques, under certain circumstances it presents some limitations. There are 
a limited number of commercially available coatings; PDMS, ethylene glycol (EG)‑silicone, and 
polyacrylate (PA) are common commercial coatings for SBSE, with PDMS being the one most used. 
These coatings restrict the application of SBSE in the analysis of semipolar or non-polar analytes. 
Regarding the more polar analytes (log Kow < 3), PDMS as a coating, for example, has proved to be 
inefficient due to the weak hydrophobic interactions between the analytes and PDMS. Ethylene glycol- 
PDMS copolymer (EG-silicone), as a new trademarked coating, has shown higher recovery for both 
non-polar and polar analytes, because of the polar nature of EG and the non-polar nature of its silicone 
base. Although EG is compatible with thermal desorption and it is able to bind to polar compounds, its 
shelf-life is shorter than PDMS due to its lower stability. EG bars are also less robust than PDMS stir 
bars and can break more easily (Hashemi and Kaykhaii 2021). However, both of these coatings may not 
have enough capacity and the expected selectivity, especially for trace amounts of analytes in complex 
matrices, such as biological fluids (Meng et al. 2021). 

The coating is not chemically bonded to the substrate, and this can lead to bleeding at even 
relatively low temperatures during thermal desorption of the analytes when transferred from or to 
the GC system. Moreover, the coating is vulnerable to washing away, and proper desorption solvent 
must be used in order to avoid the coating washing away due to its non-chemical bond with the 
substrate. Furthermore, during the desorption step, where organic solvents may be used, the 
memory effect can be present. Recently, in order to overcome this limitation, room-temperature 
ionic liquids (ILs) have been used, replacing toxic solvents with environmentally friendly solvents. 
Moreover, there are many parameters that should be taken into consideration during the extraction 
step in order to obtain the best possible results, and thus, the extraction conditions need to be 
optimized. It is time-consuming, especially when thick and highly viscous polymeric sorbents are 
used as coatings; reaching equilibrium requires hours. It is expensive since TD requires the use of 
an expensive thermal desorption unit. It requires a high volume of back-extraction solvent: This can 
evidently lead to the dilution of the pre-concentrated analytes. Finally, when compounds of high 
concentration are extracted, the chromatography column used can get overloaded due to the higher 
sensitivity of the technique. 
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In order to overcome these drawbacks, several strategies have been proposed, including the use of new 
polymeric phases, derivatization procedures, multi-mode assays, and alternative sorption-based ap-
proaches (Camino-Sánchez et al. 2014; Marín-San Román et al. 2020; Moein et al.,2014; Nogueira 2012;  
Talebpour et al. 2012). The main advantages and disadvantages of SBSE are summarized in Table 4.1. 

4.2.5 Novel Coatings 

Considering the limited range of commercially available SBSE coatings, researchers have turned their 
attention to developing novel coatings to expand the application of the technique and improve the 
versatility of the stir bars for analysis of compounds in biological fluids with SBSE. Lab-made stir bar 
coatings are also being developed to achieve higher extraction efficiency in less time. New SBSE 
coatings can be prepared using adhesion, molecular imprinting (MIP), sol-gel, monolith coating 
procedures, and solvent exchange procedures (Hasan et al. 2020). Αll the novel coatings used in 
toxicological studies are presented in Table 4.2. 

Liu et al. (2004) were the first to use sol-gel technology in stir-bars in order to produce a partially 
hydroxy-terminated-PDMS coated stir-bar, for extracting organophosphorus and polycyclic aromatic 
hydrocarbons. The sol-gel process involves the transformation of a colloidal liquid solution (sol) into a 
solid matrix (gel). Several steps form this method, including hydrolysis-condensation polymerization, 
with organic ligands, of metal alkoxides that eventually lead to the synthesis of gels. This method 
produces coatings with thermal, mechanical, and chemical stability; selectivity; and most of all, tuneable 
porosity (Hasan et al. 2020; Moein et al. 2014). Sol-gel coatings interact well with the surface of the 
sample due to the presence of functional groups in the procure chemical structure that is added to the 
sol-gel solution. The most common sol-gel procures are tetraethoxysilane (TEOS) and methyl-
trimethoxysilane (MTMOS). If carbon-based composites are mixed with sol, carbon-ceramic materials 
(CCMs) are produced. Graphene oxide (GO), on the other hand, is also a carbon-based material with 
unique physical and chemical properties. Large interaction between the analyte and the adsorbent can be 
achieved with this method due to the nano surface area of GO. GO is also a suitable adsorbent for drug 
adsorption, and thus, it was identified as one of the best possible novel coating materials used in SBSE 
in toxicology and bioanalysis (Hasan et al. 2020; Nogueira 2012; Taghvimi and Hamishehkar 2019). 

Adhesion techniques involve achieving the extraction of target compound materials on SBSE sub-
strates through two approaches: physical adhesion techniques (PAT) or chemical adhesion techniques 
(CAT). In the first approach, a PDMS sol, or any other polymer acting as a glue, forms the preliminary 
adhesive film. Then, specific particles, such as octadecyl (C18) silica, are added to the adhesive film by 
incubation and post-incubation treatments. In fact, two or more sampling, or sorbent, materials with 
different enrichment capabilities are combined (dual-phase stir bars) in order to improve the recovery of 
volatile and polar compounds in comparison to the conventional PDMS stir bar. In the second chemical 
approach, the substrates, such as polyether ether ketone stainless steel wire (SSW), are first chemically 
modified and then covalently immobilized. PATs are simple and cost-effective techniques in which 
reproducibility of the preparation of coatings can be easily achieved. However, the lifetime of coatings 
prepared with this technique is significantly lower than common PDMS stir bars. It can be extended, 

TABLE 4.1 

Main benefits and drawbacks of SBSE as a sample preparation technique of biological fluids ( Baltussen et al. 
1999;  Marín-San Román et al. 2020)     

Technique Benefits Drawbacks  

SBSE More sensitive and robust than SPME A lower number of absorbents available  

Extraction and concentration in a single step Requires a specific, expensive TDU  

Quick and easy   

Less handling and less sample volume than SPME   

Without organic solvents    
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though, when the coating is protected by a Polytetrafluoroethylene (PTFE) membrane. Also, reduced 
mechanical stability has been reported. When the CAT approach is being used, the stir bars produced 
exhibitchemical and mechanical stability, and their thickness, which may affect the efficiency of the 
extraction, can be controlled (Bicchi et al. 2005; Hasan et al. 2020; Nogueira, 2012). 

Molecularly imprinted polymers (MIPs) have also been used and evaluated over the years. They have 
proven excellent selectivity and also achieved adsorption equilibrium rather fast. However, 
they can only be used for very specific matrices and target compounds (Nogueira 2012). Using this 
technique, stirs bar coatings are prepared in three stages:  

1. Covalent or non-covalent chemical reaction between a template molecule and a functional 
monomer 

2. Co-polymerisation (thermal or photo-polymerization) of the produced mixture with a cross-
linking agent  

3. Removal of the template molecule 

The process mentioned leads to the formation of an extremely selective porous polymer, toward the target 
molecule, used in the first step of the process, in size, shape, and chemical functionality (Hasan et al. 2020). 

MIP-produced stir bar coatings have many advantages over common ones, including great selectivity 
upon the target compound, reproducibility, simple and cost-effective preparation, higher mechanical and 
chemical stability, and faster adsorption kinetics. However, the polymerization process may affect their 
efficiency. Also, the removal of the template molecule requires harsh conditions, which can lead to a 
reduction of the desorption efficiency and bleeding. Last, the templates may be toxic and expensive, or 
even hard to obtain (Hasan et al. 2020; Wyszomirski and Prus 2012). All novel coatings produced by the 
MIP technique are presented in Table 4.3. 

TABLE 4.2 

Novel coatings by sol-gel technique, used in the toxicological analysis of biological fluids ( Hasan et al. 2020)        

Coating material Lifetime 
(cycles) 

Target compounds Sample LOD  
(μg/L, μg/Kg) 

Method  

AlMBF4 ionic liquid >50 Ketoprofen Naproxen 
Fenbufen 

Urine 0.23–0.31 SBSE-LD-HPLC-UV 

Ni-ZnS-activated carbon 12 Losartan Valsartan Urine Plasma 0.12–0.15 SBSE-LD-HPLC-UV 

Ag (I) imprinted MPTS 15 Ag (I) Hair Nail 0.04 SBSE-LD-FI-AAS 

Nano graphene oxide NR Amphetamine 
Methamphetamine 

Urine 10–11 SBSE-LD-HPLC-UV 

Layered double 
hydroxide/graphene 

NR Organochlorine 
pesticides 

Urine 5-8 SBSE-LD-HPLC-UV 

PDMS/Ge NR 4-chloro-1-naphthol Urine 0.034 SBSE-LD-HPLC-DAD 

MWCNTs/polyaniline 50 Propanol Plasma 0.03 SBSE-LD-HPLC-FLD 

Pyrrole 3 Estradiol Urine 10 SBSE-LD-GC-FID 

Zeolitic imidazolate 
framework-67/ cobalt 
nanoporous carbon 

70 Fluoracil 
Phenobarbital 

Urine Plasma 0.21–1.4 SBSE-LD-HPLC-UV 

Zn-Al layered double 
hydroxides/Zeolitic 
imidazolate 
framework-8 

NR Benzylpenicillin Blood Urine 
Bovine milk 

0.05 SBSE-LD-HPLC-UV 

Layered double 
hydroxide/graphene 

NR Organochlorine 
pesticides 

Urine 0.22–1.38 SBSE-LD-GC-MS   

*MPTS: (3-mercaptopropyl)trimethoxysilane 
*NR: not reported  

66                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

Another category is polymer monolith coatings. The novel coatings produced by monolith formation 
are presented in Table 4.4. In general, a polymer monolith refers to a porous polymer containing a 
network of interconnected pores that is produced through the polymerization of a functional monomer 
and a crosslinker, with the presence of an initiator. The main advantages are preparation ease of the 
monomer mixtures, high permeability, favorable mass transfer characteristics, low cost, and suitability 
from non-polar to polar compounds. These coatings are prepared in three steps:  

1. Silylation of the stir bar surface  

2. Immersion of the stir bar in a mixture of monomers, crosslinkers, and initiators, which have been 
ultrasonicated  

3. Thermal or photo-polymerization 

The advantages of these coatings are high reproducibility, good mechanical and chemical stability, low 
cost, easy preparation methods, and the ability to produce bimodal porosity (micro-porous and macro- 
porous) (Hasan et al. 2020; Nogueira 2012). 

4.3 Conclusions 

Several aspects of SBSE, including the basic theory and methodology, advantages, limitations, and 
future trends were presented. The majority of the SBSE applications in toxicology studies exhibited 
high selectivity, good linearity, precision, and high sensitivity. Considering its applications in tox-
icology studies, SBSE will definitely play a tremendous role in sample preparation, enabling ex-
traction in a single step and reducing solvent extraction, disposal cost, and extraction time. It is 
crucial to develop novel phases to extend SBSE applications and increase sensitivity. Furthermore, 
innovative developments in SBSE instrumentation constitute another research area that needs to 
undergo further exploration in the near future. 

TABLE 4.3 

Novel coatings produced by molecular imprinting technique used in the toxicological analysis of biological 
fluids ( Hasan et al. 2020)        

Coating material Lifetime 
(cycles) 

Target 
compounds 

Sample LOD  
(μg/L, μg/Kg) 

Method  

Propanol imprinted/ 
graphene oxide 

>50 Propanolol Urine 0.037 SBSE-LD-HPLC-UV 

Dopamine imprinted NR Dopamine Urine 0.03 SBSE-LD-HPLC-FLD 

Carbamazepine imprinted 8 Carbamazepine Human blood serum 10 SBSE   

*NR: not reported  

TABLE 4.4 

Novel coatings produced by monolith formation, used in the toxicological analysis of biological fluids ( Hasan 
et al. 2020)        

Coating material Lifetime 
(cycles) 

Target compounds Sample LOD  
(μg/L, μg/Kg) 

Method  

VPD-EGDMA 15 Losartan Valsartan Human plasma 7–27 SBSE-LD-HPLC-DAD 

Poly (VPD-EGDMA) >15 Diazepam Nordazepam Human plasma 10–12 SBSE-LD-HPLC-UV   

*DVB: divinyl benzene, EGDMA: ethylene glycol dimethacrylate 
*NR: not reported  
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5.1 Introduction: Fundamental Theory 

Microextraction by packed sorbent (MEPS) is a sort of miniaturized solid-phase extraction (SPE) 
technique developed in 2004 by Abdel-Rehim et al. (Abdel-Rehim et al., 2004) and aimed at reducing 
both sample and solvent volumes, in order to provide an automated procedure by means of its easy 
coupling to chromatographic systems. 

In this sampling approach the sorbent (from 1 to 4 mg) is located in a microsyringe rather than in an 
isolated extraction cartridge, as occurs in SPE (Figure 5.1). 

Another difference relative to the latter, in MEPS the sample flows through the extracting device in a 
bidirectional fashion (aspirations or strokes), improving the process’s efficiency due to the increase in 
the contact between the sample and the sorbent. 

In order to increase the rate of mass transfer from the sample to the sorbent, both the extracting phase and 
particle size should be small. In addition, as close contact between the sorbent’s surface and the sample is 
relevant, the amount of the sorbent, the loading volume, and the volume of the elution should be carefully 
optimized in order to avoid exceeding the method’s breakthrough point (Abdel-Rehim 2011, 2004). 

Activation of the extraction sorbent to facilitate the retention of analytes occurs at a first stage, for 
which an organic solvent, such as methanol, is used. After this step, the sample is withdrawn using the 
syringe, and several draw/eject cycles are usually needed in order to concentrate the target compounds 
in the sorbent. The sorbent is washed by rinsing with water, aiming at eliminating matrix constituents 
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(e.g., proteins). Finally, the analytes are eluted with an organic solvent (e.g., methanol or mobile phase) 
and directly injected in the analytical instrumentation. 

These extraction cycles can be performed in two ways, either by drawing and ejecting several times in 
the same vial or by discarding the sample to waste after each draw of the syringe (Abdel-Rehim 2004). 
The whole procedure may be automated using some sort of autosamplers, or it can be connected directly 
to a gas chromatography (GC) injector using large volume injection approaches. Nevertheless, using 
liquid chromatography (LC) rather than GC is more prone to adequate automation, as small amounts of 
water may be introduced in chromatographic instruments due to the difficulty in drying adequately the 
sorbent prior to elution and to the relatively high polarity of the solvents normally used, which is in 
general not compatible with GC (Abdel-Rehim 2010,Abdel-Rehim 2011). 

This technique is usually aimed at the preparation of liquid samples, so additional steps may be 
necessary for samples of tissues or hair. In those situations, an organic solvent (e.g., methanol) may be 
used in order to transfer analytes to the liquid phase prior to MEPS. Nevertheless, complex liquid 
matrices may also require pre-treatment in order to avoid sorbent clogging and allow extending its use. 
This is, in addition, important to extract and concentrate analytes present at lower concentrations, 
providing high sensitivity and selectivity. The influence of matrix interferences may be reduced by 
sample dilution (to decrease its viscosity, thus facilitating its passage through the sorbent), protein 
precipitation or filtration using selective filters. It is usually deemed necessary to proceed to pH ad-
justment to improve the analytes’ interaction with the sorbent, and this is particularly important when 
ion exchange sorbents are involved. Other pre-treatment approaches for MEPS include sample 
homogenization, by vortex agitation, ultrasounds, or centrifugation (Yang et al. 2017). 

Several parameters, namely volume and composition of washing and elution solutions, sorbent 
amount, and sorbent type, are capable of affecting MEPS performance (Yang et al. 2017). However, 
selecting the adequate extracting material is the most critical step in optimizing the whole procedure. 

When compared to SPE or liquid-liquid extraction (LLE), the MEPS approach is very promising 
(Altun et al. 2004; Abdel-Rehim 2010), as it reduces sample preparation time and organic solvent 
consumption, and the cost of analysis is minimal (Abdel-Rehim 2011; Said et al. 2010). Even relative to 

FIGURE 5.1 MEPS manual configuration.  
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solid-phase microextraction (SPME), MEPS reduces sample preparation time (<1 min) and sample 
volume (10–1000 µL) and presents in general a much higher absolute recovery (>50%) (Abdel-Rehim 
2011; Barroso et al. 2012; Moein et al. 2015b). Furthermore, the extraction cartridge can be used several 
times, and more than 50–100 extractions from plasma or 400 extractions from water samples have been 
described, whereas a conventional SPE column is used once and then discarded (Abdel-Rehim 2011;  
Barroso et al. 2012; Abdel-Rehim 2010; Altun and Abdel-Rehim 2008). 

Although MEPS is a very simple and straightforward extraction technique, it is not free of dis-
advantages. When its application started increasing, some authors complained about the fact that the 
available sorbents were scarce, a problem that did not occur with traditional SPE (Páleníková and 
Hrouzková 2014). Nowadays, and especially in the last five years, a lot of research has been done, and a 
wide range of options have been developed in the field of solid packing material. These new sorbents 
have been successfully applied to MEPS syringes, but they seem to be limited to pre-concentrate a small 
group of analytes. Another disadvantage is the strong dependence of the analytes’ recovery on the 
number of cycles (strokes) that the sample passes through the sorbent (Páleníková and Hrouzková 
2014). Commonly, in order to achieve high recovery rates, multiple draw-eject cycles have to be ap-
plied, since the analytes’ concentration in the sample will decrease after each cycle. Still, this cannot be 
accepted as a rule, since sorbents can reach a rapid saturation. The increasing number of draw-eject 
cycles will also increase the mechanical stress on the syringe plunger, resulting in a short life-time of the 
MEPS syringe (Páleníková and Hrouzková 2014). Another disadvantage, which is usually neglected, is 
related to solvents that might not be suitable for the procedure. During extraction optimization, it is 
common practice to mimic SPE procedures, including solvents applied, although reducing their vo-
lumes. Yet, it has been described that some solvents, such as dichloromethane and large amounts of 
isopropanol, can cause sorbent cavitation when passing through the BIN (Rosado et al. 2020a). One 
cannot forget that the amount of sorbent used in MEPS is around ten times lower than that used in SPE 
cartridges, and any sorbent loss (even at minimum amounts) can directly affect the extraction efficiency 
and BIN lifetime. Moreover, these solvents also appear to affect the plunger of the syringe over time. 

5.2 Configurations and Sorbents 

Several different sorbent materials are available for use in MEPS. These sorbents are essentially silica- 
based matrices (unmodified silica, C2, C8, and C18), strong and weak cation and anion exchange 
functionalized C18 versions (SCX, SAX), and mixed-mode sorbents (80% C8 and 20% SCX with 
sulfonic acid-bonded silica) (Table 5.1) (Yang et al. 2017). More recently, new sorbents have been made 
available, namely porous graphitic carbon and polymeric absorbent polystyrene-divinylbenzene copo-
lymer (PV-DVB), either modified or functionalized, in order to present different retention capabilities 
for different target analytes (Abuzooda et al. 2015; Karimiyan et al., 2019; Altun and Abdel-Rehim 
2008). Table 5.1summarizes the main types of commercialized sorbents. 

A significant number of custom sorbents have been reported for use in MEPS, for instance molecular- 
imprinted polymers (MIPs), functionalized silica monoliths, based on cyanopropyl hybrid silica, and 
other restricted access materials (RAM) as well (Daryanavard et al. 2013; Ahmadi et al. 2017; Taghani 
et al. 2018; Bagheri et al. 2012a,b; Rahimi et al. 2013; Souza et al. 2015). These types of sorbents were 
developed for specific applications, and as such they are not commercially available. Their use is not yet 
widespread, but rather still limited to those proof-of-concept applications. 

MEPS selectivity obviously depends on the type of sorbent, as different types of interaction (hydrophobic, 
polar, and ionic) between the analytes and the sorbent may occur (Yang et al. 2017; Pereira et al. 2019). 

Particle size obviously influences MEPS performance. The most common particle size in conventional 
MEPS varies from 30 to 50 µm, but particle sizes of 140 or 3 µm have also been used (Yang et al. 2016;  
Porto-Figueira et al. 2015). These different sizes can be useful when complex matrices are involved, 
avoiding sorbent blocking and consequently erratic recoveries. Other formats of sorbents are available, 
namely graphene aerogel monolith, which does not have particles (Han et al. 2016; Yang et al. 2017). 

Different modes are possible when operating MEPS, but the manual syringe is the most widely used 
format (Table 5.1). 
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5.3 Sample Preparation Process 

As already stated, the MEPS procedure usually follows a four-step approach, namely conditioning of the 
stationary phase, sample aspiration and ejection (strokes), interferences removal (washing), and analytes 
elution (Figure 5.2). 

However, one should not be fooled by this apparent simplicity, as a wide range of optimization steps are 
deemed necessary in order to maximize extraction efficiency and sensitivity. For instance, selecting adequately 
the sorbent will be extremely important for a successful sample clean-up and also for analyte recovery. 

It is possible to simplify or omit some of the steps depending on the target analytes and the desired 
degree of cleanliness of the extracts, bearing in mind that the ultimate goal of the procedure is to 
maximize efficiency. 

TABLE 5.1 

Main types of commercialized sorbents and modes of operation    

Type of Sorbent Characteristics  

Silica-based sorbents 

Silica, C2, C4, C8, C18 The retention mechanism is based on normal and reverse phase separation. It 
is adequate for the extraction of both hydrophobic and hydrophilic 
analytes from aqueous matrices. 

Ion exchange materials 

M1 (80% C8 and 20% SCX with sulfonic  
acid-bonded silica), SCX, SAX 

The retention mechanism is based on weak cation and anion exchange. It is 
applicable for easily ionized polar analytes. 

Polystyrene copolymer (divinylbenzene, 
DVB; ENV +) 

It is adequate for non-polar compounds. 

Modes of Operation Characteristics 

Manual syringe Simplicity, low cost, and ease of operation are the main factors responsible 
for its increasing popularity. It is a very repetitive process ( Abdel- 
Rehim 2010). 

Semi-automatic MEPS devices (e-Vol® 

syringes, and eXact3 Digital Syringe 
Driver) 

It has sample enrichment and filtering in one single step. It is very easy to 
use, provides complete customization of extraction procedures, and 
allows greater precision. These devices could be used with μSPEed 
cartridges. The μSPEed cartridge design consists of a pressure-driven one- 
way check valve, allowing ultra-low dead volume connection; the 
samples and the solvents flow through the sorbent bed in a single direction 
in every step of the extraction. Therefore, aspiration occurs by pulling 
back the plunger and bypassing the sorbent when it is discarded. This 
version uses smaller sorbent particles (3 μm or even smaller, when 
traditional MEPS uses 50 μm diameter particles) in a small cartridge. 
These small particles provide a much bigger surface area, enhancing the 
contact between the sorbent and the analytes and improving a more 
efficient separation ( Porto-Figueira et al. 2015;  Pereira et al. 2019) 

Automatic approaches It has sample enrichment and filtering in one single step. It is very easy to 
use, provides complete customization of extraction procedures, and 
allows greater precision. These fully automated devices are still 
considerably expensive. Samples and solvents are loaded and discarded 
through the same channel, which may be of particular concern for those 
analytes presenting weak interactions with the sorbent. Indeed, they can 
be partially eluted and lost during extraction due to sample withdrawal 
and wash. Whereas it is possible to skip the washing step in a few 
situations, this strategy will impair selectivity and specificity for most 
applications, particularly when biological specimens are involved. To 
overcome this, a two-way valve laterally incorporated into the barrel of 
the syringe may be used. It is possible to use μSPEed cartridges ( Moein 
et al. 2015b).   
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For instance, increasing the number of strokes will promote the contact time between the analytes and 
the sorbent. After the analytes are retained, a washing step is usually performed to remove undesired 
matrix constituents that are capable of interfering with the analysis. In most published MEPS applications, 
the wash solvent is the same as was used for sorbent conditioning; the choice of this solvent must be, 
however, careful and thoroughly optimized in order not to lose analytes in this step. Indeed, incrementing 
the amount of organic in the wash solvent is useful for efficient removal of matrix interferences, but it also 
is capable of weakening the analytes’ interaction with the sorbent, promoting their early elution. 

Analytes are eluted in the last step, which must also be critically optimized to allow their quantitative 
release from the sorbent in a solvent compatible with the analytical instrumentation that will be used. An 
organic solvent is generally used, and methanol, isopropanol, or acetonitrile, either by themselves or mixed 
with acidic or basic solutions (0.1–3%), have been described. In addition, the maximum amount of analyte 
should be eluted with low solvent volumes whenever possible, in order to increase the enrichment factor and 
allow direct injection into chromatographic systems if desired. Also, it facilitates the online coupling of 
extraction and instrumentation, with advantages concerning laboratorial throughput and cost per sample. 

Abdel Rehim published in 2011 a tutorial paper on different protocols to use depending on the type of 
sorbents (Abdel-Rehim 2011). Figure 5.3 summarizes the main steps of MEPS procedures according to 
the type of sorbent. 

Two approaches are usually seen in the optimization of these stages, either using the univariate (one factor 
is varied at a time) or the multivariate (with the aid of statistical tools allowing multiple factors to be varied 
simultaneously) ways. Examples of this last approach are the works from Rosado (Rosado et al. 2020b), Prata 
(Prata et al. 2019), or Oppolzer (Oppolzer et al. 2013), in which they managed to optimize the extraction 
process in different biological matrices (hair, blood, and urine) with a reduced number of experiments. 

5.4 Applications in Toxicology 

MEPS has been widely employed, not only in different fields of research, but also in routine analysis in 
many laboratories. MEPS applicability encompasses clinical, forensic toxicology, food, and environ-
mental analysis applications, with successful implementations to extract a wide range of compounds 
from different matrices (Pereira et al. 2019). 

Regarding clinical toxicology, this field is usually associated with therapeutic drug monitoring (TDM) 
at designated intervals in order to measure the concentration in the patient’s bloodstream. However, 

FIGURE 5.2 Operation steps (activation, sample loading, washing, and elution).  
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clinical toxicology is a much broader field than just TDM, including catecholamines and metanephrine 
determination (Xiong and Zhang 2020b; Konieczna et al. 2016; Saracino et al. 2015), measurement of 
endocrine-disrupting chemical levels that result from human exposure (Silveira et al. 2020; Cristina Jardim 
et al. 2015), as well as polycyclic aromatic hydrocarbons (PAH) quantification due to their persistence in 
the environment (Martín Santos et al. 2020) and their effects on humans. Additionally, clinical toxicology 
has grown to the metabolomic field, and great research has been directed to the diagnostics of several 
diseases. Examples are the determination of sepsis biomarkers, such as aromatic microbial metabolites 
(Pautova et al. 2020c; Sobolev et al. 2017), and other biomarkers involved in the pathogenesis and 
pathophysiology of a wide range of diseases (Biagini et al. 2020; Berenguer et al. 2019). The most used 
specimen for the determination of this wide range of analytes is urine. Indeed, urine is usually available in 
sufficient amounts, and metabolites are available at greater concentrations than in other specimens, which 
makes it a great sample for metabolomics. Regarding sample preparation, proteins and cellular material 
are not present in urine at high levels, making laboratory analysis a simpler process (Rosado et al. 2017a). 
Before MEPS extraction, urine has a simple pre-treatment; commonly dilution, filtering, and occasionally 
a hydrolysis process might be adopted to liberate conjugates of the target analytes. Apart from urine, blood 
serum is also widely applied in the clinical toxicology field. Besides dilution, this specimen requires a 
much more thorough pre-treatment, namely centrifugation and/or protein precipitation, to avoid sorbent 
obstruction during extraction. The same happens with other alternative specimens cleaned up with MEPS 
for clinical purposes, namely saliva or central cerebrospinal fluid. For all specimens except urine, dilution 
is almost mandatory, but one should remember that the greater dilution is, the more draw-eject cycles need 
to be performed to obtain acceptable extraction efficiencies. 

Regarding MEPS sorbents adopted in clinical toxicology, C18 was by far the most reported, as this 
sorbent solves problems related to the extraction of non-polar and low polar compounds containing 

FIGURE 5.3 Main steps of MEPS procedures according to the type of sorbent.  
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alkyl or aryl groups (Sobolev et al. 2017). Even for phenyl groups present in some aromatic microbial 
metabolites, this sorbent has proven its suitability (Sobolev et al. 2017). Nevertheless, other sorbents 
have been also adopted, and Konieczna et al. (Konieczna et al. 2016) stated that individual polar 
sorbents with surface-displayed amino groups (APS) might be more appropriate for all biogenic amines 
extraction, resulting in greater recoveries when compared to C18 (Konieczna et al. 2016). Most of the 
biogenic amines analyzed by the authors were very polar compounds; hence, the APS sorbent had the 
highest affinity (Konieczna et al. 2016). Table 5.2 describes MEPS procedures adopted in the last five 
years in the field of clinical toxicology. 

Furthermore, in the sub-field of TDM, plasma samples are the most common, since therapeutic 
ranges for the drugs are usually determined in this specimen. Careful plasma pre-treatment will result 
in easier and faster MEPS procedures, as well as reduced matrix effects. The most adopted pre- 
treatment involved protein precipitation with trichloroacetic or perchloric acids followed by cen-
trifugation. Once again, C18 sorbents were the most adopted for MEPS of fluoroquinolones (e.g., 
ciprofloxacin and levofloxacin), beta-lactam antibiotics (e.g., meropenem), imidazoles and triazoles, 
and non-steroidal anti-inflammatory drugs. Fuentes et al. (Fuentes et al. 2019) observed, however, that 
using a C8–SCX mixed sorbent allowed better extraction efficiencies for most antidepressant drugs in 
patients urine samples. This would subsequently result in better sensitivity, allowing detecting lower 
concentrations. 

Although plasma samples are the most used in TDM, other specimens have been cleaned up with 
MEPS. Locatelli et al. (Locatelli et al. 2015) extracted two fluoroquinolones from human sputum 
collected from cystic fibrosis patients. This non-conventional sample followed a similar pre- 
treatment than that of plasma, and even C18 has proven to be efficient for the same compounds in 
previous works. The authors achieved recoveries ranging between 60 and 80% (Locatelli 2015). 
Oral fluid samples diluted 1:4 were submitted to C18 MEPS to pre-concentrate metoprolol en-
antiomers, with recoveries ranging between 95 and 98% (Elmongy 2016). Aqueous humour has also 
been submitted to C18 MEPS for the determination of dexamethasone disodium phosphate and 
dexamethasone in patients with uveitis (Bianchi 2017). Although the authors have achieved great 
extraction efficiencies for both compounds, the sample load step seems quite laborious with 19 
draw-eject cycles (Bianchi et al. 2017). Lastly, dialyzed samples were also used for the extraction of 
non-steroidal anti-inflammatory drugs, and MEPS has proved to be an excellent alternative to 
classical SPE (D’Archivio et al. 2016). All MEPS procedures reported in the last five years for TDM 
purposes are summarized in Table 5.3. 

The forensic toxicology field can also be quite challenging. This is a multidisciplinary field that 
involves the determination and interpretation of the presence of drugs and other potential xenobiotics, 
usually in biological specimens. Although new MEPS sorbents have not been reported in the last five 
years in this field, there has been increasing research and application of this miniaturized technique to 
alternative specimens, especially hair samples. Hair matrix is advantageous due to its longer window 
for drug detection, hence allowing it to monitor past drug use and users under treatment programs 
(Rosado et al. 2020a). This represents a challenge in MEPS, since all mentioned biological specimens 
up to this point were fluid, and hair is solid. It is a very complex, strong, and stable matrix, and for this 
reason, an appropriate pre-treatment is required to remove the target analytes bound to its inner 
constituents. This pre-treatment is, actually, considered the extraction step from the sample, after 
which a further clean-up step can be adopted. Extraction may be carried out with organic solvents, 
usually methanol, or, depending on the target analytes, by means of weak acid (with hydrochloric 
acid) or alkaline (with sodium hydroxide) digestions. One should bear in mind, however, that me-
thanol extractions can yield considerable interferences when compared to other procedures, and 
subsequently provide lower recoveries. After this first sample treatment, MEPS can be applied for the 
clean-up of the obtained hair extract. 

In the last five years, three MEPS procedures have been reported for hair sample clean-up and 
determination of specific classes of drugs, namely cocaine and metabolites (Rosado et al. 2020b), 
selected opiates (Rosado et al. 2019), and methadone and EDDP (Rosado et al. 2020a). All three 
methods used a C8–SCX mixed sorbent due to the different analytes’ properties, and although the 
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obtained recoveries were low for some markers of cocaine and opiates consumption, the limits of 
determination were comparable to those reported for SPE. This is explained not only by the analytical 
equipment used, but also by the selectivity of MEPS and the clean extracts obtained. 

Another alternative specimen that was widely used in this field in the past years was oral fluid. 
The reported applications of MEPS for oral fluid clean-up and drug pre-concentration are note-
worthy, since with a few microlitres and a rapid procedure it was possible to determine up to 30 
different analytes (Rocchi et al. 2018). MEPS’s potential is proven in this field due to the rapid 
extraction of a great number of xenobiotics from small amounts of samples. Moreover, its appli-
cation to blood, plasma, and urine has continued to be reported in the last five years. The most 
described sorbent in the forensic toxicology field is not C18, like in the previous fields, however. 
Instead, mixed-mode sorbent appears to be the most suitable to pre-concentrate multi-class drugs on 
a multi-method. Table 5.4 describes MEPS procedures adopted in the last five years in the field 
of forensic toxicology. 

The field of analysis, for which more developments regarding sorbents were observed, is un-
doubtedly environmental toxicology. The samples’ type do not vary much; all of them are water 
samples, except one which is soil, and the analytes to be determined are mainly polycyclic aromatic 
hydrocarbons, phenoxyacetic acid herbicides, other pesticides, endocrine-disrupting chemicals, and 
trace levels of a few pharmaceutical drugs. Another different aspect in this field is the volume of 
sample submitted to MEPS. In fact, while in other fields MEPS works with volumes in the order of 
microlitres, in environmental toxicology volumes of several millilitres are used. The latter is also 
justified by the fact that the new developed sorbents are packed in larger capacity syringes, commonly 
insulin syringes (1 mL). Most publications in this field did not specify sample pre-treatment before 
MEPS, perhaps because their major goal was sorbent development; however, a few mentioned cen-
trifugation or filtration of the samples. 

The use of soil as an environmental sample has further proven the great versatility of this 
miniaturized technique. Serenjeh et al. (Serenjeh et al. 2020) proposed a headspace approach of 
MEPS for the determination of volatile polycyclic aromatic hydrocarbons in soil. The authors 
used 2 mg of aminoethyl functionalized SBA-15 (SBA-15-NH2) as sorbent, and after pre-heating 
the soil sample 15 min at 150 °C, the MEPS syringe sampled the air in the closed vial to con-
centrate the analytes (Serenjeh et al. 2020). Although the reported extraction efficiencies were not 
high, this approach appears as an excellent option for other solid samples. The latter procedure 
and other MEPS applications in the last five years for environmental toxicology are resumed 
in Table 5.5. 

Finally, the food toxicology field has the most heterogeneous types of samples. Specimens used 
in this field can go from solid (e.g., fruits, flour) to liquid (e.g., milk, wine, juices), and MEPS 
applications have proven suitable for all of them. Even though many sorbent developments were 
made in the last five years concerning food toxicology analysis, C18 continues to be the most 
reported sorbent. Indeed, this sorbent has been applied to pre-concentrate fluoroquinolones from 
bovine milk (Aresta et al. 2019), polybrominated diphenyl ether (Souza et al. 2019), phthalates in 
cold drinks (Kaur et al., 2016), ochratoxin A and furanic derivatives in wines (Savastano et al. 2016;  
Perestrelo et al. 2015), and polychlorinated biphenyls in bovine serum (Yang et al. 2016), all of 
them resulting in recoveries above 70%. Poorer recoveries were reported for this sorbent when 
applied to pre-concentrate pesticides in sugarcane juice samples (27 to 65%) (Fumes et al. 2016). 
Noteworthy is the work reported by Di Ottavio et al. (Di Ottavio et al. 2017) that accomplished 
the extraction of 25 pesticide and fungicide residues in wheat flour. The target analytes are widely 
used in wheat and present different physico-chemical characteristics; hence, the authors opted for 
highly cross‐linked polystyrene divinylbenzene (HDVB) sorbent. 

Depending on the sample type, different pre-treatments should be adopted. For instance, milk and 
egg samples should undergo a protein precipitation step, whereas fruits and other solid samples should 
be crushed and solubilized under sonication. For all of them, a further centrifugation step and dilution 
should be employed to improve sorbent durability. The different procedures are summarized in 
Table 5.6. 

86                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

4 

M
E

PS
 p

ro
ce

du
re

s 
in

 f
or

en
si

c 
to

xi
co

lo
gy

, 
an

al
yt

ic
al

 i
ns

tr
um

en
ta

tio
n,

 l
im

its
, 

an
d 

re
co

ve
ri

es
 (

20
15

–2
02

0)
   

   
   

   
   

  

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

R
e-

us
e 

   
   

C
oc

ai
ne

 (
C

O
C

),
 

B
en

zo
yl

ec
go

ni
ne

 
(B

E
G

),
 E

cg
on

in
e 

m
et

hy
l 

es
te

r 
(E

M
E

),
 

N
or

co
ca

in
e 

(N
C

O
C

),
 

C
oc

ae
th

yl
en

e 
(C

O
E

T
),

 
A

nh
yd

ro
ec

go
ni

ne
 

m
et

hy
l 

(A
E

M
E

) 

H
ai

r 
(5

0 
m

g)
 

1 
m

L
 o

f 
0.

1 
M

 
hy

dr
oc

hl
or

ic
 

ac
id

 i
nc

ub
at

io
n 

ov
er

ni
gh

t 
at

 
60

 °
C

. 
N

eu
tr

al
iz

at
io

n 
w

ith
 1

00
 μ

L
 o

f 
1M

 s
od

iu
m

 
hy

dr
ox

id
e 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

M
an

ua
l 

M
et

ha
no

l 
an

d 
w

at
er

 
(1

 ×
 2

50
 μ

L
) 

(2
1 

×
 1

50
 μ

L
) 

W
at

er
 a

nd
 

ac
et

at
e 

bu
ff

er
 o

f 
pH

 
4 

(1
 ×

 5
0 

μL
) 

2%
 a

m
m

on
iu

m
 

hy
dr

ox
id

e 
 

in
 m

et
ha

no
l 

(3
 ×

 1
00

 μ
L

) 

1%
 a

m
m

on
ia

  
in

 m
et

ha
no

l–
 

ac
et

on
itr

ile
 

(5
0:

50
, v

/v
) 

an
d 

1%
 f

or
m

ic
 a

ci
d 

 
in

 2
-p

ro
pa

no
l–

 
w

at
er

 (
10

:9
0)

 
(2

 ×
 2

50
 μ

L
) 

G
C

-M
S/

M
S 

0.
01

0 
ng

/m
g 

(C
O

C
) 

0.
02

5 
ng

/m
g 

(B
E

G
) 

0.
02

5 
ng

/m
g 

(E
M

E
) 

0.
02

5 
ng

/m
g 

(N
C

O
C

) 
 

0.
01

0 
ng

/m
g 

(C
O

E
T

) 
 

0.
15

0 
ng

/ 
m

g 
(A

E
M

E
) 

0.
01

0 
ng

/m
g 

(C
O

C
) 

0.
02

5 
ng

/m
g 

(B
E

G
) 

0.
02

5 
ng

/m
g 

(E
M

E
) 

0.
02

5 
ng

/m
g 

(N
C

O
C

) 
0.

01
0 

ng
/m

g 
(C

O
E

T
) 

0.
15

0 
ng

/ 
m

g 
(A

E
M

E
) 

44
–6

5%
 (

C
O

C
) 

 
21

–2
8%

 (
B

E
G

) 
 

1–
3%

 (
E

M
E

) 
 

36
–4

4%
 (

N
C

O
C

) 
 

63
–7

3%
 (

C
O

E
T

) 
4–

6%
 (

A
E

M
E

) 
 

R
os

ad
o 

et
 a

l. 
(2

02
0b

) 

M
et

ha
do

ne
 

(M
E

T
),

 E
D

D
P 

H
ai

r 
(5

0 
m

g)
 

1m
L

 o
f 

1M
 

so
di

um
 

hy
dr

ox
id

e 
fo

r 
45

 m
in

 a
t 5

0 
°C

; 
ne

ut
ra

liz
at

io
n 

w
ith

 1
00

 μ
L

  
of

 2
0%

 f
or

m
ic

  
ac

id
 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

M
an

ua
l 

M
et

ha
no

l 
an

d 
2%

 f
or

m
ic

 
ac

id
 

(3
 ×

 2
50

 μ
L

) 

(9
 ×

 1
50

 μ
L

) 
3.

36
%

 
fo

rm
ic

 a
ci

d 
(3

 ×
 5

0 
μL

) 

2.
36

%
 

am
m

on
iu

m
 

hy
dr

ox
id

e 
 

in
 m

et
ha

no
l 

(6
 ×

 1
00

 μ
L

) 

1%
 a

m
m

on
ia

 i
n 

m
et

ha
no

l–
ac

et
o-

ni
tr

ile
  

(5
0:

50
, v

/v
) 

an
d 

1%
 f

or
m

ic
 a

ci
d 

 
in

 2
-p

ro
pa

no
l–

 
w

at
er

 (
10

:9
0)

 
(4

 ×
 2

50
 μ

L
) 

G
C

-M
S/

M
S 

0.
01

 n
g/

m
g 

(M
E

T
) 

0.
01

 n
g/

m
g 

(E
D

D
P)

 
0.

01
 n

g/
m

g 
(M

E
T

) 
0.

01
 n

g/
m

g 
(E

D
D

P)
 

73
–1

09
%

 (
M

E
T

) 
84

–1
11

%
 (

E
D

D
P)

  
R

os
ad

o 
et

 a
l. 

(2
02

0a
) 

M
et

hy
lo

ne
 

O
ra

l 
flu

id
  

(0
.5

 m
L

) 
10

 μ
L

 o
f 

1 
M

 
ca

rb
on

at
e 

bu
ff

er
 a

t 
pH

 9
.0

 

C
1

8
 (

4 
m

g)
;  

eV
ol

® 
2-

pr
op

an
ol

 
an

d 
w

at
er

 
(1

 ×
 1

00
 μ

L
) 

(5
 ×

 1
00

 μ
L

) 
0.

1 
M

 
ca

rb
on

at
e 

bu
ff

er
 a

t  
pH

 9
.0

 
(1

 ×
 1

00
 μ

L
) 

2-
 p

ro
pa

no
l 

(5
 ×

 1
00

 μ
L

) 
n.

s.
 

IM
S 

4 
ng

/m
L

 
14

 n
g/

m
L

 
78

–9
1%

  
So

rr
ib

es
- 

So
ri

an
o 

et
 a

l. 
(2

02
0)

 

Fe
nt

an
yl

 (
F)

, 
Su

fe
nt

an
il 

(S
uF

),
 

A
lf

en
ta

ni
l 

(A
lF

),
 

A
cr

yl
fe

nt
an

yl
 

(A
cr

yF
),

 T
hi

of
en

ta
ny

l 
(T

hF
),

 
V

al
er

yl
fe

nt
an

yl
 

(V
al

F)
, 

Fu
ra

ny
lf

en
ta

ny
l 

(F
uF

),
 A

ce
ty

l 
fe

nt
an

yl
 

(A
ce

tF
),

 C
ar

fe
nt

an
il 

(C
ar

F)
, 

N
or

fe
nt

an
yl

 
(N

or
F)

, 
A

ce
ty

l 
no

rf
en

ta
ny

l 
(A

ce
tN

or
F)

 

U
ri

ne
 

(0
.2

 m
L

) 
D

ilu
tio

n 
w

ith
 

0.
6 

m
L

 w
at

er
 

C
1

8
 (

n.
s.

);
  

eV
ol

® 
M

et
ha

no
l 

an
d 

w
at

er
 

(2
 ×

 5
0 

μL
) 

(8
 ×

 5
0 

μL
) 

W
at

er
 a

nd
 

is
op

ro
py

l 
al

co
ho

l 
(9

5:
5 

v/
v)

 
(2

 ×
 5

0 
μL

) 

A
ce

to
ni

tr
ile

 
(1

 ×
 5

0 
μL

) 
A

ce
to

ni
tr

ile
: 

m
et

ha
no

l 
m

ix
tu

re
 

(1
:1

 v
/v

) 
an

d 
w

at
er

: 
m

et
ha

no
l 

m
ix

tu
re

 (
95

:5
 v

/v
) 

(4
 ×

 5
0 

μL
) 

L
C

-M
S/

M
S 

0.
1 

ng
/m

L
 (

F)
 

0.
11

 n
g/

m
L

 (
Su

F)
 

0.
1 

ng
/m

L
 (

A
lF

) 
0.

1 
ng

/m
L

 (
A

cr
yF

) 
0.

1 
ng

/m
L

 (
T

hF
) 

0.
1 

ng
/m

L
 (

V
al

F)
 

0.
1 

ng
/m

L
 (

Fu
F)

 
0.

1 
ng

/m
L

 (
A

ce
tF

) 
0.

1 
ng

/m
L

 (
C

ar
F)

 
1 

ng
/m

L
 (

N
or

F)
  

1 
ng

/m
L

 (
A

ce
tN

or
F)

 

1 
ng

/m
L

 (
F)

  
1 

ng
/m

L
 (

Su
F)

  
1 

ng
/m

L
 (

A
lF

) 
 

1 
ng

/m
L

 (
A

cr
yF

) 
1 

ng
/m

L
 (

T
hF

) 
 

1 
ng

/m
L

 (
V

al
F)

  
1 

ng
/m

L
 (

Fu
F)

  
1 

ng
/m

L
 (

A
ce

tF
) 

1 
ng

/m
L

 (
C

ar
F)

  
1 

ng
/m

L
 (

N
or

F)
  

1 
ng

/m
L

 (
A

ce
tN

or
F)

 

28
–3

5%
 (

F)
  

31
–3

2%
 (

Su
F)

  
30

–3
0%

 (
A

lF
) 

 
29

–3
4%

 (
A

cr
yF

) 
 

27
 –

31
%

 (
T

hF
) 

 
32

–3
5%

 (
V

al
F)

  
30

–3
7%

 (
Fu

F)
  

24
–2

7%
 (

A
ce

tF
) 

 
31

–3
4%

 (
C

ar
F)

  
13

–1
4%

 (
N

or
F)

  
5–

6%
 (

A
ce

tN
or

F)
 

da
  C

un
ha

 e
t 

al
.  

(2
02

0)
 

D
ic

hl
or

op
an

e 
O

ra
l 

flu
id

 
(0

.0
9 

m
L

) 
pH

 a
dj

us
te

d 
w

ith
 1

0 
µL

 
ph

os
ph

at
e 

bu
ff

er
 (

1 
M

, 
pH

 7
) 

C
8

 (
4m

g)
;  

eV
ol

® 
2-

pr
op

an
ol

 
(3

 ×
 1

00
 μ

L
) 

an
d 

w
at

er
 

(2
 ×

 1
00

 μ
L

) 

(4
 ×

 1
00

 μ
L

) 
W

at
er

 
(4

 ×
 1

00
 μ

L
) 

2-
pr

op
an

ol
 

(1
0 

×
 5

0 
µL

) 
n.

s.
 

IM
S 

30
 n

g/
m

L
 

90
 n

g/
m

L
 

85
–1

07
%

  
So

rr
ib

es
- 

So
ri

an
o 

et
 a

l. 
 

(2
01

9)
   

   
   

 

G
C

-M
S 

70
 n

g/
m

L
 

20
0 

ng
/m

L
   

(C
on
tin
ue
d

) 

Microextraction by Packed Sorbent                                                                               87 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

4
(C

on
tin

ue
d

)  

M
E

PS
 p

ro
ce

du
re

s 
in

 f
or

en
si

c 
to

xi
co

lo
gy

, 
an

al
yt

ic
al

 i
ns

tr
um

en
ta

tio
n,

 l
im

its
, 

an
d 

re
co

ve
ri

es
 (

20
15

–2
02

0)
   

   
   

   
   

  

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

R
e-

us
e 

   
   

T
ra

m
ad

ol
 (

T
R

M
),

 
C

od
ei

ne
 (

C
O

D
),

 
M

or
ph

in
e 

(M
O

R
),

 6
- 

ac
et

yl
co

de
in

e 
(6

-A
C

),
 

6-
 

m
on

oa
ce

ty
lm

or
ph

in
e 

(6
-M

A
M

),
 

Fe
nt

an
yl

 (
FN

T
) 

H
ai

r 
 

(5
0 

m
g)

 
2 

m
L

 o
f 

m
et

ha
no

l 
in

cu
ba

te
d 

ov
er

ni
gh

t 
at

 
65

°C
; 

ev
ap

or
at

io
n 

an
d 

re
co

ns
tit

ut
io

n 
w

ith
 5

00
 μ

L
 o

f 
2%

 f
or

m
ic

 a
ci

d 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
2%

 f
or

m
ic

 
ac

id
 

(3
 ×

 2
50

 μ
L

) 

(1
5 

×
 1

50
 μ

L
) 

3.
36

%
 

fo
rm

ic
 a

ci
d 

(3
 ×

 5
0 

μL
) 

2.
36

%
 

am
m

on
iu

m
 

hy
dr

ox
id

e 
in

 
m

et
ha

no
l 

(8
 ×

 1
00

 μ
L

) 

1%
 a

m
m

on
iu

m
 

hy
dr

ox
id

e 
in

 
ac

et
on

itr
ile

:m
e-

th
an

ol
 (

1:
1)

 a
nd

 
1%

 f
or

m
ic

 a
ci

d 
in

 
is

op
ro

pa
no

l:w
at

er
 

(1
0:

90
) 

(4
 ×

 2
50

 μ
L

) 

G
C

-M
S/

M
S 

0.
01

0 
ng

/m
g 

(T
R

M
) 

0.
01

0 
ng

/m
g 

(C
O

D
) 

0.
02

5 
ng

/m
g 

(M
O

R
) 

0.
01

0 
ng

/m
g 

(6
-A

C
) 

0.
02

5 
ng

/m
g 

 
(6

-M
A

M
) 

 
0.

02
5 

ng
/m

g 
(F

N
T

) 

0.
01

0 
ng

/m
g 

(T
R

M
) 

0.
01

0 
ng

/m
g 

(C
O

D
) 

0.
02

5 
ng

/m
g 

(M
O

R
) 

0.
01

0 
ng

/m
g 

(6
-A

C
) 

0.
02

5 
ng

/m
g 

 
(6

-M
A

M
) 

 
0.

02
5 

ng
/m

g 
(F

N
T

) 

74
–9

0%
 (

T
R

M
) 

 
51

–5
9%

 (
C

O
D

) 
 

22
–3

5%
 (

M
O

R
) 

 
69

–9
9%

 (
6-

A
C

) 
 

53
–6

1%
 (

6-
M

A
M

) 
 

75
–8

6%
 (

FN
T

) 
 

G
al

la
rd

o 
et

 a
l. 

 
(2

01
9)

 

C
od

ei
ne

 (
C

O
D

),
 

M
or

ph
in

e 
(M

O
R

),
 6

- 
m

on
oa

ce
ty

lm
or

ph
in

e 
(6

-M
A

M
) 

 

B
lo

od
 

(0
.2

5 
m

L
) 

D
ilu

tio
nw

ith
 

0.
4 

m
L

 o
f 

0.
1 

M
 

ph
os

ph
at

e 
bu

ff
er

(p
H

 6
);

 
pr

ot
ei

n 
pr

ec
ip

ita
tio

n 
w

ith
 i

ce
-c

ol
d 

ac
et

on
itr

ile
; 

ce
nt

ri
fu

ga
tio

n,
 

ev
ap

or
at

io
n 

an
d 

ad
di

tio
n 

of
  

8.
5 

m
L

 o
f 

2%
 

fo
rm

ic
 a

ci
d 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
2%

 f
or

m
ic

 
ac

id
 

(3
 ×

 2
50

 μ
L

) 

(2
0 

×
 2

50
 μ

L
) 

3.
36

%
 

fo
rm

ic
 a

ci
d 

(1
 ×

 2
50

 μ
L

) 

2.
36

%
 

am
m

on
iu

m
 

hy
dr

ox
id

e 
in

 
m

et
ha

no
l 

(1
1 

×
 2

50
 μ

L
) 

M
et

ha
no

l 
an

d 
w

at
er

 (
3 

×
25

0 
μL

) 
G

C
-M

S/
M

S 
5 

ng
/m

L
 (

C
O

D
) 

 
5 

ng
/m

L
 (

M
O

R
) 

 
5 

ng
/m

L
 (

6-
M

A
M

) 
 

5 
ng

/m
L

 (
C

O
D

) 
 

5 
ng

/m
L

 (
M

O
R

) 
 

5 
ng

/m
L

 (
6-

M
A

M
) 

 

13
–2

0%
 (

C
O

D
) 

 
6–

8%
 (

M
O

R
) 

 
14

–2
0%

 (
6-

M
A

M
) 

  

Pr
at

a 
et

 a
l. 

 
(2

01
9)

 

A
m

ph
et

am
in

e 
(A

M
P)

, 
M

et
ha

m
ph

et
am

in
e 

(M
A

M
P)

, 
3,

4-
 

m
et

hy
le

ne
di

ox
ya

m
-

ph
et

am
in

e 
(M

D
A

),
 

3,
4-

 
m

et
hy

le
ne

di
ox

ye
th

yl
-

m
et

ha
m

ph
et

am
in

e 
(M

D
M

A
),

 3
,4

- 
m

et
hy

le
ne

di
ox

y-
N

- 
m

et
hy

l-
α-

 
et

hy
lf

en
ile

th
yl

am
in

e 
(M

B
D

B
),

 3
,4

- 
m

et
hy

le
ne

di
ox

y-
N

- 
et

hy
la

m
ph

et
am

in
e 

(M
D

E
) 

U
ri

ne
 

(0
.2

 m
L

) 
D

ilu
tio

n 
w

ith
 

0.
1 

m
L

 o
f 

am
m

on
iu

m
 

ac
et

at
e 

(p
H

 6
.7

) 

C
1

8
 (

4 
m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
w

at
er

 
(1

 ×
 2

50
 μ

L
) 

(9
 ×

 1
00

 μ
L

) 
W

at
er

 
(1

 ×
 1

50
 μ

L
) 

an
d 

w
at

er
:m

e-
th

an
ol

 (
95

:5
) 

(1
 ×

 1
50

 μ
L

) 

2%
 a

m
m

on
iu

m
 

hy
dr

ox
id

e 
in

 
ac

et
on

itr
ile

 
(4

 ×
 1

00
 μ

L
) 

A
m

m
on

iu
m

 
hy

dr
ox

id
e 

in
 

ac
et

on
itr

ile
: 

m
et

ha
no

l 
(1

:1
) 

an
d 

1%
 f

or
m

ic
 

ac
id

 i
n 

is
op

ro
pa

no
l:w

at
er

 
(1

0:
90

) 
(4

 ×
 1

00
 μ

L
) 

G
C

-M
S 

n.
s.

 
35

 n
g/

m
L

 (
A

M
P)

 
25

 n
g/

m
L

 (
M

A
M

P)
 

50
 n

g/
m

L
 (

M
D

A
) 

35
 n

g/
m

L
 (

M
D

M
A

) 
25

 n
g/

m
L

 (
M

B
D

B
) 

25
 n

g/
m

L
 (

M
D

E
) 

32
–4

9%
 (

A
M

P)
  

19
–3

8%
 (

M
A

M
P)

  
30

–4
8%

 (
M

D
A

) 
 

40
–5

2%
 (

M
D

M
A

) 
 

34
–5

0%
 (

M
B

D
B

) 
 

52
–7

1%
 (

M
D

E
) 

 

M
al

ac
a 

et
 a

l. 
 

(2
01

9)
  

88                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

A
zy

np
ho

s-
et

hy
l 

(A
Z

P)
, 

D
ia

zi
no

n 
(D

Z
N

),
 C

hl
or

py
ri

fo
s 

(C
L

P)
, C

hl
or

fe
nv

in
fo

s 
(C

L
F)

, 
Pa

ra
th

io
n-

 
et

hy
l 

(P
R

T
),

 
Q

ui
na

lp
ho

s 
(Q

L
P)

 

B
lo

od
 

(0
.1

 m
L

) 
D

ilu
tio

n 
w

ith
 

50
0 

μL
 o

f 
am

m
on

iu
m

 
ac

et
at

e 
bu

ff
er

 
(p

H
 4

.9
) 

C
1

8
 (

4 
m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
w

at
er

 
(4

 ×
 2

50
 μ

L
) 

(4
0 

×
 1

50
 μ

L
) 

2-
pr

op
an

ol
 

(1
.5

%
) 

in
 

0.
1%

 f
or

m
ic

 
ac

id
 i

n 
w

at
er

 
(1

 ×
 2

5 
µL

) 

M
et

ha
no

l 
(4

 ×
 1

10
 μ

L
) 

M
et

ha
no

l 
(3

 ×
 2

50
 μ

L
) 

G
C

-M
S/

M
S 

n.
s.

 
2.

5 
µg

/m
L

 (
A

Z
P)

  
0.

5 
µg

/m
L

 (
D

Z
N

) 
 

0.
5 

µg
/m

L
 (

C
L

P)
  

0.
5 

µg
/m

L
 (

C
L

F)
  

0.
5 

µg
/m

L
 (

PR
T

) 
 

0.
5 

µg
/m

L
 (

Q
L

P)
 

61
–6

8%
 (

A
Z

P)
  

58
–7

8%
 (

D
Z

N
) 

 
59

–6
8%

 (
C

L
P)

  
64

–7
4%

 (
C

L
F)

  
62

–7
6%

 (
PR

T
) 

70
–7

8%
 (

Q
L

P)
  

Sa
nt

os
 e

t 
al

.  
(2

01
8)

 

Pi
pe

ro
ny

l 
pi

pe
ra

zi
ne

 
(1

) 
M

et
hy

lo
ne

 (
2)

 4
- 

M
E

O
PP

 (
3)

 
D

im
et

hy
lc

at
hi

no
ne

 (
4)

 
B

up
he

dr
on

e 
(5

) 
M

et
he

dr
on

e 
(6

) 
B

ut
hy

lo
ne

 (
7)

 
E

th
ca

th
in

on
e 

(8
) 

M
ep

he
dr

on
e 

(9
) 

4-
 

M
E

C
 (

10
) 

M
et

ho
xe

ta
m

in
e 

(1
1)

 
al

ph
a-

PV
P 

(1
2)

 2
C

-B
 

(1
3)

 3
,4

-M
D

PV
 (

14
) 

A
M

-1
22

0 
(1

5)
 J

W
H

- 
20

0 
(1

6)
 A

B
-0

05
 (

17
) 

JW
H

-0
18

 N
-p

en
ta

no
ic

 
ac

id
 (

18
) 

JW
H

-0
18

 N
- 

(5
-h

yd
ro

xy
pe

nt
yl

) 
(1

9)
 X

L
R

-1
1 

N
-(

4-
 

hy
dr

ox
yp

en
ty

l)
 (

20
) 

M
A

M
-2

20
1 

N
- 

pe
nt

an
oi

c 
ac

id
 (

21
) 

JW
H

-0
73

 (
22

) 
W

IN
- 

55
 (

23
) 

U
R

-1
44

 N
-(

5-
 

hy
dr

ox
yp

en
ty

l)
 (

24
) 

M
A

M
-2

20
1 

(2
5)

 
JW

H
-2

50
 (

26
) 

X
L

R
- 

11
 (

27
) 

JW
H

-0
18

 (
28

) 
JW

H
-0

81
 (

29
) 

JW
H

- 
12

2 
(3

0)
 

O
ra

l 
flu

id
 

(0
.0

9 
m

L
) 

D
ilu

tio
n 

w
ith

 
30

 μ
L

 o
f 

m
et

ha
no

l 
an

d 
60

 μ
L

 o
f 

w
at

er
 

(t
ot

al
 v

ol
um

e 
20

0 
μL

) 

C
1

8
 (

n.
s.

);
 n

.s
. 

M
et

ha
no

l 
(3

 ×
 2

50
 μ

L
);

 
W

at
er

:m
et

ha
-

no
l 

(7
5:

25
,  

v/
v)

 
(3

 ×
 2

50
 μ

L
) 

(5
 ×

 2
50

 μ
L

) 
W

at
er

:m
et

h-
an

ol
 

(9
0:

10
, v

/v
) 

(3
 ×

 2
00

 μ
L

) 

10
 m

M
 f

or
m

ic
 

ac
id

 
(5

 ×
 1

00
 μ

L
) 

n.
s.

 
U

H
PL

C
-M

S/
M

S 
0.

85
0 

ng
/m

L
 (

1)
 

0.
38

5 
ng

/m
L

 (
2)

 
0.

83
0 

ng
/m

L
 (

3)
 

0.
83

0 
ng

/m
L

 (
4)

 
0.

04
5 

ng
/m

L
 (

5)
 

0.
07

0 
ng

/m
L

 (
6)

 
0.

23
0 

ng
/m

L
 (

7)
 

0.
12

6 
ng

/m
L

 (
8)

 
0.

05
0 

ng
/m

L
 (

9)
 

0.
04

5 
ng

/m
L

 (
10

) 
0.

01
2 

ng
/m

L
 (

11
) 

0.
47

0 
ng

/m
L

 (
12

) 
0.

05
0 

ng
/m

L
 (

13
) 

0.
05

3 
ng

/m
L

 (
14

) 
0.

00
5 

ng
/m

L
 (

15
) 

0.
01

2 
ng

/m
L

 (
16

) 
0.

02
0 

ng
/m

L
 (

17
) 

0.
03

6 
ng

/m
L

 (
18

) 
0.

04
5 

ng
/m

L
 (

19
) 

0.
03

5 
ng

/m
L

 (
20

) 
0.

09
3 

ng
/m

L
 (

21
) 

0.
27

5 
ng

/m
L

 (
22

) 
0.

00
5 

ng
/m

L
 (

23
) 

0.
01

7 
ng

/m
L

 (
24

) 
0.

03
0 

ng
/m

L
 (

25
) 

0.
02

0 
ng

/m
L

 (
26

) 
0.

00
9 

ng
/m

L
 (

27
) 

0.
01

2 
ng

/m
L

 (
28

) 
0.

06
0 

ng
/m

L
 (

29
) 

0.
04

5 
ng

/m
L

 (
30

) 

2.
60

0 
ng

/m
L

 (
1)

 
1.

15
0 

ng
/m

L
 (

2)
 

2.
50

0 
ng

/m
L

 (
3)

 
2.

50
0 

ng
/m

L
 (

4)
 

0.
13

5 
ng

/m
L

 (
5)

 
0.

21
0 

ng
/m

L
 (

6)
 

0.
70

0 
ng

/m
L

 (
7)

 
0.

38
0 

ng
/m

L
 (

8)
 

0.
15

0 
ng

/m
L

 (
9)

 
0.

13
0 

ng
/m

L
 (

10
) 

0.
03

5 
ng

/m
L

 (
11

) 
1.

40
0 

ng
/m

L
 (

12
) 

0.
15

0 
ng

/m
L

 (
13

) 
0.

16
0 

ng
/m

L
 (

14
) 

0.
01

5 
ng

/m
L

 (
15

) 
0.

03
5 

ng
/m

L
 (

16
) 

0.
05

5 
ng

/m
L

 (
17

) 
0.

11
0 

ng
/m

L
 (

18
) 

0.
13

5 
ng

/m
L

 (
19

) 
0.

10
0 

ng
/m

L
 (

20
) 

0.
28

0 
ng

/m
L

 (
21

) 
0.

82
0 

ng
/m

L
 (

22
) 

0.
01

5 
ng

/m
L

 (
23

) 
0.

05
0 

ng
/m

L
 (

24
) 

0.
09

0 
ng

/m
L

 (
25

) 
0.

06
0 

ng
/m

L
 (

26
) 

0.
02

5 
ng

/m
L

 (
27

) 
0.

03
5 

ng
/m

L
 (

28
) 

0.
17

0 
ng

/m
L

 (
29

) 
0.

13
5 

ng
/m

L
 (

30
) 

49
–5

3%
 (

1)
  

68
–7

7%
 (

2)
  

85
–9

6%
 (

3)
  

73
–8

5%
 (

4)
  

41
–4

6%
 (

5)
  

40
–4

6%
 (

6)
  

45
–4

9%
 (

7)
  

48
–5

5%
 (

8)
  

31
–4

0%
 (

9)
  

33
–3

6%
 (

10
) 

 
33

–3
8%

 (
11

) 
 

65
–7

2%
 (

12
) 

 
67

–9
6%

 (
13

) 
 

70
–8

4%
 (

14
) 

 
63

–7
0%

 (
15

) 
 

49
–5

2%
 (

16
) 

 
67

–6
8%

 (
17

) 
 

78
–9

2%
 (

18
) 

 
68

–9
1%

 (
19

) 
 

58
–6

8%
 (

20
) 

 
75

–8
0%

 (
21

) 
 

65
–7

4%
 (

22
) 

 
70

–8
9%

 (
23

) 
 

72
–9

5%
 (

24
) 

 
87

–9
6%

 (
25

) 
 

60
–8

4%
 (

26
) 

 
78

–8
9%

 (
27

) 
 

73
–8

6%
 (

28
) 

 
61

–6
9%

 (
29

) 
 

76
–9

3%
 (

30
) 

 

R
oc

ch
i 

et
 a

l. 
 

(2
01

8)
 

T
et

ra
hy

dr
oc

ab
ab

in
ol

 
(T

H
C

),
 1

1-
hy

dr
ox

y-
 

te
tr

ah
yd

ro
ca

ba
bi

no
l 

(1
1-

O
H

-T
H

C
),

 1
1-

 
N

or
-9

-c
ar

bo
xy

- 
te

tr
ah

yd
ro

ca
ba

bi
no

l 
(T

H
C

-C
O

O
H

) 
 

Pl
as

m
a 

(0
.2

5 
m

L
) 

Pr
ot

ei
n 

pr
ec

ip
ita

tio
n;

 
di

lu
tio

n 
w

ith
 

5 
m

L
 o

f 
0.

1 
m

M
 

po
ta

ss
iu

m
 

ph
os

ph
at

e 
bu

ff
er

 (
pH

 =
 6

) 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
0.

1%
 f

or
m

ic
 

ac
id

 
(4

 ×
 2

50
 μ

L
) 

(2
6 

×
 2

50
 μ

L
) 

3%
 a

ce
tic

 
ac

id
 a

nd
 5

%
 

m
et

ha
no

l 
(1

 ×
 1

00
 μ

L
) 

10
%

 
am

m
on

iu
m

 
hy

dr
ox

id
e 

in
 

m
et

ha
no

l 
(6

 ×
 1

00
 μ

L
) 

n.
s.

 
G

C
-M

S/
M

S 
0.

1 
ng

/m
L

 (
T

H
C

) 
0.

1 
ng

/m
L

 (
11

-O
H

- 
T

H
C

) 
0.

1 
ng

/m
L

 
(T

H
C

-C
O

O
H

) 
 

0.
1 

ng
/m

L
 (

T
H

C
) 

0.
1 

ng
/m

L
 (

11
-O

H
- 

T
H

C
) 

0.
1 

ng
/m

L
 

(T
H

C
-C

O
O

H
) 

 

53
–7

8%
 (

T
H

C
) 

 
57

–6
6%

 (
11

-O
H

- 
T

H
C

) 
62

–6
5%

 
(T

H
C

-C
O

O
H

) 
  

R
os

ad
o 

et
 a

l. 
(2

01
7b

) 

(C
on
tin
ue
d

) 

Microextraction by Packed Sorbent                                                                               89 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

4
(C

on
tin

ue
d

)  

M
E

PS
 p

ro
ce

du
re

s 
in

 f
or

en
si

c 
to

xi
co

lo
gy

, 
an

al
yt

ic
al

 i
ns

tr
um

en
ta

tio
n,

 l
im

its
, 

an
d 

re
co

ve
ri

es
 (

20
15

–2
02

0)
   

   
   

   
   

  

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

R
e-

us
e 

   
   

C
oc

ai
ne

 (
C

O
C

),
 

B
en

zo
yl

ec
go

ni
ne

 
(B

E
G

),
 E

cg
on

in
e 

m
et

hy
l 

es
te

r 
(E

M
E

) 

U
ri

ne
 

(0
.2

 m
L

) 
C

en
tr

if
ug

ed
 a

t 
4,

50
0 

rp
m

 
du

ri
ng

 1
5 

m
in

; 
10

0 
μL

 o
f 

0.
1 

m
M

 
po

ta
ss

iu
m

 
ph

os
ph

at
e 

bu
ff

er
 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
0.

1%
 f

or
m

ic
 

ac
id

 
(1

 ×
 2

50
 μ

L
) 

(6
 ×

 1
50

 μ
L

) 
0.

1%
 f

or
m

ic
 

ac
id

 
(4

 ×
 5

0 
μL

) 

1%
 a

m
m

on
iu

m
 

hy
dr

ox
id

e 
in

 
m

et
ha

no
l 

(4
 ×

 1
00

 μ
L

) 

1%
 a

m
m

on
ia

 i
n 

m
et

ha
no

l–
ac

et
o-

ni
tr

ile
 (

50
:5

0,
  

v/
v)

 a
nd

 1
%

 
fo

rm
ic

 a
ci

d 
in

  
2-

pr
op

an
ol

–w
at

er
 

(1
0:

90
) 

(4
 ×

 1
00

 μ
L

) 

G
C

-M
S 

25
 n

g/
m

L
 (

C
O

C
) 

25
 n

g/
m

L
 (

B
E

G
) 

25
 n

g/
m

L
 (

E
M

E
) 

25
 n

g/
m

L
 (

C
O

C
) 

25
 n

g/
m

L
 (

B
E

G
) 

25
 n

g/
m

L
 (

E
M

E
) 

67
–8

3%
 (

C
O

C
) 

 
25

–4
4%

 (
B

E
G

) 
15

–3
7%

 (
E

M
E

) 
 

R
os

ad
o 

et
 a

l. 
(2

01
7a

) 

M
or

ph
in

e 
(1

) 
N

al
ox

on
e 

(2
) 

M
et

hy
lo

ne
 (

3)
 

Fl
ep

he
dr

on
e 

(4
) 

E
th

yl
ca

th
in

on
e 

(5
) 

E
th

yl
ca

th
in

on
e 

ep
he

dr
in

e 
(6

) 
Sc

op
ol

am
in

e 
(7

) 
6-

 
m

on
oa

ce
ty

lm
or

ph
in

e 
(6

-M
A

M
) 

(8
) 

E
th

yl
on

e 
(9

) 
M

et
hy

le
ph

ed
ri

ne
 (

10
) 

B
ut

yl
on

e 
(1

1)
 

M
ep

he
dr

on
e 

(1
2)

 
Pe

nt
ed

ro
ne

 (
13

) 
B

en
zo

yl
ec

go
ni

ne
 

(B
E

G
) 

(1
4)

 C
oc

ai
ne

 
(1

5)
 

M
et

hy
le

ne
di

ox
yp

yr
o-

va
le

ro
ne

 (
M

D
PV

) 
(1

6)
 C

oc
ae

th
yl

en
e 

(1
7)

 P
yr

ov
al

er
on

e 
(1

8)
 E

D
D

P 
(1

9)
 

B
up

re
no

rp
hi

ne
 (

20
) 

M
et

ha
do

ne
 (

21
) 

O
ra

l 
flu

id
 

(0
.3

 m
L

) 

20
0 

μL
 o

f 
m

et
ha

no
l; 

sh
ak

en
; 

ce
nt

ri
fu

ga
tio

n;
 

30
0 

μL
 o

f 
su

pe
rn

at
an

t 
di

lu
tio

n 
w

ith
 

20
0 

μL
 o

f 
ph

os
ph

at
e 

bu
ff

er
 (

50
 m

M
, 

pH
 9

) 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

eV
ol

® 

M
et

ha
no

l 
an

d 
w

at
er

 
(1

 ×
 1

00
 μ

L
) 

(6
 ×

 1
00

 μ
L

) 
W

at
er

/ 
m

et
ha

no
l 

90
:1

0 
(v

:v
) 

(1
 ×

 5
0 

μL
) 

D
ic

hl
or

om
et

h-
an

e/
2-

 
pr

op
an

ol
/ 

am
m

on
iu

m
 

hy
dr

ox
id

e 
(7

8:
20

:2
, 

v-
 

v:
v)

 
(1

 ×
 9

0 
μL

) 

E
lu

en
t 

an
d 

m
et

ha
no

l 
(1

 ×
 1

00
 μ

L
);

 
w

at
er

, 
0.

1%
 

fo
rm

ic
 a

ci
d 

an
d 

m
et

ha
no

l 
(4

 ×
 1

00
 μ

L
) 

U
H

PL
C

-M
S/

M
S 

2.
5 

ng
/m

L
 (

1)
  

0.
5 

ng
/m

L
 (

2)
 

0.
25

 n
g/

m
L

 (
3)

 
0.

25
 n

g/
m

L
 (

4)
 

0.
25

 n
g/

m
L

 (
5)

 
0.

25
 n

g/
m

L
 (

6)
  

1 
ng

/m
L

 (
7)

  
1 

ng
/m

L
 (

8)
  

0.
25

 n
g/

m
L

 (
9)

 
0.

25
 n

g/
m

L
 (

10
) 

0.
25

 n
g/

m
L

 (
11

) 
0.

25
 n

g/
m

L
 (

12
) 

0.
25

 n
g/

m
L

 (
13

) 
0.

5 
ng

/m
L

 (
14

) 
0.

25
 n

g/
m

L
 (

15
) 

0.
25

 n
g/

m
L

 (
16

) 
0.

25
 n

g/
m

L
 (

17
) 

0.
25

 n
g/

m
L

 (
18

) 
0.

25
 n

g/
m

L
 (

19
) 

0.
25

 n
g/

m
L

 (
20

) 
0.

25
 n

g/
m

L
 (

21
) 

10
 n

g/
m

L
 (

1)
  

1 
ng

/m
L

 (
2)

  
0.

5 
ng

/m
L

 (
3)

  
0.

5 
ng

/m
L

 (
4)

  
0.

5 
ng

/m
L

 (
5)

  
0.

5 
ng

/m
L

 (
6)

  
2.

5 
ng

/m
L

 (
7)

  
2.

5 
ng

/m
L

 (
8)

  
0.

5 
ng

/m
L

 (
9)

  
0.

5 
ng

/m
L

 (
10

) 
0.

5 
ng

/m
L

 (
11

) 
0.

5 
ng

/m
L

 (
12

) 
0.

5 
ng

/m
L

 (
13

) 
 

1 
ng

/m
L

 (
14

) 
 

0.
5 

ng
/m

L
 (

15
) 

0.
5 

ng
/m

L
 (

16
) 

0.
5 

ng
/m

L
 (

17
) 

0.
5 

ng
/m

L
 (

18
) 

0.
5 

ng
/m

L
 (

19
) 

0.
5 

ng
/m

L
 (

20
) 

0.
5 

ng
/m

L
 (

21
) 

22
–8

7%
 (

1)
  

94
–1

07
%

 (
2)

  
75

–9
3%

 (
3)

  
60

–1
00

%
 (

4)
  

10
0–

12
5%

 (
5)

  
84

–1
06

%
 (

6)
  

44
–8

6%
 (

7)
  

86
–9

9%
 (

8)
  

91
–1

10
%

 (
9)

  
87

–1
01

%
 (

10
) 

 
84

–1
25

%
 (

11
) 

 
86

–1
24

%
 (

12
) 

 
75

–9
9%

 (
13

) 
 

85
–1

12
%

 (
14

) 
 

79
–1

05
%

 (
15

) 
 

72
–9

2%
 (

16
) 

 
87

–1
08

%
 (

17
) 

 
92

–1
02

%
 (

18
) 

 
90

–1
04

%
 (

19
) 

 
92

–1
07

%
 (

20
) 

82
–1

11
%

 (
21

) 
 

A
re

s 
et

 a
l. 

 
(2

01
7)

 

C
hl

or
di

az
ep

ox
id

e 
(C

L
D

),
 M

ed
az

ep
am

 
(M

D
P)

, 
L

or
az

ep
am

 
(L

Z
P)

, 
O

xa
ze

pa
m

 
(O

Z
P)

, 
D

ia
ze

pa
m

 (
D

Z
P)

 

A
lc

oh
ol

ic
 

be
ve

ra
ge

 
D

ilu
tio

n 
w

ith
 

w
at

er
 i

n 
1:

5 
ra

tio
 (

v/
v)

 

C
1

8
 

(n
.s

.)
; 

eV
ol

® 
A

ce
to

ni
tr

ile
 

an
d 

w
at

er
 

(3
 ×

 1
00

 μ
L

) 

(6
 ×

 1
00

 μ
L

) 
n.

s.
 

A
ce

to
ni

tr
ile

 
an

d 
w

at
er

 
90

:1
0 

(v
/v

),
 

bo
th

 a
ci

di
fie

d 
w

ith
 0

.1
%

 
fo

rm
ic

 a
ci

d 
(3

 ×
 1

00
 μ

L
) 

2-
n-

pr
op

an
ol

 
(2

 ×
 1

00
 μ

L
) 

U
H

PL
C

-U
V

 
1 

µg
/m

L
 (

C
L

D
) 

0.
5 

µg
/m

L
 (

M
D

P)
 

0.
5 

µg
/m

L
 (

L
Z

P)
 

0.
5 

µg
/m

L
 (

O
Z

P)
 

0.
5 

µg
/m

L
 (

D
Z

P)
 

2 
µg

/m
L

 (
C

L
D

) 
 

1 
µg

/m
L

 (
M

D
P)

  
1 

µg
/m

L
 (

L
Z

P)
  

1 
µg

/m
L

 (
O

Z
P)

  
1 

µg
/m

L
 (

D
Z

P)
 

61
–6

4%
 (

C
L

D
) 

 
61

–6
7%

 (
M

D
P)

  
81

–8
7%

 (
L

Z
P)

  
88

–9
1%

 (
O

Z
P)

 
70

–7
2%

 (
D

Z
P)

  

M
ag

ri
ni

 e
t 

al
.  

(2
01

6)
  

90                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

N
or

ke
ta

m
in

e 
(N

K
),

 
K

et
am

in
e 

(K
) 

Pl
as

m
a 

(0
.2

5 
m

L
) 

D
ilu

tio
n 

w
ith

 
7 

m
L

 o
f 

ph
os

ph
at

e 
bu

ff
er

 

M
1 

(8
0%

 C
8

 

an
d 

20
%

 
SC

X
) 

(4
 m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
(5

 ×
 2

50
 μ

L
) 

an
d 

w
at

er
 

(4
 ×

 2
50

 μ
L

) 

(2
6 

×
 2

50
 μ

L
) 

0.
1%

 a
ce

tic
 

ac
id

 
(1

 ×
 1

00
 μ

L
) 

an
d 

10
%

 
m

et
ha

no
l 

(1
 ×

 1
00

 μ
L

) 

6%
 a

m
m

on
ia

 
in

 m
et

ha
no

l 
(1

 ×
 1

00
 μ

L
) 

M
et

ha
no

l 
(5

 ×
 2

50
 μ

L
) 

an
d 

w
at

er
 

(4
 ×

 2
50

 μ
L

) 

G
C

-M
S/

M
S 

5 
ng

/m
L

 (
N

K
) 

 
5 

ng
/m

L
 (

K
) 

10
 n

g/
m

L
 (

N
K

) 
10

 n
g/

m
L

 (
K

) 
63

–7
5%

(N
K

) 
 

73
–8

9%
 (

K
) 

 
M

or
en

o 
et

 a
l. 

 
(2

01
5)

 

U
ri

ne
 

(0
.2

 5
m

L
) 

D
ilu

tio
n 

w
ith

 
0.

25
 m

L
 o

f 
w

at
er

 

(8
 ×

 2
50

 μ
L

) 
5.

25
%

 a
ce

tic
 

ac
id

 
(1

 ×
 2

50
 μ

L
) 

an
d 

5%
 

m
et

ha
no

l 
in

 
w

at
er

 
(1

 ×
 1

00
 μ

L
) 

3%
 a

m
m

on
ia

 
in

 m
et

ha
no

l 
(1

 ×
 1

00
 μ

L
) 

73
–7

6%
(N

K
) 

89
–1

01
%

 (
K

) 

A
m

ph
et

am
in

e 
(A

M
P)

 
(1

) 
B

en
zo

yl
ec

go
ni

ne
 

(B
E

G
) 

(2
) 

B
up

re
no

rp
hi

ne
 (

3)
 

C
oc

ai
ne

 (
C

O
C

) 
(4

) 
C

od
ei

ne
 (

C
O

D
) 

(5
) 

D
ia

ce
ty

lm
or

ph
in

e 
(6

) 
E

cg
on

in
e 

m
et

hy
le

st
er

 
(E

M
E

) 
(7

) 
E

D
D

P 
(8

) 
K

et
am

in
e 

(9
) 

3,
4-

 
m

et
hy

le
ne

di
ox

ya
m

-
ph

et
am

in
e 

(M
D

A
) 

(1
0)

 
M

et
hy

ld
ie

th
an

ol
am

in
e 

(M
D

E
A

) 
(1

1)
 3

,4
- 

m
et

hy
le

ne
di

ox
ye

th
yl

-
m

et
ha

m
ph

et
am

in
e 

(M
D

M
A

) 
(1

2)
 

M
es

ca
lin

e 
(1

3)
 

M
et

ha
do

ne
 (

14
) 

M
et

ha
m

ph
et

am
in

e 
(M

A
M

P)
 (

15
) 

M
or

ph
in

e 
(M

O
R

) 
(1

6)
 

N
or

bu
pr

en
or

ph
in

e 
(1

7)
 N

or
co

ca
in

e 
(N

C
O

C
) 

(1
8)

 
Ph

en
cy

cl
id

in
e 

(1
9)

 

O
ra

l 
flu

id
 

(0
.1

2 
m

L
) 

D
ilu

tio
n 

w
ith

 
80

 μ
L

 o
f 

w
at

er
 

an
d 

40
 μ

L
 o

f 
25

 m
M

 N
H

3 
in

 
m

et
ha

no
l; 

so
ni

ca
tio

n 
an

d 
ce

nt
ri

fu
ga

tio
n 

C
1

8
 (

n.
s.

);
 n

.s
. 

M
et

ha
no

l 
an

d 
w

at
er

/ 
m

et
ha

no
l 

(8
0:

20
, v

/v
) 

(2
 ×

 2
50

 μ
L

) 

(5
 ×

 2
50

 μ
L

) 
50

 m
M

 N
H

3 
in

 w
at

er
/ 

m
et

ha
no

l 
(9

0:
10

, v
/v

) 
(3

 ×
 1

00
 μ

L
) 

5 
m

M
 f

or
m

ic
 

ac
id

 i
n 

m
et

ha
no

l 
(5

 ×
 1

00
 μ

L
) 

n.
s.

 
L

C
-M

S/
M

S 
1 

ng
/m

L
 (

1)
  

0.
8 

ng
/m

L
 (

2)
  

2 
ng

/m
L

 (
3)

  
0.

3 
ng

/m
L

 (
4)

  
2 

ng
/m

L
 (

5)
  

10
 n

g/
m

L
 (

6)
  

1 
ng

/m
L

 (
7)

  
0.

3 
ng

/m
L

 (
8)

  
0.

5 
ng

/m
L

 (
9)

  
1 

ng
/m

L
 (

10
) 

 
0.

5 
ng

/m
L

 (
11

) 
0.

5 
ng

/m
L

 (
12

) 
 

2 
ng

/m
L

 (
13

) 
 

0.
2 

ng
/m

L
 (

14
) 

 
1 

ng
/m

L
 (

15
) 

 
2 

ng
/m

L
 (

16
) 

 
2 

ng
/m

L
 (

17
) 

 
0.

5 
ng

/m
L

 (
18

) 
0.

2 
ng

/m
L

 (
19

) 

3 
ng

/m
L

 (
1)

  
2 

ng
/m

L
 (

2)
  

5 
ng

/m
L

 (
3)

  
2 

ng
/m

L
 (

4)
  

5 
ng

/m
L

 (
5)

  
30

 n
g/

m
L

 (
6)

  
4 

ng
/m

L
 (

7)
  

0.
8 

ng
/m

L
 (

8)
  

1.
5 

ng
/m

L
 (

9)
  

3 
ng

/m
L

 (
10

) 
 

1 
ng

/m
L

 (
11

) 
 

1 
ng

/m
L

 (
12

) 
 

5 
ng

/m
L

 (
13

) 
 

0.
5 

ng
/m

L
 (

14
) 

 
3 

ng
/m

L
 (

15
) 

 
5 

ng
/m

L
 (

16
) 

 
5 

ng
/m

L
 (

17
) 

 
1.

5 
ng

/m
L

 (
18

) 
0.

6 
ng

/m
L

 (
19

) 

90
%

 (
1)

 2
5%

 (
2)

  
67

%
 (

3)
 8

2%
 (

4)
  

10
0%

 (
5)

 1
01

%
 (

6)
  

18
%

 (
7)

 7
5%

 (
8)

  
79

%
 (

9)
 8

1%
 (

10
) 

 
85

%
 (

11
) 

90
%

 (
12

) 
 

78
%

 (
13

) 
74

%
 (

14
) 

 
88

%
 (

15
) 

70
%

 (
16

) 
 

70
%

 (
17

) 
88

%
 (

18
) 

71
%

 (
19

) 
 

M
on

te
sa

no
 

et
 a

l. 
(2

01
5)

   

D
A

D
 (

di
od

e 
ar

ra
y 

de
te

ct
or

);
 G

C
 (

ga
s 

ch
ro

m
at

og
ra

ph
y)

; 
H

PL
C

 (
hi

gh
-p

er
fo

rm
an

ce
 l

iq
ui

d 
ch

ro
m

at
og

ra
ph

y)
; 

IM
S 

(i
on

 m
ob

ili
ty

 s
pe

ct
ro

m
et

ry
);

 L
C

 (
liq

ui
d 

ch
ro

m
at

og
ra

ph
y)

; 
L

O
D

 (
lim

it 
of

 
de

te
ct

io
n)

; 
L

O
Q

 (
lim

it 
of

 q
ua

nt
ifi

ca
tio

n)
; 

M
S 

(m
as

s 
sp

ec
tr

om
et

ry
);

 M
S/

M
S 

(t
an

de
m

 m
as

s 
sp

ec
tr

om
et

ry
);

 U
H

PL
C

 (
ul

tr
a 

hi
gh

-p
er

fo
rm

an
ce

 l
iq

ui
d 

ch
ro

m
at

og
ra

ph
y)

; 
U

V
 (

ul
tr

av
io

le
t)

.  

Microextraction by Packed Sorbent                                                                               91 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

5 

M
E

PS
 p

ro
ce

du
re

s 
in

 e
nv

ir
on

m
en

ta
l 

to
xi

co
lo

gy
, 

an
al

yt
ic

al
 i

ns
tr

um
en

ta
tio

n,
 l

im
its

, 
an

d 
re

co
ve

ri
es

 (
20

15
–2

02
0)

   
   

   
   

   
  

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

re
-u

se
   

   
 

N
ap

ht
ha

le
ne

 (
N

),
 

Fl
uo

re
ne

 (
F)

, 
Fl

uo
ra

nt
he

ne
 (

FT
),

 
Ph

en
an

th
re

ne
 (

PT
),

 
Py

re
ne

 (
PY

) 

So
il 

(1
0 

g)
 

15
 m

in
  

pr
e-

he
at

in
g 

vi
al

 a
t  

15
0 

°C
 

A
m

in
oe

th
yl

 
fu

nc
tio

na
liz

ed
 

SB
A

-1
5 

 
(S

B
A

-1
5-

N
H

2)
 

(2
 m

g)
; 

T
em

pe
ra

tu
re

  
of

 0
 °

C
 t

 

M
et

ha
no

l 
(1

0 
×

 1
00

 µ
L

) 
H

ea
ds

pa
ce

 
(1

0 
×

 1
00

 µ
L

) 
n.

s.
 

M
et

ha
no

l 
(1

0 
×

 4
00

 µ
L

) 
M

et
ha

no
l 

(1
0 

×
 1

00
 µ

L
) 

H
PL

C
 -

U
V

 
0.

08
3 

ng
/g

 (
N

) 
0.

02
5 

ng
/g

 (
F)

 
0.

01
4 

ng
/g

 (
FT

) 
0.

02
8 

ng
/g

 (
PT

) 
0.

04
3 

ng
/g

 (
PY

) 

0.
25

0 
ng

/g
 (

N
) 

 
0.

07
5 

ng
/g

 (
F)

  
0.

04
2 

ng
/g

 (
FT

) 
 

0.
08

4 
ng

/g
 (

PT
) 

 
0.

13
0 

ng
/g

 (
PY

) 

25
%

 (
N

) 
 

8%
 (

F)
  

72
%

 (
FT

) 
 

65
%

 (
PT

) 
 

78
%

 (
PY

) 

( S
er

en
je

h 
et

 a
l. 

 
20

20
) 

N
itr

ob
en

ze
ne

 (
N

B
),

  
2-

N
itr

ot
ol

ue
ne

 (
2-

N
T

),
 

3-
N

itr
ot

ol
ue

ne
 (

3-
N

T
),

 
4-

N
itr

ot
ol

ue
ne

 (
4-

N
T

),
 

2,
6-

D
in

itr
ot

ol
ue

ne
  

(2
,6

-D
N

T
),

1,
3-

 
D

in
itr

ob
en

ze
ne

  
(1

,3
-D

N
B

),
 2

,4
- 

D
in

itr
ot

ol
ue

ne
  

(2
,4

-D
N

T
),

 2
,4

, 
6-

T
ri

ni
tr

ot
ol

ue
ne

  
(2

,4
,6

-T
N

T
),

 1
,3

, 
5-

T
ri

ni
tr

ob
en

ze
ne

 
(1

,3
,5

-T
N

B
),

 4
-A

m
in

o-
 

2,
6-

di
ni

tr
ot

ol
ue

ne
  

(4
-A

m
-2

,6
-D

N
T

),
  

2-
A

m
in

o-
4,

6-
 

di
ni

tr
ot

ol
ue

ne
  

(2
-A

m
-4

,6
-D

N
T

),
  

2,
4,

6-
T

ri
ni

tr
op

he
ny

l-
 

N
m

et
hy

ln
itr

am
in

e 
(T

et
ry

l)
 

R
iv

er
 

w
at

er
 (

1 
m

L
) 

Fi
lte

re
d 

n.
s.

 
C

1
8

 (
4 

m
g)

; 
M

an
ua

l. 
M

et
ha

no
l 

an
d 

w
at

er
 

(1
 ×

 1
00

 µ
L

) 

(1
0 

×
 5

0 
μL

) 
n.

s.
 

M
et

ha
no

l 
(1

 ×
 3

0 
μL

) 
M

et
ha

no
l 

an
d 

w
at

er
 

(3
 ×

 1
00

 µ
L

) 

G
C

-M
S 

0.
01

4 
to

  
0.

82
8 

ng
/m

L
 (

n.
s.

) 
0.

01
4 

to
  

0.
82

8 
ng

/m
L

 (
n.

s.
) 

0.
04

6 
to

  
2.

73
2 

ng
/m

L
 (

n.
s.

) 
 

0.
04

6 
to

  
2.

73
2 

ng
/m

L
 (

n.
s.

) 

93
–9

6%
 (

N
B

) 
 

92
–9

8%
 (

2-
N

T
) 

 
93

–9
8%

 (
3-

N
T

) 
 

93
–9

7%
 (

4-
N

T
) 

 
93

–9
6%

 (
2,

6-
D

N
T

) 
 

93
–9

6%
 (

1,
3-

D
N

B
) 

 
91

–9
6%

 (
2,

4-
D

N
T

) 
 

92
–9

6%
 (

2,
4,

6-
T

N
T

) 
 

92
–9

4%
 (

1,
3,

5-
T

N
B

) 
 

90
–9

2%
  

(4
-A

m
-2

,6
-D

N
T

) 
91

–9
2%

  
(2

-A
m

-4
,6

-D
N

T
) 

92
–9

5%
 (

T
et

ry
l)

 

( D
hi

ng
ra

 e
t 

al
.  

20
18

) 

G
ro

un
d 

w
at

er
 (

1 
m

L
) 

94
–9

8%
 (

N
B

) 
 

93
–9

8%
 (

2-
N

T
) 

 
93

–9
8%

 (
3-

N
T

) 
 

93
–9

7%
 (

4-
N

T
) 

 
94

–9
8%

 (
2,

6-
D

N
T

) 
 

94
–9

8%
 (

1,
3-

D
N

B
) 

 
94

–9
6%

 (
2,

4-
D

N
T

) 
 

94
–9

6%
 (

2,
4,

6-
T

N
T

) 
 

91
–9

5%
 (

1,
3,

5-
T

N
B

) 
 

90
–9

3%
  

(4
-A

m
-2

,6
-D

N
T

) 
91

–9
2%

 
(2

-A
m

-4
,6

-D
N

T
) 

95
–9

7%
 (

T
et

ry
l)

  

92                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

tr
ip

ro
py

l 
ph

os
ph

at
e 

(T
PP

),
 t

ri
bu

ty
l 

ph
os

ph
at

e 
(T

B
P)

,  
tr

is
(2

-c
hl

or
oe

th
yl

) 
ph

os
ph

at
e 

(T
C

E
P)

,  
tr

is
(1

-c
hl

or
o2

-p
ro

py
l)

, 
ph

os
ph

at
e 

(T
C

PP
),

  
tr

is
 (

1,
3-

di
ch

lo
ro

- 
2-

pr
op

yl
),

 p
ho

sp
ha

te
 

(T
D

C
PP

),
  

tr
is

(2
-b

ut
ox

ye
th

yl
) 

ph
os

ph
at

e 
(T

B
E

P)
, 

tr
ip

he
ny

l 
ph

os
ph

at
e 

(T
Ph

P)
, 

(2
-e

th
yl

he
xy

l)
 

-d
ip

he
ny

l 
ph

os
ph

at
e 

(E
H

D
PP

),
  

tr
is

(2
-e

th
yl

he
xy

l)
 

ph
os

ph
at

e 
(T

E
H

P)
, 

tr
ic

re
sy

lp
ho

sp
ha

te
 

(T
C

P)
 

T
ap

 
w

at
er

 
(5

0 
m

L
) 

Fi
ltr

at
ed

 
th

ro
ug

h 
0.

45
 μ

m
 

fil
te

rs
 

si
lic

a-
D

V
B

 
(4

 m
g)

; 
eV

ol
® 

M
et

ha
no

l 
an

d 
w

at
er

 
(2

 ×
 2

50
 µ

L
) 

(4
 ×

 5
00

 µ
L

) 
n.

s.
 

A
ce

to
ni

tr
ile

 
(3

 ×
 2

0 
μL

) 
A

ce
to

ni
tr

ile
 

(7
 ×

 2
50

 μ
L

) 
G

C
-M

S/
M

S 
2.

7 
ng

/L
 (

T
PP

) 
11

 n
g/

L
 (

T
B

P)
 

12
 n

g/
L

 (
T

C
E

P)
 

13
 n

g/
L

 (
T

C
PP

) 
22

 n
g/

L
 (

T
D

C
PP

) 
87

 n
g/

L
 (

T
B

E
P)

 
13

 n
g/

L
 (

T
Ph

P)
 

23
 n

g/
L

 (
E

H
D

PP
) 

26
 n

g/
L

 (
T

E
H

P)
 

99
 n

g/
L

 (
T

C
P)

 

10
 n

g/
L

 (
T

PP
) 

 
25

 n
g/

L
 (

T
B

P)
  

25
 n

g/
L

 (
T

C
E

P)
  

25
 n

g/
L

 (
T

C
PP

) 
 

50
 n

g/
L

 (
T

D
C

PP
) 

20
0 

ng
/L

 (
T

B
E

P)
  

25
 n

g/
L

 (
T

Ph
P)

  
50

 n
g/

L
 (

E
H

D
PP

) 
 

50
 n

g/
L

 (
T

E
H

P)
  

20
0 

ng
/L

 (
T

C
P)

 

88
–9

4%
 (

T
PP

) 
 

66
–7

9%
 (

T
B

P)
  

76
–9

7%
 (

T
C

E
P)

  
82

–9
7%

 (
T

C
PP

) 
 

82
–9

2%
 (

T
D

C
PP

) 
 

71
 –

81
%

 (
T

B
E

P)
  

71
–7

9%
 (

T
Ph

P)
  

65
–7

2%
 (

E
H

D
PP

) 
 

63
 –

67
%

 (
T

E
H

P)
 

73
–8

3%
 (

T
C

P)
 

( N
ac

ca
ra

to
  

et
 a

l. 
20

17
) 

R
iv

er
 

w
at

er
 

(5
0 

m
L

) 

2.
9 

ng
/L

 (
T

PP
) 

10
 n

g/
L

 (
T

B
P)

 
12

 n
g/

L
 (

T
C

E
P)

 
13

 n
g/

L
 (

T
C

PP
) 

24
 n

g/
L

 (
T

D
C

PP
) 

95
 n

g/
L

 (
T

B
E

P)
 

12
 n

g/
L

 (
T

Ph
P)

 
24

 n
g/

L
 (

E
H

D
PP

) 
28

 n
g/

L
 (

T
E

H
P)

 
97

 n
g/

L
 (

T
C

P)
 

81
–8

7%
 (

T
PP

) 
 

76
–8

8%
 (

T
B

P)
  

68
–9

2%
 (

T
C

E
P)

  
67

–7
9%

 (
T

C
PP

) 
 

72
–7

8%
 (

T
D

C
PP

) 
 

67
 –

77
%

 (
T

B
E

P)
  

74
–8

0%
 (

T
Ph

P)
  

59
–6

8%
 (

E
H

D
PP

) 
 

59
 –

64
%

 (
T

E
H

P)
  

71
–8

1%
 (

T
C

P)
 

W
as

te
w

at
er

 
(5

0 
m

L
) 

3.
0 

ng
/L

 (
T

PP
) 

12
 n

g/
L

 (
T

B
P)

 
12

 n
g/

L
 (

T
C

E
P)

 
13

 n
g/

L
 (

T
C

PP
) 

25
 n

g/
L

 (
T

D
C

PP
) 

10
1 

ng
/L

 (
T

B
E

P)
 

13
 n

g/
L

 (
T

Ph
P)

 
28

 n
g/

L
 (

E
H

D
PP

) 
28

 n
g/

L
 (

T
E

H
P)

 
10

7 
ng

/L
 (

T
C

P)
 

68
–7

2%
 (

T
PP

) 
 

62
–8

7%
 (

T
B

P)
  

64
–7

8%
 (

T
C

E
P)

  
61

–7
3%

 (
T

C
PP

) 
 

71
–8

2%
 (

T
D

C
PP

) 
 

63
 –

66
%

 (
T

B
E

P)
  

66
–6

8%
 (

T
Ph

P)
  

62
–7

1%
 (

E
H

D
PP

) 
 

58
 –

63
%

 (
T

E
H

P)
  

67
–7

8%
 (

T
C

P)
   

G
C

 (
ga

s 
ch

ro
m

at
og

ra
ph

y)
; 

H
PL

C
 (

hi
gh

-p
er

fo
rm

an
ce

 l
iq

ui
d 

ch
ro

m
at

og
ra

ph
y)

; 
L

O
D

 (
lim

it 
of

 d
et

ec
tio

n)
; 

L
O

Q
 (

lim
it 

of
 q

ua
nt

ifi
ca

tio
n)

; 
M

S 
(m

as
s 

sp
ec

tr
om

et
ry

);
 M

S/
M

S 
(t

an
de

m
 m

as
s 

sp
ec

tr
om

et
ry

);
 U

V
 (

ul
tr

av
io

le
t)

.  

Microextraction by Packed Sorbent                                                                               93 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

6 

M
E

PS
 p

ro
ce

du
re

s 
in

 f
oo

d 
to

xi
co

lo
gy

, 
an

al
yt

ic
al

 i
ns

tr
um

en
ta

tio
n,

 l
im

its
, 

an
d 

re
co

ve
ri

es
 (

20
15

–2
02

0)
   

   
   

   
   

 

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

R
e-

us
e 

   
   

A
ce

na
ph

th
yl

en
e 

(1
) 

A
ce

na
ph

th
en

e 
(2

) 
Fl

uo
re

ne
 (

3)
 

Ph
en

an
th

re
ne

 (
4)

 
A

nt
hr

ac
en

e 
(5

) 
Fl

uo
ra

nt
he

ne
 (

6)
 

Py
re

ne
 (

7)
 B

en
z[

a]
 

an
th

ra
ce

ne
 (

8)
 

C
hr

ys
en

e 
(9

) 
B

en
zo

 
[b

]fl
uo

ra
nt

he
ne

 (
10

) 
B

en
zo

[a
]p

yr
en

e 
(1

1)
 I

nd
en

o[
1,

2,
 

3-
cd

] 
py

re
ne

 (
12

) 
D

ib
en

z[
ah

] 
an

th
ra

ce
ne

 (
13

) 
B

en
zo

[g
hi

] 
pe

ry
le

ne
 (

14
) 

A
pp

le
 (

20
 g

) 
Sk

in
 a

nd
 p

ul
p 

w
er

e 
cr

us
he

d 
in

 a
 

bl
en

de
r 

be
fo

re
 th

e 
ex

tr
ac

tio
n 

pr
oc

ed
ur

e;
 2

5 
m

L
 

et
ha

no
l; 

w
at

er
 

ba
th

 a
nd

 
so

ni
ca

tio
n 

at
 

30
 °

C
 a

nd
 3

5 
kH

z 
fo

r 
15

 m
in

; 
1.

2 
m

L
 w

as
 u

se
d 

fo
r 

M
E

PS
 

H
yp

er
Se

p 
R

et
ai

n 
po

la
r-

 
en

ha
nc

ed
 

po
ly

m
er

 
(P

E
P)

 
co

ns
is

tin
g 

of
 

a 
st

yr
en

e 
di

vi
ny

lb
en

-
ze

ne
 

co
po

ly
m

er
 

(P
S/

D
V

B
) 

m
od

ifi
ed

 
w

ith
 u

re
a 

fu
nc

tio
na

l 
gr

ou
ps

 
(4

 m
g)

; 
m

an
ua

l 

n.
s.

 
(6

 ×
 2

00
 μ

L
) 

n.
s.

 
M

et
hy

le
ne

 
ch

lo
ri

de
 

(1
 ×

 5
0 

μL
) 

n.
s.

 
G

C
-M

S 
0.

03
6 

µg
/K

g 
(1

) 
0.

04
8 

µg
/K

g 
(2

) 
0.

04
4 

µg
/K

g 
(3

) 
0.

04
4 

µg
/K

g 
(4

) 
0.

04
5 

µg
/K

g 
(5

) 
0.

03
1 

µg
/K

g 
(6

) 
0.

03
8 

µg
/K

g 
(7

) 
0.

05
9 

µg
/K

g 
(8

) 
0.

06
2 

µg
/K

g 
(9

) 
0.

07
3 

µg
/K

g 
(1

0)
 

0.
08

7 
µg

/K
g 

(1
1)

 
0.

13
0 

µg
/K

g 
(1

2)
 

0.
12

5 
µg

/K
g 

(1
3)

 
0.

12
4 

µg
/K

g 
(1

4)
 

0.
12

0 
µg

/K
g 

(1
) 

 
0.

16
0 

µg
/K

g 
(2

) 
 

0.
14

7 
µg

/K
g 

(3
) 

 
0.

14
6 

µg
/K

g 
(4

) 
 

0.
14

9 
µg

/K
g 

(5
) 

 
0.

13
5 

µg
/K

g 
(6

) 
 

0.
12

8 
µg

/K
g 

(7
) 

 
0.

19
5 

µg
/K

g 
(8

) 
 

0.
20

6 
µg

/K
g 

(9
) 

 
0.

24
2 

µg
/K

g 
(1

0)
  

0.
29

1 
µg

/K
g 

(1
1)

  
0.

43
3 

µg
/K

g 
(1

2)
  

0.
41

8 
µg

/K
g 

(1
3)

  
0.

41
4 

µg
/K

g 
(1

4)
 

17
%

 (
1)

 1
8%

 (
2)

  
25

%
 (

3)
 7

6%
 (

4)
  

31
%

 (
5)

 7
5%

 (
6)

  
46

%
 (

7)
 5

1%
 (

8)
  

43
%

 (
9)

 4
8%

 (
10

) 
 

56
%

 (
11

) 
92

%
 (

12
) 

10
6%

 (
13

) 
75

%
 (

14
) 

( P
ar

is
 e

t 
al

.  
20

19
) 

M
ar

bo
flo

xa
ci

n 
(M

),
 

C
ip

ro
flo

xa
ci

n 
(C

),
 

E
nr

ofl
ox

ac
in

 €
 

B
ov

in
e 

Se
ru

m
 

(0
.2

25
 m

L
) 

D
ilu

tio
n 

1:
2 

w
ith

 
a 

sa
tu

ra
te

d 
am

m
on

iu
m

 
su

lp
ha

te
 s

ol
ut

io
n 

an
d 

ce
nt

ri
fu

ga
tio

n 

C
8

 (
n.

s.
);

  
eV

ol
® 

A
ce

to
ni

tr
ile

  
an

d 
w

at
er

  
(4

 ×
 5

0 
μL

) 

(5
 ×

 5
0 

µL
) 

W
at

er
  

(1
 ×

 5
0 

µL
) 

0.
4%

 f
or

m
ic

 
ac

id
 a

nd
 

ac
et

on
itr

ile
 

(5
0:

50
, 

v/
v)

 
(1

 ×
 5

0 
µL

) 

A
ce

to
ni

tr
ile

 
(1

0 
×

 5
0 

µL
) 

U
H

PL
C

-D
A

D
 

13
 n

g/
m

L
 (

M
) 

6 
ng

/m
L

 (
C

) 
10

 n
g/

m
L

 (
E

) 

43
 n

g/
m

L
 (

M
) 

 
20

 n
g/

m
L

 (
C

) 
 

32
 n

g/
m

L
 (

E
) 

83
–8

4%
 (

M
) 

 
83

–8
6%

 (
C

) 
80

–8
1%

 (
E

) 

( A
re

st
a 

et
 a

l. 
 

20
19

) 

B
ov

in
e 

M
ilk

 
(0

.2
25

 m
L

) 
D

ilu
tio

n 
1:

2 
w

ith
 

a 
sa

tu
ra

te
d 

am
m

on
iu

m
 

su
lp

ha
te

 s
ol

ut
io

n 
an

d 
ce

nt
ri

fu
ga

tio
n 

10
 n

g/
m

L
 (

M
) 

 
10

 n
g/

m
L

 (
C

) 
 

15
 n

g/
m

L
 (

E
) 

33
 n

g/
m

L
 (

M
) 

 
32

 n
g/

m
L

 (
C

) 
 

48
 n

g/
m

L
 (

E
) 

79
–8

0%
 (

M
) 

 
83

–8
6%

 (
C

) 
 

79
–8

0%
 (

E
) 

B
ov

in
e 

U
ri

ne
 

(0
.2

25
 m

L
) 

C
en

tr
if

ug
at

io
n 

12
 n

g/
m

L
 (

M
) 

 
2 

ng
/m

L
 (

C
) 

 
5 

ng
/m

L
 (

E
) 

43
 n

g/
m

L
 (

M
) 

 
7 

ng
/m

L
 (

C
) 

 
17

 n
g/

m
L

 (
E

) 

86
–8

6%
 (

M
) 

 
88

–8
9%

 (
C

) 
 

84
–8

5%
 (

E
) 

B
D

E
-2

8B
D

E
- 

47
B

D
E

-9
9B

D
E

- 
10

0B
D

E
- 

15
3B

D
E

-1
54

 

E
gg

 s
am

pl
es

 
(5

0 
m

g 
of

 
ly

op
hi

liz
ed

) 

4 
m

L
 h

ex
an

e,
 

15
 m

in
 

ul
tr

as
ou

nd
; 

2 
m

L
 

of
 c

on
ce

nt
ra

te
d 

su
lp

hu
ri

c 
ac

id
 t

o 
th

e 
su

pe
rn

at
an

t, 
15

 m
in

 i
n 

ul
tr

as
ou

nd
; 

se
pa

ra
tio

n 
of

 t
he

 
or

ga
ni

c 
ph

as
e,

 
ev

ap
or

at
io

n 
an

d 
re

co
ns

tit
ut

io
n 

w
ith

 5
00

 μ
L

 o
f 

ac
et

on
itr

ile
 

C
1

8
 (

n.
s.

);
  

eV
ol

® 
A

ce
to

ni
tr

ile
 

(1
 ×

 1
00

 μ
L

) 
(4

 ×
 1

00
 µ

L
) 

n.
s.

 
Is

oo
ct

an
e 

(n
.s

.)
 

Is
oo

ct
an

e 
 

(2
 ×

 1
00

 µ
L

) 
G

C
-M

S 
0.

42
 n

g/
g 

lw
 

1.
40

 n
g/

g 
lw

 
87

–1
10

%
 

( S
ou

za
 e

t 
al

.  
20

19
) 

 

94                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

5-
hy

dr
ox

ym
et

hy
l-

2-
 

fu
rf

ur
al

 (
5H

M
F)

, 
2-

 
fu

rf
ur

al
 (

F)
, 

2-
fu

ry
l 

m
et

hy
l 

ke
to

ne
 

(F
M

K
),

 5
-m

et
hy

l-
2-

 
fu

rf
ur

al
 (

5 
M

F)
 

W
in

e 
(0

.2
 m

L
) 

n.
s.

 
C

8
 (

n.
s.

);
 n

.s
. 

M
et

ha
no

l 
an

d 
0.

1%
 f

or
m

ic
 a

ci
d 

(1
 ×

 2
50

 μ
L

) 

(3
 ×

 2
00

 µ
L

) 
0.

1%
 f

or
m

ic
 

ac
id

 
(1

 ×
 1

00
 μ

L
) 

M
et

ha
no

l 
(1

 ×
 2

00
 μ

L
) 

M
et

ha
no

l 
an

d 
0.

1%
 

fo
rm

ic
 a

ci
d 

(1
 ×

 2
50

 μ
L

) 

U
H

PL
C

-D
A

D
 

n.
s.

 
n.

s.
 

n.
s.

 
( P

er
es

tr
el

o 
et

 a
l. 

20
17

) 

C
ar

be
nd

az
im

 (
1)

 
T

hi
ab

en
da

zo
le

 (
2)

 
D

im
et

ho
at

e 
(3

) 
C

ar
bo

fu
ra

n 
(4

) 
A

ce
ta

m
ip

ri
d 

(5
) 

T
ri

cy
cl

az
ol

e 
(6

) 
Pi

ri
m

ic
ar

b 
(7

) 
A

ld
ic

ar
b 

(8
) 

Im
az

al
il 

(9
) 

D
ic

hl
or

vo
s 

(1
0)

 
Pr

op
ox

ur
 (

11
) 

C
ar

bo
fu

ra
n 

(1
2)

 
M

al
ao

xo
n 

(1
3)

 
C

ar
ba

ry
l 

(1
4)

 
Fo

st
hi

az
at

e 
(1

5)
 

Is
op

ro
ca

rb
 (

16
) 

M
et

ha
cr

if
os

 (
17

) 
M

et
hi

da
th

io
n 

(1
8)

 
M

et
hi

oc
ar

b 
(1

9)
 

M
al

at
hi

on
 (

20
) 

Pi
ri

m
ip

ho
s 

m
et

hy
l 

(2
1)

 C
ou

m
ap

ho
s 

(2
2)

 C
hl

or
py

ri
fo

s 
m

et
hy

l 
(2

3)
 

B
en

fu
ra

ca
rb

 (
24

) 
C

hl
or

py
ri

fo
s 

et
hy

l 
(2

5)
 

W
he

at
 fl

ou
r 

(2
00

 m
g)

 
37

5 
μL

 o
f 

10
 m

M
 

ac
et

on
itr

ile
- 

ac
et

at
e 

bu
ff

er
 p

H
 

=
 5

, 
60

:4
0 

v/
v;

 
so

ni
ca

tio
n 

fo
r 

5 
m

in
; 

in
cu

ba
tio

n 
at

 4
0 

°C
 f

or
 5

 m
in

 
un

de
r 

co
ns

ta
nt

 
st

ir
ri

ng
; 

ce
nt

ri
fu

ga
tio

n 

H
D

V
B

 
(n

.s
.)

; 
n.

s.
 

M
et

ha
no

l 
(3

 ×
 1

00
 μ

L
) 

 
an

d 
90

:1
0 

 
(v

/v
) 

w
at

er
–a

ce
to

ni
tr

ile
 

so
lu

tio
n 

(2
 ×

 1
00

 μ
L

) 

(7
 ×

 2
50

 µ
L

) 
W

at
er

 
(1

 ×
 1

00
 μ

L
) 

A
ce

to
ni

tr
ile

 
(3

 ×
 1

00
 μ

L
) 

n.
s.

 
U

H
PL

C
-M

S/
M

S 
3 

×
 1

0−
3 

m
g/

kg
 (

1)
 

3 
×

 1
0−

3 
m

g/
kg

 (
2)

 
1 

×
 1

0−
3 

m
g/

kg
 (

3)
 

3 
×

 1
0−

3 
m

g/
kg

 (
4)

 
3 

×
 1

0−
3 

m
g/

kg
 (

5)
 

5 
×

 1
0−

4 
m

g/
kg

 (
6)

 
1 

×
 1

0−
3 

m
g/

kg
 (

7)
 

5 
×

 1
0−

4 
m

g/
kg

 (
8)

 
2 

×
 1

0−
3 

m
g/

kg
 (

9)
 

3 
×

 1
0−

4 
m

g/
kg

 (
10

) 
1 

×
 1

0−
3 

m
g/

kg
 (

11
) 

3 
×

 1
0−

4 
m

g/
kg

 (
12

) 
1 

×
 1

0−
3 

m
g/

kg
 (

13
) 

3 
×

 1
0−

3 
m

g/
kg

 (
14

) 
5 

×
 1

0−
3 

m
g/

kg
 (

15
) 

5 
×

 1
0−

4 
m

g/
kg

 (
16

) 
5 

×
 1

0−
3 

m
g/

kg
 (

17
) 

5 
×

 1
0−

3 
m

g/
kg

 (
18

) 
5 

×
 1

0−
4 

m
g/

kg
 (

19
) 

5 
×

 1
0−

3 
m

g/
kg

 (
20

) 
5 

×
 1

0−
3 

m
g/

kg
 (

21
) 

3 
×

 1
0−

4 
m

g/
kg

 (
22

) 
1 

×
 1

0−
3 

m
g/

kg
 (

23
) 

5 
×

 1
0−

3 
m

g/
kg

 (
24

) 
1 

×
 1

0−
3 

m
g/

kg
 (

25
) 

7.
5 

×
 1

0−
3 

m
g/

kg
 (

1)
 

7.
5 

×
 1

0−
3 

m
g/

kg
 (

2)
 

3 
×

 1
0−

3 
m

g/
kg

 (
3)

 
7.

5 
×

 1
0−

3 
m

g/
kg

 (
4)

 
7.

5 
×

 1
0−

3 
m

g/
kg

 (
5)

 
1.

5 
×

 1
0−

3 
m

g/
kg

 (
6)

 
3 

×
 1

0−
3 

m
g/

kg
 (

7)
 

1.
5 

×
 1

0−
3 

m
g/

kg
 (

8)
 

5 
×

 1
0−

3 
m

g/
kg

 (
9)

 
9 

×
 1

0−
4 

m
g/

kg
 (

10
) 

2.
5 

×
 1

0−
3 

m
g/

kg
 (

11
) 

7.
5 

×
 1

0−
4 

m
g/

kg
 (

12
) 

3 
×

 1
0−

3 
m

g/
kg

 (
13

) 
7.

5 
×

 1
0−

3 
m

g/
kg

 (
14

) 
1.

5 
×

 1
0−

2 
m

g/
kg

 (
15

) 
1.

5 
×

 1
0−

3 
m

g/
kg

 (
16

) 
1.

5 
×

 1
0−

2 
m

g/
kg

 (
17

) 
1.

5 
×

 1
0−

2 
m

g/
kg

 (
18

) 
1.

5 
×

 1
0−

3 
m

g/
kg

 (
19

) 
1.

5 
×

 1
0−

2 
m

g/
kg

 (
20

) 
1.

5 
×

 1
0−

2 
m

g/
kg

 (
21

) 
9 

×
 1

0−
4 

m
g/

kg
 (

22
) 

2.
5 

×
 1

0−
3 

m
g/

kg
 (

23
) 

1.
5 

×
 1

0−
2 

m
g/

kg
 (

24
) 

3 
×

 1
0−

3 
m

g/
kg

 (
25

) 

45
%

 (
1)

 4
4%

 (
2)

  
60

%
 (

3)
 4

7%
 (

4)
  

81
%

 (
5)

 7
0%

 (
6)

  
72

%
 (

7)
 6

8%
 (

8)
  

61
%

 (
9)

 7
1%

(1
0)

 
86

%
(1

1)
 7

9%
 (

12
) 

 
76

%
 (

13
) 

82
%

(1
4)

 
62

%
(1

5)
 6

4%
(1

6)
 

95
%

(1
7)

 8
5%

 (
18

) 
 

98
%

 (
19

) 
87

%
 (

20
) 

92
%

 (
21

) 
97

%
 (

22
) 

43
%

 (
23

) 
57

%
 (

24
) 

19
%

 (
25

) 

(D
i  

O
tta

vi
o 

et
 a

l. 
20

17
) 

D
ie

th
yl

 p
ht

ha
la

te
 

(D
E

P)
, 

D
ip

ro
py

l 
ph

th
al

at
e 

(D
PP

),
 

D
ib

ut
yl

 p
ht

ha
la

te
 

(D
B

P)
, 

B
en

zy
lb

ut
yl

 
ph

th
al

at
e 

(B
B

P)
, 

D
ic

yc
lo

he
xy

l 
ph

th
al

at
e 

(D
C

H
P)

 

C
ol

d 
dr

in
ks

 
(1

 m
L

) 

D
eg

as
ifi

ca
tio

n 
in

 
ul

tr
as

on
ic

 b
at

h;
 

di
lu

tio
n 

20
 t

im
es

 
w

ith
 m

et
ha

no
l; 

fil
tr

at
io

n 

C
1

8
 (

4 
m

g)
;  

n.
s.

 
M

et
ha

no
l  

an
d 

w
at

er
 

(1
 ×

 1
00

 μ
L

) 

(1
0 

×
 5

0 
µL

) 
W

at
er

 
(1

 ×
 5

0 
μL

) 
M

et
ha

no
l 

(1
 ×

 3
0 

μL
) 

M
et

ha
no

l 
an

d 
w

at
er

 
(3

 ×
 1

00
 μ

L
) 

G
C

-M
S 

0.
01

2 
ng

/m
L

 (
D

E
P)

 
0.

00
8 

ng
/m

L
 (

D
PP

) 
0.

00
3 

ng
/m

L
 (

D
B

P)
 

0.
01

5 
ng

/m
L

 (
B

B
P)

 
0.

01
1 

ng
/m

L
 (

D
C

H
P)

 

0.
03

9 
ng

/m
L

 (
D

E
P)

 
0.

02
6 

ng
/m

L
 (

D
PP

) 
0.

00
9 

ng
/m

L
 (

D
B

P)
 

0.
04

9 
ng

/m
L

 (
B

B
P)

 
0.

03
6 

ng
/m

L
 (

D
C

H
P)

 

94
–9

9%
 (

D
E

P)
 

92
–9

6%
 (

D
PP

) 
 

96
–9

9%
 (

D
B

P)
 

94
–9

6%
 (

B
B

P)
 

94
–9

7%
 (

D
C

H
P)

 

( K
au

r 
et

 a
l. 

 
20

16
) 

O
ch

ra
to

xi
n 

A
 (

O
T

A
) 

W
in

e 
(5

 m
L

) 
D

ilu
tio

n 
1:

4 
an

d 
1:

2 
(v

/v
) 

w
ith

 2
%

 
aq

ue
ou

s 
ac

et
ic

 a
ci

d 

C
1

8
 (

4m
g)

;  
eV

ol
® 

A
ce

to
ni

tr
ile

, 
m

et
ha

no
l 

an
d 

 
2%

 a
qu

eo
us

 
ac

et
ic

 a
ci

d/
 

et
ha

no
l 

(8
8:

12
,  

v/
v)

 (
1 

×
 5

0 
µL

) 

(7
 ×

 5
0 

µL
) 

2%
 a

qu
eo

us
 

ac
et

ic
 a

ci
d 

an
d 

2%
 

aq
ue

ou
s 

ac
et

ic
 a

ci
d/

 
m

et
ha

no
l 

(6
0/

40
 v

/v
) 

(1
 ×

 2
0 

µL
) 

A
ce

to
ni

tr
ile

/ 
2%

 a
qu

eo
us

 
ac

et
ic

 a
ci

d 
(9

0/
10

, 
v/

v)
 

(2
 ×

 2
5 

µL
) 

A
ce

to
ni

tr
ile

/ 
2%

 a
qu

eo
us

 
ac

et
ic

 a
ci

d 
(9

0/
10

, 
v/

v)
 

(3
 ×

 5
0 

µL
) 

H
PL

C
-F

L
D

 
0.

09
 n

g/
m

L
 

0.
28

 n
g/

m
L

 
90

%
 

( S
av

as
ta

no
 

et
 a

l. 
20

16
) 

(C
on
tin
ue
d

) 

Microextraction by Packed Sorbent                                                                               95 



https://www.twirpx.org & http://chemistry-chemists.com

TA
BL

E 
5.

6
(C

on
tin

ue
d

)  

M
E

PS
 p

ro
ce

du
re

s 
in

 f
oo

d 
to

xi
co

lo
gy

, 
an

al
yt

ic
al

 i
ns

tr
um

en
ta

tio
n,

 l
im

its
, 

an
d 

re
co

ve
ri

es
 (

20
15

–2
02

0)
   

   
   

   
   

 

A
na

ly
te

s 
Sa

m
pl

e 
(V

ol
um

e/
 

W
ei

gh
t)

 

Sa
m

pl
e 

P
re

pa
ra

ti
on

 
M

E
P

S 
So

rb
en

t 
M

E
P

S 
St

ep
s 

A
na

ly
ti

ca
l 

In
st

ru
m

en
ta

ti
on

 
L

O
D

 
L

O
Q

 
R

ec
ov

er
ie

s 
R

ef
   

  

C
on

di
ti

on
in

g 
L

oa
d 

W
as

h 
E

lu
ti

on
 

So
rb

en
t 

R
e-

us
e 

   
   

T
eb

ut
hi

ur
on

 (
T

E
B

),
 

C
ar

bo
fu

ra
n 

(C
A

R
),

 
A

tr
az

in
e 

(A
T

R
),

 
M

et
ri

bu
zi

ne
 (

M
E

T
),

 
A

m
et

ry
n 

(A
M

E
),

 
B

if
en

th
ri

n 
(B

IF
) 

Su
ga

rc
an

e 
ju

ic
es

 (
n.

s.
) 

C
en

tr
if

ug
at

io
n 

C
1

8
 

(n
.s

.)
; 

n.
s.

 
E

th
yl

 a
ce

ta
te

 
(4

 ×
 2

50
 μ

L
) 

 
an

d 
w

at
er

 
(3

 ×
 2

50
 μ

L
) 

(9
 ×

 2
50

 µ
L

) 
W

at
er

 
(6

 ×
 1

00
 μ

L
) 

E
th

yl
 a

ce
ta

te
 

(8
 ×

 3
0 

μL
) 

n.
s.

 
G

C
-M

S 
1.

5 
ng

/m
L

 (
T

E
B

) 
0.

3 
ng

/m
L

 (
C

A
R

) 
0.

3 
ng

/m
L

 (
A

T
R

) 
0.

8 
ng

/m
L

 (
M

E
T

) 
0.

2 
ng

/m
L

 (
A

M
E

) 
0.

3 
ng

/m
L

 (
B

IF
) 

10
 n

g/
m

L
 (

T
E

B
) 

 
2 

ng
/m

L
 (

C
A

R
) 

 
2 

ng
/m

L
 (

A
T

R
) 

 
3 

ng
/m

L
 (

M
E

T
) 

 
2 

ng
/m

L
 (

A
M

E
) 

 
2 

ng
/m

L
 (

B
IF

) 

44
%

 (
T

E
B

) 
 

65
%

 (
C

A
R

) 
 

49
%

 (
A

T
R

) 
 

60
%

 (
M

E
T

) 
 

45
%

 (
A

M
E

) 
 

27
%

 (
B

IF
) 

( F
um

es
 

et
 a

l. 
20

16
) 

PC
B

 2
8P

C
B

 5
2P

C
B

 
10

1P
C

B
 1

18
PC

B
 

13
8P

C
B

 
15

3P
C

B
 1

80
 

B
ov

in
e 

Se
ru

m
 

(0
.1

 m
L

) 

Pr
ot

ei
n 

pr
ec

ip
ita

tio
n;

 
ce

nt
ri

fu
ga

tio
n;

 
di

lu
tio

n3
0 

tim
es

 

C
1

8
 (

2 
m

g)
; 

m
an

ua
l 

M
et

ha
no

l 
an

d 
w

at
er

 
(1

 ×
 1

00
 μ

L
) 

(2
 ×

 1
00

 µ
L

) 
20

%
 

ac
et

on
itr

ile
 

(1
 ×

 1
00

 μ
L

) 

E
th

yl
 a

ce
ta

te
 

(1
 ×

 5
0 

μL
) 

E
th

yl
 a

ce
ta

te
 

(8
 ×

 5
0 

μL
) 

G
C

-M
S 

0.
06

 n
g/

m
L

 (
PC

B
 2

8)
 

0.
11

 n
g/

m
L

 (
PC

B
 5

2)
 

0.
28

 n
g/

m
L

 (
PC

B
 

10
1)

 0
.3

6 
ng

/m
L

 
(P

C
B

 1
18

) 
 

0.
53

 n
g/

m
L

 (
PC

B
 

13
8)

 0
.3

8 
ng

/m
L

 
(P

C
B

 1
53

) 
 

0.
49

 n
g/

m
L

 
(P

C
B

 1
80

) 

0.
20

 n
g/

m
L

 (
PC

B
 2

8)
  

0.
37

 n
g/

m
L

 (
PC

B
 5

2)
  

0.
93

 n
g/

m
L

 (
PC

B
 

10
1)

 1
.2

0 
ng

/m
L

 
(P

C
B

 1
18

) 
 

1.
77

 n
g/

m
L

 (
PC

B
 

13
8)

 1
.2

7 
ng

/m
L

 
(P

C
B

 1
53

) 
 

1.
63

 n
g/

m
L

 (
PC

B
  

18
0)

 

87
–8

9%
 (

PC
B

 2
8)

  
79

–9
1%

 (
PC

B
 5

2)
 

66
–8

8%
 (

PC
B

 1
01

) 
60

–8
2%

 (
PC

B
 1

18
) 

69
–7

2%
 (

PC
B

 1
38

) 
61

–6
5%

 (
PC

B
 1

53
) 

66
–7

4%
 (

PC
B

 1
80

) 

( Y
an

g 
et

 a
l. 

 
20

16
) 

5-
hy

dr
ox

ym
et

hy
l-

2-
 

fu
rf

ur
al

 (
5H

M
F)

, 
2-

 
fu

rf
ur

al
 (

F)
, 

2-
fu

ry
l 

m
et

hy
l 

ke
to

ne
 

(F
M

K
),

 5
-m

et
hy

l-
2-

 
fu

rf
ur

al
 (

5 
M

F)
 

W
in

e 
(0

.2
 m

L
) 

n.
s.

 
C

1
8

 

(4
 m

g)
; 

eV
ol

® 

M
et

ha
no

l 
an

d 
0.

1%
 f

or
m

ic
  

ac
id

 (
1 

×
 2

50
 μ

L
) 

(3
 ×

 2
00

 µ
L

) 
0.

1%
 f

or
m

ic
 

ac
id

 
(1

 ×
 1

00
 μ

L
) 

M
et

ha
no

l 
(1

 ×
 2

00
 μ

L
) 

M
et

ha
no

l 
an

d 
0.

1%
 

fo
rm

ic
 a

ci
d 

(1
 ×

 2
50

 μ
L

) 

U
H

PL
C

-D
A

D
 

12
9.

3 
ng

/L
 (

5H
M

F)
 

25
.8

 n
g/

L
 (

F)
  

4.
5 

ng
/L

 (
FM

K
) 

21
.3

 n
g/

L
 (

5 
M

F)
 

43
1.

0 
ng

/L
 (

5H
M

F)
 

86
.1

 n
g/

L
 (

F)
  

14
.9

 n
g/

L
 (

FM
K

) 
70

.8
 n

g/
L

 (
5 

M
F)

 

86
–9

9%
 (

5H
M

F)
  

84
 –

98
%

 (
F)

  
74

–9
6%

 (
FM

K
) 

90
–9

9%
 (

5 
M

F)
 

( P
er

es
tr

el
o 

et
 a

l. 
20

15
) 

  

D
A

D
 (

di
od

e 
ar

ra
y 

de
te

ct
or

);
 F

L
D

 (
flu

or
es

ce
nc

e 
de

te
ct

or
);

 G
C

 (
ga

s 
ch

ro
m

at
og

ra
ph

y)
; 

H
PL

C
 (

hi
gh

-p
er

fo
rm

an
ce

 l
iq

ui
d 

ch
ro

m
at

og
ra

ph
y)

; 
L

C
 (

liq
ui

d 
ch

ro
m

at
og

ra
ph

y)
; 

L
O

D
 (

lim
it 

of
 

de
te

ct
io

n)
; 

L
O

Q
 (

lim
it 

of
 q

ua
nt

ifi
ca

tio
n)

; 
M

S 
(m

as
s 

sp
ec

tr
om

et
ry

);
 M

S/
M

S 
(t

an
de

m
 m

as
s 

sp
ec

tr
om

et
ry

);
 U

H
PL

C
 (

ul
tr

a 
hi

gh
-p

er
fo

rm
an

ce
 l

iq
ui

d 
ch

ro
m

at
og

ra
ph

y)
.  

96                                                                             Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

5.5 New Developments 

The interest in new materials to be used in sample preparation is not new, and this aims at obtaining 
greater specificity and selective enrichment (da Silva and Lanças 2020). Finding the suitable sorbent to 
extract compounds that present different polarities (high polarity and non-polar) can be a big challenge 
(Mehrani et al. 2020). For this reason, different strategies have been developed to try to solve this 
problem, and several new solid pack materials have been reported in the last five years (da Silva and 
Lanças 2020; Mehrani et al. 2020). 

Carbon nanomaterials are by far those for which greater interest was observed in the development of 
new sorbents for MEPS. This is justified by their unique physical and chemical properties, namely the 
large specific surface area, chemical and thermal stabilities, and excellent mechanical strength (Amiri 
and Ghaemi 2017). Graphene (G) is a two-dimensional carbon nanomaterial widely applied as sorbent, 
exhibiting a π-electron-rich structure, allowing strong hydrophobic and π-stacking interactions with 
many molecules (Sun et al. 2019). Nevertheless, the direct use of graphene as a sorbent is not practical 
since its large surface area may lead to irreversible binding caused by van der Waals interactions (Sun 
et al., 2019). This will generate a large backpressure during MEPS and may lead to syringe obstruction 
(Vasconcelos Soares Maciel et al. 2018; Sun et al. 2019). Furthermore, graphene oxide (GO), a pre-
cursor of graphene, presents many polar groups in its chemical structure and can be modified with other 
materials resulting in improved selectivity and better analyte recovery (Karimiyan et al. 2019; da Silva 
and Lanças 2020). 

Ahmadi et al. (Ahmadi et al. 2018) used GO as MEPS sorbent for the extraction of local anesthetics 
from plasma and saliva. The authors justified the successful application of the sorbent with its high 
adsorption capacity for aromatic compounds (Ahmadi et al. 2018). On the other hand, Sun et al. (Sun 
et al. 2019) developed a sorbent consisting of GO coated with ZnO (GO–ZnO) for the extraction of 
carbamate pesticides from juice samples. This coating not only prevented graphene aggregation, but 
also provided hydrophilic surfaces for effective adsorption of water-soluble analytes (Ahmadi et al. 
2018). Another way of preventing this problem with graphene was adopted by Vasconcelos et al. 
(Vasconcelos Soares Maciel et al. 2018), who bonded the GO onto a silica surface with its subsequent 
transformation to reduced graphene (G-Sil). With this sorbent, the authors improved the extraction of 
tetracyclines residues from milk samples (Vasconcelos Soares Maciel et al. 2018). Similar devel-
opment was reported by Fumes et al. (Fumes and Lanças 2017), but using supported graphene on 
aminopropyl silica for the extraction of parabens from water samples. A different strategy was pre-
sented by Karimiyan et al. (Karimiyan et al. 2019), who used polyacrylonitrile/graphene oxide (PAN/ 
GO) nanofibers, and successfully applied them for the pre-concentration of several drugs and me-
tabolites from human plasma samples. It was also shown that ionic liquids (ILs) could be used for the 
extraction of chlorobenzenes (CBs), chlorophenols (CPs), and bromophenols (BPs) from water 
samples (Darvishnejad and Ebrahimzadeh 2020). These analytes are environmentally disrupting 
chemicals, and their pre-concentration was accomplished with a graphitic carbon nitride-reinforced 
polymer IL nanocomposite, a MEPS sorbent developed by Darvishnejad and Ebrahimzadeh 
(Darvishnejad and Ebrahimzadeh 2020). Recently, new composite graphitic materials have been made 
commercially available (CarbonX®) and are produced by coating stable substrates with graphene; 
these materials have been successfully applied to extract β-blockers from human plasma samples 
(Abuzooda et al. 2015). Further, a new type of graphitic sorbent (Carbon X-COA) was evaluated for 
the extraction of the local anesthetics lidocaine and ropivacain from plasma samples (Iadaresta 
et al. 2015). 

Also widely explored, although not that novel, are MIPs. MIPs are provided, stereochemically, with 
specific recognition sites that are either shaped from a template molecule, such as the target analyte, or 
from dummy template molecules, such as analytes analogues (de Oliveira 2019). These have the 
advantage of a high recognition ability for the target analytes, to which the extraction becomes very 
selective (Meng and Wang 2019). Over the last five years many MIPs have been synthetized for 
MEPS application. Their synthesis commonly occurs by a complex formation between the functional 
monomer and template molecule (de Oliveira et al. 2019). Oliveira et al. (de Oliveira et al. 2019) 
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employed a new restricted-access MIP for the determination of estrone and estriol in urine samples 
based on a crosslinking reaction with BSA to obtain surface protein encapsulation of the MIP. In the 
same year, Meng et al. (Meng and Wang 2019) proposed the use of MIPs for the determination of 
levofloxacin from plasma samples, using deep eutectic solvents (DESs) as porogen for MIPs pre-
paration to be applied on MEPS syringe. The DESs choice was based on its non-toxic, low cost, and 
inertness properties. Earlier, Soleimani et al. (Soleimani et al. 2018) reported the use of MIPs as 
MEPS sorbents for the pre-concentration of mandelic acid from urine samples. The same authors had 
previously reported MIPs’ successful application to extract trans, trans-muconic acid from the same 
specimen (Soleimani et al. 2017). A different approach of MIPs was, however, developed by Moein 
et al. (Moein et al. 2015a). These authors used the dummy molecularly imprinted polymer (DMIP) 
method and obtained good results with its application for sarcosine extraction from both plasma and 
urine samples (Moein et al. 2015a). 

Conducting polymers (π-conjugated polymers), such as polythiophene, polyaniline, and polypyrrole, 
are also considered promising sorbent materials to be used in MEPS (Florez et al. 2020; Abolghasemi 
et al. 2018). They present good environmental stability and nontoxicity and are easy to prepare with low 
cost (Florez et al. 2020). One of the most studied materials is polythiophene (PTh), gathering qualities 
as hydrophilic stability, redox activity, and an excellent interaction with aromatic groups (Florez et al. 
2020). Florez et al. (Florez et al. 2020) reported PTh as an highly efficient sorbent for MEPS, and used it 
for the pre-concentration of steroids from bovine milk samples. Previously, Abolghasemi et al. 
(Abolghasemi et al. 2018) reported a nanostructured star-shaped polythiophene dendrimer as an highly 
efficient sorbent to extract clofentezine from milk and juice samples. The authors claimed that star- 
shaped and dendritic conductive polymers are great options due to their unique three-dimensional shape 
and physicochemical properties (Abolghasemi et al. 2018). In addition to the previous, the development 
of a nanocomposite consisting of polydopamine, silver nanoparticles, and polypyrrole has been de-
scribed with great application for the microextraction of antidepressant drugs from urine samples 
(Bagheri et al. 2016). 

Nanoclays are promising sorbent materials as well. Although their hydrophilic nature might turn 
them unsuitable for the extraction of organic compounds, methods such as cation-exchange reactions 
with alkyl ammonium, phosphonium, and/or imidazolium compounds may change this (Saraji et al. 
2018). Montmorillonite (nanoclay) presents an elevated adsorption capacity, surface area, porosity, 
and swelling behavior (Saraji et al. 2018). Saraji et al. (Saraji et al. 2018) modified nanoclays with 
cetyltrimethylammonium bromide (CTAB) using a cation exchange reaction, with further modifica-
tion by alkoxysilanes, and used it as MEPS sorbent to extract diazinon from water samples. More 
recently, a reinforced montmorillonite into polystyrene (MMT/PS) was prepared and coated onto 
cellulose filter paper to pre-concentrate fluoxetine from similar environmental samples (Matin 
et al. 2020). 

Other sorbent materials with great potential due to their unique properties are metal-organic 
frameworks (MOFs) (Jiang et al. 2020). These consist of porous crystal material generated by the 
self-assembly of metallic ions (or clusters) with a bi- or multipodal organic linker (Jiang et al. 
2020). Although MOFs have shown some drawbacks related to SPE applications, producing high 
resistance because of their sub-micron to micron size, their unique features enable them to be used 
in small amounts in MEPS (Jiang et al. 2020). Jiang et al. (Jiang et al. 2020) used a MOF to extract 
parabens from vegetable oils and obtained satisfactory adsorption capacities. Previously, Jiang 
et al. (Jiang et al. 2018) had already applied a MOF-MIL-101 (Cr) for semi-automated MEPS of six 
triazine herbicides from corn samples. Among the reported MOFs, MOF-5 is one of the most 
studied, and this was coated by amino-functionalized Fe3O4 and silica mesoporous (SBA-15) and 
used as MEPS sorbent to determine mandelic acid in urine samples for the first time by Rahimpoor 
et al. (Rahimpoor et al. 2019). More recently, the same research team successfully applied a 
MOF of MIL‐53‐NH2 (Al) as MEPS sorbent to pre-concentrate urinary methylhippuric acids 
(Pirmohammadi et al. 2020). 

The latest research on sorbent material applied to MEPS has been boosted by the use of natural 
compounds, hence called green sorbents. Rasolzadeh et al. (Rasolzadeh 2019) described the use of a 
biosorbent consisting of Chlorella vulgaris, a unicellular green microalgae, for the determination of 
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nitrofurantoin in urine samples. Not fully green, but still pertinent, was the work published by Mehrani 
et al. (Mehrani et al. 2020) in which natural compounds extracted from aloe vera plants and gum of pine 
trees were used to synthesize the sorbents. These compounds were aloin (polar compound) and rosin 
(non-polar compound). After their coupling with polyacrylonitrile (PAN), aloin and rosin formed aloin/ 
PAN and rosin/PAN nanofibers used as sorbents to pre-concentrate polycyclic aromatic hydrocarbons 
and phenoxyacetic acid herbicides from water samples (Mehrani et al. 2020). 

Over the last five years, MEPS applicability has been greatly explored in all fields of analytical 
toxicology (Table 5.7). These new sorbent developments have represented the majority of the published 
articles regarding MEPS, justifying the importance of the solid material packed in the syringe to im-
prove method selectivity. 

5.6 Perspectives and Future Challenges 

MEPS emerged in accordance with green chemistry principles and aimed to improve the sustainable 
development for chemists in both the research and routine analysis fields. Although MEPS is still 
limited to research, the last five years have been very productive, with a large number of new 
sorbents developed and new approaches tested, but their application for routine analysis at an in-
dustrial scale remains scarce. Therefore, it is urgent to implement techniques such as MEPS that 
provide great enrichment factors, are rapid and automated, minimize sample volumes required, and 
reduce toxic wastes. 

The commercially available sorbents do not seem to cover all necessities, hence the constant look 
for new solid materials. Nevertheless, new solid materials developed and reported are restricted to 
few classes of target analytes and are not suitable for a multi method approach. Interesting enough 
is all the new research dedicated to green sorbents, namely microalgae and vegetable materials. 
More studies should be performed in this field, including sorbent stability and broader application. 
Ion liquids continue being explored in this matter and appear as a great option for future sorbent 
developments, revealing low toxicity and wide applicability. 

Finally, MEPS coupling with more recent MS technology should be considered. Over the last five 
years no linear ion trap, orbitrap, and quadrupole time-of-flight mass analyzers were described with 
MEPS. The coupling with the mentioned mass analyzers would offer the possibility to surpass the 
limitations of multi-target screening. 
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6.1 Theory of TF-SPME 

6.1.1 Introduction and Fundamentals 

The first format of thin-films employed for extraction procedures was introduced in 2001 by J. B. 
Wilcockson and F. A. P. Gobas. This approach involved an alternative configuration of solid-phase 
microextraction (SPME) to measure fugacities of organic chemicals in biological samples (Wilcockson 
and Gobas 2001). The main differences between thin-film SPME (TF-SPME) compared to the tradi-
tional SPME approaches consist of the rectangular-shaped film of the extraction phase, which implies a 
higher surface-to-volume ratio, improving the sensitivity and efficiency of the procedure. Another 
significant improvement is the stainless-steel supports used in TF-SPME, which can overcome some 
limitations regarding the fragility of the traditional SPME fibres (Jiang and Pawliszyn 2012; Grandy 
et al. 2016; Cudjoe et al. 2009; RiaziKermani 2012). 

Some theoretical aspects related to the extraction capacity of TF-SPME in equilibrium conditions can 
be described by Equation 6.1 (Pawliszyn 2012). 
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This equation considers the intrinsic correlation between the amount of analyte extracted in equilibrium 
conditions (nep

eq) and the initial concentration of the analyte in the sample C( )S
O . Kes is the distribution 

constant of the analyte between the extraction phase and the sample matrix; Vs and Ve are the volume of 
the sample and extraction phase, respectively (Pawliszyn 2012). 

Another theoretical approach is related to the kinetics of the extraction process in equilibrium con-
ditions. In this case, the time required to extract 95% of the analyte t( )95% from the sample can be 
obtained through Equation 6.2 (Bruheim et al. 2003). 

t
K b a

D
= 3

( )

s
95%

es (6.2)  

According to this equation, time depends on the thickness of the boundary layer (δ), the distribution 
coefficient of the analytes (Kes), the thickness of the coating (b − a), and the diffusion coefficient of the 
analytes (Ds). 

Moreover, a correlation between time and film thickness can also be described, and lesser thickness 
requires a shorter time to reach equilibrium. In addition, the rate of analyte extracted as a function of 

time dn

dt
is proportional to the surface area of the coating D A( )s and the concentration of the analyte in 

the sample C( )s . Consequently, larger surface areas allow for a higher amount of analytes extracted, as 
can be shown in Equation 6.3 (Bruheim et al. 2003). 

dn

dt

D A
C= s

s (6.3)  

Basically, TF-SPME can be used in direct immersion and headspace modes. Bruheim et al. employed a 
thin-film of polydimethylsiloxane (PDMS) immobilized on a tip of a stainless-steel support as an ex-
traction phase, according to Figure 6.1. Both extraction modes were studied and compared with a typical 
SPME fibre for the determination of semi-volatile compounds. The thin-film was inserted in the sample 
flask and removed after the extraction process; then, the PDMS sheet was rolled up and inserted in 
another vial for the liquid desorption step, or directly into an injector for thermal desorption. The authors 
compared the extraction efficiency of SPME and TF-SPME techniques, and higher amounts of analytes 
were extracted using the thin-film approach (Bruheim et al. 2003; Mirnaghi et al. 2013). Different 

FIGURE 6.1 Scheme of the headspace membrane SPME system. 1. Deactivated stainless-steel rod. 2. Flat sheet mem-
brane. 3. Sample solution. 4. Teflon-coated stirring bar. 5. Rolled membrane. 6. Injector nut. 7. Rolled membrane. 8. Glass 
liner. 9. Capillary column. (Source:  Bruheim et al. 2003).  
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experimental setups involving TF-SPME have been applied in several fields, particularly in analytical 
toxicology (Olcer et al. 2019). 

6.1.2 Main Optimizations for TF-SPME 

In order to achieve satisfactory extraction efficiency and reliable results, TF-SPME exhibits some 
specific parameters that need to be carefully studied and optimized. Variables such as extraction time, 
concentration of salt in the sample (salting-out effect), sample pH, temperature, and agitation rate can 
directly affect the extraction performance. 

Regarding the extraction step, one of the main parameters to be evaluated is the extraction time. 
This factor depends on the nature of the analytes (chemical structure and physicochemical prop-
erties), the type of sorbent phase, and the complexity of the matrix. Another variable frequently 
studied is the salting-out effect. In this case, NaCl is frequently added to the aqueous sample in 
order to reduce the solubility of the analytes and facilitate the mass transfer from the sample matrix 
to the extraction phase. 

Sample pH can also influence the extraction efficiency since neutral analytes are preferably extracted. 
Therefore, considering acidic analytes, pH should be maintained 1 to 2 units below the pKa of the 
compounds studied. On the other hand, considering basic analytes, sample pH should be kept 1 or 
2 units higher than pKa of the compounds. Moreover, the extraction phase should be chemically stable 
at the pH used in the extraction step (Carasek and Merib 2015; Morés et al. 2018). 

Temperature can also be an important variable, mainly for volatile analytes since it directly affects the 
distribution constant of the analytes between the matrix and the extraction phase. Therefore, this 
variable can be optimized according to the properties of the analytes and the sample matrix, in order to 
promote efficient distribution of the analytes from the sample matrix to the extraction phase (Moradi 
et al. 2019). Sample stirring can also be evaluated, since high stirring rates can reduce the boundary 
layer around the sorbent phase. This fact can influence the kinetics of the extraction procedure, parti-
cularly in the direct immersion mode (Qin et al. 2008). 

Related to the desorption step, thermal and liquid desorption can be adopted depending on analytes 
and the analytical instrument used. Regarding thermal desorption, temperature and time of exposure of 
the TF-SPME into the desorption port can be optimized (Olcer et al. 2019). In liquid desorption, time 
and type of solvent are often evaluated. In both cases, attention needs to be paid in order to allow 
satisfactory desorption without damaging the TF-SPME coating (Olcer et al. 2019; Carasek and Merib 
2015; Corazza et al. 2017). 

6.2 Coating Preparation Methods for TF-SPME 

Different strategies can be adopted for the preparation of thin-films used as extraction phases. In this 
section, some of these strategies are briefly discussed, including dip coating, spin coating, electro-
spinning coating, and spray coating (Olcer et al. 2019). 

6.2.1 Dip Coating 

Dip coating is the methodology most used for synthesizing thin-films in TF-SPME (Gómez-Ríos et al. 
2017). In this case, physical and chemical procedures can be employed. Regarding the physical pro-
cedure, the support is immersed directly into a solution, usually named slurry, that consists of a mixture 
of organic solvent, binder, dispersant, and the extraction phase; therefore, the immobilization occurs by 
physical accumulation on the surface of the support, without the need for chemical reactions 
(Mohammadzadeh et al. 2019). Related to the chemical process, the support is usually activated or pre- 
functionalized in order to form chemical bonds in the first layer. Subsequently, the other layers are 
accumulated physically over the others (Olcer et al. 2019; Zargar et al. 2017). Afterward, the substrate 
can be evaporated, and the thin-film layers can be controlled. Factors such as immersion time, number 
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of dipping cycles, composition, concentration of the coating, etc., can influence the quality of the 
coating. This strategy can provide thin-films of several to hundreds of micrometres (Mohammadzadeh 
et al. 2019; Lončarević and Čupić 2019). 

6.2.2 Spin Coating 

Spin coating is a relatively simple strategy, which consists of adding the material (extraction phase) 
to a substrate. This mixture (extraction phase and solvent) is placed on a plate and subjected to 
rotation; therefore, due to the centrifugal force, the extraction phase can be dispersed and uniformly 
deposited on the surface on the plate, and the solvent can be evaporated (Boudriouna et al. 2017). 
Afterward, the thin-film is formed, and some variables are adjusted to ensure the best uniformity of 
the layer, such as rotation speed, solvent evaporation temperature, solution viscosity, and surface 
tension (Mishra et al. 2019; Sahoo et al. 2018). This method provides a fast and relatively low-cost 
process, in addition to allowing the deposition of several mixed or layered materials, providing 
films from micrometres to nanometres (Olcer et al. 2019; Carasek and Merib 2015; Morés et al. 
2018; Moradi et al. 2019; Qin et al. 2008; Corazza et al. 2017; Gómez-Ríos et al. 2017;  
Mohammadzadeh et al. 2019; Zargar et al. 2017; Lončarević and Čupić 2019; Boudriouna et al. 
2017; Mishra et al. 2019). 

6.2.3 Spray Coating 

This strategy employs a mixture containing the extraction phase dissolved in an appropriate solvent. The 
mixture passes through a nozzle and, with the aid of an inert gas, forms fine droplets of the aerosol 
(Olcer et al. 2019; Azis and Ismail 2015). This aerosol is sprayed on the surface of the support, and the 
film is formed with the evaporation of the solvent. Some parameters can be evaluated to ensure a 
uniform formation of the film, such as the composition of the extraction phase, mixture viscosity, drying 
rate, and surface tension (Olcer et al. 2019; Lončarević and Čupić 2019). 

6.2.4 Electrospinning Coating 

Electrospinning is one of the most recent methods of preparing TF-SPME films. The technique employs 
a syringe loaded with a solution containing the extraction phase; the system is then connected to a power 
supply to produce the thin-films (Olcer et al. 2019; Greiner and Wendorff 2007; Ficai et al. 2016). Some 
factors are crucial for the formation of the films, such as the solution viscosity, voltage, surface tension, 
flow, and temperature, among others. It is worth mentioning that the electrospinning time is important 
for the film thickness (Ficai et al. 2016; Reddy et al. 2016). This method provides thin-films with high 
surface areas and high stability without the need for glue. This technique can provide thin-films that 
present thicknesses from micro to nanometres (Olcer et al. 2019; Reddy et al. 2016). 

An illustration of some strategies adopted to fabricate thin-films is shown in Figure 6.2. In addition, 
some features regarding cost, homogeneity, stability, etc., are mentioned. 

6.3 Application of TF-SPME in Analytical Toxicology 

TF-SPME is a promising technique for sample preparation due to the high extraction efficiency and 
versatility of producing thin-films of different materials with varied thicknesses. This versatility can 
significantly increase the range of compounds that can be extracted, as well as the applicability in 
different matrices. The development of methodologies based on TF-SPME has been growing in recent 
years, especially with the use in analytical toxicology. In the next sections, some applications in dif-
ferent matrices are highlighted, and discussions regarding the main features of those analytical meth-
odologies are also mentioned. 
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6.3.1 Urine Samples 

Human urine is an important biological matrix used for the analysis of a number of compounds of interest to 
analytical toxicology. This matrix exhibits some advantages, such as non-invasive collection and the possi-
bility of obtaining large volumes, and it also contains a number of important metabolites. Further, the de-
tection window of this matrix is longer than other biological matrices, such as blood or plasma. On the other 
hand, its composition is heterogeneous and comprised of different amounts of components, such as salts and 
proteins (Alemayehu et al. 2020; Montesano et al. 2014). In order to overcome some issues regarding the 
complexity of urine samples, TF-SPME has been successfully applied in this type of matrix. 

In a recent study, an analytical methodology was proposed to determine some hormones using TF-SPME 
coupled with a 96-well plate system using a biosorbent as an extraction phase (do Carmo et al. 2019). In 
this particular case, the thin-films were produced from bracts obtained from Aracucaria angustifolia trees. 
This natural product was crushed in a knife mill, and particles with 200 mesh were selected and fixed with 
adhesive tape over the stainless-steel pins of a 96-well plate system. A scheme of the strategy for producing 
these thin-films is shown in Figure 6.3. In this study, the hormones estrone, 17-β estradiol, estriol, and 17-α 
ethinylestradiol were extracted and determined in human urine samples by high-performance liquid 
chromatograph with a fluorescence detector. In this case, limits of detection (LODs) from 0.3 to 3.03 µg L−1 

and recoveries from 71 to 107% were obtained in different urine samples. This method consisted of a high- 
throughput alternative, since up to 96 samples can be processed simultaneously. 

FIGURE 6.2 Techniques used for the preparation of thin-films in TFME. (Cost: +++ economic, + expensive; 
Homogeneity: +++ homogeneous, + poorly homogeneous; Mechanical stability: +++ stable, + unstable; Ease of applica-
tion: +++ easy, + difficult, ++ moderate in all cases). (Source:  Olcer et al. 2019).  
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In another application, an analytical method was proposed to determine 6 aldehyde biomarkers in 
patients with lung cancer (Liu and Xu 2017). Thin-films comprised of a metal-organic framework (PS/ 
MOF-199) were produced to obtain nanofibers using the electrospinning strategy. Some micrographs of 
the films produced are shown in Figure 6.4. The films were fixed in plastic cartridges with two sieves, and 
the urine samples containing the previously derivatized analytes were analyzed using this experimental 
setup. The aldehydes were extracted by the metal-organice framework (MOF) nanofiber with subsequent 
desorption in a mixture of solvents and analysis by high-performance chromatography with UV/Vis 
detector. The developed method exhibited LOD from 4.2 to 17.3 nmol L−1 with recoveries from 82 to 
112% for the aldehydes under study, having been applied to eight urine samples. The methodology with 
MOF/TF-SPME nanofibers was seen to be an interesting alternative for the early diagnosis of this disease. 

Quetiapine and clozapine are two compounds that have been used in the treatment of schizophrenia. 
However, misuse can cause some problems, including depression and adverse effects on the cardio-
vascular system. A TF-SPME-based analytical methodology was developed for the determination of the 
drugs quetiapine and clozapine by high-performance liquid chromatography with UV/Vis detector (Li 
et al. 2016). In this study, magnetic octadecylsilane(ODS)-polyacrylonitrile(PAN)thin-films were pro-
duced using SiO2@Fe3O4 nanoparticles through a spraying strategy. The synthetic procedure and the 
steps of the analytical method are presented in Figure 6.5. The method allowed for recoveries of 99% for 

FIGURE 6.4 Scanning electron microscope images obtained from the nanofiber thin-film PS/MOF-199 in 3000x mag-
nification and PS in 5000x magnification, respectively. (Source:  Liu and Xu 2017).  

FIGURE 6.3 Diagram of the preparation of the blades with bract for the 96-well plate system for use in the extraction 
of @@oestrogens in urine. (Source:  do Carmo et al. 2019).  
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clozapine and 104–110% for quetiapine, with LOD of 0.003 µg mL−1 for both compounds. Moreover, 
other applications and the analytical features of TF-SPME applied in urine samples are shown in 
Table 6.1. 

6.3.2 Blood (Plasma/Serum) 

Blood (plasma/serum) is a complex matrix comprising carbohydrates, lipids, amino acids, salts, me-
tabolites, and molecules that can be monitored as biomarkers. This high complexity is a formidable 
challenge for the development of analytical methodologies. In addition, collection and storage are more 
difficult compared to urine, and other components often need to be added to the samples to prevent 
matrix degradation (Anderson and Anderson 2002; Byrne et al. 2020). In this context, sample pre-
paration techniques are highly necessary, and TF-SPME is an interesting alternative for use with this 
matrix. Blood is made up of cells suspended in blood plasma. Plasma constitutes about 55% of the 
blood, being mostly water (92%), in addition to proteins, minerals, hormones, and others. To obtain the 
plasma, centrifugation is performed to separate it from the blood cells, and an anticoagulant is added, 
such as ethylenediaminetetraacetic acid (EDTA), heparin, or sodium fluoride, etc. The serum, on the 
other hand, has a composition like plasma, but it is obtained from coagulated blood before the cen-
trifugation step (Luque-Garcia and Neubert 2007; Niu et al. 2018). 

An analytical method that combined TF-SPME with desorption corona beam ionization-mass spec-
trometry (DCBI) to determine citalopram, sertraline, and fluoxetine in plasma samples was also pro-
posed (Chen et al. 2016). The film used in this approach consisted of sub-micron-sized highly ordered 
mesoporous silica-carbon composite fibres (OMSCFs) produced by the electrospinning method fol-
lowed by carbonization. The films achieved pore sizes between 10 and 100 µm, and the methodology is 
shown in Figure 6.6. LODs were 1 ng mL−1 for citalopram, 0.2 ng mL−1 for sertraline, and 0.3 ng mL−1 

for fluoxetine, and recoveries ranging from 83.6 to 116.9% for the three antidepressants were achieved. 
The use of TF-SPME proved to be advantageous, providing satisfactory enrichment factors, eliminating 
matrix interference, and allowing for extractions within 5 min. 

Recently, an analytical method was developed using a thin-film combining zeolitic imidazole fra-
mework (ZIF-8) with polypyrene nanocomposite, layered double hydroxide (LDH), and cotton yarn to 
obtain the thin-film of a cotton yarn-polypyrrole-layered double hydroxide-zeolitic imidazole 
framework-8 composite (CY-PPy-LDH-ZIF-8). This extraction phase was used for the extraction of 

FIGURE 6.5 Schematic diagram of the preparation of the thin-films of the ODS-PAN magnetic particles and the 
extraction/desorption process of the analytes. (Source:  Li et al. 2016).  
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quercetin in human plasma and food samples (Jafari and Hadjmohammadi 2020). The LOD obtained 
was 0.21 µg L−1, and reproducibility was considered satisfactory, with intraday precision from 3.8 to 
5.9% and interday from 2.9 to 5.1%. The method proved to be reliable for the determination of quercetin 
in plasma, with short extraction time (20 min) and simple production of the thin-films of CY-PPy- 
LDH-ZIF8. 

Another approach for the analysis of human plasma was based on a thin nickel film (NF) obtained with 
electrochemical deposition of nickel oxide nanoworms (NiONWs) (Ghani et al. 2019). This material was 
treated with Co3O4 by cyclic voltammetry, forming an NF/NiONWs/Co3O4 film. This extraction phase 
was evaluated in TF-SPME to determine diclofenac by high-performance liquid chromatography with UV 
detector. LOD of 0.42 µg L−1 and recoveries between 90 and 95% were achieved in plasma samples. Other 
applications of TF-SPME in blood (plasma/serum) are presented in Table 6.1. 

6.3.3 Other Matrices Evaluated by TF-SPME 

The application of TF-SPME in other complex matrices of interest in analytical toxicology has also been 
reported. A study involving the determination of volatile metabolites from cancer cells obtained from 
human epithelial cervical carcinoma was developed using TF-SPME and gas chromatography-mass 
spectrometry (GC-MS) (Nozoe et al. 2015). In this case, a Tenax TA film (poly (2,6-diphenyl-p- 
phenylene oxide)) was used. This extraction phase consisted of a porous material with a good adsorption 
capacity and prepared by dip-coating strategy. Some micrographs obtained by SEM (scanning electron 
microscopy) and AFM (atomic force microscopy) are shown in Figure 6.7. This phase was an inter-
esting alternative since it exhibited high extraction capacity for the volatile compounds under study. 
In addition, in vitro evaluation of the Tenax TA film proved to be a reliable analytical method for 
identifying possible cancer biomarkers. 

In another study, a thin-film composed of C18 was combined with a 96-well plate system and used for 
the determination of repaglinide (RPG) and its metabolites (DA-RPG and DC-RPG) in human liver 
microsomes, with analysis performed by liquid chromatography mass spectrometry (LC-MS)/MS 

FIGURE 6.6 Diagram of experimental procedure of TF-SPME extraction and DCBI desorption, followed by injection in 
mass spectrometry system.  

FIGURE 6.7 Images obtained by SEM in (a) surface of Tenax TA thin-film and (b) cross-section with film deposited in 
silicon wafer. Image obtained by AFM in (c) Tenax TA thin-film surface. (Source:  Nozoe et al. 2015).  
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(Simões et al. 2015). RPG is especially important for treatment regulating type 2 diabetes; therefore, the 
monitoring of these compounds in patients with this disease is of great importance. The developed 
method allowed for high-throughput analysis, obtaining lower limits of quantification (LLOQs) of 
0.2 ng mL−1 for RPG and its metabolites, with recoveries varying from 83 to 99% for the three analytes. 

Moreover, a polystyrene/graphene (PS/G) nanofiber film obtained by electrospinning method was 
applied in TF-SPME for the determination of 6 aldehydes (C4-C9) in exhaled breath condensate (EBC) 
as a possible early diagnosis of patients with lung cancer, using high-performance liquid chromato-
graphy with variable wavelength detector for quantification (Huang et al. 2015). Using this analytical 
methodology, LODs ranging from 4.2 nmol L−1 for pentanal to 19.4 nmol L−1 for nonanal were ob-
tained. Moreover, recoveries from 79.8% for heptanal to 105.6% for hexanal were determined. The 
application was successfully assessed in 15 individuals, 7 patients diagnosed with lung cancer and 
8 healthy patients. The concentrations of pentanal and hexanal in sick patients were higher than those 
obtained from healthy people. 

In another application, a metabolomic profile of saliva was obtained using TF-SPME and LC-MS/ 
MS. The method was applied to ex vivo and in vivo analysis in human saliva samples using a hydrophilic 
lipophilic balanced (HLB) particle film (Bossonneau et al. 2014). This methodology allowed for the 
quantification of up to 49 substances, such as cannabinoids, steroids, narcotics, β blockers, stimulants, 
β2 agonists, glucocorticosteroids, hormones, and other anabolics with LOQs ranging from 0.004 ng 
mL−1 for methadone to 0.98 ngmL−1 for budesonide, with recoveries ranging from 4 to 101%. Using 
this approach, it was also possible to determine endogenous steroids, including cortisol, testosterone, 
progesterone, estrone, estradiol, and estriol with LOQs ranging from 16 pg mL−1 for estriol to 178 pg 
mL−1 for cortisol. The applicability in saliva samples was tested, and the method exhibited satisfactory 
analytical performance in detecting all the compounds in the samples. The method consisted of an 
important alternative for analytical toxicology to determine these analytes in a challenging matrix. Other 
features of TF-SPME based methodologies applied in analytical toxicology are shown in Table 6.1. 

6.4 Conclusion 

This chapter explored some of the theoretical aspects and applications of TF-SPME in analytical tox-
icology. Since its proposal, different configurations, formats, and coatings have been developed and 
applied in order to determine a wide range compounds in biological matrices. Moreover, some of the 
main parameters of optimization were discussed, and recent applications were also highlighted. The 
toxicological interests of using TF-SPME were mainly focused on matrices, such as urine and blood 
(plasma/serum). However, other matrices were also explored, such as saliva, cells from different tissues, 
and exhaled breath. Due to its versatility and unique features, TF-SPME exhibits great potential to be 
explored and improved, particularly related to the development of alternative sorbent materials. 
Moreover, this technique allows for the possibility of full automation, which is highly desirable in 
analytical toxicology. 
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7.1 Introduction 

Miniaturized approaches for extraction of analytes using solvents are collectively grouped under liquid- 
phase microextraction (LPME) or solvent microextraction, and the growth in activities in this field 
began when a drop of organic solvent of a few microliters size was employed for extraction, the 
technique being termed single drop microextraction (SDME). The innovative format of SDME, con-
sisting of a drop suspended at the needle tip positioned in the aqueous sample solution, has been the 
source of a variety of SDME modes and a collection of LPME techniques integrating different prin-
ciples (Tang et al. 2018). Initial experiments involved aspirating the gaseous sample over a collector 
drop hanging at the tip of a silica capillary, and diverting the drop to the automated analysis system (Liu 
and Dasgupta 1995). Later, the extraction was performed into a 1 µL drop of n-octane suspended from a 
microsyringe needle tip being placed in a stirred aqueous sample (direct immersion SDME, DI-SDME) 
(Jeannot and Cantwell 1997) or the headspace of the sample (headspace-SDME, HS-SDME) (Theis 
et al. 2001), and after extraction analyzed by gas chromatography (GC). Two modifications were 
suggested to overcome the low pre-concentration factor of analytes observed in SDME. First was a 
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three-phase extraction mode (liquid-liquid-liquid microextraction, LLLME), where 30 µL of n-octane 
layer confined inside a PTFE ring was placed over the donor aqueous sample and in turn accommodated 
a 1 µL aqueous acceptor drop, supported by a microsyringe (Ma and Cantwell 1999). The other 
modification was continuous-flow microextraction, in which the aqueous sample solution was con-
tinuously circulated over the organic acceptor drop held inside an extraction chamber, and after a given 
period of extraction, the drop was withdrawn with a GC syringe for analysis (Liu and Lee 2000). Still 
another route to optimize pre-concentration, called directly suspended droplet microextraction, involved 
the addition of water immiscible and low density solvent, such as n-butyl acetate or 1-octanol, to the 
aqueous sample, which was stirred using a magnetic bar to make a vortex. The organic solvent as a self- 
stable drop was pulled to the bottom of the conical area and kept rotating while in contact with the 
sample. After a pre-determined time, the extract was picked up with a microsyringe for analysis 
(Yangcheng et al. 2006). A simple modification to this method (solidification of floating organic drop 
microextraction) used a much smaller volume of a solvent, such as 1-undecanol, wiith a melting point in 
the range 10–30°C, which was solidified by placing the extraction vial in an ice bath after extraction. 
The frozen extract was gathered with a micro-spatula, allowed to melt in a micro-vial, and, thereafter, a 
portion of extract was injected into the chromatograph (Zanjani et al. 2007). Attempts to optimize 
extraction efficiency in a shorter time by increasing the surface area of the drop resulted in a compound 
drop technique, called bubble-in-drop, in which an air bubble was intentionally housed in the solvent 
drop (Williams et al. 2011, 2014). The extraction efficiency was greatly and quickly enhanced by mass 
transfer under the electric field in SDME (Song and Yang 2019) and in LLLME (Raterink et al. 2013;  
He et al. 2021). 

LPME procedures are rapid and convenient to conduct, and they constitute an excellent alternative to 
classical solvent extraction that uses large volumes of toxic organic solvent, and where the final extract 
also necessitates a pre-concentration, usually by solvent evaporation before analysis. Thus, micro- 
volume extraction methods, particularly SDME, result in extract volume that can be directly used in 
analysis by an instrumental method. Calibration in SDME requires extraction of a series of standards 
under the condition as will be used for the sample, and refereeing the signal for the sample with the 
calibration graph. Both polar and non-polar substances can be extracted using an appropriate mode of 
SDME, taking adequate measures to enhance extraction, chromatography, and detection. There is 
freedom from analytes carryover since a renewed drop of solvent is employed for each sample. Other 
advantages are utilizing the whole single drop of extract in the final analysis to optimize sensitivity, and 
full automation of the extraction-analysis process. 

SDME finds its application as an in-line extraction method for capillary electrophoresis (CE), where 
the analytes are extracted from a sample donor to the acceptor drop hanging at the inlet end of the 
capillary, simulating all possible modes of conducting SDME. As the sample volume in CE is only in 
the nanoliter range, extensive work in this area has been performed for automating and improving the 
reproducibility of on-line SDME-CE (ALOthman et al. 2012). SDME-CE coupling has the advantage of 
handling small volume samples, which could be diluted and analytes extracted into nanoliter-size 
droplets, thus increasing total pre-concentration and improving the limit of detection. An electro-
extraction SDME has been coupled to CE and on-line mass spectrometric detection for sensitive ana-
lysis of metabolites (Oedit et al. 2021). A sensitive and precise capillary zone electrophoresis method 
for homocysteine thiolactone in urine has been developed utilizing extraction in chloroform by SDME 
and UV-detection (Purgat et al. 2020). In these methods, SDME plays an important role in increasing 
sensitivity since extraneous matter such as proteins and salts are excluded during extraction. 

SDME is a widely accepted technique constituting a major step of sample preparation for trace 
analysis by a large number of analytical methods, and demonstrating an ample account of creative ideas 
to advance extraction and analysis. Recently, a short historical account of SDME and its automation and 
newer developments was reviewed by Kokosa (2015), Tang et al. (2018), and Jain and Verma (2011,  
2020); modes of SDME were reviewed by Mogaddam et al. (2019), Tegladza et al. (2020), and  
Przyjazny (2019); chemical reactions in LPME were reviewed by Basheer et al. (2019); and applications 
for biomolecules were reviewed by Kailasa et al. (2021). 
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7.2 Strategy of Microextraction 

7.2.1 Complexity of Biological Samples 

Biological samples for analysis of drugs and toxic substances have complicated matrices and are often 
not available in large quantities, making a sharp distinction from environmental water analysis. The 
object of sample preparation is to remove interfering sample matrix substances, enrich the target 
analytes to optimize signal-to-noise ratio in the final analytical method, and phase transfer so that the 
extract is compatible with the instrumental method (Reddy et al. 2019). SDME is typically not taken to a 
steady state to allow a reasonable extraction, and thus it is not an exhaustive process. Use of a few 
microliters volume of drops for SDME results in a highly reduced ratio of extraction drop-to-sample 
volume; therefore, due to kinetic control, a high pre-concentration of analytes is achieved before any 
significant diffusion of matrix substances can occur. This is further supported by careful selection of the 
solvent for a favourable clean-up of extracted analytes. The kinetic control on SDME distinguishes this 
technique from one or another mode of dispersive liquid-liquid microextraction (DLLME), where at-
tainment of a large enrichment factor in the shortest time is the outcome of a large surface area of 
extraction solvent droplets (Jain and Singh 2016). Thus, the sensitivity in SDME is principally due to 
low background noise in the final analysis, a situation favourable for biological sample analysis. 
Rapidity, low operational cost, utilization of general laboratory equipment, immensely reduced sample 
size, and consumption of extremely low volumes of extraction solvents make SDME a popular sample 
handling technique. Still other features of merit comprise applicability to analytes of diverse natures, 
ease of conducting derivatization in parity with separation and detection of analytes, diverse modes of 
extraction, use of the whole extract in the final analysis to gain optimum sensitivity, and easy full 
automation of methods. 

SDME methods based on different modes have been reviewed for sample preparation in bioanalytical 
methods (Bitas and Samanidou 2020; Hansen et al. 2020; He and Concheiro-Guidan 2019). Sample 
complexity, method applicability, and quality of results affect the performance and rapidity of these 
modes. Thus, a particular mode cannot be selected in isolation, but due consideration should be given to 
the nature of analyte and the matrix, and the operations necessary before extraction, such as derivati-
zation. These additional steps may affect the rapidity of the total method and the analytical precision. 

7.2.2 Single Drop Microextraction 

SDME is a miniaturized version of liquid-liquid extraction, replacing the separatory funnel with the 
common laboratory syringe and sample vials, and it is capable of working in a variety of modes to 
suit the nature of the analyte and the analytical problem (Figure 7.1). Only microliter volumes of 
extraction solvent are required, and due to high pre-concentration factors, the sample size is also 
small. The choice of low boiling and low viscosity organic solvent is due to extract compatibility with 
gas chromatography (GC). However, solvent volatility and drop instability are common problems. 
A variety of newer solvents mostly avoid shortcomings of volatile solvents, and they also enable final 
analysis by high-performance liquid chromatography (HPLC). Since SDME is performed with sol-
vent drop freely hanging at the needle tip, drop dislodgement is still a vexing problem. This imposes 
a limit on sample stirring rates, a process commonly used to enhance the rate of extraction. 
Nevertheless, SDME is focused on achieving high enrichment factors and on mitigating sample 
matrix interferences. 

7.2.3 Drop Protection 

Extraction drop solvent evaporation, miscibility with water, high sample stirring rates, and temperatures 
of extraction are common reasons for accidental dislodgement of solvent drop of extraction. Modified 
needle tip with increased cross-section served to increase the adhesion force to stabilize the drop 
(Figure 7.2). A silicone ring provided stability for 45 min to a 5 µL hexane drop in DI-SDME at a 
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(a) (b) (c)

FIGURE 7.2 Solvent drop protection. (A) PTFE sleeve or funnel attached to microsyringe tip, (B) optical probe as solvent 
microdrop holder in direct immersion SDME (inset, optical probe in headspace SDME), and (C) bell-shaped extraction 
device assisted liquid-liquid microextraction. Reproduced with permission from Royal Society of Chemistry, American 
Chemical Society, and Elsevier.  

(a) (b) (c)

(d) (f )(e)

FIGURE 7.1 Modes of SDME. (A) Direct immersion SDME, (B) headspace SDME, (C) liquid-liquid-liquid micro-
extraction, (D) directly suspended droplet microextraction (inset, solidification of floating organic drop microextraction), 
(E) bubble-in-drop microextraction, and (F) electroenhanced SDME (inset, electroenhanced liquid-liquid-liquid micro-
extraction). Reproduced with permission from Elsevier, and American Chemical Society.  
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stirring rate of 200 rpm (Fernances et al. 2012). Similarly, a large cross-section needle allowed ex-
traction for up to 80 min with a stirring rate of 1,700 rpm using a solvent drop of 0.9 µL (Ahmadi et al. 
2006). Other protective devices used were a plastic membrane on a wire holder accommodating 15 µL 
of toluene drop for HS-SDME (Ma and Ma 2017); copper fibre fixed to an SPME holder, coated with 
highly porous copper foam and in turn impregnated with organic solvent (Saraji et al. 2016); and a bell- 
shaped mesh holding 15 µL of deep eutectic solvent (DES) of choline chloride and oxalic acid 
(Mehravar et al. 2021). For the HPLC method, where a blunt-end needle is required for sample in-
troduction, the needle was fitted with an angle-cut PTFE sleeve holding either 7 µL of 1-butanol (Pillai 
et al. 2009) or 20 µL of ionic liquid (IL) (Wen et al. 2013). An assembly consisting of a quartz capillary, 
funnel cap, and microsyringe was developed to support microextraction with bubble-in-drop (Xie et al. 
2014). This assembly provided flexibility in accommodating air bubbles of different sizes and use of 
low-density organic solvents. 

The sleeve attached to the needle of the sampling syringe could terminate in a small poly- 
tetrafluoroethylene (PTFE) funnel to hold a larger volume of extraction solvent, 3.5–20 µL; for a longer 
extraction period, 20–40 min; and a high stirring rate, 1,000–1,200 rpm (Tian et al. 2014; Sharma et al. 
2011; Wang et al. 2012). The micro-funnel has been demonstrated to hold 400 µL of toluene as ex-
traction solvent for 90 min (Saleh et al. 2014), a 30 µL volume of mixed solvent of decanoic acid and 
tetrabutylammonium hydroxide for 60 min (Lopez-Jimenez et al. 2008), and 12 µL drop of IL for 
25 min at 80°C (He et al. 2012). In an interesting study on the selection of sleeve material for producing 
a non-polar solvent drop in DI-SDME, PTFE was observed to cause solvent spreading over the capillary 
tip due to the prominence of adhesive forces over cohesive forces. The situation was contrary with glass 
capillary, which produced a spherical drop, and the cohesive forces allowed formation of a stable bigger 
drop (7 µL) of IL, which was retracted fully after extraction (Nunes et al. 2021). 

Systems in which the microsyringe was not used to hold the extraction drop employed an optical 
probe with an optical window to house 40 µL of the extraction solvent in DI-SDME (Zaruba et al. 2017) 
and HS-SDME modes (Zaruba et al. 2016). Still another system used a bell-shaped device, placed with 
an organic solvent lighter than water, adjusted on the surface of the liquid sample. The organic solvent 
formed a vortex in the aqueous sample on stirring the sample to begin the extraction, and it returned to 
its original position inside the bell on switching off the stirrer. The bell was lowered into the sample to 
raise the extract in the upper narrow tube of the bell to allow its collection by a microsyringe (Cabala 
and Bursova 2012). 

7.3 Modes of Extraction and Applications 

7.3.1 Direct Immersion SDME 

In direct immersion SDME (DI-SDME), the solvent drop is kept immersed in the liquid sample for 
extraction of target analytes under pre-optimized conditions. The general method involves taking 0.5–3 
µL of organic solvent in a microsyringe with a bevel tip needle that is pierced through the septum of a 
sample vial containing 1–5 mL of the test sample. The needle is immersed in the sample, keeping well 
below the meniscus, and a single drop of solvent is carefully formed, dangled at the needle tip. The 
sample is magnetically stirred at a low rate, typically 150–300 rpm, and after the given period of 
extraction, usually 15–30 min, the solvent drop is withdrawn into the syringe and utilized in analysis. 
Traditionally, DI-SDME makes use of low boiling water insoluble solvent for extraction of partially 
volatile substances, and GC is an analytical method of choice. There are a number of experimental 
parameters that could affect extraction and need to be optimized. Such variables include volumes of the 
sample and the extraction solvent, the nature of solvent, the presence of salt, temperature, stirring rate, 
and period of extraction (Kokosa 2015; Tegladza et al. 2020). The most important of these variables are 
the selection of the solvent for drop formation and sample stirring rates. Salts usually increase the 
extraction, but in many reports, the effect has been opposite. 

Microextraction methods, including DI-SDME, have been reviewed to determine amphetamines as an 
example of the importance of illicit drugs in biological samples (Chalavi et al. 2019). Perchlorate is an 
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iodine inhibitor in the thyroid gland, and its trace analysis is important to avoid incidences of increased 
perchlorate concentration in the human body. Ion-pair formation with a cationic surfactant, SDME with 
methyl isobuty ketone, and analysis by attenuated total reflectance spectroscopy have been used to 
determine perchlorate in human breast milk and urine (Chandrawanshi et al. 2018). Bubble-in-drop 
SDME using a mixed solvent system was demonstrated to have advantages over conventional SDME 
and SPE on application to growth hormones in the urine of farmed animals (George 2015). The utility of 
bubble-in-drop was further verified, and attainment of enrichment factors between 536 and 1097 was 
reported in the analysis of carbamate pesticides (Chullasat et al. 2020). 

Lipid droplets are energy reservoir organelles that have a crucial role in lipid metabolism. Their 
undue intracellular accumulation is related to obesity, diabetes, steatosis, etc. A novel technique based 
on in-tip solvent microextraction was developed to separate phosphatidylcholines and triglycerides. A 
single lipid droplet was sucked into a nanotip that was subsequently filled with an organic solvent 
suitable for lipid extraction, and the extract was subjected to nano-electrospray ionization-mass 
spectrometry (Zhao et al. 2019). Metabolite concentration variations in single cells are significant for 
exploring the dynamic regulation of important biological processes, such as cell development and 
differentiation. A quantitative method for single-cell metabolites, glucose-phosphate has been pro-
posed by combining a microwell array with droplet microextraction mass spectrometry (Feng et al. 
2019). The extraction efficiency is greatly enhanced by acceleration of analyte mass transfer by the 
electric field (Song and Yang 2019). This principle has been utilized in the analysis of amphetamines 
in human urine. 

7.3.2 Headspace SDME 

In HS-SDME the solvent drop supported by the syringe needle tip is placed in the headspace of the 
aqueous sample to extract volatile or semi-volatile analytes that have emerged in the air space in the 
sample vial (Mogaddam et al. 2019). Thus, HS-SDME consists of a liquid-air-liquid system, but there is 
a greater choice in the physical state of the sample. Two factors, sample stirring and temperature, are 
vital factors since both high stirring rates and moderately higher temperatures can be used during 
extraction to promote mass transfer of volatile analytes to the headspace. The higher extraction re-
coveries in HS-SDME are due to larger diffusion coefficients of analytes in gaseous phases, and the 
effect is further augmented by bigger solvent drop due to rapid mass transfer. Relative to DI-SDME, 
there is a wider choice of solvents since the drop is not in contact with the aqueous sample; the only 
prerequisite is on fair involatility at the condition of extraction. The extract is free from involatile 
substances, such as salts, high boiling organics, proteins, etc., and particulate matter, making the whole 
extraction process convenient and sensitive in the final analytical procedure. HS-SDME in a vacuum has 
received recent attention in accelerating the extraction kinetics of analytes, and also enabling conduction 
of the sampling at ambient temperatures (Psillakis 2020). 

To determine captopril in human serum, a drop of colloidal solution of Au nanoparticles was placed 
in the headspace of a sample to act as both acceptor/labelling agent for the thiol group of captopril. 
Next, the drop was injected in a glass microchip and detected by microchip-photothermal lens mi-
croscopy (Abbasi-Ahd et al. 2017). A temperature gradient HS-SDME method was found selective 
and sensitive sensor for ammonia based on the blue-emitting Ag nanocluster as fluorescence probe. A 
sample solution of ammonium salt was added over solid sodium hydroxide when the high temperature 
generated assisted ammonia vapours with contacting the silver nanocluster droplet in the headspace to 
decrease the fluorescence of the sensor (Dong et al. 2017). Owing to confinement of electrons and 
holes, CdSe/ZnS quantum dots have unique optical properties, and the luminescence was quenched on 
contact with a volatile species. A number of volatile species have been assayed by microvolume 
spectrofluorimetry (Costas-Mora et al. 2011). A sensitive detection of hydrogen sulphide in bio-
samples was done on contact of its vapours with Ag-Au core-shell nanoprism in HS-SDME. The 
analysis was completed by a smartphone camera and colour measuring software (Tang et al. 2019). A 
mixed reagent drop of Au nanoparticles and Tollens reagent (Ag ammonia complex) was used in HS- 
SDME as a sensor for formaldehyde in chicken and octopus flesh, utilizing redox reaction of the latter 
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with the Tollens reagent forming reddish orange Au@Ag nanoparticles (Figure 7.3). A smartphone 
camera was used for spectrophotometry (Qi et al. 2020). A drop of phosphoric acid was employed for 
the headspace absorption of ammonia and subjected to indophenol red/blue species formation by 
LPME, and colour measurement by micro-spectrophotometry (Jain et al. 2021). An automated flow- 
batch system was developed for headspace absorption of ammonia and its on-drop conductometric 
measurement. Absorption in boric acid provided a lower conductivity background and a wider linear 
range (Jiang et al. 2021). 

7.3.3 Three-Phase SDME 

This technique is very successful in extracting acidic (phenol, carboxylic acids) or basic (amines) 
substances from their aqueous solution (Kokosa 2015). Following the sequence of operations for at-
taining unionized forms of target compounds by the addition of acids to acidic substances, and bases to 
basic substances, and their extraction into a lower density organic solvent now floating over the aqueous 
sample phase, an aqueous drop of base or acid at the tip of a syringe is produced in the organic layer for 
back extraction of the acid or base, respectively. Amphetamines (He and Kang 2006) and azithromycin 
(Ebrahimzadeh et al. 2010) in urine have been analyzed by first extraction in n-hexane and n-octane, 
respectively, and SDME in phosphoric acid. The technique has been extended to other types of sub-
stances by involving different principles, such as complex formation (Costas-Mora et al. 2013). A 
homemade vial with a narrow neck to accommodate the intermediate organic layer made placement of 
an aqueous drop convenient, and it also allowed stirring of the aqueous sample with high rates (Bagheri 
et al. 2008). To hold the anorganic-aqueous compound droplet, a coupling microdevice was designed to 
produce droplets of different sizes, varying the volume ratio of the organic phase to the aqueous phase 
(Jahan et al. 2015). By using a 1.2 μL toluene-aqueous compound droplet (volume ratio 0.2:1), a 350 to 
1,712 fold enrichment of statins was achieved within 4 min. 

For application in CE, a drop of an acceptor phase covered with an organic layer was hung at the inlet 
tip of a separation capillary. By adjusting the pH of the aqueous sample, analytes in the neutral form 
were extracted into the organic layer, and then back-extracted into the acceptor phase. Application of 
this method was demonstrated for ionic arsenic by employing the carrier-mediated counter-transport 
using CH3(C8H17)3N+Cl- (Aliquat 336) in the organic layer (Cheng et al. 2013). 

Electro-driven extraction involves active migration of charged analytes in an applied electric field, 
and the extraction completes in 2.5 min to 33.3 min. An online three-phase electroextraction setup has 
been developed (Figure 7.4) in which the extraction unit is coupled to a mass spectrometer by using a 
switching valve, syringe pump, and HPLC pump (He et al. 2021). The setup was applied to propranolol, 
amitriptyline, bupivacaine, and oxeladin in human urine and plasma samples. Type and composition of 
the organic phase and of the acceptor phase, and the extraction voltage and time were optimized. An 
ultrafast extraction within 30 s and enrichment factors in the range 105–569 were obtained. This online 
setup has great potential for high-throughput sample analysis. 

FIGURE 7.3 Schematic of the headspace-SDME smartphone nanocolorimetry for formaldehyde detection based on the 
reduction of Ag+ (Tollens reagent) and coating of Ag on Au nanoparticles. Reproduced with permission from Elsevier.  
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To avoid the inherent inconveniences in employing the lengthy amplification process, a magnetic 
three-phase SDME approach was developed for the quantification of nucleic acids in human serum. By 
integrating a fast, magnetic three-phase SDME and formation of hyperbranched DNA/Fe3O4 networks, 
triggered by nucleic acids, a highly sensitive method for nucleic acid detection was developed (Tang 
et al. 2020). A layer of dodecane was layered over the aqueous solution. A droplet of 3,3′,5,5′- 
tetramethylbenzidine and hydrogen peroxide affixed to the end of a magnetic bar was lowered into the 
organic phase. The DNA/Fe3O4 networks were then rapidly attracted to the reagent droplet and cata-
lyzed the colour reaction. Micro-spectrophotometric detection was used to measure the colour in the 
drop. The networks were separated and enriched within 6 s, producing highly sensitive signals for the 
quantification of nucleic acids. The method has potential for application to other biomolecules. 

7.4 Recent Advances 

7.4.1 Newer Solvents 

SDME does not seriously violate the principles of green chemistry since it requires only a few mi-
croliters volume of organic solvent (Carasek et al. 2021). Nonetheless, there is the requirement of 
avoiding toxic solvents as far as possible or their replacement by innocuous alternatives (Plotka- 
Wasylka et al. 2017). Different modes of extraction by SDME, and other methods of LPME, have 
specific solvent requirements (Kokosa 2019). There is a constant trend of search for solvents of 

FIGURE 7.4 (A) The schematic diagram of the online three-phase electroextraction (EE) setup, (B) three-phase EE 
process inside the Eppendorf tube, and (C) the switching valve positions: Position 1, extraction process, and Position 2, flow 
injection transfer of extract to mass spectrometer. Reproduced with permission from Elsevier.  

138                                                                            Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

adequate physico-chemical properties, such as boiling and melting points, density, 1-octanol/water 
partition constant, viscosity, and surface tension, which can provide suitable drop stability, increased 
extraction, compatibility with final analytical technique, and safety. Forensic toxicology needs sensitive 
and multi-analyte analyses on peripheral blood, urine, and gastric fluid. Such samples contain abundant 
amounts of blood proteins or phospholipids, which may produce viscous extracts that are difficult to 
handle and likely to vitiate the detector performance, especially mass ionization. Removal of such 
extraneous matter, and satisfactory extraction of multi-analytes of wider chemical nature, make solvent 
selection a challenging task. 

Ionic liquids (ILs) have been found to be excellent alternatives to organic solvents, owing to their low 
volatility and flammability, excellent thermal stability, and ease of synthesis to specific applications. ILs 
are non-molecular ionic compounds consisting of a huge asymmetric organic cation (e.g., alkylated 
imidazolium, pyrrolidinium, or phosphonium) and a small organic or inorganic anion,(e.g., bis(tri-
fluoromethylsulphonyl)imide or hexafluorophosphate) (Berthod et al. 2018). ILs allow the formation of 
a bigger and stable solvent drop in SDME, and working at elevated temperatures for longer periods 
gives better extraction and precision. Applications of ILs as extraction solvents for a large number of 
forensic drugs in biological samples have been reviewed (De Boeck et al. 2019). 

An interesting class of ILs, called magnetic ionic liquids (MILs), has emerged as extraction solvents 
in SDME. MILs are produced by incorporating a paramagnetic component in the IL structure (Trujillo- 
Rodriguez et al. 2017; Mafra et al. 2019). Their property of exhibiting a strong response to the external 
magnetic field has been used to simplify the extraction process and minimize sources of errors. They 
enable the use of larger volumes of extraction drops, and the collection of extract using an external 
magnetic rod. 

Deep eutectic solvents (DESs) are analogues of ILs comprising a hydrogen-bond acceptor, e.g., 
quaternary ammonium or phosphonium ion with a halide ion, and a hydrogen-bond donor, such as 
amine, carbohydrate, alcohol, or carboxylic acid, to form a eutectic mixture that has a much lower 
melting point than that of each constituent compound. Contrary to ILs, the biodegradable nature of 
many DESs makes them greener solvents (Zhang et al. 2012; Cunha and Fernandes, 2018). DESs are 
liquid at ambient temperature and are composed of two or more safe components that are capable of self 
association through hydrogen bonding. DESs exhibit physico-chemical properties identical to those of 
conventional ILs, but they are much cheaper and convenient to synthesize in a laboratory. Besides 
extraction capabilities, DESs also find newer applications in analytical chemistry that include chro-
matographic separation, electrochemical analysis, synthesis, and modification of sorption materials 
(Shishov et al. 2020). 

Both hydrophilic and hydrophobic DESs, made from water-soluble and insoluble components, re-
spectively, are in use. The former are water soluble, and phase separation is carried out either by the 
addition of high salt concentration to produce salting-out effect, or an emulsifier to form a cloudy 
solution. DES of choline chloride and 4-chlorophenol (other tried phenol and ethylene glycol as proton 
donor) has been used in HS-SDME for the extraction of triazole fungicides from juices (Abolghasemi 
et al. 2020), and of menthol and phenylacetic acid for SDME-SFOD of pesticides in human saliva and 
exhaled breath condensate (Jouyban et al. 2019); in both methods, the extract was analyzed by direct 
injection into GC-MS. Some other workers reported dilution of DES extract with ethanol (Triaux et al. 
2020) or hexane (Mehravar et al. 2021) before injection into GC-MS, ostensibly due to high viscosity 
and involatility of DES. 

7.4.2 Automation 

Though most of the SDME methods perform manually carried out operations, semi or fully automated 
SDME systems offer a number of advantages, such as reduction in sample and reagents consumption, 
economy of time, minimization of errors, improving sensitivity and precision, and minimization of 
waste. In addition to miniaturization of LPME, interest in automation of SDME led to ample innova-
tions, and such efforts have been reviewed (Kocurova et al. 2013). Two examples employed sequential 
injection manifold for metal ion complex formation and extraction. The autosampler arm of the atomic 
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absorption spectrometer was housed with a sampling capillary needle containing organic solvent to form 
a drop into the aqueous sample. After extraction, the autosampler arm was directed toward the graphite 
tube for injection (Pena et al. 2008). In another example, the solvent drop was suspended at the capillary 
tip of the home-designed flow-cell, where the complex solution flows around the drop continuously. 
Thereafter, the drop was retracted into the holding coil and delivered to a graphite tube (Anthemidis and 
Adam 2009). In a dynamic in-syringe LPME approach, a software-controlled autosampler allowed 
sample extraction, analytes derivatization, and extract injection by a fully automatic method for GC-MS 
(Lee and Lee 2011). With the use of an autosampler, the entire procedure entailing 1-octanol drop 
formation with air bubble inside for HS-SDME and GC-MS of extraction was performed automatically 
for nitro musks (Guo et al. 2016). A compound drop of the basic aqueous phase covered with a thin film 
of the organic phase was formed by controlled back-and-forth pressures at the tip of the capillary by two 
different commercial CE instruments to perform automatic LLLME. Analytes from the stirred acidified 
donor phase diffused through the organic film into the basic acceptor phase to attain a pre-concentration 
factor of 2000 within 10 min (Choi et al. 2009). 

In a lab-in-syringe experiment, the syringe was used to concoct a size-adaptable reaction chamber and 
to perform a series of protocols, including aspirating the liquid sample and base, mixing to evolve 
ammonia, and collecting ammonia in the headspace at reduced pressure. The syringe piston was drilled 
with a hole to form a drop of bromothymol blue in the headspace. The on-drop colour measurements 
were made by fibre optics (Sramkova et al. 2016). Two more such techniques used an air-bubble 
stabilized solvent drop of either dithizone in DI-SDME into the aqueous sample of lead(II) (Sramkova 
et al. 2018), or acidified dichromate in HS-SDME of ethanol in a wine sample (Sramkova et al. 2014). 
An innovative 96-well format used a set of magnetic pins to stabilize the MIL drops for the extraction of 
parabens, bisphenol A, and triclocarban (Mafra et al. 2019). The system has the advantage of high 
sample throughput, and suitability for full automation. 

Among lab-automation strategies, adoption of dedicated robots for analytical purposes has received 
widespread importance. An innovative platform has been assembled to hyphenate online sample mi-
croextraction techniques with instrumental techniques. This robot is programmed to automated sample 
clean-up, pre-concentration of analytes by LPME, syringe collection of microextract, and its delivery to 
interfaced online analytical systems. A lab-made multipurpose autosampler was used in robotic-assisted 
microextraction using large solvent drops in DI-SDME (Cabal et al. 2019; Medina et al. 2019). The 
system demonstrated its performance in a dynamic and static large-drop based microextraction in an 
automated manner with minimal requirements of hardware and software. The synergic interaction 
between the use of solvent large drops and the automated dynamic mode of extraction was claimed to 
provide the best extraction efficiencies. 

7.5 Conclusions 

This chapter provided a brief introduction to the modes of SDME and their application to a variety of 
analytes, including biomolecules in their real matrix. The emphasis was placed on the creative ideas that 
have been developed over a period of time, mostly in the last ten years, to provide solutions to analytical 
problems in sample preparation that are otherwise cumbersome by other means. Nanoparticle-enhanced 
SDME, and the use of ILs and DESs as solvents for drop formation, have greatly improved extraction 
efficiencies. Certain examples of automation in SDME were cited, but activities in this area should 
increase to handle biomaterials safely and generate results rapidly and precisely. Medina 2019 
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8.1 Introduction 

Due to the trace and ultratrace amounts of analytes in complex matrices, sample preparation is still 
required prior to quantification in analytical toxicology, even with the high sensitivity and selectivity of 
modern analytical instruments. In addition, sample preparation plays a critical role in the accuracy of 
analytical methods applied for toxicology since its operation accounts for one-third of the errors in a 
whole analytical process (Majors 1991). The traditional sample preparation methods are liquid-liquid 
extraction (LLE) and solid-phase extraction (SPE). Although these methods have been applied in 
analytical toxicology, they entail time-consuming and complicated steps and the consumption of large 
amounts of chemicals and reagents (at least a few millilitres, in the case of SPE via minicartridges); 
therefore, they are far away from the ‘green chemistry’ concept. As a result, trends have gained mo-
mentum toward developing environmentally friendly, low cost, simple and fast sample preparation 
techniques that consume negligible or minimum amounts of organic solvent. The various efforts in this 
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area evolved into the invention of a solvent-minimized sample preparation procedure as a new form of 
LLE method, namely liquid-phase microextraction (LPME). Considering the impossibility of solvent 
elimination, LPME has significantly reduced the volumes employed in the procedure so that it demands 
only several microliters or microdrops of organic solvent to concentrate target compounds in different 
matrices. Moreover, the method provides unique advantages rather than traditional ones, such as ra-
pidity, simplicity of operation, low cost, high recovery, or high enrichment factor. Nowadays, a good 
number of LPME methods in different formats are available, categorized into single drop micro-
extraction (SDME), hollow-fibre LPME (HF-LPME), and dispersive liquid-liquid microextraction 
(DLLME) (Sharifi et al. 2016). Among these formats, HF-LPME and DLLME have received great 
interest because of their individual benefits. 

LPME was introduced in 1996 by Dasgupta and Cantwell not only to facilitate the automation of this 
technique but also to lower the required volume of extractant and sample (Liu and Dasgupta 1996). Since 
the procedure provided a high enrichment factor, it could be of crucial importance when a very small 
volume of the sample was available (Lucena et al. 2009). In a first format, the principle of the method was 
based on compound distribution between several microliters of two immiscible liquid phases, termed 
donor and acceptor phase. The donor phase was an aqueous containing the analytes of interest, and the 
acceptor phase was a water-immiscible solvent so that subject substances were transferred from sample 
solution to acceptor based on passive diffusion. In this format, the acceptor phase could be suspended 
above the sample for headspace sampling (HS-SDME) or could be directly immersed in the donor phase 
to perform a direct immersion SDME procedure (Liu and Dasgupta 1995). In this regard, a microdrop of a 
water-immiscible organic phase was immersed in a large amount of sample solution. Although the method 
was efficient and significantly reduced the organic volume, the microdrop was not stable. In order to 
enhance the stability of the technique, a new method termed HF-LPME was presented in 1999, which was 
based on a supported liquid membrane with two sampling modes (two- and three-phase) (Pedersen- 
Bjergaard and Rasmussen 1999). In the two-phase mode, the analytes of interest were extracted from the 
sample solution through the membrane into an organic phase, while in the three-phase mode, the analytes 
were extracted from the sample (aqueous solution) to the acceptor phase (aqueous solution) across the 
supported liquid membrane (SLM). Three phases can also be configured as carrier-assisted LPME. That 
variant consisted of adding some carriers (e.g., Di(2-etilhexil)ftalato and Tris(2-ethylhexyl)phosphat) to 
the composition of the SLM in order to improve migration of the analytes through the SLM into the 
acceptor solution. In the contact region of the liquid membrane and the acceptor solution, the analytes are 
released from the ion-pair complex into the acceptor solution. 

The effort for the development of different modes of the LPME method has never ceased, which led to 
the introduction of the DLLME method in 2006 (Rezaee et al. 2006). In this mode, the acceptor phase (a 
mixture of extracting solvent and disperse) is injected into the donor phase containing the analytes to form a 
cloudy solution (Nuhu et al. 2011; Barroso et al. 2012). Recently, LPME was miniaturized in microfluidic 
systems to benefit not only the automation of this technique but also to require a lower volume of extractant 
and sample volume as well as to provide more extraction efficiency. In these systems, two liquid streams 
are flowed from two inlets into a microchannel in parallel, acting as a donor and acceptor phase that can be 
separated in most cases by a membrane in which the extractant is impregnated. This approach has seen 
tremendous strides over the age of designing downscaled sample preparation methods in different fields. 

Nowadays, different modes of LPME have intensively been applied to the separation and quantifi-
cation of various compounds in different fields, such as in analytical toxicology. Here, different LPME 
configurations and their main applications in the extraction and pre-concentration of toxic analytes from 
complex matrices are reviewed and discussed. 

8.2 Liquid-Phase Microextraction Configurations 

As mentioned above, LPME has developed different configurations: LLLME, SDME, HF-LPME, and 
DLLME. Figure 8.1 shows the general scheme of LPME for analyte extraction from the donor to the 
acceptor phase. Figures 8.1A and 8.1B represent two- and three-phase configurations, respectively. 
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8.2.1 Single Drop Microextraction (SDME) 

The LPME method, in which a single drop is the extraction medium, is named single drop micro-
extraction (SDME), and it was introduced by Liu in 1995 (Liu and Dasgupta 1995). The SDME 
procedure is implemented in two different modes, termed direct immersion SDME and headspace 
SDME. They are based on the distribution of a partition between the analyte in the aqueous sample 
and a microdroplet of extraction solvent. In this method, a microliter organic solvent droplet, as an 
extracting solvent, is suspended from a microsyringe to insert into the liquid samples (DI-SDME) or 
expose to the headspace of the samples containing the analytes (HS-SDME). After extraction, the 
microdroplet is withdrawn into the microsyringe and coupled to the analytical instruments for further 
analysis. On the other hand, the method is classified into two- and three-phase appraches. In the two- 
phase approach, the target compounds are directly extracted from the aqueous sample solution to the 
organic solvent microdroplet, such as direct immersion SDME and continuous flow SDME. In this 
mode, the droplet can be disturbed by suspended particles or impurities in the sample solution as well 
as the droplet suffers from instability. In the three-phase approach, the compounds are extracted by an 
organic microdroplet or headspace and then back-extracted into an aqueous microdroplet to have 
headspace SDME and the drop-to-drop SDME method, respectively. This method is more appropriate 
for analysis of volatile compounds in complex matrices as well as the droplet is more stable and is not 
influenced by impurities in the sample solution (Kokosa 2015). In the SDME method, some influ-
enced parameters should be considered to obtain desirable results, such as relatively high boiling point 
or relatively low vapour pressure, density, high viscosity, and compatibility with chromatographic 
instruments (Tang et al. 2018). 

8.2.2 Dispersive Liquid-Liquid Microextraction (DLLME) 

DLLME was presented by Assadi and co-workers in 2006 (Rezaee et al. 2006) as a novel sample pre- 
treatment technique in which a ternary component solvent system, including disperser solvent, ex-
traction solvent (AP), and aqueous phase sample (DP) containing the compounds, was utilized to 
implement the procedure. In brief, a proper mixture of disperser and organic solvent is prepared to 
inject into the sample solution in which a cloudy solution is formed to enrich the analytes of interest. 
In this method, the most effective factors are the physical properties of disperser and organic solvent; 
for instance, their density should be considered. To improve the DLLME method surfactant solution, 
ionic liquids have been used as the organic solvent (Han et al. 2012; Trujillo-Rodríguez et al. 2019). 
Moreover, magnetic nanoparticles have been applied as dispersers due to their unique advantages, 

FIGURE 8.1 General scheme for two (1A) and three-phase (1B) configuration of LPME.  
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such as low vapour pressure, high viscosity, good thermal stability, miscibility with water or organic 
solvent, and greater use of larger, reproducible extracting volume. In another approach, dispersion 
solvent was eliminated to enhance the partition coefficient of the compounds into the extraction 
solvent (An et al. 2017). 

8.2.3 Hollow-Fibre Liquid-Phase Microextraction (HF-LPME) 

In order to enhance the stability of the SDME technique and keep the droplet from being influenced by 
impurities in the sample solution, HF-LPME was presented in 1999 (Pedersen-Bjergaard and 
Rasmussen 1999). The method is based on a supported liquid membrane with two sampling modes 
(two- and three-phase). In the two-phase mode, the organic solvent is immobilized in the pores and 
inserted in the hollow-fibre lumen. As the result, the analytes of interest are distributed from the sample 
solution into the organic phase by passive diffusion. In the three-phase mode, which is utilized to 
improve the performance of the two-phase mode, three solvents are utilized for extraction of analytes of 
interest, in which the transferred analytes (from the sample phase to the organic phase) are back- 
extracted by an aqueous acceptor phase. The extractant organic solvent and aqueous acceptor phase are 
filled in the wall pores of the lumen and in the hollow-fibre lumen, respectively. The extracted analytes 
by the HF-LPME method can be detected by different types of analytical instruments. The extraction 
solvent plays a significant role in achieving a good selectivity and high enrichment factor. This solvent 
should provide an appropriate affinity toward analytes and possesses similar polarity to the hollow fibre, 
and it should have no reaction with any of the compounds in the sample solution. Hollow fibre is another 
crucial factor to achieve the optimum conditions due to its participation in the concentration of the 
analyte. In this regard, propylene is considered to be the most effective fibre to enrich the analytes of 
interests (Sharifi et al. 2016; Zhao and Lee 2002). 

8.2.4 Microfluidic LPME 

Microfluidic liquid-liquid device has seen tremendous strides over the age of designing downscaled 
sample preparation methods (Xu and Xie 2017). In this approach, two liquid streams are flowed from 
two inlets into a microchannel in parallel. The initial experiments in a microfluidic liquid-liquid system 
were performed in 2000 by Sato (Sato et al. 2000). Subsequently, scientists carried out the studies 
concerning microfluidic extraction between two immiscible liquids for preparation and separation of 
compounds into various application areas (Shen et al. 2013). 

The two liquid-phase microfluidic system creates a large interface area and short diffusion distance 
between the fluid phases in which the subject substances are transferred from one phase to another 
phase. In another approach, named three liquid phases or more multiplier, analytes are extracted from an 
aqueous sample through an organic phase into the other acceptor phase. In fact, the transferred analytes 
are back-extracted based on the diffusivity difference (Tetala et al. 2009). 

8.3 Applications of LPME in Toxicology 

Since LPMEs are fast, affordable, selective, and relatively solvent-free sample-preparation methods, 
they are of great significance to quantify compounds, especially in toxic determination (Sharifi et al. 
2016; Jain and Singh 2016; He and Concheiro-Guisan 2019). The most relevant applications of LPME 
methods in analytical toxicology reported in the scientific literature are described in the following 
sections. The methods are applied to extract drugs of abuse, hallucinogens, illicit drugs, cannabinoids, 
narcotic substances, etc. For instance, amphetamines, amphetamine-type stimulants, ketamine, cocaine, 
analogues, lysergic acid diethylamide, buprenorphine, methadone and fentanyl, benzodiazepines, and 
Z-compounds have been extracted from urine, blood, plasma, and serum. Table 8.1 also lists other 
applications where LPME is used in toxicological applications and where it is also observed that the 
most widely used technique is DLLME. 
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8.3.1 Analysis of Amphetamines 

In 2006, He and Kang reported the extraction of amphetamines in urine samples using three-phase 
SDLPME (single drop liquid-liquid-liquid microextraction) (He and Kang 2006). Headspace two- 
phase single drop LPME was suggested by He et al. in 2007 (He et al. 2007), in which sub-μg/L level 
detection limits could be achieved with HPLC-UV detection due to the high enrichment capability of 
the method. One of the most efficient LPMEs is provided by the combination between DLLME and 
SPE, in which extraction of amphetamines from urine and plasma samples showed increasing re-
covery compared with previous studies (Mashayekhi et al. 2014). In this study, 10 mL of sample 
solution containing amphetamines was initially pre-concentrated by C18 SPE cartridge and eluted by 
2 mL of acetone MeCN. In the next step, MeCN was applied as disperser solvent for the DLLME 
method. The combined method was coupled to gas chromatography with flame ionization detector 
(GC-FID) for separation and detection of the amphetamines. Limits of detection (LODs) were in the 
range of 0.05–7 µg/L, and recoveries were in the ranges of 94–105% with 1.64% of relative standard 
deviation (RSD). 

8.3.2 Analysis of Sedative and Hypnotic Drugs 

For extraction and pre-concentration of sedative and hypnotic drugs, the proposed methods have been 
capable of providing superior merits for extraction of barbituric acid in water and biological samples 
(Zarei and Gholamian 2011), with LOD of 0.002 µg/mL and recoveries in the ranges of 94–105%. 

8.3.3 Analysis of Opium Alkaloids, Opiates, and Other Alkaloids 

In order to propose a method for the determination of nicotine, as the principal alkaloid of tobacco, and 
its metabolites such as cotinine, a dispersive liquid-liquid microextraction method based on solidifi-
cation of floating organic drop (DLLME-SFO) was coupled to HPLC-UV. In this method, addition of no 
disperser solvent was found to be more effective for proper extraction efficiency. Instead, manual 
shaking was applied to form the extraction solvent emulsion. In addition, a binary extraction solvent was 
utilized to extract both nicotine and cotinine due to their different polarity. The obtained LOD was 0.002 
µg/mL for both compounds, with spiking recoveries in the range of 72–105% (Wang et al. 2014). 

8.3.4 Analysis of Cannabinoids 

Hollow-fibre LPME-GC–MS/MS has been applied for the determination of cannabinoids in human hair. 
In this approach, the analytes were extracted in 20 min. LODs and extraction efficiencies between 
0.5–15 pg/mg and 4.4 to 8.9% were obtained, respectively (Emídio et al. 2010). Among the methods 
developed for analysis of cannabinoids, a method combining surfactant-assisted and dispersive liquid- 
liquid microextraction (SA-DLLME) coupled to HPLC-UV has provided the best results (Moradi et al. 
2011). The extraction time was about 15 min for the determination of cannabinoids in urine samples. In 
this work, cationic, anionic, and non-ionic surfactant as disperser solvent and toluene, 1-octanol, and 
1-dodecanol as extraction solvent were screened using a one-variable-at-a-time (OVAT) approach. The 
proposed SA-DLLME-HPLC-UV method enjoyed reasonable analytical parameters, such as good 
RSDs in the range of 0.1–0.5 µg/L, with an enrichment factor over the range of 190–292. 

8.3.5 Analysis of Antidepressant Drugs 

Jafari et al. reported three-phase-HF-LPME coupled with electrospray ionization-ion mobility spec-
trometry (ESI-IMS) for the simultaneous determination of trimipramine and desipramine, as anti-
depressant drugs, in urine and plasma samples.  RSDs in the range of 5–6 µg/L, with spiking recoveries 
over the range of 92–97% (Jafari et al. 2011), were obtained. In the latter study, using a combination of 
DLLME and electromembrane extraction (EME), coupled with GC-FID, provided the analysis of 
amitryptiline, trimipramine, and doxepine in urine and plasma samples (Seidi et al. 2013). A hollow 
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fibre was filled with acceptor solution and used to extract the analytes of interest. The fibre was dipped 
in the sample solution while an electrical field was applied to transfer the analytes. 

8.3.6 Analysis of Hallucinogens 

For the analysis of lysergic acid diethylamide, phencyclidine, and 3,4-methylenedioxymethamphetamine 
(MDMA), as hallucinogens, a combined DLLME method with capillary zone electrophoresis (CZE) and 
UV detection was developed by Airado-Rodríguez et al. (Airado-Rodríguez et al. 2012). The LODs were 
found to be in the range of 1/4.5 ng mL for all the three analytes. 

8.3.7 Comparison between DLLME Methods 

Table 8.1 summarizes other DLLME applications in analytical toxicology. As can be seen, the highest 
enrichment factors over the ranges of 545–611 and 383–1065 were obtained for the determination of 
methamphetamine (MA), MDMA, ketamine, heroin (Meng et al. 2011), and amitryptiline, and trimi-
pramine and doxepine (Seidi et al. 2013), respectively. Good enrichment factors between 100 and 300 
were obtained for the determination of MA and MDMA (Djozan et al. 2012), opium alkaloids 
(Shamsipur Mojtaba and Fattahi 2011; Ahmadi-Jouibari et al. 2013), fentanyl, alfentanil, and sufentanil 
(Saraji et al. 2011), methadone (Ranjbari et al. 2012; Taheri et al. 2015), cannabinoids (Moradi et al. 
2011), and imipramine and trimipramine (Shamsipur and Mirmohammadi 2014). The lowest LODs over 
the ranges of 0.02–0.04 and 0.0–0.05 were obtained for amphetamine-type stimulants (Pantaleão et al. 
2012) and benzodiazepines (Ghobadi et al. 2014), respectively. 

8.4 Conclusions 

In this chapter, the procedures most used for the extraction and determination of toxicological com-
pounds using LPME were described. The LPME technique that is most used is DLLME, offering very 
high enrichment factors for some compounds, such as MDMA, MA, ketamine, heroin, fentanyl, al-
fentanil, amitryptiline, trimipramine, doxepine, sufentanil, and opium alkaloids. These compounds have 
been determined by different instrumental techniques, such as HPLC, CE, and GC. In some cases, 
hollow-fibre has been used for hair samples; however, the rest have been successfully applied to urine, 
plasma, and blood samples, mainly. Thus, DLLME has been shown to be a well-established technique 
for the analysis of compounds of this nature, offering low detection limits that allow its quantification in 
real samples at expected doping concentrations. The well-known hollow fibre has proven to be a good 
option for the extraction of compounds of a different nature that offer excellent clean-up, so it would be 
interesting to investigate in more detail the use of this technique for urine and plasma samples. The only 
drawback of this technique is that it is necessary to apply it directly to liquid samples, so hair samples 
would be excluded, unless a stage prior to this extraction is carried out. 
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9.1 Introduction 

Analytical chemistry deals with identification and quantification of various analytes of different origin, 
whereas toxicology is the study of adverse effects of any chemical entities on living organisms. 
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Analytical toxicology covers the qualitative and quantitative estimation of chemical toxicants as well as 
small biological molecules to find research answers for the effect of toxicants on biological systems 
(Kenkel 2002; Rushton 1997). 

Analytical scientists deal with various types of chemicals, poisons, drugs, pesticides, and other analytes 
in the routine analysis of complex matrices, such as saliva, urine, serum, plasma, blood, hair, and vitreous 
humour (Manousi and Samanidou 2021). This complexity in matrices makes the analysis of these che-
mical substances more tedious. Similar problems are frequently observed in forensic science, where every 
case’s uniqueness and the ambiguous analyte existence make it very hard to standardize specific analytical 
procedures (Manousi and Samanidou 2021). The complexity of matrices, trace amounts of analytes of 
interest, and limited sample quantities can complicate sample preparation, which is the most important 
step of analytical method development (Kumari et al. 2015; Sharma et al. 2018). 

Sample preparation comprises conversion of the analyte of interest in a detectable and quantitative 
state from its complex matrices with the best possible sensitivity and the least interferences. For op-
timum analytical method development, sample preparation should have the following criteria:  

• Require a smaller amount of the sample  

• Be less time-consuming  

• Have the selectivity to extract the target analyte(s) from the sample  

• Employ the least/no amount of toxic solvents  

• Give efficient recovery of the analyte with reproducibility  

• Give a clean extract of analyte without matrix interferences and impurities  

• Be suitable for the derivatizing steps  

• Be suitable to couple with various analytical instruments 

There are several analytical techniques available to date from traditional extraction methods, like liquid- 
liquid extraction (LLE), Soxhlet extraction, and solid-phase extraction (SPE), to modern miniaturized 
extraction methods, such as liquid-liquid microextraction (LLME), dispersive liquid-liquid micro-
extraction (DLLME), solid-phase microextraction (SPME), and single droplet microextraction (SDME). 
LLE and SPE are the finest available analytical techniques, and even today they are preferred for most 
routine analysis by reputed referral laboratories (Jha et al. 2017, 2018). However, modern analytical 
techniques have the upper hand on traditional available analytical extraction techniques as there are 
some limitations associated with them, such as the following:  

• They require a large quantity of the sample.  

• They require a large volume of toxic organic solvents for the extraction of analytes.  

• They are environmentally unfriendly.  

• They are tedious and time-consuming.  

• They are multi-step extraction procedures.  

• They are costly.  

• They have low enrichment of analyte from the sample matrices.  

• They require clean-up before analysis on an instrument. 

The need for multiple time extraction affects the reproducibility of the results (Jha et al. 2018). 
Emulsion formation and matrix interference also often create obstacles in the preparation of samples. 
Such disadvantages make analytes more vulnerable to lose during sample preparation steps, which 
affects the reproducibility and extraction efficiency of the analytical method. The clean-up step becomes 
necessary after LLE to reduce the matrix effect. Another extraction technique that has long been used in 
forensic laboratories is SPE (Mudiam et al. 2014). In this technique, the extraction, as well as the clean- 
up, can be performed simultaneously. This extraction technique is based on the affinity of the analyte 
between the solid and liquid phases. SPE requires a smaller amount of extraction solvent in comparison 
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to LLE. It involves a cartridge filled with solid packing material acting as a stationary phase, which 
sometimes has an affinity specific to individual analytes. Commercial SPE cartridges are now also 
available with small amounts of stationary phases, which require only microliters of solvent to extract 
analytes from samples. There are some cruical step of multi-step SPE processes such as pre- 
conditioning, adsorption, elution, and pre-concentration of the final extract. Clogging can cause trouble 
in the case of real sample handling while performing SPE (Balinova et al. 2007; Jha et al. 2018). 

In the 1990s, Arthur and Pawliszyn revolutionized the sample preparation procedures by inventing 
SPME (Arthur et al. 1990). SPME is a solvent-less microextraction process consisting of a fibre coated 
with a specific polymeric stationary phase on the surface, on which analytes are adsorbed or absorbed. 
Microextraction techniques overcome the drawback of conventional extraction. SPME is an expensive 
extraction technique, and the fibres used for extraction are very delicate and fragile, requiring special 
maintenance and protection. As the fibre lifespan is short, SPME fibres need periodic replacement. 
Besides this, the sample carryover is also a significant drawback of SPME (Ulrich 2000). 

The primary emphasis of microextraction techniques is on decreasing the number of steps involved in 
sample preparation, thus reducing time consumption and minimizing the use of toxic organic solvents. 
Miniaturization, economical operation, coupling capability with a broad range of analytical instruments 
with high enrichment factors, and better extraction efficiency are the remarkable benefits of microextraction 
techniques (Kataoka 2010). Consequently, Rezaee et al. implemented the LLE method’s miniaturization in 
2006, which was termed dispersive liquid-liquid microextraction (DLLME) (Rezaee et al. 2006). 

This microextraction comprises the three-component system (extraction phase, dispersion phase, and 
aqueous phase). The conventional DLLME employs the extraction solvent with a higher density than 
water, and they are toxic organic solvents (e.g., chloroform, carbon tetrachloride, trichloroethylene). 
The dispersion phase has suitable solubility with the aqueous and organic phases, which increases the 
interaction between the two phases. The solvent premix of the dispersion solvent with the extraction 
solvent is speedily injected into the aqueous phase, which results in a cloudy solution (Jha et al. 2018) 
and, after centrifugation, is ready for instrumental analysis (Figure 9.1). 

Several modifications in terms of dispersion solvent, extraction solvent, and mode of dispersion have 
been done with the first coined DLLME by Rezaee et al. in 2006, and these are the variants of DLLME. 
There are several advantages of DLLME and its variants, which have been widely applied over the years 
for the analysis of a wide range of analytes from environmental, biological, and food matrices. In this 

FIGURE 9.1 Generalized scheme of dispersive liquid-liquid microextraction (DLLME) (reproduced with permission 
from  Jain and Singh 2016).  
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chapter, we focus on the different variants of DLLME that have been developed, their advantages, and 
their application for the analysis of drugs and poisons in biological matrices such as blood, plasma, 
urine, hair, nail, vitreous humour, and tissue. 

9.2 Variants of DLLME 

9.2.1 Based on Extraction Solvents 

Currently used extraction solvents in DLLME are toxic, with a limited ability to extract different 
analytes with a range of polarities. Thus, it is necessary to look for other available solvents for DLLME. 
In order to extend DLLME’s application scope on the basis of extraction solvents, researchers have 
concentrated on the use of low-density and polar organic solvents or new eco-friendly solvents, such as 
ionic liquids (ILs). 

9.2.1.1 Ionic Liquid-Based DLLME (IL-DLLME) 

ILs, which are generally known as green solvents, are a group of organic salts in liquid state at room 
temperature. ILs have some specific physicochemical properties, such as insignificant variable viscosity, 
high thermal stability, and vapour pressure. Liu et al. (2009) first introduced the use of 1-hexyl-3- 
methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as an extraction solvent with the disperser 
solvent (methanol), similar to the conventional DLLME method. 1-butyl-3-methylimidazolium hexa-
fluorophosphate ([BMIM][PF6]) has been used to extract benzodiazepines from blood samples (De 
Boeck et al. 2017, 2018). Except for organic compounds, ILs also demonstrated strong extractability as 
neutral or charged complexes for metal ions. Arsenic was extracted from urine and whole blood samples 
(Shirkhanloo et al. 2011) by using [BMIM][PF6] IL. Ultrasound was applied to increase the interaction 
of analytes with IL, and further extraction efficiency can be enhanced by controlling temperature. Thus, 
ultrasound-enhanced temperature-controlled ionic liquid dispersive liquid-liquid microextraction 
(UETC-IL-DLLME) was applied for triazole pesticide in a plasma sample (Li et al. 2013). Many 
applications focused on the IL-DLLME technique were carried out in the years that followed, em-
phasizing metal ions (Shirkhanloo et al. 2011), pesticides (Li et al. 2013), and benzodiazepines (De 
Boeck et al. 2017, 2018) in the biological sample. 

9.2.1.2 Low-Density Solvent-Based DLLME (LDS-DLLME, DLLME-SFO) 

In conventional DLLME, the extraction phase collection is tedious because it sediments in the lower 
portion of the tube. Therefore, the introduction of low-density solvents makes this task more comfor-
table and increases the range of solvents used for extraction (Jha et al. 2017). These extraction solvents 
(hexane, toluene, xylene, chloroform) remain over the aqueous phase, easily collected by the needle. 
The benefit of using LDS-DLLME is that any matrix part that remains at the bottom of the extraction 
vessel will be sediment after centrifugation, while the extraction solvent will remain floating on the 
surface and results in a cleaner extract, which can be recovered easily (Mudiam et al. 2014). 

To recover the low-density solvent layer, Xu et al. proposed a modified method that employs low- 
density solvents such as 1-dodecanol, 2-dodecanol, hexadecanol, and 1-undecanol with a melting point 
less than room temperature (Xu et al. 2009). A droplet of extraction solvent tends to float over the 
surface due to its low density. The sample vial is moved into an ice bath for some time, making it easier 
to solidify the floating organic droplet due to its lower melting point below room temperature. The 
solidified droplet is then melted, which is subjected to instrumental analysis. Several solvents meeting 
these criteria, such as 1-undecanol (Jha et al. 2017; Saber Tehrani et al. 2012), were approved in 
DLLME-SFO (Dispersive liquid-liquid microextraction-solidification of organic droplet) and used for 
certain organic compounds in complex samples, such as urine and plasma (Suh et al. 2013). 
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9.2.2 Based on Dispersion Solvents 

9.2.2.1 Auxiliary Dispersion Solvents 

The disperser solvent’s miscibility in both the extraction solvent and the aqueous phase are criteria for 
its selection in DLLME. Methanol, acetone, acetonitrile, and ethanol are commonly used as the dis-
perser solvents in this process, which have been confirmed in the literature multiple times. Based on the 
polarity, analytes can show good solubility in disperser solvents, especially when the compounds are 
more polar, increasing the partition of the analytes with extraction solvent droplets and leading to an 
increase in the efficiency of extraction. 

9.2.2.2 Surfactant as Dispersion Solvent 

For the first time, due to the amphipathic nature, a surfactant was explored to act as the disperser 
solvent. This process is termed surfactant-assisted dispersive liquid-liquid micro-extraction (SA- 
DLLME). Herein, the surfactants could contribute significantly to the dispersion of extraction solvents 
into the aqueous phase, leading to a significant decrease in the interfacial tension between the two 
phases (Moradi et al. 2010), showing a better effect than the solvents commonly used. The authors also 
argued that based on pH, the surfactant could form ion pairs with target analytes, which would most 
likely increase extraction efficiency. Some analytical benefits, such as low costs, fast handling, and lack 
of toxic effects, have already been demonstrated by surfactants. Consequently, the versatility of sur-
factants as efficient disperser solvents was shown by several other surfactants, such as cetyl trimethyl 
ammonium bromide (CTAB) (Behbahani et al. 2013), sodium dodecyl sulphate (SDS) (Saber Tehrani 
et al. 2012), and tetradecyl trimethyl ammonium bromide (TTAB) (Moradi et al. 2011). Hence, for the 
use of disperser solvents in DLLME, this is considered a new choice these days. 

9.2.3 Assistance-Based Modification of DLLME 

Due to the complex nature of the matrix and the trace-level presence of analytes, sometimes, for 
optimum extraction, DLLME needs to be coupled with other extraction techniques. This combination 
of DLLME with other methods could increase pre-concentration of the analyte, decrease matrix 
interferences, and increase sensitivity of analytes in some cases. Thus, several studies have con-
centrated on DLLME coalitions with more methods of purification or extraction, exploring con-
sistency with multiple samples. To date, large combinations associated with DLLME have been 
recorded. 

9.2.3.1 Solid-Phase Extraction DLLME (SPE-DLLME) 

Initially, the DLLME technique was applied to the study based on the simplest sample matrices, pri-
marily water. It can be concluded that the primary purpose of DLLME is to maximize sensitivity at the 
cost of selectivity. The combination of SPE and DLLME techniques for the isolation and pre- 
concentration of chlorophenols (CPs) in complex matrices has also been studied (Fattahi et al. 2007). In 
this work, the eluent from SPE was served as a disperser solvent, and together with the extraction 
solvent, it was rapidly injected into the additional aqueous phase (water) for the DLLME process, which 
enriched the analyte in the extraction phase and lowered the detection limit (Quigley et al. 2016). The 
combination of SPE with DLLME increased the method’s applicability and adaptability to different 
sample matrixes. Furthermore, the same solvent, operating as two actors, also proved the viability of 
such a combination in the two operations. In complex samples, the improved SPE-DLLME approach 
was subsequently widely adopted and applied to extract different analytes, such as benzodiazepines 
(Ghobadi et al. 2014), amphetamines (Mashayekhi et al. 2014), and cocaine and its metabolites (Martins 
et al. 2017). 
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9.2.3.2 Molecularly Imprinted SPE-DLLME (MISPE-DLLME) 

Furthermore, a significantly higher degree of specificity and sensitivity was asserted by combining 
molecularly imprinted polymers (MIP) with SPE-DLLME. The critical advantage of MIP compared to 
SPE is the specificity of MIP toward the target analyte molecules, which is due to its analyte-specific 
template formed during their synthesis. By precipitation polymerization, MIP was synthesized using the 
targeted analyte as a template. The sample was loaded on an MI-SPE cartridge, the analyte was bound 
with polymer, and then it was eluted with a suitable solvent (methanol). This methanol was then 
proceeded further for the DLLME procedure (Peñuela-Pinto et al. 2017). Sometimes the extract from 
MISPE was combined with butyl-chloroformate (BCF), which acted as an extraction solvent and a 
derivatizing reagent. High-density BCF settled on the sediment phase after centrifugation, which was 
injected into GC-FID. The MISPE-DLLME with simultaneous derivatization was used for MA and 
MDMA analysis in a urine sample (Djozan et al. 2012). 

9.2.3.3 Ultrasound-Assisted DLLME (UA-DLLME) 

Another modification in the DLLME procedure was the use of ultrasonic waves to enhance extraction 
efficiency. Ultrasonication was used in UA-DLLME to facilitate emulsion formation, thus increasing the 
extraction efficiency by speeding up the mass transfer process between the extraction solvent and the 
aqueous phase (Jain et al. 2013). Ultrasonication helped to attain the equilibrium very easily and helped 
to reduce extraction time. The surface-to-volume ratio of the extracting drops was improved by ul-
trasonic wave (Fernández et al. 2014). While extracting benzodiazepines from urine, the ultrasonic wave 
potentially induced the intermolecular interaction cleavage of benzodiazepines from the matrix 
(Fernández et al. 2013). The UA-DLLME method was applied for a psychoactive substance in urine 
(Jain et al. 2013; Reddy Mudiam et al. 2012), blood (Chen et al. 2017), tissue (brain) (Mudiam et al. 
2014), wastewater (Fernández et al. 2014), saliva (Shekari et al. 2020), etc. 

Using a lower-density solvent as an extraction solvent and ultrasound energy to assist in emul-
sification without any dispersive solvent enhanced the extraction efficiency with ease of collecting 
the extraction phase. Also, the low-density solvent used in extraction was easily obtained after de- 
emulsification, which reduced the influence of a complex sample matrix and was ideal for biological 
samples (Meng et al. 2015). The UA-LDS-DLLME was applied to extract a psychoactive substance 
from urine (Meng et al. 2011, 2015Meng 2015) and blood (Meng et al. 2015). It has also been 
shown that the pre-treatment approach is efficient in eliminating the influence of complex biological 
sample matrices. 

9.2.3.4 Salt-Assisted Liquid-Liquid Extraction DLLME (SALLE-DLLME) 

The DLLME procedure is not enough when dealing with semi-solid or solid complex matrices, such as 
tissue or viscera. On performing the conventional DLLME, the extraction phase could not be separated, 
and the extracts thus obtained were contaminated. When DLLME was performed, no sedimentary drop 
occurred, and sometimes the analyte was used to solubilize again in the sample. In such cases, salt 
addition reduced the solubility of the analytes in the sample solution and simultaneously enhanced the 
analytes’ distribution in the organic phase, contributing to an improvement in extraction efficiency. 
Besides, the homogeneous solution obtained during extraction from the complex matrix was broken 
down by dissolving a sufficient amount of salt as the phase separation agent (Mohebbi et al. 2018). In 
SALLE after the salt addition, water-soluble sample components stayed in the aqueous process after 
centrifugation, giving a cleaner extract of the extraction phase. SALLE-DLLME has been successfully 
applied to human organs (kidney, liver, brain, heart, lung, spleen, abdominal fat) (Pastor-Belda et al. 
2019). In addition to SALLE, Ali et al. used dispersive solid-phase extraction as a clean-up step before 
performing DLLME to extract tricyclic antidepressant drugs (Mohebbi et al. 2018). 
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9.2.3.5 Miscellaneous Modifications in DLLME 

An innovative microextraction technique called electro-membrane extraction (EME) was recently in-
troduced by Pedersen-Bjergaard and Rasmussen (Pedersen-Bjergaard et al. 2006). An electrical potential 
was used in the EME, enabling the analytes’ extraction through the hollow-fibre membrane. EME can also 
extract analytes without sample pre-treatment, thereby removing the resulting problems due to this step. 
EME’s drawback is its incompatibility with the gas chromatographic method. The current technique 
eliminates the need for relatively high-cost SPE cartridges and tedious extraction steps, especially solvent 
evaporation. EME-DLLME allows DLLME to be quickly applied to complex matrices, removes the 
disadvantage of the EME technique, improves sensitivity due to analytes’ aggregation in significantly 
fewer micro volumes of the extraction solvent, and provides high sample clean-up. A new pre-treatment 
approach for the extraction of tricyclic antidepressants (TCA) from biological matrices is being developed 
by integrating the benefits of EME with DLLME (Seidi et al. 2013). 

In the solid-based DLLME extraction method, a mixture of butyl chloroformate (derivatizing reagent) 
with 1,1,2,2-tetrachloroethane (extraction solvent) is added to a sugar cube, which is then inserted into 
an aqueous sample having the analytes and a catalyst, such as 3-methylpyridine. The extractant and 
derivatization agent are slowly released into the aqueous sample as fine droplets during the dissolving of 
the sugar cube by shaking. The resulting cloudy solution is centrifuged, and the sedimentary phase is 
processed for instrumental analysis (Farajzadeh et al. 2015). 

9.3 Applications of DLLME and Its Variants 

9.3.1 Analysis of Urine 

Urine is a complex matrix and is one of the major pieces of evidence in forensic science. Drug use and 
toxicant metabolite were analyzed in a urine sample (Meng et al. 2015). Hallucinogens are drugs that 
change an individual’s perception and mood, without activating or preventing brain activity. Lysergic 
acid diethylamide (LSD), phencyclidine (PCP), and 34-methylenedioxymethamphetamine (MDMA) are 
the most used hallucinogens in the world. Rodríguez et al. applied the DLLME process with capillary 
zone electrophoresis (CE) and UV detection to study LSD, PCP, and MDMA in human urine samples. 
Diluted urine samples were made alkaline with ammonia and subjected to DLLME using acetonitrile 
(disperser solvent) and dibromomethane (extraction solvent). Amphetamines are known as synthetic 
stimulants of the central nervous system, including amphetamine (AP), methamphetamine (MA), 3,4- 
methylenedioxyamphetamine (MDA), and MDMA. According to the World Drug Report, 2019, 
amphetamine-type and prescription stimulants (excluding ecstasy) were the third most widely used 
illegal drugs in 2017, with an estimated 29 million users (United Nations Office on Drugs and Crime 
UNODC 2018). 

Antidepressants, such as TCAs, are the class of psychoactive medications used to treat major de-
pressive disorders. However, an overdose of TCA can result in arrhythmia, hypertension, and death in 
some cases. A DLLME-high-performance liquid chromatography mobile phase (HPLC) with ultraviolet 
(UV) detection method for the extraction and determination of psychoactive drugs such as thioridazine, 
clomipramine, and amitryptiline was developed in urine samples (Xiong et al. 2009). The rapid injection 
of acetonitrile and carbon tetrachloride (CCl4) extracted these drugs into the urine sample led to a 
cloudy solution. The DLLME-HPLC-UV method was used to evaluate two TCA drugs, i.e., imipramine 
and trimipramine, in urine samples. The author reported that the proposed method could assess the 
target analyte concentration in urine samples after 5 hours (Shamsipur et al. 2014). 

The DLLME-SFO technique was recently reported using 1-undecanol as an extraction solvent for 
MA and AP in urine samples in which acetonitrile was used as a disperser solvent. Using HPLC-UV, the 
isolation and identification of analytes was performed. 
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9.3.2 Analysis of Blood, Plasma, and Serum 

The DLLME-HPLC procedure was applied for various samples, such as plasma, urine, water, and 
chlordiazepoxide tablets to determine chlordiazepoxide, a BZD. The chloroform and methanol were 
injected into the aqueous sample, accompanied by centrifugation. Dilution of plasma and urine samples 
minimized the matrix effect (Khodadoust et al. 2013). 

Seven BZDs (alprazolam, bromazepam, lormetazepam, diazepam, clonazepam, lorazepam, and tet-
razepam) were extracted from the plasma sample using UA-DLLME. Methanol deproteinizes the 
plasma sample and works as a disperser solvent with chloroform as an extraction solvent. After cen-
trifugation, the supernatant with chloroform was injected into ultrapure water (pH 9). The mixture was 
then subjected to ultrasound, accompanied by centrifugation, and samples were analyzed by ultra 
performance liquid chromatography (Fernández et al. 2013). 

DLLME with SFO was applied to extract and pre-concentrate the opium alkaloids in human plasma. 
The sample’s protein precipitation was done using 15% zinc sulphate-acetonitrile solution (50:40, v/v). 
The solution was made alkaline by sodium chloride (NaCl) in which 1-undecanol was injected with 
acetone to extract the alkaloids. After centrifugation, the sample was put in an ice bath to solidify the 
floating organic droplet. This SFO drop was melted and proceeded for HPLC analysis (Ahmadi-Jouibari 
et al. 2013). 

Duloxetine, a medication used in the treatment of depressive disorders, was extracted using DLLME- 
SFO. In this process, the analyte was extracted using 1-undecanol as an extraction solvent, from the 
plasma sample. The sample matrix was first deproteinized using zinc sulphate and acetonitrile; in this 
process, acetonitrile was acting as a dispersant itself. The extract was further analyzed by using HPLC 
with fluorescence detection (Suh et al. 2013). 

9.3.3 Analysis of Tissue and Viscera 

One of the most common suicide strategies in developing countries is self-poisoning with pesticides. For 
the analysis of pesticides in matrices of toxicological value, such as skin, blood, and urine, highly 
sensitive and rapid analytical methods are required. A low density-DLLME method coupled with gas 
chromatography-electron capture detection (GC-ECD) has been developed to analyze cypermethrin in 
tissue and blood samples of rats treated with cypermethrin. Tissue samples (brain, liver, and kidney) 
were first homogenized in acetone and then centrifuged. The supernatant acetone was used as a solvent 
disperser and was quickly injected into ultra-pure water in conjunction with n-hexane for pre- 
concentration of cypermethrin in n-hexane. Blood samples were mixed with water and subjected to a 
similar process of DLLME (Mudiam et al. 2012). 

The primary metabolites and biomarkers for exposure to pyrethroid pesticides were 3-phenoxybenzoic 
acid (3-PBA), and 4-phenoxy-3-hydroxybenzoic acid (OH-PBA) was determined in the rat brain by 
UA-DLLME. Methyl chloroformate (MCF) acted as a derivatizing reagent in the process, a single stage 
derivatization cum extraction method was developed and combined with large-volume injection-gas 
chromatography-tandem mass spectrometry (LVI-GC-MS/MS) for pyrethroid metabolite analysis 
(Mudiam et al. 2014). 

The MISPE-DLLME method for evaluating 3-PBA in rat liver and blood samples has been reported 
to extract 3-PBA selectively. MIP was synthesized having a 3-PBA binding site, and the eluent obtained 
after MISPE was subjected to DLLME, followed by injection pot silylation (IPS) inside the injection 
port and further proceeded for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis 
(Mudiam et al. 2014). 

9.3.4 Analysis of Saliva 

Methadone is a synthetic medication used in the treatment of dependency on opiates. A DLLME system 
coupled to HPLC-UV for the pre-concentration and analysis of methadone was reported in four matrices 
(human urine, plasma, saliva, and sweat). Methanol and chloroform were used as dispersers and extraction 
solvents, respectively, for the DLLME extraction of methadone in samples. After centrifugation, the 
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sediment phase obtained was evaporated and makeup in methanol for analysis by HPLC. Before DLLME, 
the pH was set to 10 to hold methadone all together in its molecular shape. This method showed greater 
sensitivity compared to conventional approaches, such as SPE and LLE (Ranjbari et al. 2012). 

9.3.5 Miscellaneous Applications of DLLME 

DLLME-CE-UV was applied for determining multiple illicit substances (MDMA, MA, opium, and ketamine) 
in forensic samples, such as kraft paper and banknotes silver paper, as well as in plastic bags. The samples 
were soaked in acetic acid and filtered; this filtrate was made alkaline by sodium hydroxide (NaOH). The 
isopropyl alcohol (IPA) and chloroform were quickly injected into this filtrate to form the cloud solution. 
The effect of pH on amines and heroin was different; as a result, amphetamines and ketamine displayed an 
improved recovery, while recovery of heroin was decreased. The method showed better analysis speed, and it 
was possible to isolate the entire target analytes within 10 min (Meng et al. 2011). 

The UA-DLLME and DLLME method was applied to the beverages for the extraction of benzo-
diazepines. Dichloromethane and acetonitrile were rapidly injected into the sample, and the extract was 
further processed for the HPLC-UV analysis (Piergiovanni et al. 2018). 

9.4 Conclusion and Future Trends 

Elaboration of the DLLME technique focuses on the standard innovations, developments, and various 
implementations in different fields. Exhaustive attempts have been made to expand the applications to 
various analytes with more complex biological matrices than aqueous samples with substantial 
achievements. In terms of internal technique modifications (seeking other usable extraction or disperser 
solvents) and the combination of DLLME with other techniques, all the methods discussed in this study 
provide both advantages and disadvantages. In most of the works, extensive DLLME research is 
concerned with extending the variety of extraction solvents that are used to improve the method’s 
extraction efficiency. This technique also will be of immense use in the routine analysis of chemical and 
biological compounds in various scopes of work. 
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10.1 Introduction 

Biological samples, environmental samples, and pharmaceutical products are very complex and often 
contain interfering components like acids, bases, salts, metals, proteins, peptides, and several organic 
compounds with similar chemical properties to that of analytes. Thus, sample preparation is an im-
portant step required for extraction of preferred components from complex materials and for analyte 
enrichment. Sensitivity and analyte enrichment are enhanced by the extraction process. Liquid-liquid 
extraction (LLE) and solid-phase extraction (SPE) are traditionally used techniques for sample pre-
paration, but LLE requires a great amount of organic solvents, is time consuming, and is a tedious 
process. SPE is a costly process and requires evaporation of the eluent after extraction. 

An important feature of modern analytical chemistry is efficient and effective sample preparation. 
Quality of the analytical results will be affected by interfering compounds present in the sample matrix 
and poor sample preparation techniques. The focus of recent sample preparation techniques is minia-
turization and novel modifications to conventional methods (LLE or SPE) to meet the needs of current 
analytical methods. Small sample size, high throughput process, potential for automation and online 
coupling, less use of hazardous organic solvents, cost-effectiveness, and user-friendly equipment are the 
common requirements of modern sample preparation techniques. Hollow-fibre liquid-phase micro-
extraction (HF-LPME), developed in the mid-1990s, meets some of these requirements. It is simple, is 
rapid, and needs microliters of solvent. In this technique, pores of HFs are impregnated with the organic 
solvent and form a supported liquid membrane (SLM). The thickness of the SLM and amount of organic 
solvent in the SLM are specified by thickness and by the porosity and pore size of the HF, corre-
spondingly. A very small amount of acceptor solution is filled into the lumen of the HF, and the system 
is positioned in the donor (sample) solution for extraction. Proper mixing of the sample solution is 
commonly required throughout extraction. Once the extraction is completed, the acceptor solution will 
be withdrawn and directly injected into analytical systems, such as gas chromatography (GC), liquid 
chromatography (LC), and capillary electrophoresis (CE). 

The basic principle involved in the HF-LPME is passive diffusion of analytes from the donor solution 
(sample solution) through SLM into an acceptor solution. Distribution ratios of analytes between dif-
ferent aqueous and organic solvents determine their flux through the SLM. Generally, HF-LPME re-
quires long extraction time to attain an equilibrium level. Extraction times in the range of 15–45 min are 
required to get maximum recoveries based on the sample volumes. It is reported that very large sample 
volumes require extraction times up to 2 h. Several parameters influence the extraction speed in HF- 
LPME, such as analyte distribution coefficient between sample solution and organic solvent in the SLM, 
distribution coefficient between the organic solvent and the acceptor solution, volume of the sample and 
acceptor solution, and the immobile boundary layer thickness between the sample solution and the 
SLM. The extraction process is comparatively slow, even if the above parameters are optimized. A new 
extraction procedure was proposed by Pedersen-Bjergaard and Rasmussen in the year 2006 to overcome 
this problem, which has been termed electromembrane extraction (EME). Initially, it was developed as a 
hybrid technique of HF-LPME and LLE, facilitated by application of an electric field. In this procedure, 
voltage was applied across the SLM that acts as the driving force to move charged analytes from the 
sample solution, through the SLM, into the acceptor solution. 

10.2 Principle, EME Setup, and Procedure 

A typical setup used for EME is shown in Figure 10.1. It contains a glass vial with a screw cap used 
to fill the sample solution (donor solution), and the pH of the sample solution is adjusted to charge the 
required analytes. The required length of the HF (usually made up of polypropylene or other porous 
hydrophobic material) is taken, and the lower end of the HF is sealed by applying mechanical pressure, 
whereas the upper end is coupled to a pipette tip as a guiding tube. The HF is dipped for a few seconds 
into a water-immiscible organic solvent to immobilize and form an SLM of the solvent in the wall of the 
HF. Excess of solvent in the SLM is gently removed by air-blowing with a medical syringe or with a 
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medical wipe. Aqueous acceptor solution is filled into the lumen of the HF with a microsyringe through 
the guiding tube. The filled HF is placed into the sample solution through the vial cap. One platinum 
electrode is located in the sample solution, and another platinum electrode is located in the acceptor 
solution. Upon application of voltage over the electrodes, the charged analytes from the sample solution 
migrate through the SLM into the acceptor solution containing oppositely charged electrode. For ca-
tions, the cathode is placed in the acceptor solution and the anode is placed in the sample solution, 
whereas for anions, the anode is placed in the acceptor solution and the cathode is placed in the sample 
solution. Voltage is turned off to end the extraction, and acceptor solution is collected with the help of a 
microsyringe and transferred to a vial for analysis by HPLC, GC, CE, or any other suitable technique. 

10.3 Parameters Influencing Flux of Analytes across SLM 

10.3.1 Composition (Organic Solvent) of SLM, Viscosity, and Thickness 

Success of EME mainly depends on the chemical nature of the SLM. The flux of analytes through the 
SLM is influenced by the difference in concentration of analytes across the SLM, which is determined 
partially by the distribution ratio of analyte from sample solution to the SLM; this, in turn, depends on 
the type of organic solvent used as the SLM. Selectivity, diffusion coefficient, and good clean-up during 
extraction are influenced by type of solvent used as an SLM. The organic phase used as an SLM in EME 
should support a relatively low current flow in the system by possessing a certain dipole moment or 
electrical conductivity. The organic solvent should facilitate electrokinetic migration and phase transfer 
of the analytes. In addition, the organic solvent should be immiscible with water to avoid the loss of 
solvent from SLM and dissolution in the sample and acceptor solution during stirring. 

Nonpolar (log P ˃ 2) basic drugs are extracted by using nitro-aromatic, solvents such as 2-nitrophenyl 
octylether (NPOE) and nitrophenyl pentyl ether (NPPE), as SLMs. Phase transfer and electrokinetic migration 
of basic analytes was improved by the addition of hydrophobic alkylated phosphate reagents to the SLM. 

Polar (log P ˂ 1) basic drugs are unable to migrate through the interface between the sample solution 
and the SLM formed by NPOE because the high polarity of these drugs counteracts the influence of the 

FIGURE 10.1 Schematic illustration of the setup for EME ( Krishna Marothu et al. 2013).  
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electric field. Transport of these drugs through SLM is facilitated by forming ion pairs with the analytes 
by adding ion pair reagents such as di-(2-ethylhexyl) phosphate (DEHP) or tris-(2-ethylhexyl) phos-
phate (TEHP) to the organic solvent. Basic drugs with a large log P window are extracted using an SLM 
comprising 10% DEHP and 10% TEHP in NPOE. 

Nitro-aromatic solvents are not efficient for the extraction of acidic drugs. Long-chain alcohols such 
as 1-octanol and 1-heptanol have been used for the extraction of acidic drugs. They easily impregnate 
the membrane and are immiscible with water. These alcohols also offer suitable electrical resistance to 
the applied voltage, thereby avoiding excessive electrolysis, bubble formation, and stability issues 
of the analytes at the electrodes due to redox reactions. The type of organic solvent used as an SLM and 
voltage should be tuned and optimized for selective extraction of analytes and high recovery. 

The viscosity of the organic solvent is another important parameter that influences the distribution of 
analytes through SLM: if the viscosity of the organic solvent is low, more diffusion of analytes is ob-
served. Flux of analytes is also influenced by the thickness of the membrane: if the membrane thickness is 
high, a more diffuse path is observed, and this theoretically decreases the extraction recovery. 

10.3.2 Extraction Voltage and Time 

Electrokinetic migration of analytes through SLM into the acceptor solution is very much dependent on 
the applied voltage. The flux of analytes (Ji) is greatly influenced by the magnitude of the voltage applied. 
How different parameters influence the flux of analytes through the SLM is described in Equation 10.1. 
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where 
Di is the diffusion coefficient for the analyte, 
h is the thickness of the membrane, 
ci is the analyte concentration at the SLM/sample interface 
ci0 is the concentration of the analyte at the SLM/acceptor interface 
v is a function of electrical potential 
and X is the ion balance (the ratio of the total ionic concentration in the sample solution to that in the 

acceptor solution). 
Commonly, the EME voltage applied is in the range of 5–600 V. Recovery values will be decreased at 

higher voltages due to bubble formation, electrolysis, and degradation of analytes due to redox reactions 
at the electrodes. Time also influences the flux of analytes through SLM. An increase in extraction time 
or increase in voltage directly increases the flux of ions, and hence extraction recovery is increased, but 
if voltage and time are considered simultaneously, an antagonist effect is observed (decrease in the 
extraction recovery). Therefore, an increase in extraction time limits the applied voltage, and an increase 
in voltage limits the extraction time. Typically, at extraction times above 15 min, analyte recovery is 
declined due to the unsteadiness of the electrical current in the system, back migration of the analytes 
toward the sample solution (donor phase) due to alteration of pH from electrolysis, and a small loss of 
artificial liquid membrane. Voltage can be used for the selective extraction of analytes in EME. At 
higher voltages, all the analytes will be extracted, and at low voltages, some analytes will be extracted. 
This concept can be used for the selective extraction of analytes. 

10.3.3 pH of Donor and Acceptor Phases 

In the EME, analytes should be in the ionized state to be influenced by the electric field. For the fast 
extraction of basic analytes, the pH of the sample and acceptor solution is acidic to ionize the basic 
analytes; generally, hydrochloric acid, acetic acid, or formic acid is used. Extraction will be carried out by 
placing an anode in the sample solution and a cathode in the acceptor solution. The low pH in the sample 
solution ensures efficient flux of analytes through the SLM into the acceptor solution, while the low pH in 
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the acceptor solution prevents the back diffusion of analytes into the sample solution. For the extraction 
of acidic analytes, alkaline pH is maintained in the sample and acceptor solution to ionize the analytes. 
A cathode is placed in the sample solution, and an anode is placed in the acceptor solution. 

10.3.4 Volume of Sample and Acceptor Solution 

High enrichment factors are observed by taking a large volume of sample solution and a small volume 
of acceptor solution. Although enrichment factors are high in EME, efficiency is decreased due to an 
increase in the sample volume. Higher sample volume causes an increase in distance between the 
electrodes, and hence a feeble electric field between the electrodes. Common sample volumes are in 
the range of 70 µL to 10 mL, and the acceptor solution volume is in the range of 10 to 100 µL. 

10.3.5 Agitation/Stirring Speed 

Agitation of the EME system leads to the increase in extraction efficiency by improving the kinetics or 
mass transfer of analytes from the sample solution to the SLM and reducing the thickness of the 
boundary layer around the SLM by means of convection. Commonly, a stirring speed of 0–1,250 rpm 
was used. An increase in extraction recovery was observed with stirring compared with no stirring, 
whereas at higher stirring rates, a decrease in extraction recovery was observed due to the formation of 
bubbles in the sample and acceptor solution and seepage of organic solvent from the SLM. 

10.3.6 Presence of Salt/Salt Effect 

Presence of salt or ionic substance in the sample solution leads to upsurge in the ionic balance of the 
system, and it causes a decrease in the flux of analytes through SLM. Hence, extraction efficiency is less 
in the presence of salt. However, few studies indicated that the addition of salt to the sample solution 
increased the efficiency of extraction. EME of acidic (non-steroidal anti-inflammatory drugs) and basic 
(β-blockers) drugs was achieved optimally by the addition of 30% (w/v) NaCl to the sample solution. 
The effect of salt on the EME of haloacetic acids was also investigated. NaCl in the concentration range 
of 3–15% was added to the sample solution and found that the addition of NaCl up to 5% increased the 
extraction recovery, and an above 5% decrease in the extraction recovery was observed due to variation 
in the conductivity of the sample solution and rise in the viscosity of the sample solution. 

10.3.7 Temperature 

The effect of temperature on the EME is also reported in the literature. The extraction process is rapid 
by increasing the temperature up to 40°C, and beyond 40°C partial degradation of SLM is observed. 

10.4 Technical Developments in EME 

In recent years, different EME setups were developed for improving recovery, sample enrichment, and 
throughput. EME devices are classified into two types depending on the configuration of the organic 
layer. One category of devices uses SLMs, where polymeric membranes are used for the impregnation 
of organic solvent, and the other category uses free liquid membranes (FLMs), where physical support is 
not used for the organic layer. Gel-electromembrane extraction (G-EME) is another recent technical 
development in EME, where gel membrane is used in place of SLM to carry out the extraction. 

10.4.1 On-Chip EME 

On-chip EME is an interesting development of EME. Advantages of on-chip EME are the requirement 
of very low sample volumes, continuous delivery of fresh samples to the SLM, low consumption of 
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reagents and chemicals, fast extractions due to very short diffusion path length, high extraction effi-
ciency, and the possibility of online coupling to analytical instruments. 

The on-chip EME (Figure 10.2) system consists of a porous polypropylene membrane impregnated with 
the organic solvent bonded between two poly(methyl methacrylate) (PMMA) substrates, each having 
channel structure toward the membrane. The sample solution is pumped through the sample channel of the 
chip with the help of a microsyringe pump. Analytes are diffused through SLM into the acceptor solution 
by the action of electrical potential. In one type of configuration, acceptor solution is stagnant and is 
removed by the pipette manually and analyzed offline. In another type of configuration, flow is introduced 
in the acceptor channel, and the acceptor solution is continuously pumped into an analytical instrument. 

10.4.2 Low-Voltage EME 

In low-voltage EME, 0–15 V is commonly used as a driving force to conduct the EME. Low-voltage 
EME is of interest because there is no chance of analyte degradation, interelectrode distance is less (few 
millimetres), extractions can be performed by common batteries, and there is the possibility for the 
development of portable extraction devices. 

EME of 29 different basic model drug substances was performed at low voltage. The drug substances 
that had log P values of below 2.3 were not extracted at low voltages of less than 15 V. The drug 
substances that showed log P values of ≥2.3 and had two basic groups were also not extracted at low 
voltages of less than 15 V. Drug substances that had one basic group and log P ≥ 2.3 were extracted 
at low voltages with strong selectivity. 

10.4.3 Drop-to-Drop EME 

Drop-to-drop EME is a miniaturized technique, performed under stagnant conditions by utilizing flat 
membranes. The setup of drop-to-drop EME is shown in Figure 10.3. It consists of aluminium foil with 
a well pressed into it, which acts as a sample compartment. The foil is coupled with the positive outlet of 
the power supply and acts as an anode. A platinum wire is placed in the acceptor droplet and connected 
to the negative outlet of the DC power supply, which acts as another electrode. Sample solution is placed 
in the well of the aluminium foil, and the foil is connected to the power supply. Organic solvent is 
immobilized in the membrane, which acts as an SLM and is placed on the top of the sample solution. The 
sample solution is sandwiched between the membrane and the aluminium foil. A droplet of acceptor 
solution is placed on the top of the membrane, and an electrode is inserted. Sample solution and acceptor 
solution are in contact with the SLM. Extraction is accomplished by applying a voltage for a certain 
period of time. After extraction, the acceptor solution is transferred to a vial with the help of a pipette 
for analysis. Advantages of drop-to-drop EME are direct use of samples without pre-concentration and 
selective extraction of analytes from a small volume of the samples. There is no chance of electrochemical 
degradation of the analytes because the extraction process is usually carried out at low voltages. The setup 
is simple and economical, and the carryover effect is not observed because the aluminium foil is used 
only for single extraction. The setup is stagnant and has no need for agitation. 

FIGURE 10.2 Schematic illustration of on-chip EME coupled to MS ( Petersen et al. 2011).  
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10.4.4 Pulsed EME 

In the pulsed EME technique, pulsed voltage is used in the place of continuous DC voltage. The 
purpose of this is to provide a stable system when extraction is performed at higher voltages and to 
reduce the thickness of the ion double layer on both sides of the SLM. It improves the extractability by 
removing the mass transfer barrier. The principle involved in this is shown in Figure 10.4. Pulsed 
EME is performed by applying voltage in pulses for a short period of time (typically 15 s) with 
short breaks (2–10 s) in between. When voltage is applied, the duration of the pulse is enough to 
extract the analytes, and a double layer is formed at the SLM. Next, the voltage is turned off, whereas 
the sample solution is under stirring. Hence, ions accumulated at the SLM are dispersed again in the 
solution due to stirring, and the double layer will disappear. After the outage period, voltage will 
be applied again in a similar manner. Pre-concentration factors obtained with pulsed EME are higher 
than the values obtained with conventional EME. 

FIGURE 10.4 Principle involved in the pulsed EME. (A) EME setup; (B) beginning of the pulse duration; (C) end of the 
pulse duration; and (D) end of the outage period ( Rezazadeh et al. 2012).  

FIGURE 10.3 Schematic illustration of the setup of drop-to-drop EME ( Petersen et al. 2009).  
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10.4.5 EME Followed by Low-Density Solvent-Based Ultrasound-Assisted 
Emulsification Micro-Extraction (EME-LDS-USAEME) 

EME-LDS-USAEME is a two-step process. In the first step, extraction of analytes is carried out by EME, 
and the acceptor solution obtained in the EME is used in the second step (LDS-USAEME) as a sample 
solution. In the second technique, a soft Pasteur plastic pipette is used as an extraction device. The 
acceptor solution obtained in the first step (EME) is transferred to Pasteur pipette. If required, a suitable 
quantity of water is added to increase the volume of the sample solution, and a solvent with density lower 
than the water is injected into the pipette. The pipette is kept in an ultrasound water bath immediately to 
produce an emulsion for facilitating the analyte extraction. After extraction, the emulsion is centrifuged to 
separate into two phases. The bulb of the pipette is squeezed gently to raise the organic extract (upper 
layer) into the narrow stem of the pipette. Organic extract is collected with the help of microsyringe and 
transferred to a vial for introduction into the analytical system for qualitative or quantitative analysis. 
Extraction efficiency is high in this approach due to the combination of two techniques. 

10.4.6 Parallel EME (Pa-EME) 

Parallel EME is a high throughput sample preparation technique. It is performed with flat membranes in 
a 96 well-plate format. It consists of two well plates. The first plate has a conductive bottom, and the 
second plate has a polymeric membrane bottom. The first plate is used as a sample compartment, and the 
second plate is used to fill the acceptor solution. Donor solution is added to each sample well, polymeric 
membrane is impregnated with organic solvent, and acceptor solution is added to the wells in the 
acceptor plate. The second plate is inserted in the first plate, and voltage is applied between the plates. 
Recovery obtained with Pa-EME is comparable with that of the HF-EME. 

10.4.7 EME Using Free Liquid Membranes (FLMs) 

In this category of EME, physical support is not used for the organic layer, so they are called free liquid 
membranes (FLMs). Micro-EME (μ-EME) is a technique under this FLM category. It is a sandwich 
technique and is performed in horizontal configuration. It consists of a transparent polymeric tubing into 
which an organic layer (FLM) is sandwiched between the donor and acceptor solution. This forms a 
three-phase extraction system, which is stable and requires µL to sub-µL volumes of solutions. Among 
the different formats of EME, μ-EME is the only technique capable of handling very low sample 
volumes (≤1 μL). In the μ-EME, dilution of the sample is not required before extraction and can be used 
for extraction of low-volume biological samples directly without dilution. The disadvantage of μ-EME 
is FLM thickness is more and surface area is less. This leads to poor mass transfer of analytes through 
the FLM (organic layer). Compared with the SLM systems, FLM systems require longer extraction 
times to get the same recovery because agitation is also not possible in FLM systems. 

10.4.8 Gel-Electromembrane Extraction (G-EME) 

G-EME is a green extraction technique, and in place of SLM, gel membrane is used to carry out the 
extraction. Agarose gel is generally used to prepare the membrane without using any organic solvent. The 
membrane is prepared by dispersing agarose powder in deionized water and heating the solution at 90°C for 
1 min using a microwave oven. The hot solution is immediately dropped into an Eppendorf tube using a 
micropipette and allowed to harden at 4°C for 30 min. After hardening, the end of the Eppendorf tube is cut 
carefully to make a compartment for the acceptor phase with a membrane sheet. The conical shape of the 
bottom of the Eppendorf tube helps to grip the gel and also close the compartment. Sample solution is taken 
into the glass vial, and an Eppendorf tube containing membrane is inserted into the sample. One electrode is 
introduced into the sample solution, and the other electrode is placed into the Eppendorf tube. Electrodes 
with ring-shaped ends are used to create a large electric field near the membrane. Voltage is applied across 
the membrane to initiate the extraction, and acceptor solution is withdrawn after extraction and introduced 
into an analytical technique. A schematic illustration of the G-EME setup is shown in Figure 10.5. 
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10.5 Applications 

10.5.1 Extraction of Thebaine 

EME of thebaine was performed on water samples, urine samples, street heroine, poppy capsules, and 
codeine tablets. 1 mM HCl was used as a sample solution, and 100 mM HCl was used as an acceptor 
solution. 2-Nitrophenyl octylether (NPOE) was used as an SLM, and the driving force used was 300 V. 
The extraction system was placed on an agitator and agitated at a speed of 1,250 rpm. Extraction was 
done for 15 min, and the acceptor solution was analyzed by HPLC with UV detection. Pre-concentration 
factors attained were in the range of 90–110. 

10.5.2 Extraction of Six Basic Drugs 

Exhaustive EME of six basic drugs (citalopram, loperamide, methadone, paroxetine, pethidine, and 
sertraline) from human plasma was performed by using three HFs in the same sample. Use of three HFs 
in the same sample compartment increased the surface area of the SLM and also the volume of the 
acceptor solution. The SLM used was NPOE, and the driving force used was a voltage of 200 V. The 
extraction time used was 10 min, and the system was agitated at 1,200 rpm. The acceptor solution used 
was 10 mM formic acid, and it was analyzed by LC-MS. Extraction recovery values obtained from 
1,000 µL undiluted human plasma were in the range of 55–93% and from 50 µL undiluted human 
plasma were in the range of 56–102%. 

10.5.3 Extraction of Mebendazole 

EME of mebendazole from human plasma and urine samples was performed by using NPOE as an 
SLM. Sample and acceptor solution used was 100 mM HCl. Extraction was carried out with a voltage of 
150 V as a driving force, and the time of extraction was 15 min. The extraction system was stirred at a 
speed of 700 rpm. The acceptor solution was analyzed by HPLC with UV detection, and pre- 
concentration factor obtained for plasma was 144 and for urine was 156. 

FIGURE 10.5 Schematic illustration of the G-EME setup ( Tabani et al. 2017).  
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10.5.4 Extraction of Nalmefene and Naltrexone 

EME of nalmefene and naltrexone from untreated human urine and plasma samples was performed by 
using 85% NPOE and 15% di-(2-ethylhexyl) phosphate (DEHP) as an SLM. Donor and acceptor so-
lution used was 10 and 100 mM HCl, respectively. Voltage of 100 V was used as a driving force for 
extraction, and time of extraction was 20 min. The system was agitated at 1,250 rpm, and the acceptor 
solution was analyzed by HPLC with UV detection. The observed pre-concentration factors were in the 
range of 109–149. 

10.5.5 Extraction of Citalopram, Loperamide, Methadone, and Sertraline  
from Dried Blood Spots 

10 µL of the whole blood was spiked with model drug substances and spotted on alginate and chitosan 
foams (sampling media). After drying at room temperature, the dried blood spot was punched out and 
dissolved in 1 mM HCl (sample solution). NPOE was used as an SLM, and 10 mM formic acid was 
used as an acceptor solution. Three HFs were used as acceptor compartments. Anode was positioned in 
the sample compartment, and three cathodes were positioned in the lumens of three HFs. The driving 
force for the extraction was voltage of 100 V, and extraction time was 10 min. The system was agitated 
at a speed of 3,000 rpm. Acceptor solution was collected, diluted with mobile phase, and injected into 
the LC-MS system. 

10.5.6 Extraction of Six Basic Drugs of Abuse 

EME of six basic drugs of abuse (cathinone, methamphetamine, 3,4-methylenedioxy-amphetamine, 
3,4-methylenedioxy-methamphet-amine, ketamine, and 2,5-dimethoxy-4-iodoamphetamine) from un-
diluted whole blood and postmortem blood was performed by using 1-ethyl-2-nitrobenzene as an SLM. 
Acetic acid (10 mM) solution was used as an acceptor solution, and a voltage of 15 V was used as an 
extraction driving force. Extraction was performed under stagnant conditions, and the time of extraction 
was 5 min. Acceptor solution was analyzed by LC-MS, and recovery values obtained were in the range 
of 10–30%. 

10.5.7 Extraction of Amphetamine-Type Stimulants from Human Urine 

EME of amphetamine-type stimulants (amphetamine, methamphetamine, 3,4-methylenedioxymeth- 
amphetamine, 3,4-methylenedioxyethamphetamine, and methylbenzodioxolylbutanamine) from 
human urine samples was performed by using NPOE containing 15% tris-(2-ethylhexyl) phosphate 
(TEHP) as an SLM. 1 and 100 mM HCl were used as donor and acceptor phase solutions, re-
spectively. Extraction was performed at 250 V, and the time of extraction was 7 min. The system 
was placed on an agitator with agitating speed of 1,000 rpm. Acceptor solution was analyzed by 
HPLC, and pre-concentration factors obtained were in the range of 108–140. 

10.5.8 Extraction of Lithium from Human Body Fluids 

EME of lithium from untreated human body fluids was performed by using 1-octanol as an SLM. The 
sample solution was prepared by diluting body fluids 100 times with 0.5 mM Tris solution, and 100 mM 
acetic acid was used as an acceptor solution. The driving force for the extraction was a potential of 75 V, 
and the sample solution was stirred at 750 rpm. The time of extraction was 10 min, and after extraction, 
the acceptor solution was analyzed by capillary electrophoresis with capacitively coupled contactless 
conductivity detection (CE-C4D). Lithium recovery values obtained for whole blood, plasma, blood 
serum, and urine were 90, 107, 98, and 92%, respectively. 
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10.5.9 Extraction of Heavy Metal Cations 

EME of heavy metal cations (Mn2+, Cd2+, Zn2+, Co2+, Pb2+, Cu2+, and Ni2+) from aqueous samples was 
performed by using 1-octanol and 0.5% v/v bis(2-ethyl hexyl) phosphonic acid as an SLM. Water and 
100 mM acetic acid solution were used as donor and acceptor solution, respectively. The driving force 
for the extraction was 75 V, and the sample solution was stirred at 750 rpm. Time for the extraction was 
5 min, and the acceptor solution was analyzed by CE-C4D. Extraction recovery values obtained were in 
the range of 15–42%. The method was extended to extraction of heavy metal cations from tap water and 
powdered milk samples. 

10.5.10 Extraction of Nerve Agent Degradation Products 

Electromembrane isolation of four nerve agent degradation products (methylphosphonic acid, ethyl 
methylphosphonic acid, isopropyl methylphosphonic acid, and cyclohexyl methylphosphonic acid) from 
spiked river water samples was performed by using 1-octanol as an SLM. Water was used as acceptor 
solution, and the pH of the donor (sample) and acceptor solution was 6.8. The driving force for the 
extraction was 300 V, and the time of extraction was 30 min. The system was agitated at 800 rpm, and 
the acceptor solution was analyzed by CE-C4D. The limit of detection (LOD) values obtained for the 
analytes were in the range of 0.022 to 0.11 ng/mL. 

10.5.11 Extraction of Chlorophenols from Sea Water 

EME of chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol), 
which are major environmental pollutants, from sea water was performed by using 1-octanol as an SLM. 
The pH of donor (sample) and acceptor solution was 12, and the extraction was performed at a potential of 
10 V. The sample solution was stirred at 1,250 rpm, and the time of extraction was 10 min. Acceptor 
solution was analyzed by HPLC-UV system and found that the proposed EME technique was highly 
selective toward pentachlorophenol. 

10.6 Conclusion 

EME is a rapid, selective, efficient, and cost-effective sample preparation technique. Various EME 
setups were developed in the last 15 years and employed for different applications. The development of 
on-chip EME permits rapid extractions and the possibility of online coupling with analytical instru-
ments. Low-voltage EME allows the development of portable devices, and there is no chance of sample 
degradation. Drop-to-drop EME requires small sample volumes, and the carryover effect is avoided in 
these systems. Pulsed EME is suitable for the fast and efficient extraction of analytes from complex 
matrices. Extraction efficiency is high in EME-LDS-USAEME due to the combination of two extraction 
techniques. High-throughput sample preparation is possible with pa-EME systems. μ-EME is the only 
technique among the different formats of EME capable of handling very low sample volumes (≤1 μL). 
G-EME is a green extraction technique where organic solvent-free gel is used as a membrane to carry 
out the extraction. Surely, in the near future EME systems will be available commercially for routine use 
in analytical toxicology. 
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11.1 Introduction 

In forensic and clinical toxicology, sample preparation of biofluids is an important and demanding step 
in the overall analytical workflow. Sample preparation aims to extract the target analytes from complex 
biological matrices, as well as to exclude the response of interfering matrix constituents in the sub-
sequent chromatographic determination (Pragst 2007). Usually, the target analytes, i.e., toxic chemical 
compounds and/or their metabolites, are extracted from whole blood, blood serum, and blood plasma. 

The conventional extraction techniques for the analysis of samples of biological origin are solid-phase 
extraction (SPE) and liquid-liquid extraction (LLE); however, direct analysis and analysis after pre-
cipitation of proteins are also used. These techniques exhibit a plethora of drawbacks, including com-
plicated and time-consuming steps that are prone to errors and the need for a high volume of sample and 
hazardous organic solvents, while they also present difficulties in automation (Kataoka 2003; Manousi and 
Zachariadis 2020; Samanidou et al. 2005). For simplification of sample preparation and eliminatation/ 
reduction of organic solvent use, solid-phase microextraction (SPME) was introduced in 1990 by 
Professor Janusz Pawliszyn (Arthur and Pawliszyn 1990). Subsequently, multiple microextraction tech-
niques, based on solvent or solid sorbent, have emerged. Apart from SPME, notable microextraction 
techniques include liquid-phase microextraction (LPME) (Liu and Dasgupta 1996), pipette tip solid-phase 
extraction (PT-SPE) (Hasegawa et al. 2011), stir bar sorptive extraction (SBSE) (Nazyropoulou and 
Samanidou 2015), dispersive solid-phase extraction (d-SPE) (Manousi et al. 2020), magnetic solid-phase 
extraction (MSPE) (Filippou et al. 2017), and fabric phase sorptive extraction (FPSE). 
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The novel extraction techniques comply with the principles of green chemistry that are currently a 
trend in analytical toxicology and in other areas of analytical chemistry. The need for green chemical 
processes arose from increasing concern for human health and environmental protection, as well as for 
sustainability. The principles a chemical process should address to be characterized as environmentally 
friendly were defined by the researchers Anastas and Warner in 1998 (Turner 2013). Furthermore, green 
analytical chemistry (GAC) emerged from those principles, two years later. GAC deals with the con-
tribution of analytical chemists in developing cheap and effective analytical methods that are friendly to 
the environment (Namieśnik 2000; Filippou et al. 2017; Armenta et al. 2015). 

FPSE is an environmentally friendly sample preparation technique that was developed in 2014 by 
Kabir and Furton (Kabir and Furton 2014). In FPSE, extraction of the target compounds occurs onto the 
FPSE membrane that is directly introduced into the sample matrix. The inherent porous surface of the 
fabric substrate and the superior material properties of sol-gel derived sorbents that are uniformly 
dispersed as an ultra-thin film within the substrate, have made FPSE membranes very powerful and 
convenient sample preparation devices. This technique successfully incorporates the majority of the 
beneficial characteristics of SPME, which is an equilibrium-based extraction, and SPE, which is an 
exhaustive extraction technique (Samanidou et al. 2016). Moreover, FPSE exhibits a significant geo-
metrical advantage of high primary contact surface area, and compared to SPME fibres, FPSE mem-
brane contains approximately 400 times larger sorbent loading (Kabir et al. 2018; Kumar et al. 2014). 
Due to the variety of sol-gel derived hybrid sorbents and fabric substrates, various different FPSE 
membrane have been constructed with different selectivity toward the target analytes, different analyte 
retention capacity, and different extraction equilibrium points (Kazantzi and Anthemidis 2017). The 
steps of the FPSE procedure are illustrated in Figure 11.1. 

As a result, FPSE can combine the benefits of sol-gel derived hybrid sorbents and the unique surface 
properties of (hydrophilic/hydrophobic/neutral) fabric substrates. FPSE is an environmentally friendly tech-
nique that has proved to exhibit performance superiority compared to other sample preparation techniques, 
while it reduces the consumption of hazardous solvents. Moreover, with FPSE both low and high sample 
volumes can be used, and it can be employed for the analysis of different samples, including environmental, 
biological, toxicological, and food samples (Kabir et al. 2017). In addition, the FPSE membranes are char-
acterized by tunable selectivity and adjustable porosity, and they exhibit high flexibility and permeability, as 
well as high chemical and thermal stability (Kabir et al. 2018; Kumar et al. 2014). A comparison of the 
required steps in a conventional SPE method and a novel FPSE method, is shown in Figure 11.2. 

FPSE has gained the attention of many analytical chemists working in the field of analytical tox-
icology due to its superior characteristics. Until now, FPSE has been used for the extraction of a plethora 
of analytes from different matrices, including the extraction of amphenicol residues from raw milk 

FIGURE 11.1 Typical steps involved in the FPSE procedure. Reproduced with permission from  Zilfidou et al. (2019). 
Elsevier. Copyright Elsevier, 2019.  

184                                                                            Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

Cleaning of the fabric 
phase sorptive 

extraction (FPSE) 
medium

!e FPSE media is 
immersed in 

methanol:acetonitrile
(50:50 v/v) for 1-5 min.

!e FPSE media is rinsed 
with deionized water.

FPSE Procedure

!e FPSE media is placed 
into a vial containing the 

target analytes and a 
magnetic bar. Extraction of 
the analytes is performed 

under stirring for a certain 
time span.

Elution/Back-extraction

Elution is performed with 
the addition of the eluent 

under stirring for a certain 
time span.

Centrifugation/Filtration 

!e eluent is centrifuged or 
filtered if necessary.

Injection into the 
analytical system

An aliquot of the eluent is 
injected into the analytical 

instrument (HPLC, GC etc.)

Analytical Decision

FPSE

Protein Precipitation

For example with the 
addition of acetonitrile.

Centrifugation

Conditioning of the 
SPE Cartridge

Elution is performed 
with the addition of the 
eluent under stirring for 

a certain time span.

Sample Loading

!e supernatant 
obtained from the 

centrifugation is loaded 
to the SPE cartridge .

Washing

!e SPE cartridge is washed 
to remove the impurities.

Elution

!e analytes are 
eluted from the SPE 

cartridge.

Evaporation of eluent 
under nitrogen

Sample reconstitution

Centrifugation/
Filtration 

!e eluent is centrifuged or 
filtered if necessary

Injection into the 
analytical system

An aliquot of the eluent is 
injected into the analytical 

instrument (HPLC, GC etc.)

Analytical Decision

SPE

FIGURE 11.2 Comparison of the required steps in an FPSE method (top) and an SPE method (bottom).  
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(Samanidou et al. 2015), the extraction of sulfonamides from raw milk (Karageorgou et al. 2016), the 
extraction of triazine herbicides from water samples (Roldán-Pijuán et al. 2015), the extraction of 
estrogens from various kinds of samples (Kumar et al. 2014), the extraction of alkyl phenols from 
environmental samples (Kumar et al. 2015), and the extraction of inflammatory bowel disease treatment 
drugs from biofluids (Kabir et al. 2018). In analytical toxicology, FPSE is an important sample pre-
paration technique that undoubtedly enriches the toolbox of analytical chemists who struggle to find a 
genuine solution for the analysis of complex sample matrices of bioanalytical interest. In this chapter, 
we aim to discuss the applications of FPSE in analytical toxicology. 

11.2 Applications of FPSE in Analytical Toxicology 

The application of FPSE in analytical toxicology was reported soon after its introduction for sample 
preparation in analytical chemistry (Samanidou et al. 2015). Table 11.1 presents the application of FPSE 
in analytical toxicology. 

11.2.1 Extraction of Benzodiazepines 

FPSE has been applied in the determination of benzodiazepines (i.e., bromazepam, lorazepam, dia-
zepam, and alprazolam) in blood serum samples. Benzodiazepines are widely used drugs that exhibit 
antidepressive and tranquilizing properties, among others. Therefore, the determination of these drugs in 
biofluids is of high importance in toxicological studies. 

In order to optimize the extraction process, the authors evaluated three different FPSE membranes, 
including sol-gel poly(ethylene glycol) (sol-gel PEG), coated on cellulose fabric substrate, sol-gel poly 
(tetrahydrofuran) (sol-gel PTHF) coated on hydrophilic cellulose fabric substrate, and sol-gel poly 
(dimethyldiphenylsiloxane) (sol-gel PDMDPS), coated on hydrophobic polyester substrate. In order to 
avoid contamination during sample preparation, the FPSE membrane was handled using tweezers. Sol- 
gel PEG-coated FPSE membrane was found to be the optimum FPSE medium, and extraction was 
mainly performed through hydrogen-bonding interactions. 

First, the membranes were conditioned with a mixture of acetonitrile (ACN) and methanol (MeOH) 
(50:50, v/v) for 2 min and rinsed with water to remove residual organic solvents. Subsequently, the sample 
(50 μL) was mixed with water (500 μL) and transferred into a vial together with a magnetic stirrer. For the 
FPSE process, extraction of the analytes was performed for 20 min, while back extraction was performed 
with 500 μL of an ACN:MeOH (50:50, v/v) mixture for 10 min. The solution was collected, dried under 
nitrogen atmosphere, and reconstituted in the back-extraction solution mixture, prior to its analysis by 
high-performance liquid chromatography with diode-array detection (HPLC-DAD). After each applica-
tion, the FPSE membrane was washed with ACN:MeOH mixture for 5 min. No carryover effect was 
observed, and the membranes were found to be reusable for approximately 30 times. Under optimum 
conditions, the absolute recoveries ranged between 27 and 63% for the target analytes. 

The developed method could simplify the overall sample preparation workflow of blood serum 
samples, whereas it reduced the consumption of organic solvents. The proposed method was success-
fully used in the determination of benzodiazepines in serum samples, and the results indicated that it can 
be employed in routine analysis (Samanidou et al. 2016). 

11.2.2 Extraction of Azole Antimicrobial Drug Residues 

In 2017, Professor Marcello Locatelli and his research group used an FPSE technique in the determi-
nation of 12 azole antimicrobial drug residues in human plasma and urine samples. These drugs were 
organic compounds that are usually incorporated in pharmaceutical formulations, such as creams and 
shampoos for the treatment of fungal infections, and a clean-up procedure is generally required for their 
determination in complex biofluids. 

The authors evaluated three different FPSE extraction membranes, i.e., sol-gel silica Carbowax® 
20 M (sol-gel CW 20M), sol-gel poly(dimethylsiloxane) (sol-gel PDMS), and sol-gel polycaprolactone- 
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polydimethylsiloxane-polycaprolactone (sol-gel PCL-PDMS-PCL), with the aim of finding the optimum 
conditions for the extraction of the drugs that exhibit a wide range of log Kow. Higher extraction effi-
ciencies were reported with the sol-gel PCL-PDMS-PCL coated FPSE media; however, unwanted peaks 
were present in the chromatograms. Therefore, the authors finally chose the sol-gel CW 20M extraction 
membrane. After the selection of the optimum FPSE material, different dimensions: 2.5 × 2 cm blocks, as 
well as circular discs with a diameter of 0.6 cm and 1 cm were investigated. Authors found that reducing 
the dimension of the FPSE membrane enabled them to handle a smaller sample volume, and the optimum 
results were obtained with the use of circular disk FPSE membrane with an diameter of 1 cm. 

For the sample preparation, the urine and blood plasma samples were mixed with the analytes and internal 
standard (IS) solution and vortexed. Initially, the FPSE membrane was conditioned with a mixture of ACN 
and MeOH and with Milli-Q water. Afterward, the FPSE media were placed in a vial containing the sample 
solution, and the drugs were extracted from plasma (500 μL) or urine (1 mL) samples within 30 min and 
eluted with MeOH (150 μL) for 10 min. After centrifugation, the eluates were analyzed by HPLC-DAD. 

With the developed protocol, the target analytes were extracted from the biofluids after simple im-
mersion of the FPSE membrane without any requirement for previous treatment, e.g., protein pre-
cipitation. Moreover, the FPSE methodology was found to be a simple, fast, and green procedure that 
complies with the GAC principles (Locatelli et al. 2017). 

11.2.3 Extraction of Aromatase Inhibitors 

The application of FPSE for the extraction of aromatase inhibitors from human whole blood, plasma, 
and urine samples prior to HPLC analysis, has been also reported. These drugs are employed in the 
treatment of breast cancer, and their determination in biological matrices is important in analytical 
toxicology (Locatelli et al. 2018). 

The authors evaluated the performance of six FPSE membranes, i.e., sol-gel Octadecyl (sol-gel C8), 
sol-gel Sucrose (sol-gel SUC), sol-gel PCL-PDMS-PCL, sol-gel poly(caprolactone) (sol-gel PCL), 
sol-gel poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (sol-gel PEG- 
PPG-PEG), and sol-gel CW 20M. Among the examined membranes, the former three exhibited higher 
extraction efficiency, and different dimensions were evaluated. The optimum extraction membrane was 
found to be sol-gel PEG-PPG-PEG circular discs with a diameter of 1 cm. 

Prior to the FPSE protocol, the biofluids were mixed with an analyte working solution and a solution of 
the IS, followed by dilution with deionized water. The FPSE medium was activated with a mixture of 
ACN:MeOH (50:50, v/v) and washed with Milli-Q water. Subsequently, the FPSE membrane was employed 
for the extraction of the drugs from the sample at a rotator within 30 min. Elution of the compounds was 
achieved by the addition of 150 μL of MeOH into 10 min, followed by analysis of the extract by HPLC-DAD. 

The developed method was used for the analysis of biological samples obtained from patients through 
normal medical treatment practice. The overall methodology was found to be proficient, simple, rugged, 
and green, while it enabled the extraction of small organic molecules directly from whole blood without 
interferences. Whole blood is an important sample matrix in analytical toxicology since it is rich in 
information. However, because of the complex nature of this matrix, an analytical toxicology analysis of 
blood serum or blood plasma is usually preferred. In this case, partial loss of analyte may take place. 
Therefore, sample preparation techniques that enable the analysis of whole blood without any need for 
protein precipitation before the extraction are of high importance in analytical toxicology and other 
bioanalytical applications (Kabir et al. 2018). 

11.2.4 Extraction of Inflammatory Bowel Disease Treatment Drugs 

FPSE has also been used for the extraction of inflammatory bowel disease treatment drugs from whole 
blood, plasma, and urine samples before their analysis by HPLC-DAD. Because of the low con-
centration levels of the residual drugs in the biological sample in combination with the small available 
sample quantity, a step is required to reduce the interferences and pre-concentrate the compounds in 
order to obtain satisfactory method sensitivity. 
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In order to select the most appropriate FPSE sorbent for the simultaneous extraction of the three 
drugs, five different FPSE membranes were evaluated, which included sol-gel SUC, sol-gel PCL- 
PDMS-PCL, sol-gel PCL, sol-gel PEG-PPG-PEG, and sol-gel CW 20M. Circular discs of two different 
diameters (i.e., 1 cm and 0.6 cm) were evaluated. Among the initially examined membranes, the sol-gel 
CW 20M and the sol-gel PCAP-PDMS-PCAP media showed better enrichment factors and were se-
lected for further optimization. Both coatings exhibited biocompatibility that referred to the tendency 
toward adsorption of protein and adhesion of platelets during the exposure of the FPSE membrane to the 
physiological fluid. Therefore, no previous protein precipitation was required to prevent clogging or 
irreversible adhesion of macromolecules and platelets to the surface of the FPSE membrane. 

Regarding sample pre-treatment, whole blood (180 μL) was mixed with 10 μL of the standard solution 
containing the analytes and 10 μL of the IS solution, followed by 5-fold dilution with Milli-Q water, and 
vortex mixing. For plasma samples, a 450 μL aliquot was mixed with 25 μL of the standard solution 
containing the analytes and 25 μL of IS solution, while for urine samples, a 900 μL aliquot of sample was 
mixed with 50 μL of the standard solution containing the analytes and 50 μL of the IS solution. 

For the extraction, the sol-gel Carbowax® 20 M media circular disk membranes were initially cleaned with a 
mixture of ACN:MeOH (50:50, v/v) and then rinsed with Milli-Q water. Extraction of the drugs was per-
formed within 30 min in a rotator for 30 min, while back extraction was performed in 10 min with the addition 
of 150 μL of methanol. Afterward, the eluent was centrifuged and injected into the HPLC-PDA system. 

The developed analytical protocol exhibited good performance characteristics, and it was able to 
eliminate the required samples (i.e., precipitation of proteins, evaporation of solvent, and reconstitution 
of sample) that are usually applied in conventional sample preparation workflow (Kabir et al. 2018). 

11.2.5 Extraction of Antidepressant Drugs 

Extraction of antidepressant drugs from urine samples before their determination by HPLC-DAD has 
also been suggested. In this work, the authors reported the simultaneous extraction of five widely used 
antidepressant drugs. The determination of antidepressants in biofluids is important for multiple re-
search areas, including analytical toxicology (Lioupi et al. 2019). 

For the development of the FPSE method, various extraction solvent systems and nine different media 
were investigated, including sol-gel PEG, sol-gel PTHF, sol-gel octadecyl (sol-gel C18), sol-gel C8, 
sol-gel PEG-PPG-PEG, sol-gel PDMS, sol-gel graphene (sol-gel GRP), etc. The best performance was 
seen with the sol-gel graphene FPSE membrane and a mixture of ACN and MeOH (50:50 v/v) as eluent. 

Under optimum conditions, the selected FPSE membrane was treated with ACN:MeOH (50:50 v/v) 
for 2 min for activation and rinsed with Milli-Q water to dispose of remaining organic solvents. 
Subsequently, the FPSE media were put into a mixture of 500 μL urine sample and 500 μL of Milli-Q 
water. No previous treatment of urine samples prior to the FPSE procedure was required. Extraction of 
the analytes was achieved in 20 min, whereas elution was performed within 10 min with the addition of 
the elution solvent system. Direct injection of the eluent into the HPLC-DAD system was carried out or 
filtration with syringe filters was done if necessary. 

As a result, an efficient, user-friendly, and time-efficient method was developed and successfully 
applied for the determination of antidepressants in human urine. Moreover, the FPSE membranes were 
found reusable for up to 30 times, when a washing step with a mixture of ACN:MeOH was employed 
after each extraction cycle. 

In 2019, the same research group reported an improved FPSE protocol for the extraction of the same 
antidepressants from blood serum before their determination by HPLC-DAD. The development of 
efficient analytical protocols for the rapid determination of antidepressants in blood serum samples is of 
high importance in toxicological evaluations and therapeutic drug monitoring and other pharmacody-
namic and pharmacokinetic applications. In this work, sol-gel PCL-PDMS-PCL FPSE membranes 
coated onto a polyester substrate were used. 

Prior to the FPSE process, blood serum (50 μL) was placed in a glass vial and mixed with a standard 
solution containing the target analytes (500 μL) and MQ water (450 μL). Moreover, the FPSE mem-
brane was placed in a mixture of ACN:MeOH (50:50 v/v) to avoid potential impurities and rinsed with 
Milli-Q water to avoid organic solvent residues. For the FPSE protocol, the FPSE membranes were 
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placed into the sample, and the drugs were extracted in 15 min under stirring. After the extraction, the 
FPSE device was removed and rinsed with Milli-Q water, while back extraction of the target analytes 
was performed with the addition of 500 μL of a mixture composed of MeOH and ACN within 5 min. 
Subsequently, the eluent was filtered and analyzed by HPLC-DAD. 

The FPSE membranes were found reusable for at least 30 times. For this purpose, after each ex-
traction cycle, the FPSE membrane was washed with MeOH:ACN for 5 min, left to dry, and kept in an 
air-tight vial in order to avoid potential carryover effects. The developed FPSE protocol could efficiently 
extract the target analytes from blood serum samples without any need for a protein precipitation step 
prior to the sample preparation process, while it also avoided the need for evaporation of an organic 
solvent and sample reconstitution that are error-prone steps. Moreover, the developed method was rapid, 
was simple in operation, and reduced the consumption of organic solvents. As a result, it could be a 
useful analytical tool for analytical toxicology applications (Zilfidou et al. 2019). 

11.2.6 Extraction of Penicillin Antibiotics 

Penicillin antibiotics have been determined in human blood serum by FSPE followed by HPLC-DAD 
analysis (Alampanos et al. 2019). Penicillins are β-lactam antibiotics that are widely used against 
bacterial infections, and as a result, they are considered important in veterinary and human medicine. 
The determination of penicillin drugs in biological fluids is a complex procedure due to their low 
concentration in combination with the complexity of the biofluid. 

The authors tested 14 different sol-gel FPSE membranes, including sol-gel PTHF, sol-gel octadecyl, 
etc. Among the examined FPSE membranes, sol-gel PTHF FPSE media coated on a substrate made of 
cellulose was finally chosen as the optimal extraction membrane. That sorbent is normally re-
commended for the extraction of target analytes with medium or high polarity. 

For the FPSE protocol, the FPSE membranes were washed with a mixture of ACN:MeOH (50:50 v/v) 
for 5 min in order to remove unwanted residues, followed by immersion in deionized water for another 5 
min to remove residues of the solvents. Subsequently, the FPSE membrane was immersed in a solution 
containing blood serum (50 μL), deionized water (450 μL), and standard solution with the target ana-
lytes (or deionized water for blanks) (500 μL) that were placed in a 5 mL vial. Extraction of the 
penicillin drugs was achieved in 25 min while back extraction was performed with the addition of a 
mixture of 90:10 v/v ΑCN:0.05 Μ ammonium acetate under stirring. 

The FPSE membrane was found to be reusable for at least 35 times without observing carryover 
effects or loss of extraction efficiency after washing with ACN:MeOH (50:50 v/v) for 5 min and drying 
in an airtight glass container. The developed method was environmentally friendly and of low cost, and 
it can be easily applied in laboratories for determining penicillins in blood for various purposes, 
including analytical toxicology applications. 

11.3 Concluding Remarks and Future Perspectives of FPSE in Analytical 
Toxicology 

FPSE is a simple and rapid, recently introduced sample preparation technique that serves as a useful tool 
that enriches the toolbox of analytical scientists working in the scientific field of analytical toxicology. 
FPSE complies with GAC principles. Therefore, FPSE can successfully be applied for the analysis of 
complex sample matrices of bioanalytical interest. Various FPSE membranes have been developed and 
successfully used for sample preparation in analytical toxicology. 

Among the advantages of FPSE are ease of operation, reduced consumption of organic solvents, and 
overall performance superiority. Moreover, FPSE membranes are characterized by high chemical re-
sistance, stability, and reusability. A wide variety of novel sol-gel coatings can be used as the sorbent, 
and a wide variety of organic solvents can be used for the desorption of target analytes, so FPSE can 
successfully extract a plethora of organic compounds from complex matrices. Additionally, FPSE opens 
up a new direction toward whole blood analysis. 
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Future perspectives in the field of analytical toxicology should focus on expanding applications of the 
existing FPSE membranes and developing new coatings for the determination of any type of compounds 
of interest in complex biofluids. Furthermore, the use of FPSE for the analysis of alternative matrices 
(e.g., hair, nails, saliva, cerebrospinal fluids) should also be evaluated. Other future challenges are 
automation of the whole FPSE procedure and the application of FPSE for in situ sampling in tox-
icological research. 
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12.1 Introduction 

Miniaturization is currently one of the most important trends in sample preparation, which is still, despite 
efforts to eliminate it, a key factor of any analytical method. The downscaling of sample treatment has yielded 
to the appearance of solvent- and sorbent-based extraction techniques. In both cases, the final objective is to 
reduce the amount of samples, reagents, and solvents, with the aim of also simplifying the procedures and 
making them more simple and straightforward. Sample throughput is also a key aspect to be considered. 

Regarding sorbent-based microextraction techniques, the introduction of new sorbents or coatings 
with high extraction capacity, high surface-to-volume ratios, and high porosity is an important research 
field that is daily contributing to its consolidation and wide application. However, apart from such 
relevant characteristics, sorbents/coatings should also possess another inherent and important feature: 
selectivity. Extraction should be selective enough to separate the target analytes from the sample matrix, 
or at least from as many components as possible. 
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In the search for highly selective sorbents, chemists have looked for specific materials based on one of 
the most selective existing interaction mechanisms: molecular recognition. As a result, molecularly im-
printed polymers (MIPs) appeared, since previous (non-imprinted) polymeric materials demonstrated a 
high sorption capacity that could be enhanced or changed by trying to include such specific recognition. 

Nowadays, there exists a wide variety of MIP materials that have been applied with success in 
different areas, including toxicology, but specially in miniaturized extraction techniques, to which they 
add more value as selectivity is also incorporated (Figure 12.1). This chapter provides a general 
overview of the toxicological applications of MIPs in sorbent-based extraction techniques. In particular, 
their use in miniaturized solid-phase extraction (SPE), solid-phase microextraction (SPME), as well as 
stir bar sorptive extraction (SBSE) is reviewed in more detailed, since they are the miniaturized 
techniques most commonly applied in this field. 

12.2 Molecularly Imprinted Polymer Synthesis 

Molecular imprinting is a complex process that can be achieved through three different pathways: 
covalent, non-covalent, or semi-covalent imprinting methods. Despite the existence of these different 
approaches (which will be discussed later), the general procedure is fairly similar among them and can 

FIGURE 12.1 Schematic representation of the application of MIPs as sorbents in different extraction techniques: (A) 
MIP-SPE; (B) MIP-dSPE; (C) MIP-SPME; (D) MIP-SBSE; (E) supported liquid membrane (SLM)-MIPs. Reprinted from   
Azizi and Bottaro (2020) with permission of Elsevier.  

194                                                                            Techniques in Analytical Toxicology 



https://www.twirpx.org & http://chemistry-chemists.com

be summarized as follows: first, before any polymerization takes place, a monomer-template complex is 
generated; then, polymerization is initiated – usually triggered by a radical initiator – in the presence of 
suitable crosslinkers (which grant stability to the polymer matrix, control polymer morphology, and 
stabilize the imprinted binding sites); and finally, the template is removed from the binding sites, de-
livering the final imprinted polymer. 

12.2.1 Covalent Imprinting Method 

Covalent imprinting, as its name suggests, involves the formation of covalent bonds between monomers 
and templates before polymerization takes place. In order to obtain a usable MIP, this covalent bond 
must be reversible so that the template can be removed from the binding site. The method’s main 
advantage comes from the homogeneity of the binding sites and cavities generated, resulting from the 
fixed stoichiometric ratios and well-defined bonding. Nevertheless, the homogeneity comes at a cost, 
and that is the difficulty in the design of such monomer-template complexes, since they require re-
versibility in the formation and cleavage of the covalent bonds under mild conditions while assuring, 
simultaneously, specific chemical and geometric characteristics for target molecule retention (Speltini 
et al. 2017; Azizi and Bottaro 2020). 

12.2.2 Non-Covalent Imprinting Method 

Non-covalent imprinting opts for a different approach in the formation of the binding sites, im-
plementing secondary bonds (e.g., ionic interactions, hydrogen bonding, among others) between 
monomers and templates, prior to polymerization. The main advantages of the method include sim-
plification of experimental procedures, easier template removal, and greater functional diversity in the 
MIPs’ binding sites. The main drawback comes from equilibrium processes in the monomer-template 
interactions. To obtain the desired product, excess amounts of monomers are used to shift the equili-
brium, which frequently remains in the imprinted polymer matrix (randomly incorporated), leading to 
the formation of non-specific binding sites, reducing the selectivity of the MIPs (Speltini et al. 2017;  
Azizi and Bottaro 2020). 

12.2.3 Semi-Covalent Imprinting Method 

Semi-covalent imprinting is an intermediate approach for MIP synthesis. In this method, as in covalent 
imprinting, the monomer-template complex is covalently bonded; however, once the template is re-
moved, rebinding is driven by non-covalent interactions. The semi-covalent pathway combines the 
advantages of both covalent and non-covalent imprinting methods. First, since the monomer-template is 
covalently bonded, the binding sites show greater homogeneity (increasing selectivity). Second, once 
the template is removed, rebinding takes place through secondary bonds, which facilitate the extraction 
of the analyte and subsequent elution from the imprinted polymer, reducing the long equilibrium times 
of covalently imprinted polymers (Speltini et al. 2017; Azizi and Bottaro 2020). 

12.3 Application in Analytical Toxicology 

12.3.1 Miniaturized Solid-Phase Extraction 

As previously indicated, one of the current trends in sample preparation is miniaturization in order to 
comply with Green Analytical Chemistry principles. MIPs have also been applied with success to min-
iaturized sorbent-based techniques. Some examples are compiled in Table 12.1. In particular, some ap-
plications can be found in µ-SPE using different formats, such as classic cartridges and discs, but with 
reduced amounts of sorbent (lower than 100 mg), or more recent miniaturized devices, such as pipette tips, 
spin columns, well filter plates, or so-called membrane envelopes (Turiel and Martín-Esteban 2019). As 
examples, Jing and coworkers (Jing et al. 2014) developed a straightforward and selective spin-column 
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technique using MIPs as the sorbent for quantifying nitrophenol pollutants in wastewater, lake water, and 
river water samples by centrifugation of the spin column between the different loading, washing, and 
elution steps (Figure 12.2); Teixeira and coworkers (Teixeira et al. 2018) developed a pipette tip SPE 
method (part of the pipette tips are filled with the MIP sorbent) for the analysis of two macrocyclic 
lactones in mineral water and grape juice samples; and Feng and coworkers (Feng et al. 2009) determined 
phenolic compounds in tap, river, and raw sewage waters using MIPs enclosed within a porous poly-
propylene membrane sheet. On the other hand, another miniaturized format of SPE is the microextraction 
by packed sorbents (MEPSs) technique, in which the packing material is not located in a separate column, 
but directly incorporated into the syringe barrel as a plug or between the needle and the barrel as a 
cartridge (Moein et al. 2015). 

MIPs have also been used in other miniaturized sample pre-treatment methods based on SPE. One of 
them is dispersive μ-SPE (μ-dSPE), a technique that presents greater simplicity and time saving 
compared to conventional μ-SPE, since the stages of conditioning the sorbent and loading the sample 
are not necessary. This is due to the high porosity and surface area, as well as the good dispersibility and 
chemical stability that they present under the conditions given during extraction (Chisvert et al. 2019). 
In addition, it is the recommended technique for the analysis of samples containing microparticles or 
microorganisms in order to avoid clogging the cartridges used in conventional μ-SPE. An example is the 
work of Ostovan and co-workers (Ostovan et al. 2017), in which they prepared hollow porous MIPs 
(HPMIPs) for the determination of glibenclamide in human urine samples. In the synthesis of HPMIPs, 
glibenclamide was used as a template, methacrylic acid (MAA) as a functional monomer, ethylene 
glycol dimethacrylate (EGDMA) as a crosslinker, and mesoporous MCM-48 nanospheres as a support. 
It was demonstrated that HPMIPs had a higher adsorption capacity and a lower equilibrium time of 
adsorption than core-shell MIPs due to greater accessibility to the HPMIP-specific cavities. The de-
veloped method (μ-dSPE high-performance liquid chromatography (HPLC)-ultraviolet (UV)) provided 
recovery values between 87.7 and 104.3% with high precision (relative standard deviations (RSDs) in 
the range 2.3–4.4%). 

In addition, magnetic MIPs (MMIPs) have also been used as sorbents in the magnetic μ-dSPE (m-μ- 
dSPE) procedure. Magnetic nanoparticles (mNPs) frequently have a Fe3O4 core, which is later coated 
with the MIP. In m-μ-dSPE, after the first extraction step, which is the same as in the non-magnetic 
version, the sorbent is retained and isolated from the sample matrix with ease using an external magnetic 
field, thus avoiding any centrifugation step or retention of the sorbent (Płotka-Wasylka et al. 2015). As 
examples, MMIPs have been widely used as sorbent materials in this extraction technique to pre- 
concentrate and determine polycyclic aromatic hydrocarbons (PAHs) in different types of water samples 

FIGURE 12.2 (A) The extraction procedure of hydrophilic MIPs packed spin column, (B) scanning electron micrographs, 
and (C) MIPs particle size distribution. Reprinted from  Jing et al. (2014) with the permission of Wiley Online Library.  
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(Azizi et al. 2020), kaempferol from apple samples (Cheng et al. 2020), patulin from juice samples 
(Zhao et al. 2020), or phenoxy carboxylic acid herbicides from cereals (Yuan et al. 2020), among others. 

12.3.2 Solid-Phase Microextraction 

SPME was first introduced by Arthur and Pawliszyn in 1990 (Arthur and Pawliszyn 1990) as an al-
ternative to traditional exhaustive extraction techniques. SPME offers multiple advantages (greenness, 
simplicity, rapidity, etc.), which have yielded to its extensive application in both sampling and sample 
preparation (Li and Row 2018; Azizi and Bottaro 2020). Furthermore, SPME provides high accuracy in 
trace analysis, and it is compatible with different separation techniques (gas chromatography (GC), 
liquid chromatography (LC), and capillary electrophoresis (CE)) (Li and Row 2018). The use of MIP- 
coated fibres in SPME was first applied by Koster et al. (Koster et al. 2001) in 2001 for biological 
samples. Ever since, multiple publications have made use of MIP coatings in SPME, both in the 
modalities of direct immersion (DI) and headspace (HS), although in recent years, thin-film micro-
extraction (TFME), as a variant of SPME, has also been applied. 

DI-SPME involves introducing the coated fibre into the sample matrix to extract the target analytes. 
Analytes from different families of compounds, such as oestrogens (Wang et al. 2020), opioids (El- 
Beqqali and Abdel-Rehim 2016), antibiotics (Zhao et al. 2015), or polyphenolic flavonoids (Rahimi 
et al. 2019), have been analyzed through this technique (using various types of MIPs) in matrices of 
different natures and complexities (beverages, biological samples, etc.), showing selectivity toward the 
studied analytes and acceptable recovery values. Concerning HS-SPME, it can be considered a solvent- 
free extraction technique when thermal desorption is carried out. In this case, the coated fibre is sus-
pended over the sample matrix in order to retain volatile analytes. Organophosphorus pesticides (OPPs) 
(Xiang et al. 2020), phenolic compounds (Abolghasemi and Yousefi 2014), acetaldehyde (Rajabi 
Khorrami and Narouenezhad 2011), and phthalate esters (PAEs) (He et al. 2010), among others, are 
some of the analytes that have been analyzed using this technique in numerous samples (water, bev-
erages, fruits, vegetables, etc.). HS-SPME shows important advantages, including reduced effect of 
interferences and improved efficiency (Azizi and Bottaro 2020). 

TFME is another variation of traditional SPME, where better extraction efficiencies are obtained without 
dramatically affecting the overall extraction time, as a result of the larger surface area to extraction-phase 
volume ratio (Olcer et al. 2019). Although the total number of publications employing TFME is not large, 
there are some examples where it has been applied for the analysis of compounds such as phenols (Abu- 
Alsoud and Bottaro 2021), PAHs (Shahhoseini et al. 2020), or polycyclic aromatic sulphur heterocycles 
(Hijazi and Bottaro 2020) in complex environmental samples (seawater, produced water, etc.). 

Table 12.1 compiles some examples of publications where one of the SPME modalities (DI, HS, or 
TFME) has been employed. As can be seen, these techniques have been successfully applied in the 
analysis of some of the previously mentioned compounds (oestrogens (Wang et al. 2020), OPPs (Xiang 
et al. 2020), and phenolic compounds (Abu-Alsoud and Bottaro 2021)) in complex matrices (milk 
(Wang et al. 2020), fruits and vegetables (Xiang et al. 2020), and water samples (Abu-Alsoud and 
Bottaro 2021)). Overall, results showed acceptable recovery values (75.1–123.2%) with low RSDs 
(0.1–13.9%) and limits of detection (LODs) in the ppb range. 

12.3.3 Stir Bar Sorptive Extraction 

SBSE was introduced for the first time by Baltussen et al. in 1999 (Baltussen et al. 1999) as an al-
ternative to SPME, trying to solve sorption competence problems that frequently take place in SPME 
between the extraction vessel walls, the stir bar used, and the fibre coating. In SBSE, the fibre is 
eliminated, and the stir bar is directly coated with the sorbent, which can be applied by immersing it 
directly into the sample or its HS, similarly to SPME (Soares Da Silva Burato et al. 2020). In general 
terms, SBSE is simpler, more robust, and shows an improved extraction efficiency than SPME due to a 
higher amount of sorbent being used. However, this higher extraction capacity results in longer equi-
libration times, which limits its use in certain applications (Hasan et al. 2020; Trujillo-Rodríguez 
et al. 2020). 
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Despite SBSE being employed for the analysis of samples of a very different nature, only three 
coatings are currently commercially available, including polyacrylate (PA), polyethylene glycol (PEG), 
and polydimethylsiloxane (PDMS). As a consequence of the low commercial availability of coatings, 
research effort has been invested in the development of new coatings (also those based on MIPs) in 
order to extend the applicability and versatility of the technique. In this sense, different methods, such as 
adhesion methods, sol-gel based approaches, or solvent exchange processes, are some of the most 
commonly used (Hasan et al. 2020). Among them, molecular imprinting technology has gained great 
interest. The use of MIPs as SBSE coatings have several remarkable advantages, such as great se-
lectivity, high chemical and mechanical stability, and fast adsorption kinetics, as well as good re-
producibility and simplicity, and cost effective preparation (Hasan et al. 2020). However, some 
limitations are commonly found when MIPs are used as coatings: multiple polymerization processes are 
usually required to maximize the adsorption capacity, which could affect the extraction efficiency; tough 
conditions are often used to remove templates, which could result in reduction of desorption kinetics or 
even bleeding; and the high cost of some templates forces the use of dummy templates, which is 
detrimental to the selectivity of the material (Hasan et al. 2020). In this sense, it is important to highlight 
that, despite the thermal stability of these polymeric coatings not being investigated in the last years, 
their chemical stability has been studied in different aqueous (acidic and basic media) and organic 
solvents (acetonitrile, dichloromethane, methanol, benzene, or acetone, among others) under different 
stirring speed and time, and no flacking or cracking was shown in any case (Hasan et al. 2020). 

Regarding extraction devices, two main strategies are followed, which include the coating of glass 
capillaries or stir bars directly with the polymer (Gomez-Caballero et al. 2016) or composites com-
posed by mNPs coated with MIPs and magnetically retained or embedded in the polymeric monoliths 
(Díaz-Álvarez et al. 2016). Independently of the device, selectivity of MIPs have allowed them to be 
applied to the extraction of a wide variety of analytes (see Table 12.1), including oestrogenic com-
pounds (Xu et al. 2014), phenols (Hashemi and Najari 2019), herbicides (Gomez-Caballero et al. 
2016), or pharmaceuticals (Yang et al. 2017) from biological (Fan et al. 2016), environmental 
(Gomez-Caballero et al. 2016; Xu et al. 2014), and food samples (Yang et al. 2017). As an example of 
the applicability of MIPs as coatings in SBSE, Xu and co-workers (Xu et al. 2014) developed a dual- 
template MIP using bisphenol A (BPA) and estradiol as templates in order to generate two different 
specific cavities. This MIP was used to coat a silylated glass capillary, in which a magnetic core was 
introduced, sealing both ends with a flame. This device allowed the extraction of five oestrogenic 
compounds from lake water, river water, a disposable lunch box cover, a biscuit box, and a yoghurt 
bottle, with recovery values in the range 67–102%, which prove the good extraction capacity of MIPs 
when applied as sorbents in SBSE. 

12.3.4 Miscellaneous 

In addition to the microextraction techniques previously described in which MIPs are used as sorbents, 
other variants designated as stir cake or rotating disk extraction and matrix solid-phase dispersion 
(MSPD), among others, have also been employed in numerous occasions. 

In order to overcome the inherent limitations of SPME and SBSE procedures, stir cake sorptive 
extraction (SCSE) and rotating disk sorptive extraction (RDSE) modes were developed. Both techniques 
are similar from an operational point of view and present an easy design of the extraction medium- 
monolithic cake as well as have high cost-efficiency, straightforward operation, high extraction capa-
city, and high environmental friendliness. Concerning RDSE (so-called when using a Teflon disk with a 
miniature magnetic stirring bar embedded (Manzo et al. 2015)), the fact that the sorptive phase is only in 
contact with the liquid sample and not with the extraction vessel, allows higher stirring speeds to be 
used than in SBSE without causing damage in the extraction phase, thus facilitating the transfer of the 
analyte to the surface of the sorbent (Jachero et al. 2014). However, in spite of these good features, to 
our knowledge, only one study related to the use of MIPs in SCSE (Sorribes-Soriano et al. 2019) and 
another work where this sorbent is utilized in RDSE (Manzo et al. 2015) have been described. 

Another miniaturized technique used as an alternative sample pre-treatment is MSPD. It is char-
acterized by being simple and cheap, and because it involves the disruption and extraction of different 
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liquid, viscous, semi-solid, and solid samples by a sorbent. In this process, the sample and the sorbent 
are blended and homogenized together, and subsequently, the adsorbed analytes are eluted with a 
suitable solvent (Turiel and Martín-Esteban 2019). Like SPE, MSPD also has different variants char-
acterized by the way in which the second stage is performed. For example, in a case similar to con-
ventional SPE, the homogeneous mixture was transferred to an SPE cartridge and subjected to elution, 
whereas in the magnetic version, it was added without the need for column packing, as Gholami and co- 
workers (Gholami et al. 2019) did for the analysis of melamine in various milk samples. 

On the other hand, interest in the applications of membrane-based liquid-phase microextraction (M- 
LPME) for sample preparation has increased, especially in reinforced hollow-fibre (HF)-LPME 
(Chimuka et al. 2011). Compared with conventional SPME fibres, HFs have a greater surface area, 
since they can be covered by the sorbent on the internal and external walls, which provides a higher 
extraction efficiency, and HFs also are more robust than the single drop microextraction (SDME) 
technique (Kokosa 2019). MIPs-HF-LPME has been used in the determination of a wide variety of 
analytes, such as PAEs (Mirzajani et al. 2020), antibiotics (Barahona et al. 2019), and triazines 
(Barahona et al. 2016), among others, in aqueous and biological samples. 

12.4 Conclusions 

New trends in Analytical Chemistry are focused on minimizing the negative effects derived from the 
application of previous methodologies. In this sense, efforts have been made to reduce the amount of 
solvents and reagents used, especially during the application of extraction techniques. 

The introduction of miniaturized versions of the sorbent-based extraction techniques classically used 
has posed a great advance to achieve such an objective. These techniques brought with them the im-
plementation of new materials with improved properties that allowed better extraction efficiency and 
selectivity. In this sense, MIPs have generated great interest for their excellent performance in these two 
aspects, which together with their great versatility, have made possible their use as sorbents in different 
extraction techniques with remarkable results, such as µ-SPE, SPME, or SBSE, among others. 

Since their introduction, MIPs have grabbed the attention of the Analytical Chemistry field for their 
outstanding properties and versatility to be applied not only as extraction sorbents, but also in sensors or 
even stationary phases in separation techniques. However, these materials have shown great potential, 
so their applicability in different areas will continue to be explored in the coming years. 
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13.1 Introduction 

Microextraction is defined as an analytical extraction technique that is non-exhaustive and utilizes a 
very small volume of the extracting phases in relation to the volume of the sample. Microextraction 
techniques improve sample preparation by miniaturizing the steps, provide onsite analysis, and are 
automatic and economical for time. There are three main reasons that supported the evolution of mi-
croextraction techniques to provide miniaturization and generate new methods for extraction and de-
termination. First, interested analytes are present in trace quantities in the real sample and are not 
enough to determine through the macroscopic method. Second, there was a need to save time and meet 
the requirement of rapid determination on a small sample volume to increase the number of samples 
processed and their analysis. Third, techniques needed to achieve green analytical chemistry (GAC) of 
reducing toxic chemicals and lowering waste generation from the laboratory. 

GAC defines the miniaturization of the analytical protocol and use of chemicals to reduce the negative 
impact on the environment and the health of analytical chemists performing laboratory work. The green 
chemistry concept was introduced by Anastas in 1998 (Anastas and Beach 2007). The basic principles are 
to make the processes greener by increasing the safety of operators, using less toxic reagents and aux-
iliaries; to decrease energy consumption by using mild reaction conditions; to improve waste management; 
to limit or eradicate the use of hazardous chemicals; and to substitute them with benign ones wherever 
possible, like avoiding derivatization and using renewable resources as a substrate (Marcinkowska, 
Namieśnik, and Tobiszewski 2019; Tobiszewski et al. 2015). GAC is known as an analytical wing of 
sustainable development whose main principle is providing a framework for proper chemical processes that 
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are environmentally friendly. It is steadily gaining popularity in today’s scenario because its im-
plementation takes analytical chemistry toward sustainable growth by facilitating the inimical effects of its 
techniques and methodologies on human health and environment. Researchers follow the principles as 
stated under the GAC to develop straightforward, uncomplicated, and efficacious techniques to extract 
substances of interest from composite matrices. The designed methods are generally proclaimed as en-
vironmentally harmless by reducing the use of potential toxic compounds and lowering energy con-
sumption. There are many ways to reduce pollution by utilizing GAC in order to generate ‘clean waste’ 
rather than ‘hazardous waste’ by unification of analytical processes and steps to miniaturize it. 

Ionic liquids (ILs) are organic salt, a combination of organic cations that are bonded with organic 
or inorganic anions, having a melting point equal or less than 100°˚C, with tuneable physiochemical 
properties by changing the structure of cation and anion molecules. 

ILs mostly consists of (Yavir et al. 2019): 

a. Bulky organic nitrogen-containing cations: imidazolium, pyrrolidinium, pyridinium, tetra al-
kylphosphonium, and tetraalkylammonium.  

b. Halogen-based organic or inorganic anions: bis (trifluoromethylsulfonyl) imide, tetrafluoroborate, 
bromide, acetate, chloride, trifluoromethylsulfonate, trifluoroethanoate, and hexafluorophosphate. 

Figure 13.1 shows the structure of the most common cations and anions used in ILs. 
IL has been considered a ‘designer solvent’ due to its involvement of diverse anions and cations with 

distinct alkyl substituent to cations. As a substitute for conventional organic solvents, an eco-friendly 
solvent IL is used because of its less toxic nature and because it does not release harmful, poisonous 

FIGURE 13.1 Chemical structures of commonly used cations and anions of ionic liquids (ILs).  
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vapours to the surroundings (Marcinkowska et al. 2019). ILs have been extensively used in the field of 
analytical chemistry due to their following unique characteristics (Weingärtner 2008; Roth 2009; Ruiz- 
Aceituno et al. 2013; Han et al. 2012; Freire et al. 2012):  

1. Very low vapour pressure  

2. High viscosity  

3. High thermal stability (around 300°˚C)  

4. Negligible flammability 

5. Capability of dissolving a wide spectra of organic and inorganic compounds (i.e., strong sal-
vation power)  

6. Specific electrochemical characteristics  

7. High ionic conductivity 

These unique properties are due to the interaction that exists between the cations and anions forming the 
ILs. Usually an asymmetrical arrangement of cations and anions forms the ILs by the ionic interactions 
along with the convectional interactions, like hydrogen bonding, Van deer Waal’s, and dipole-dipole 
interactions. Their solubility in polar solvents is determined due to the ionic interactions, and an alkyl 
chain on cations determines their solubility in non-polar solvents. The changes in the length and 
branching of an alkyl group make it possible to fine-tune the properties of the ILs. Hydrogen bonding is 
a readily observed interaction in IL because oxygen or a halide group of anion can easily interact with 
the hydrogen atom present on the imidazolium, pyrrolidinium, or pyridinium ring of the cations. IL thus 
shows great results where trace impurities can change the results for catalysis, separation, and ex-
traction. Besides providing a combination of structures that become a ‘green’ solvent, there are some 
combinations of anions and cations that are toxic to both abiotic and biotic components and are non- 
biodegradable. 

Some of the important reasons for using IL in an extraction technique are as follows:  

1. The densities of ILs are higher than water and organic solvents, which provides easy removal of 
the extraction phase after centrifugation.  

2. ILs have negligible vapour pressure so the extraction phase does not evaporate during ultrasound, 
temperature, time, and microwave-assisted extraction techniques.  

3. ILs have high thermal stability, thus preventing them from degradation during the thermal 
desorption of the extracted analytes and preventing any type of contamination during the 
analysis.  

4. ILs have tuneable solubility that makes them disperse well in aqueous solution, enhancing the 
mass transfer of the targeted analytes to the IL phase with its easy retrieval in dispersive liquid- 
liquid microextraction (DLLME).  

5. Hydrophilic magnetic ionic liquids (MILs) are successful in the extraction of hydrophobic 
samples and are easily retrieved due to their strong attraction toward magnets. 

ILs are used as both a liquid extractant and sorption material in stationary phases, expanding their range 
of utilization in the field of extraction. In recent years, microextraction techniques have grown rapidly 
because of numerous advantages: cost-effectiveness, simplicity, miniaturization, low expenditure of 
sample, easy automation, and being ecologically sound. Many ILs were designed according to the needs 
of the extraction with the required properties. The principles as proposed under GAC and eco-friendly 
properties of ILs are replacement of organic solvents and designing the process of liquid-liquid mi-
croextraction (LLE). In the past decade, numerous papers have emphasized applications of ILs in 
sample preparation techniques. They can provide multiple sites for interactions of the target analyte and 
are therefore regarded as ‘ideal extraction media’ (Tables 13.1 and 13.2). 
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TABLE 13.1 

Physical Properties of Commonly Used Ionic Liquids (ILs)       

Ionic Liquid Molecular Weight Melting Point (˚C) Density (g/mL−1) 25˚C Viscosity (cP) 25˚C  

[C2MIM][BF4] 197.8 15 1.248 66 

[C2MIM][PF6] 256.13 58–60 1.373 450 

[C2MIM][NTf2] 391.3 4 1.425 323 

[C4MIM][BF4] 225.80 −81 1.208 233 

[C4MIM][PF6] 284.18 10 1.373 400 

[C4MIM][Br] 218.9 73 1.134 Solid 

[C4MIM][Cl] 146.50 41 1.120 Solid 

[C4MIM][NTf2] 487.9 −25 1.420 52 

[C6MIM][BF4] 254.08 −71 1.075 211 

[C6MIM][PF6] 312.00 −73.5 1.304 800 

[C6MIM][NTf2] 534.9 – 1.423 674 

[C8MIM][BF4] 281.8 −88 1.11 440 

[C8MIM][Cl] 230.50 −55 1.000 16000 

[C8MIM][PF6] 445.0 14 1.212 4232 

[C8MIM][NTf2] 645.7 – 1.242 5234   

TABLE 13.2 

Milestones in the Discovery of IL-Based Microextraction   

1887: ‘Red oil’, first IL 

1914: Synthesis of protic ethylammonium nitrate (mp 12.5°C) 

1934: First application of IL (1-ethylpyridinium chloride) in dissolving cellulose 

1948: Molten mixtures of ethylpyridinium halides and ammonium chloride with the electrodeposition of aluminium 

1972: Use of ammonium ILs in homogeneous catalysis 

1981: The use of phosphonium ILs to make ethylene glycol 

1982: New type of IL made of imidazolium cation and aluminium chloride anion 

1982: Use of ethylammonium nitrate as a stationary phase in Gas Liquid Chromatography (GLC) 

1990: Solid-phase microextraction (SPME) introduced in analytical chemistry 

1992: First air- and water-stable ILs, [C
2
C

1
IM][BF

6
] and [C

2
C

1
IM][PF

6
] 

1996: Development of single drop microextraction (SDME) 

1998: ILs as novel media for ‘clean’ LLE 

2003: ILs in the extraction solvent for SDME 

2004: Discovery of MILs [C
4
C

1
IM][FeC

l4
] 

2005: First approach for using ILs as a sorbent coating in SPME 

2006: Introduction of DLLME for organic and inorganic analytes 

2008: Application of ILs in DLLME 

2008: Introduction of polymeric ionic liquids (PILs) 

2009: First approach using ILs as solid-phase extraction (SPE) sorbent 

2014: MIL-based DLLME 

2017: MILs used in vacuum and magnetic headspace SDME (HS-SDME) 

2018: MIL based in situ and in situ stir bar DLLME   
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13.2 IL-Based Microextraction Techniques 

13.2.1 IL-DLLME (Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction) 

DLLME as an easy, effective, and novel extraction technique for the extraction of organic compounds 
from water samples was first proposed by Rezaee et al. in 2006 (Passos et al. 2012). IL utilization in 
DLLME for quantification of organophosphorus (OP) pesticides was proposed by Zhou et al. (S. Li et 
Hal. 2009). Baghdadi and Shemirani reported the extraction of mercury in different environmental 
samples (Yao et al. 2011). In DLLME, the aqueous sample having the desired analytes is mixed with a 
few micro litres of the extracting solvents that are immiscible into the aqueous phase, followed by the 
addition of dispersive solvent that has solubility in both aqueous and extracting solvents. These three 
solvents all together are mixed using a syringe or micropipette followed by gentle shaking, which leads 
to the formation of various micro droplets to form a homogeneous cloudy solution. The samples are then 
subjected to centrifugation; the sediment phase is collected, and analysis is done by using any so-
phisticated analytical techniques (Abujaber et al. 2018a). In DLLME, the dispersive solvent is basically 
used to increase the extraction efficiency by increasing the contact surface between the analytes and the 
extraction solvents. The choice of extraction solvent is important because for the formation of the 
cloudy solution in the presence of the dispersive solvent; the extraction solvent must have a density 
greater than water’s density (Almeida et al. 2017a; Vichapong et al. 2016a). 

Figure 13.2 shows the schematic representation of IL-DLLME. 

13.2.2 IL-SDME (Ionic Liquid Single Drop Microextraction) 

IL-SDME, or ionic liquid single drop microextraction, replaced the conventional method of analyte pre- 
concentration and extraction from discrete samples, i.e., LLE and SPE, that required excessive use of 
solvents for extraction, which evaporated at last to concentrate the analytes into a known amount of 
solvent – a tedious and tiresome process. In order to overcome the problem of solvent evaporation, an 
alternative method was proposed by Liu and Dasgupta in 1995 called the single drop microextraction 
(SDME) technique (Liu and Dasgupta 1996). The basic principle of the technique is the utilization of 
extraction solvent in droplet form suspended from the tip of a microsyringe needle. These suspended 
microdroplets extract the target analyte from the aqueous solution, thereby reducing the chances of 
interference due to sample mixing. The stability of the suspended drop is also influenced by the shape of 
the needle tip, or the drop holder (if a microsyringe is not used). The major factor in SDME extraction is 
the stability of the microdrop by modifications of the solvent holder so that the method becomes faster, 
potent, and solvent free. The type of extraction solvent used influences the choice of the final de-
terminative technique. Therefore, the extractant solvent used should have comparatively low solubility 
in water, low toxicity for both environment and human health, and good stability of drop. Besides these 
required qualities, the extraction solvent should also be able to extract analytes efficiently, and peak 
chromatograms should be clear enough for proper differentiation. 

FIGURE 13.2 Schematic diagrammatic representation of IL-DLLME (IL-based dispersive liquid-liquid microextraction).  
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13.2.3 IL-SPME (Ionic Liquid Solid-Phase Microextraction) 

Solid-phase microextraction (SPME) comes under the green analytical method due to the fact that it 
does not use chemicals or solvents for the extraction of analytes from the diverse sample. In 1989, 
Belardi and Pawliszyn established the concept of SPME, which opened the area for its association with 
a variety of commercially available sorbent coatings depending on the analyte, such as polyacrylate, 
carboxen, divinylbenzene (DVB) called PDMS carboxen, and polydimethylsiloxane (PDMS) (Ho et al. 
2011; Souza Silva et al. 2013). This works on the principle of absorption or adsorption of the target 
analyte on the fibre that is coated with a thin layer of any polymer designated for the target analyte. 
After equilibrium is attained between all the phases, these fibres are directly analysed on any sophis-
ticated analytical instrument. IL can be employed as an effective SPME fibre coating due to its regulate 
able physical and chemical properties, such as variable viscosity, tuneable salvation interactions, high 
thermal stability, and negligible vapour pressure. In broad spectra, SPME is an expeditious, straight-
forward, and solvent-free method with high sensitive when coupled with a suitable technique like gas 
chromatography. IL-coated sorbent can be combined with either HS-SPME or direct immersion SPME 
(DI-SPME), depending on the requirements. Merdivan et al. developed the first polymeric ionic liquid 
(PIL) by use of monomer (VBHDIM-NTf2 IL) and ((DVBIM)2C12-2NTf2), forming benzyl functio-
nalized cross-linked PILs for extraction and quantification of seven volatile polycyclic aromatic hy-
drocarbons (PAHs) in environmental water samples using gas chromatography with flame ionization 
detector (GC-FID) (Merdivan et al. 2017). 

13.2.4 IL-SBSE (Ionic Liquid Stir Bar Sorptive Extraction) 

Baltussen and co-workers (Baltussen et al. n.d.) introduced the concept of stir bar sorptive extraction 
(SBSE) in 1999, which was very similar to SPME as it also works on the phenomenon of absorption and 
adsorption of the target analyte molecule on the sorptive material, usually consisting of poly-
dimethylsiloxane (PDMS) or C-18 that is placed on glass that covers a magnet. The magnetic bar is 
stirred continuously unless equilibrium is obtained between the target analyte on sorbent material and 
sample matrix. After the extraction, the magnetic bar is removed and transferred to a vial for analysis of 
the target analyte using sophisticated analytical tools (Camino-Sánchez et al. 2014). 

Fan and his co-workers synthesized an IL using (methacryloxypropyl) trimethoxysilane (KH-570) 
instead of PDMS or C-18 as a bridging agent due to its unique properties.The IL synthesized was 
1-allylimidazolium tetrafluoroborate ([AIM][BF4]), used for the extraction and quantification of non- 
steroidal anti-inflammatory drugs (NSAIDs) using HPLC-UV (Fan et al. 2014). With the fast-moving 
research for improvement and development, two or more techniques can be clubbed together for sig-
nificant enhancement of the extraction protocol, thereby reducing the extraction time, cost, and sensi-
tivity. In this perspective, SBSE and DLLME are conflated, introducing stir bar dispersive liquid 
microextraction (SBDME) with the advent of MIL and a neodymium-core magnetic stirrer as the ex-
traction phase by Chisvert et al. (Chisvert et al. 2017). At a higher stirring rate, the MIL is dispersed into 
the solution in accordance with DLLME principles, and at a lower stirring rate, it acts according to 
SBSE principles. After the extraction is done, MILs are easily retrieved from the solution using 
magnets. This was applied for the extraction and determination lipophilic organic UV filters from the 
environmental water samples. 

Another similar combination of two techniques was introduced by Benede et al. (Benedé et al. 2018) 
for the determination of PAHs in water samples. The technique appeared to be more successful than the 
previously used extraction techniques as it required less sample processing time and manipulation in 
samples. Being an emerging technique of microextraction, it is still in its evolving phase, so much 
application is not yet reported in literature. 

13.2.5 IL-SCSE (Ionic Liquid Stir Cake Sorptive Extraction) 

In 2011, SBSE was improved by placing a stationary phase in a holder contained of iron and rest steps 
similar to stir bar sorptive microextraction. It was termed stir cake sorptive extraction (SCSE), which are 
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monolithic cakes designed and prepared properly according to the requirement of the target analyte (He 
et al. 2012). These designed monolithic cakes are added to the solution and stirred properly after the 
extraction is over; they are retrieved and run directly to any sophisticated analytical instrument. A PIL 
monolith formed for the analysis and determination of trace benzimidazoles residues in water, milk, and 
honey samples in the presence of N,N-dimethylformamide of IL 1-allyl-3-methylimidazoliumbis 
[(trifluoro methyl)sulfonyl] imide (AMII) and divinylbenzene (DVB) by in-situ copolymerization as a 
new approach in SCSE for determining trace benzimidazoles (Bas) residues in water, milk, and honey 
samples. There are few applications available in literature regarding SCSE that provide better extraction 
for analytes with satisfactory results (Wang et al. 2014). 

The application of an IL-based SBSE method is yet to be discovered. The literature reports sug-
gested some of its uses in determining inorganic elements, heavy metals, preservatives used in fruit 
juices and tea drinks, and oestrogen-level analysis in water samples. For the measurement of antimony 
in environmental matrices, monolith of 3-(1-ethyl imidazolium-3-yl) propyl-methacrylamido bromide 
and ethylene dimethacrylate by in-situ polymerization is preferred because the cross linker provides 
stability to its three-dimensional structure and thus has a good life span. Antimony is an analyte of 
concern due to its biological toxicity, and a PIL-based SBSE method proved to be a good extraction 
method, with limits of detection (LODs) as low as 0.048 µg/L (Zhang et al. 2016). A monolith 
synthesised by the copolymerization reaction between 1-ally-3-vinylimidazolium chloride (AV) and 
divinylbenzene (DVB) with the help of porogen solvent containing 1-propanol and 1,4-butanediol as 
crosslinker is used for the analysis of preservatives (Chen and Huang 2016). The above proposed 
method for the preservative showed better analytical characteristics compared to other analytical 
methods with increased sensitivity, better reproducibility, good cost-effectiveness, and environmental 
friendliness. 

A monolith cake consisting of PIL-based poly (1-ally-3-vinylimidazolium chloride-co-ethylene 
dimethacrylate)-AVED for determining oestrogen in water samples showed good values for analytical 
parameters, providing a wide linear range, low values of LODs, acceptable reproducibility, and better 
recoveries for real water samples. The method gives LODs in the range of 0.024-0.057 mg/L and limits 
of quantification (LOQs) with a range 0.08-0.19 mg/L (Chen et al. 2016). The novel SBSE solvent is 
synthesised with IL 1-ally-3-methylimidazolium chloride as a monomer with in-situ copolymerization 
with ethylene dimethacrylate in the presence of 1-propanol and dimethylformamide as porogen for 
inorganic element determination (Huang et al. 2012). 

13.3 Application of IL-Based Microextraction Techniques 

IL-based microextraction has been successfully utilized for the extraction and determination of various 
organic and inorganic analytes from a wide spectra of matrices, including water, food, environmental 
samples, cosmetics, biological samples, etc., in analytical chemistry due to its tremendous use in-
creasing day by day. It moves toward GAC by replacing traditional solvents, which were drained in 
litres to the environment, and by dealing with a wide range of analytes from various samples. Analysts 
are keenly interested in this technique due to its harmless nature toward the environment and human 
beings. DLLME combined with IL provides a low limit of detection, high selectivity for the desired 
analyte, high recovery percentage, and high enrichment factor, besides providing various other ad-
vantages like reduction in the amount of organic solvents, reduction of cost, reduction in the number of 
steps for sample preparation, and increased efficiency and environmental friendliness. IL-based mi-
croextraction reduces both air and water pollution because several studies have been conducted on the 
toxic effect of IL on aquatic environments, and the results showed that IL is less toxic than traditional 
solvents to both the environment and human health. Being low volatile by nature, these ILs do not 
contribute to air pollution. 

The drawbacks associated with the use of organic solvents were overcome by non-volatile IL use, as 
it provides advantages to the already-established method by being accurate, reproducible, time sover-
eign, and linear over a wide concentration range. For better results of experiment extraction efficiency, 
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the variables were optimized using a multifaceted strategy. Several recent studies have reported using 
experimental designs for screening diverse parameters – using Plackett-Burman design (PBD) and 
central composite design (CCD) – for optimization of major factors that show direct relation with 
extraction efficacy. Thus, it is clear that IL-DLLME has been widely used in the study of diverse organic 
and inorganic analytes in variable research areas of environmental, food, and biomedical studies. 
DLLME-based research papers use mainly hydrophobic IL for most analysis, but in some cases of the 
DLLME method, hydrophilic IL is used. It is clearly visible from the number of research articles 
published in this field that the scientific community is highly interested in different IL-DLLME ana-
lytical applications and novel IL-DLLME technical solutions. 

Since the discovery of SDME, it has been the most popular solvent-based microextraction technique 
for sample preparation in chemical, pharmaceutical, clinical, biological, food, and forensic analysis. 
Unending strong interest stimulated new development as an alternative to organic solvent extractants. 
Hydrophilic and hydrophobic ILs have found numerous applications for all types of analytes in varied 
samples with different modes of SDME using ILs as an extracting solvent. In the extraction process, 
distribution of the featured analyte under the optimized condition occurred between the donor aqueous 
phase and the acceptor organic solvent drop. In view of the fact that a large portion of the target analyte 
is unmoving from the donor phase, inspection is carried for migration of matrix substances. The de-
barring of matrix substances provides better sample clean-up in a non-equilibrium state of reaction 
between the analyte and extractant. SDME appears to have special value in sample clean-up due to rapid 
extraction and a large enrichment factor, both attained delinquent of the great surface area of the ex-
traction solvent. 

IL-SDME was successfully applied for the extraction and determination of pesticides in the agri-
cultural sector and drugs from household drainage and others, as they are discharged to the environment 
accidentally or deliberately, leading to serious threat to human health and animals. Even various re-
search papers reported about the unbeaten utilization of IL-SDME in PAHs and phthalate esters due to 
their substantial applications in both industrial and domestic products. This class of contamination is 
highly toxic for the environment and human health if released intentionally or unintentionally; therefore, 
its monitoring is of utmost importance. Several human health-related problems, such as cancer, asthma, 
and cardiovascular diseases, have been reported as side effects of long-term exposure. Different sources 
of the emissions in the environment lead to different types of health issues; for example, sources can be 
combustion processes like volcanic eruptions, forest fires, biomass burning, waste incineration, and 
various industrial and anthropogenic activities. 

The inherent inconveniences due to LLE were overcome by SPME to accomplish extraction and pre- 
concentration of analytes through the use of less volume of toxic and environmentally unfriendly 
solvents, reduction in waste generation, and speeding up of the slow and labour-intensive workup. IL- 
SPME adds up in the list of analysts as an extraction method and is widely used in scientific and 
technological fields. SPME is used as an extraction technique in determining various classes of pol-
lutants, ranging from the pesticides used in agricultural farmland and their seepage and contamination in 
different water bodies, to analysis of PAHs in environmental samples. SPME is mainly utilized in 
biological samples as they are highly sensitive matrices and can be easily degraded in no time. SPME is 
mainly performed on solid matrices because the matrix interference in this technique is minimal. 
Table 13.3 shows the application of IL in microextraction. 

13.4 Conclusion 

Due to its unique and tunable physical properties, IL is becoming popular in sample preparation 
technology. IL-based microextraction is gaining attention due to the availability of designing and 
synthesizing target-specific ILs and expanding the research field of ILs to microextraction technology. 
In accordance with the GAC principle, ILs have gained popularity due to miniaturization in the amount 
used for extraction. ILs are costlier than the traditionally available extraction solvents, so an approach is 
needed in future perspectives for lowering the cost of ILs in order to replace the traditional solvents with 
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ILs. In this chapter, different extraction techniques employing ILs were discussed with necessary 
analytical parameters. It is clear that within no time ILs found a significant place in the extraction of a 
variety of analytes from diverse sample types with generation of less waste in the laboratory, thereby 
making the processes environmentally friendly. 
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14.1 Introduction 

Sample pre-treatment is an essential step of any biological sample analysis because of the complexity of 
the biological matrices as well as the low concentration of purpose analytes (Li et al. 2018). Therefore, 
sample purification and enrichment of the targeted analytes in a complex matrix can be one of the main 
aims of sample analysis methods (Li et al. 2018). In this regard, different types of organic solvents, 
including esters, ethers, alcohols, aromatic and aliphatic hydrocarbons, halogenated hydrocarbons, 
aldehydes, and ketones, are mainly applied as extraction or adsorbent solvents (Płotka-Wasylka et al. 
2017). It is well known that most of these solvents are highly toxic, flammable, volatile, and detrimental 
to the environment (Płotka-Wasylka et al. 2017). 

By the development of green chemistry, the main trend of sample pre-treatment methods has been 
focused on limiting the use of hazardous organic solvents and replacing them with new eco-friendly 
green solvents (Ahmadi et al. 2019; Makoś et al. 2020). In this context, deep eutectic solvents 
(DESs), a new subgroup of ionic liquids (ILs), recently have attracted growing interest as an im-
portant class of green solvents due to their unique properties (Huang et al. 2019). They have the most 
significant features of ILs, including low volatility, high chemical and thermal stability, non- 
flammability, and reusability (Ramezani et al. 2020). Moreover, DESs are frequently proposed as a 
worthy and green alternative to traditional ILs. DESs not only share most of ILs’ unique advantages, 
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but they also overcome the ILs’ limitations of toxicity, complex and time-consume preparation 
process, bio-incompatibility, and costliness (Huang et al. 2019). 

14.2 Deep Eutectic Solvents: A Concise Overview 

The term eutectic was first used in 1884 by the British physicist Frederick Guthrieto to describe metal alloys 
that have lower melting points than their constituent components (Guthrie 1884). This description has 
developed, and nowadays, the term eutectic mixture is described as a mixture of two or three compounds at a 
certain molar ratio, which illustrates a minimum melting temperature in the corresponding phase diagram 
(Gill and Vulfson 1994). This point in the phase diagrams is called the eutectic point (Gill and Vulfson 
1994). The melting points of the eutectic mixtures are significantly lower than their pure constituents due to 
the presence of the strong intermolecular bonds between the components (Gill and Vulfson 1994). 

In 2003, Abbott and co-workers demonstrated that the eutectic mixtures of amides with quaternary 
ammonium salts are liquid at ambient temperatures and have unusual solvent properties (Abbott et al. 
2003). They coined the term deep eutectic solvents (DESs) to describe these eutectic mixtures. In a more 
complete definition, DES has been introduced as a eutectic mixture of a hydrogen bond acceptor (HBA) 
and a hydrogen bond donor (HBD) compound. Having a eutectic point temperature below that of an 
ideal liquid mixture distinguishes DESs from any other eutectic mixtures (Martins et al. 2019). In 2004, 
Abbott and co-workers introduced DESs as a versatile alternative for ILs (Abbott et al. 2004). After that, 
this group of solvents received special attention in various research fields. In subsequent years, a wide 
variety of DESs have been reported (Smith et al. 2014). Nowadays, there are many reviews available on 
the DESs and their applications in the literature (Kalhor and Ghandi 2019; Smith et al. 2014). With the 
expansion of the study on the DESs, new subgroups of these solvents have been introduced. In 2011, 
Choi and co-workers developed a new subclass of DESs named natural deep eutectic solvent (NADES), 
which is prepared from natural chemicals, namely, organic acids, sugars, sugar alcohols, polyalcohols, 
and amino acids (Choi et al. 2011). In 2015, a new subgroup of DESs with hydrophobic features was 
reported by the Marrucho (Ribeiro et al. 2015) and the Kroon groups (van Osch et al. 2015). 

14.2.1 Structure of Deep Eutectic Solvents 

The DES can be represented by the general formula, C+X−.zY, where C+ is a sulfonium, phosphonium, 
or ammonium cation; X− is a halide anion, in generala Lewis base; Y is a Lewis or Brønsted acid; and z 
is the number of Y molecules (Smith et al. 2014). The complex anionic species are formed between X 
and Y. The DESs can be classified into four main groups based on the nature of their complexing agents: 
type I is a combination of a quaternary ammonium salt and a non-hydrated metal chloride, type II is a 
combination of a quaternary ammonium salt and a hydrated metal chloride, type III is a combination of 
a quaternary ammonium salt as an HBA and an HBD, and type IV is a combination of HBD and metal 
chloride (Table 14.1) (Smith et al. 2014). All the DES types I and II are limited to hydrophilic solvents, 
but types III and IV can be hydrophilic or hydrophobic, depending on the nature of their components 
(Makoś et al. 2020). An attractive characteristic of DES type III is the possibility of a huge number of 
these solvents with different physical and chemical properties due to the availability of a wide range of 

TABLE 14.1 

Classification of DESs     

Types General Formula Terms  

Type I C+X−zMClx M = Zn, Sn, Fe, Al, Ga, In 

Type II C+X− zMClx.yH2O M = Cr, Co, Cu, Ni, Fe 

Type III C+X−zRZ Z = OH, COOH, CONH2 

Type IV MClx + RZ = MClx−1 + RZ + MClx+1 M= Al, Zn and Z = OH, CONH2 
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HBD and HBA compounds (Cunha and Fernandes 2018; Smith et al. 2014). Therefore, the properties 
of this class of DESs (type III) can be simply adjusted for special applications by changing one or 
both of their components (Smith et al. 2014). Figure 14.1 demonstrates a number of common HBD and 
HBA compounds that are used to produce hydrophilic and hydrophobic DESs. 

14.2.2 Preparation of Deep Eutectic Solvents 

The simplicity of DES preparation methods is one of their primary attractions. In their preparation 
procedures, no organic solvent is required, and there is no need for purification of the final product 
due to the lack of by-product formation. The DESs can be prepared by simply mixing components 
at an appropriate molar ratio via heating, freeze-drying, and grinding (Li and Row 2019; Li et al. 
2020). Heating is the most common method of DES synthesis. In this method, the mixture of 
components is heated under stirring at 80–100 °C until a homogeneous and clear solution is 
produced (Ahmadi et al. 2018a). The freeze-drying approach includes two steps: (1) dissolution of 
the DES components in water with the help of heat, ultrasound, or vortex motion, and (2) removing 
water via freeze-drying (Gutiérrez et al. 2009). Also, water can be evaporated through a rotary 
evaporator or centrifugal vacuum. In the grinding approach, the mixture of DES components is 
ground in a mortar at room temperature until a uniform liquid is formed (Florindo et al. 2014). 

14.3 Utilization of Deep Eutectic Solvents in the Microextraction of Drugs and 
Poisons from Biological Matrices 

The DESs, a green alternative to volatile organic solvents and also ILs, have shown unique solvent 
properties, such as low vapour pressure, a broad range of polarities, recycling possibility, low toxicity, 

FIGURE 14.1 Structures of some HBD and HBA compounds that are utilized in the formation of hydrophilic and 
hydrophobic DESs. (Adapted from  Makoś et al. 2020;  Smith et al. 2014).  
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high biodegradability, high biocompatibility, air and moisture stability, high chemical and thermal 
stability, the ability to stay in the liquid phase even at a temperature well below 0 °C, and a high ability 
to dissolve many chemicals (Ahmadi et al. 2018b). These great features of DESs led to their widespread 
application in separation science (Li and Row 2016), such as designing the mobile phase compositions 
for reversed-phase liquid chromatography (Li et al. 2015; Ramezani et al. 2020, 2018; Ramezani and 
Absalan 2020; Tan et al. 2016). Their majority applications have been based on their use as the ex-
traction phases in liquid-based extraction techniques and as the desorption media in solid-based ex-
traction methods (Cunha and Fernandes 2018). In addition, DESs are successfully used for the surface 
modification of some materials (i.e., silica or polymers) (Tang et al. 2015). These DES-modified ma-
terials have been successfully applied as sorbents in the extraction methods due to their excellent 
interactions with the target analytes, including π–π interactions, hydrogen bonding, anion exchange, etc. 
(Tang et al. 2015). In this chapter, some remarkable examples of the DES applications in the micro-
extraction of drugs and poisons from biological matrices are reviewed. 

14.3.1 Utilization of Deep Eutectic Solvents in Liquid-Based Microextraction 
Methods 

Liquid-phase microextraction (LPME) is one of the most popular pre-treatment methods, and it was 
introduced for the first time in 1996 (Liu and Dasgupta 1996). In this microextraction method, a few 
microliters of an extraction solvent (acceptor phase) is suspended in an aqueous solution of analytes 
(donor phase) (Liu and Dasgupta 1996). In the last few years, various LPME modes have been de-
veloped, including single drop microextraction (SDME), hollow-fibre LPME (HF-LPME), dispersive 
liquid-liquid microextraction (DLLME), and so forth. In SDME, a single drop of extractive solvent is 
hanging from a syringe tip that can be placed directly in the donor phase or located in the headspace of 
the sample solution (HS-SDME). In HF-LPME, usually the acceptor phase is injected into the lumen of 
a polypropylene hollow fibre and then soaked in the donor phase. The DLLME is based on a triple 
solvent system, including an aqueous sample solution, a water-immiscible organic extraction solvent, 
and a disperser solvent that is miscible in both aqueous and extraction phases. By injecting the mixture 
of extraction and disperser solvents into the sample solution, the cloudy solution is formed. Currently, in 
some DLLME procedures, supplementary energy or reagents are used to accelerate the formation of the 
cloudy solution, such as injection of air bubbles (air-assisted LLME, AA-DLLME) (Farajzadeh and 
AfsharMogaddam 2012), injection of argon gas (gas-assisted DLLME, GA-DLLME) (Akhond et al. 
2016), ultrasonication (ultrasonic-assisted DLLME, UA-DLLME) (Malaei et al. 2018), vortex mixing 
(vortex-assisted DLLME, VA-DLLME) (Safavi et al. 2018), shaker mixing (shaker-assisted DLLME, 
SA-DLLME) (Ahmadi et al. 2019), bubbling as a result of an effervescent reaction (effervescence- 
assisted DLLME, EA-DLLME) (Shishov et al. 2020), and so on. In addition, the DLLME techniques 
can be classified based on the methods that are applied to separating the phases after extraction. 
Centrifugation, the addition of a salt (salt-induced), purging a gas (i.e., argon or nitrogen), and soli-
dification of floating organic drop (DLLME-SFO) can be named as the routine methods (Šandrejová 
et al. 2016). 

Recently, the LPME techniques based on DESs have gained much attention in the extraction of drugs 
and poisons from biological matrices. Most applications of DES-based LPME in biological analysis are 
summarized in Table 14.2. 

In 2018, Yousefi et al. reported a two-phase HS-SDME method based on a hydrophobic magnetic 
Bucky gel for the extraction of volatile aromatic hydrocarbons from water and biological samples 
(Yousefi et al. 2018). The hydrophobic DES was formed by combining ChCl and chlorophenol, and the 
magnetic Bucky gel was prepared by mixing the DES and the magnetic multiwalled carbon nanotubes. 
A drop of magnetic Bucky gel was put in the space above the container of the sample solution. 
Compared to the conventional organic solvents, the DES demonstrated more suitability to create stable 
drops for HS-SDME owing to its lower volatility, higher viscosity, and adjustable miscibility. 

Seidi and his co-workers presented the application of hydrophilic DES based on ChCl and urea as an 
acceptor phase in the three-phase HF-LPME procedure for the lead extraction from whole blood 
samples (Alavi et al. 2017). In this procedure the analyte (Pb2+) was extracted from an aqueous sample 
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solution into 1-octanol containing N,N,N-cetyltrimethylammoniumbromid (CTAB) as the extraction 
phase and then back-extracted into the DES containing KClO4 as the acceptor phase. The method was 
followed by atomic absorption spectroscopy (AAS) for the determination of lead. In this respect, 
Yamini and his co-workers also reported another application of DESs in the three-phase HF-LPME 
method (Khataei et al. 2018). In this work, the suitability of three types of DESs as the extraction 
solvent in the HF-LPME method for the extraction of cyproterone acetate and dydrogesterone from 
biological samples was evaluated. The results demonstrated that the nature of the DES has a significant 
effect on the efficiency of the method. Another application of DES in this extraction method was 
reported by Rajabi et al. (Rajabi et al. 2019). In this report, a new relatively hydrophobic DES based on 
ChCl and 1-phenylethanol was introduced as an extraction solvent in the HF-LPME procedure for 
extraction of antiarrhythmic drugs (propranolol, carvedilol, verapamil, and amlodipine) in biological 
and environmental samples (urine, plasma, and wastewater). The results proved the good compatibility 
of DES to hollow fibre pores and its excellent capability for ionizable chemical extraction without any 
requirement for carrier agents. 

In 2017, Lamei et al. developed an AA-DLLME procedure using a new hydrophilic DES for the pre- 
concentration and extraction of methadone from water, urine, and plasma samples (Lamei et al. 2017). 
The DES was formed by using choline chloride (ChCl) as an HBA component and 5,6,7,8-tetrahydro- 
5,5,8,8-tetramethylnaphthalen-2-ol as an HBD component. In this work, tetrahydrofuran (THF) was 
applied as a demulsifier solvent, which caused aggregating of the DES and formation of a turbid so-
lution. Moreover, the dispersion of DES droplets into the sample solution was created by several times 
sucking and injecting the mixture of sample, extracting, and demulsifier agents. Finally, the extraction 
solvent was collected on the top of the solution by centrifugation, and then it was analyzed using the gas 
chromatography (GC) system. In 2018, Ghoochani Moghadam et al. employed a similar AA-DLLME 
procedure for the extraction of three anti-depressant drugs (escitalopram, desipramine, and imipramine) 
from human plasma and pharmaceutical wastewater (Ghoochani Moghadam et al. 2018). Moreover, in 
2020, the AA-DLLME procedure was also used for the extraction of warfarin from plasma and urine 
samples (Majidi and Hadjmohammadi 2020). 

Safavi et al. reported a simple VA-LLME procedure based on hydrophobic DES for the extraction of low 
molecular weight aldehydes (malondialdehyde and formaldehyde) from urine samples (Safavi et al. 2018). 
In this procedure, the water-immiscible DES based on methyltrioctylammonium bromide and decanoic acid 
was used as the acceptor phase. The method was followed by HPLC-UV for measuring the analytes. The 
VA-LLME based on the hydrophobic DES procedure was also proposed for the extraction of formaldehyde 
from blood samples (Zhang et al. 2019b) and nitrite from urine and saliva samples (Zhang et al. 2019a). 

Kanberoglu et al. reported the application of DES in the digestion of the liver samples and also the 
UA-DLLME extraction of copper from the digested samples prior to its analysis by AAS (Kanberoglu 
et al. 2018). In this case, DES based on ChCl/lactic acid and tetrabutylammonium chloride/decanoic 
acid were applied in the digestion step and extraction step, respectively. Before extraction, copper ions 
were complexed with sodium dimethyl dithiocarbamate. In another work, the DES-based UA-DLLME 
method combined with AAS was used for pre-concentration and determination of mercury (Hg2+ and 
CH3Hg+) in water and fish samples (Thongsaw et al. 2019). Mercury in the form of CH3Hg+ was 
extracted directly to hydrophobic DES based on ChCl/phenol due to its hydrophobicity, but Hg2+ were 
complexed with dithizone before extraction. Liao et al. also developed a DES-based UA-DLLME 
procedure for macrolide antibiotics extraction from swine urine samples (Liao et al. 2020). 

Three works have been published by Fattahi groups focusing on the application of hydrophobic DESs 
on the VA-DLLME based on the solidification of a floating organic drop (VA-DLLME-SFO) method 
for extraction of toxic metal cations (As(III), As(V), Se(IV), Se(VI), and Hg(II)) from blood samples 
(Akramipour et al. 2019a, 2019b, 2018). In these reports, DESs based on 1-octyl-3-methylimidazolium 
chloride/1-undecanol (Akramipour et al. 2018) and ChCl/Phenol (Akramipour et al. 2019a, 2019b) with 
a freezing point around ambient temperature were applied as the extraction solvents, and diethyl-
dithiophosphoric acid was used as a chelating agent. In this procedure, the mixture of the DES and the 
chelating agent was rapidly injected into the sample solution with a syringe, and the mixture was shaken 
by a vortex agitator. After that, by centrifugation, the tiny droplets of DES separated and floated at the 
surface of the solution, and finally, it was solidified after cooling the solution. Seidi et al. also reported a 
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similar hydrophobic DES-based DLLME procedure for the extraction of Cr(VI) from urine samples 
(Seidi et al. 2019). Cr(VI) contents of the urine samples were complexed with 1,5-diphenylcarbazone 
prior to the extraction step. Water-immiscible DES consisting of benzyltriphenylphosphonium bromide 
and phenol was chosen as an extraction solvent. 

Nowadays, the importance of insecticide monitoring in biological samples is well known. In this regard, 
Jouyban et al. introduced a new, interesting procedure based on DLLME for the extraction of pesticides 
from biological samples such as human urine (Jouyban et al. 2019a), plasma (Jouyban et al. 2019a), saliva 
(Jouyban et al. 2019b), and exhaled breath condensate (Jouyban et al. 2019b). In these works, a novel 
extraction vessel was designed for extraction of pesticides based on the DLLME-SFO procedure 
(Figure 14.2). The designed vessel was a double-glazed, U-shaped glass equipped with a glass filter as 
shown in Figure 14.2. DES based on menthol and phenylacetic acid was selected as an extraction solvent 
with a density lower than water. In this procedure, the sample solution was transferred into the device on 
the glass filter, and then the extraction solvent was passed through the vessel filter by means of the 
nitrogen gas flow. In this step, the extractant was dispersed in the sample solution, and a cloudy solution 
was obtained with the aid of gas bubbles. Finally, the extraction solvent was collected on the surface of the 
aqueous sample solution without centrifugation, and it was solidified with circulating cool water. The 
pesticides were analyzed by using a gas chromatography-mass spectrometry (GC-MS) system. In another 
report, Kachangoon et al. developed a cloud-point extraction combined with in-situ metathesis reaction of 
DESs for extraction of neonicotinoid insecticides prior to HPLC analysis (Kachangoon et al. 2020). DES 
based on ChCl/phenol and Triton X-114 were used as a disperser and extraction solvent, respectively. 

A new strategy for the LLME of non-steroidal anti-inflammatory drugs (NSAIDs) from biological 
samples was proposed by Shishov et al. (Shishov et al. 2018). This microextraction method was based 
on the in-situ formation of a eutectic mixture between menthol and NSAIDs, which results in the 
separation of NSAIDs from the aqueous phase. The proposed method was applied for HPLC-UV 
monitoring of ketoprofen and diclofenac in the biological samples. Two years later, the same group 
developed an EA-DLLME based on DES decomposition for extraction of NSAIDs from beef liver 
samples (Shishov et al. 2020). In the first step of this procedure, analytes were separated from a liver 
sample in a sodium carbonate solution. In the second step, decomposition of DES (menthol/formic acid) 
into the extractant (menthol) and proton donor agent (formic acid) occurred in the sample solution. 
Therefore, an effervescent reaction between sodium carbonate and formic acid produced carbon dioxide 
and consequently helped in a dispersion of extractant. 

14.3.2 Utilization of Deep Eutectic Solvents in Solid-Based Microextraction Methods 

Although most applications of DES in the microextraction of drugs and poisons from biological ma-
trices are related to LPME techniques, there are some reports of the application of DESs in SPME 
(Table 14.3). The SPME technique is a simple and effective sample pre-treatment method that was 
introduced in 1990 (Arthur and Pawliszyn 1990). This methodology combines sampling, extraction, and 

FIGURE 14.2 Scheme of the proposed DLLME-SFO procedure applied for the extraction of pesticides from biological 
samples such as human urine ( Jouyban et al. 2019a), plasma ( Jouyban et al. 2019a), saliva ( Jouyban et al. 2019b), and 
exhaled breath condensate ( Jouyban et al. 2019b).  
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concentration operations in one step only, which considerably reduces solvent consumption and op-
erating duration (Wang et al. 2018). In fact, the SPME process involves two basic steps, partitioning of 
analytes between the sorbent and the sample matrix and then the desorption of the concentrated analytes 
to the eluent solvent (Ho 2011). Therefore, selecting a suitable sorbent and eluent solvent is crucial in 
the design of SPME methods (Khezeli and Daneshfar 2015). 

In 2015, Khezeli et al. developed a SPME procedure for the extraction of epinephrine, dopamine, and 
norepinephrine from biological samples prior to HPLC-UV analysis (Khezeli and Daneshfar 2015). In 
this process, the magnetic metal-organic framework core-shell named Fe3O4@MIL-100 (Fe) and the 
ChCl-based DESs were proposed as sorbent and eluent solvent, respectively. 

In 2018, Wang et al. prepared a polymer monolithic column based on the DES for in-tube SPME of 
NSAIDs from water and plasma samples (Wang et al. 2018). A poly-(DES-ethylene glycol-dimethacrylate) 
monolith was synthesized inside the polydopamine-functionalized poly(ether ether ketone) tube by 
applying a DES (ChCl/itaconic acid) as a functional monomer. This column was coupled with a HPLC-UV 
and used for online analysis of three NSAIDs (ketoprofen, flurbiprofen, and diclofenac sodium). In the 
same year, Yamini and his co-workers described a new coating based on a DES for usage in electro-
chemically controlled in-tube SPME (EC-IT-SPME) (Asiabi et al. 2018). This coating was prepared by 
electrochemical deposition of the polypyrrole/DES nanocomposite on the inner walls of a stainless-steel 
tube. It was applied for the EC-IT-SPME of losartan from urine and plasma samples. 

In 2018, Karimi et al. immobilized DES of ChCl and thiourea on the surface of graphene oxide 
nanosheets and used it as a new sorbent in the HF-SPME of silver ions from water and hair samples 
(Karimi et al. 2018). 

In 2019, Meng et al. used a DES as a porogen for preparation of molecularly imprinted polymers with 
a pseudo template (Meng and Wang 2019). It was applied as an adsorbent material in the micro-
extraction of levofloxacin from human plasma by packed sorbent. 

In 2020, Rastbood et al. applied a DES as a carrier and disperser of ferrofluids in magnetic dispersive 
SPME of meloxicam from human plasma and urine samples (Rastbood et al. 2020). A ferrofluid was 
prepared by using silica-coated magnetic nanoparticles and a DES (ChCl/ethylene glycol) as an ad-
sorbent and carrier, respectively. The DES carrier reduced the extraction time via increasing the surface 
contact between the adsorbent and the target analytes. 

14.3.3 Utilization of Deep Eutectic Solvents in Combined Microextraction Methods 

A combination of the sample pre-treatment methods is a suitable way to overcome the limitations of 
individual techniques and offer their synergistic benefits (Sajid and Płotka-Wasylka 2018). 
Additionally, combinations of extraction methods have their own unique merits. Combined extraction 
methods can be divided into two groups, conventional extractions combined with microextraction 
methods and binary microextraction techniques (Sajid and Płotka-Wasylka 2018). Some applications 
of the combined extraction methods based on DESs in biological analysis are summarized in 
Table 14.4. 

Hemmati et al. introduced two consecutive dispersive SPME/AA-LLME procedures for the influ-
ential clean-up and enrichment of lorazepam and clonazepam from human plasma and urine samples 
(Hemmati et al. 2017). Polythiophene-sodium dodecyl benzene sulphonate/iron oxide nanocomposite 
was used as a sorbent in the SPME step. The magnetic nature of the proposed sorbent made the clean-up 
step quick and convenient. The purification step was followed by a highly rapid and efficient emulsi-
fication microextraction process based on the ChCl-based DESs for further enrichment. Finally, the 
instrumental analysis was feasible via HPLC-UV. 

The dispersive solid-phase extraction (SPE) methods can be coupled with the other microextraction 
techniques, such as DLLME, in order to improve extraction performance parameters, such as en-
richment factor (Mohebbi et al. 2018). In this regard, Mohebbi et al. proposed an SPE procedure 
coupled with DES-based AA-DLLME for extraction of some tricyclic antidepressant drugs from 
human plasma and urine samples prior to determination by GC-MS (Mohebbi et al. 2018). In this 
procedure, C18 was used as a sorbent, and ChCl/4-chlorophenol DES was applied as an elution and 
extraction solvent. 
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Jouyban and his co-workers employed a salt-induced LLE method combined with a DES-based 
DLLME technique followed by GC for extraction and measurement of three anti-seizure drugs (car-
bamazepine, diazepam, and chlordiazepoxide) in urine samples (Soltanmohammadi et al. 2020). In the 
first step of this procedure, the analytes were extracted into iso-propanol as a water-miscible extraction 
solvent. In the second step, the iso-propanol, which contains the extracted analytes, was applied as 
a disperser solvent, and the water-miscible DESs were used as the extraction solvent in the DLLME 
process. 

Recently, Ghaedi and his co-workers reported the successful application of ferrofluids based on 
hydrophobic DESs as an extraction phase in DLLME of mefenamic acid (Dil et al. 2019) and dox-
ycycline (Alipanahpour Dil et al. 2020) from biological samples. Ferrofluid is typically the stable 
suspension of magnetic nanoparticles in the carrier liquid (Alipanahpour Dil et al. 2019). In these works, 
the ferrofluids were prepared by mixing the oleic acid-coated Fe3O4 magnetic nanoparticles in the 
hydrophobic DESs. A similar procedure was used by Jouyban et al. for the extraction of 16 polycyclic 
aromatic hydrocarbons from urine and saliva samples of tobacco smokers (Jouyban et al. 2020). 

14.4 Conclusion and Future Perspectives 

The complexity of the biological matrices as well as the low concentration of analytes in the biological 
samples has made it necessary to perform the extraction step before the biological analysis. Along with the 
advancement of green chemistry, much attention has been paid to the use of green solvents instead of toxic 
organic solvents in all fields of analytical chemistry, especially extraction. Recently, DESs as a novel group 
of alternative and eco-sustainable solvents have been applied in various extraction methods. By substituting 
traditional toxic organic solvents with DESs, the original merits of extraction techniques, such as low costs, 
ease in operation, and environmental safety, were enhanced. In this chapter, the main applications of DESs in 
the microextraction of drugs and poisons from biological matrices were overviewed. 

There is no doubt about the further growth of DES applications in biological analysis in the close 
future. Future studies on the DESs maybe focus on the following topics; (1) introducing novel DESs 
with various properties and their utilization in the designing of new efficient extraction methods; (2) 
further development of DES applications as extracting solvents, eluent solvents, or chemical media for 
synthesis of different sorbents; and (3) designing snovel extraction methodologies based on DESs for 
analyte monitoring in biological matrices. 
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15.1 Introduction 

In the present scenario of global development, people are exposed to numerous toxicants through 
various modes in their day-to-day lives. These chemicals move in the environment as well as in the food 
chain via different sources (water, soil, air, etc.) and accumulate in human beings in acute or chronic 
ways. This results in different type of toxicities. Identification of analytes or toxicants in complex 
matrices like blood, tissues, food, etc., is the most challenging task in the field of analytical toxicology. 

Thus, it is necessary to identify these toxicants efficiently to find out the root cause and take corrective 
action to overcome the problem. With the advancement in analytical instrumentation for determining 
analytes, there has also been developments or advancements in sample preparation techniques that 
decrease the cost and time of analysis by reducing or eliminating the use of toxic organic solvents. 
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Various microextraction techniques have been implemented for the extraction and pre-concentration of 
analytes for their analysis using different chromatographic instruments. Examples of some popular types 
of microextraction techniques are solid-phase microextraction (SPME), dispersive liquid-liquid micro-
extraction (DLLME), single drop microextraction (SDME), and liquid-phase microextraction (LPME). 

In order to analyze a wide range of organic compounds by microextraction and chromatographic 
techniques, several improvements were done, for which chemical derivatization of polar organic 
compounds is an important aspect while dealing with their chromatographic analysis. 

Generally, derivatization is performed to make organic compounds volatile enough to get analyzed in 
gas chromatography (GC) or to make UV/fluorescent active to get analyzed in high-performance liquid 
chromatography (HPLC). In the field of analytical toxicology, derivatization is preferred to take place at 
room temperature within a short span of time with good solubility of derivatives in organic solvents 
(Rutkowska et al. 2014; Lin et al. 2013; Risticevic et al. 2010). 

The derivatization process can be classified into three modes:  

1. Pre-column  

2. Post-column  

3. On-column 

Additionally, on the basis of chromatographic instruments, the derivatization process can be further 
classified as follows: 

For GC  

1. Alkylation  

2. Acylation  

3. Silylation 

For HPLC  

1. UV derivatization  

2. Fluorescent derivatization 

Therefore, the coupling of derivatization with microextraction techniques results in fast, sensitive, high 
enrichment, and effective pre-concentration of analytes. 

15.2 Overview of Microextraction Techniques Coupled with Derivatization 

As advancements in the field of analytical toxicology, various microextraction techniques, combined 
with different chemical derivatization approaches, have been developed, which are discussed here 
(Kabir et al. 2017). 

15.2.1 Solid-Phase Microextraction (SPME) 

SPME is a well-established microextraction technique. It is a solvent-less extraction technique that 
involves a fibre (with polymeric coating) as an adsorption media (extracting phase). This technique was 
first established by Pawliszyn et al. (Risticevic et al. 2010;Kabir et al. 2017). 

SPME is a two-step extraction technique:  

1. Adsorption  

2. Desorption 
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Here, first the analyte gets adsorbed into the fibre and then the fibre gets directly desorbed into the 
analytical instrument (GC, GC-mass spectrometry, etc.). 

The two different modes of SPME are as follows:  

1. Headspace SPME (HS-SPME) – Fibre is exposed to the vapours phase above the sample.  

2. Direct immersion SPME (DI-SPME) – Fibre gets directly immersed in the sample. 

The optimization parameters required for SPME are as follows:  

1. Coating of the fibre  

2. Extraction mode  

3. Sample volume  

4. Sample agitation  

5. pH  

6. Ionic strength  

7. Extraction time and temperature  

8. Desorption time and temperature  

9. Derivatization in the case of polar analytes 

15.2.2 Dispersive Liquid-Liquid Microextraction (DLLME) 

DLLME is based on the ternary solvent system, i.e., extraction solvent, dispersion solvent, and sample. 
The process of DLLME involves the injection of the extraction and dispersion solvent system to an 
aqueous sample, resulting in the formation of a cloudy solution (Sajid 2018). A pre-requirement of 
traditional DLLME is as follows:  

1. Extraction solvent must be immiscible with water and miscible with dispersive solvent.  

2. Extraction solvent must show high affinity with target analytes. 

Traditional DLLME follows the use of high-density extraction solvent possessing (e.g., di-
chloromethane, chloroform, carbon tetrachloride) in comparison to water, but advancement takes place, 
and the use of low-density extraction solvent (hexane, toluene, xylene, etc.,) takes place as an alternative 
mode of DLLME, as discussed in previous chapters. 

Advantages of DLLME involve the following:  

1. Instantaneous partitioning of analytes from the sample  

2. Easy recovery of extraction solvent  

3. Smaller amount of solvent required (in microliters)  

4. High enrichment factor  

5. Sensitive, rapid, and cost-effective 

15.2.3 Single Drop Microextraction (SDME) 

The SDME concept was first introduced by Cantwell This technique used an acceptor phase, where a small 
micro-droplet (upto 2 µL) of extraction solvent was suspended, which is compatible with the GC system. 

Classification of SDME is as follows:  

1. Two-phase SDME: This includes direct immersion SDME, continuous-flow SDME, drop-to- 
drop SDME, and directly suspended SDME.  

2. Three-phase SDME: This include HS-SDME and liquid-liquid-liquid SDME. 
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Advantages of SDME include the following:  

1. Fast and sensitive analysis  

2. High distribution coefficient  

3. Low consumption of sample and solvent 

15.2.4 Liquid-Phase Microextraction (LPME) 

LPME is a solvent-minimized sample preparation technique, alternative to liquid-liquid extraction 
(LLE). Here, solvent in microliters is used to extract the analytes rather than in millilitres to litres, as 
in LLE. 

LPME is known for its rapidness, simplicity, low cost, low solvent consumption, need for a small 
amount of sample, reduced waste, and high enrichment of analytes. 

15.2.5 Hollow-Fibre Liquid-Phase Microextraction Technique (HF-LPME) 

Rasmussen et al. introduced the concept of HF-LPME. Here, a polypropylene-based hollow fibre is 
utilized as a membrane. This should ensure that the solvent is immiscible with water to establish the 
retentivity of solvent within the pores of the membrane. A thin layer is formed by organic solvent within 
the wall of the hollow fibre. The type of acceptor phase decides the mode of the system, i.e., two-phase 
or three-phase system. 

For the two phase system, the generally used solvents are toluene and n-octanol as the organic phase. 
For the three-phase system, n-octanol and dihexyl ether are used as supported liquid membrane (SLM). 

15.3 Derivatization Techniques and Their Various Modes 

As discussed earlier, derivatization is the process of chemically modifying the analyte to make it 
amenable for the chromatographic analysis. 

Different modes of derivatization are performed based on chromatographic or analytical instruments. 

15.3.1 Derivatization Techniques for Gas Chromatography 

As discussed earlier, the most commonly used derivatization procedures for analysis of polar analytes 
by GC include alkylation, acetylation, and silylation: 

Alkylation is the widely used derivatization process to protect -OH (carboxylic), -SH, and -NH 
groups to enhance the volatility of the compound and improve its chromatographic properties (Lin et al. 
2013; Moldoveanu and David 2018; Halket and Zaikin 2004). Alkyl halides (alkyl bromide, alkyl 
iodide, etc.) are the most widely used reagents for alkylation. 

Some of the other used reagents for alkylation are tetramethylammonium hydroxide, diazomethane, etc. 
Acetylation refers to the introduction of an acetyl group into a chemical compound. In this process, a 

number of analytical steps get minimized due to direct derivation of analytes in the water sample within 
a minute. Various acetylating reagents are used for derivatization, such as acetic anhydride and 
chloroformates (methyl chloroformates, ethyl chloroformates, etc.). The derivatization process takes 
place at room temperature. Acetylation has been used as a derivatization process for the analysis of 
environmental, pharmaceutical, forensic, and clinical samples. 

Silylation is the most widely used technique of the derivatization approach for GC analysis of polar 
analytes. Most of the functional groups get covered and easily derivatized using the silylation technique. 
Here, the hydrogen of the polar group of analytes gets replaced with the trimethylsilyl group. The neu-
cleophilic substitution reaction (SN2) mechanism takes place in the presence of a strong leaving group. 

Various silylating reagents are available as derivatizing reagents, such as Bis(trimethylsilyl)tri-
fluoroacetamide (BSTFA) and N-methyl-N-(ter-butyldimethylsilyl) trifluoroacetamide (MTBSTFA). 
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15.3.2 Derivatization Techniques for High-Performance Liquid Chromatography 

In HPLC, derivatization is performed in order to introduce groups in a molecule to increase sensitivity 
for a UV or fluorescent detector (Moldoveanu and David 2018). Here, pre- and post-column derivati-
zation are performed for detection of a UV or fluorescent detector. 

15.3.2.1 Fluorescent Derivatization 

This technique is used to derivatize non- or weekly fluorescing compound to enhance the sensitivity of 
the analysis. It also increases the linear dynamic response range and selectivity. 

Some of the fluorescent derivatizing reagents are 9-chloromethyl anthracene, 9-(2-hydroxy ethyl)- 
carbazole, 5-(4-pyridyl)-2-tiophenmethanol, dansyl chloride, etc. (Xie et al. 2012). 

15.3.2.2 UV Derivatization 

Similar to fluorescent derivatization, various chromophores are used to convert UV inactive molecule 
into UV active. Some of the commonly used derivatizing reagents are o-phthalaldehyde, Ninhydrin, 
2,4-Dinitro phenyl hydrazine etc., (Adegoke 2012). 

15.4 Application of Combination of Derivatization with Microextraction 
Techniques in Analytical Toxicology 

Combination of microextraction technique with derivatization proves itself a very promising approach 
in analytical toxicology due to its high enrichment factor, making analyte suitable for chromatographic 
analysis (GC, HPLC, etc.), low solvent consumption, eco-friendly, rapid analysis, etc. Various appli-
cations of coupling these two approaches in different matrices have been explored in the field of 
analytical toxicology. Some of them are described in this section. 

15.4.1 Water Samples 

Varanusupakul et al. developed a method for analyzing haloacetic acids in water using in-situ deri-
vatization coupled with a hollow-fibre membrane-based microextraction technique (Varanusupakul 
et al. 2007). In this work, analytes were derivatized using acidic methanol and were simultaneously 
extracted by using hollow-fibre membrane in HS mode. The method achieved a good limit of detection, 
below 18 µg/L for all haloacetic acid. 

Zhang et al. utilized an LPME technique followed by injector-port derivatization for the determination 
of acidic pharmaceutically active compounds (clofibric acid, ibuprofen, naproxen, and ketoprofen) using 
GC-MS in water samples (Zhang and Lee 2009). Trimethylanilinium hydroxide (TMAH) was used as a 
derivatizing reagent. The limit of detection that was achieved ranged between 0.01 and 0.05 µg/L. 

Rodriiguez et al. explored the concept of SPME coupled with on-fibre derivatization followed by GC- 
MS analysis for the analysis of anti-inflammatory drugs in sewage water samples (Rodrıiguez et al. 
2004). N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was used as a reagent for 
the derivatization of drugs directly inside the heated injection port of GC-MS. The limit of quantifi-
cation of this reported method ranged from 12 to 40 ng/L. 

Basheer et al. determined the endocrine-disrupting alkylphenols, chlorophenols, and bisphenol A by 
using hollow-fibre protected LPME coupled with injector-port derivatization followed by GC-MS 
analysis (Basheer and Lee 2004). Derivatization was performed by using bis(trimethylsilyl)tri-
fluoroacetamide (BSTFA). This method showed a good enrichment factor, up to 162 fold, and the limit 
of detection ranged from 0.005 to 0.015 µg/L in the selective ion monitoring mode. 

Esaghi et al. developed a method for determining non-steroidal anti-inflammatory drugs by 
using in-situ derivatization coupled with HF-LPME in municipal waste water samples (Eshaghi 2009). 
Here, the drugs taken into consideration for analysis were ibuprofen, naproxen, and ketoprofen. In this 
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work, sealed polypropylene hollow-fibre was used for extraction purposes and tetra butyl ammonium 
sulphate as a derivatizing reagent. The detection limit of method ranged from 1 to 2 ng/L. 

In one work, Loua et al. developed a method for determining octylphenol and nonylphenol in water 
samples by using the concept of simultaneous derivatization coupled with DLLME (Luoa et al. 2010). 
In this method, a mixture of dispersion solvent and catalyst (methanol and pyridine mixture) was added 
to the known amount of sample. In continuation, the derivatizing reagent and the extraction solvent (i.e., 
methyl chloroformate and chloroform) was injected rapidly to perform simultaneous derivatization and 
extraction. The limit of detection for both the analytes was found to be 0.03 and 0.02 µg/L, respectively. 

15.4.2 Urine Samples 

A method was developed by Nabil et al. to determine antidepressants (fluvoxamine, nortriptyline, and 
maprotiline) in urine samples by coupling simultaneous derivatization with temperature-assisted 
DLLME followed by GC-FID analysis (Nabil et al. 2015). In this method, dimethylformamide was 
used as a disperser solvent, 1,1,2,2-tetrachloroethane as an extraction solvent, and acetic anhydride as a 
derivatizing reagent. The enrichment factor was found to be 820–1070 fold, whereas the detection limit 
was found to be in the range of 2 to 4 ng/mL. 

Jain et al. developed a rapid, simple, and cost-effective method for determining quinine by using 
ultrasound-assisted DLLME followed by injector-port silylation in urine samples (Jain et al. 2013). 
Ethanol was used as a disperser solvent, dichloromethane as an extraction solvent, and N,O-bis 
(trimethylsilyl)trifluoroacetamide (BSTFA) as a derivatizing reagent. The method achieved good 
linearity (R2 = 0.999), and the detection limit was 5 ng/mL. 

In another work, Gupta et al. utilized the same concept for determining polycyclic aromatic hydro-
carbons (PAHs) metabolites {1-napthol (NAP), 9-phenanthrol (PHN), 1-hydroxypyrene (1-OHP), 2- 
hydroxyfluorene (2-HF), 3-hydroxyfluorene (3-HF), 9-hydroxyfluorene (9-HF), and 6-hydroxychrysene 
(OH-CHRY)} in urine samples using DLLME coupled with injector-port silylation followed by GC- 
MS/MS analysis (Gupta et al. 2015). Trichloroethylene was used as an extraction solvent, ethanol as a 
disperser solvent, and BSTFA as a derivatizing reagent. The limit of detection of the defined method 
ranged from 1 to 9 ng/mL and showed good linearity with R2 ranges from 0.987 to 0.999. 

Lin et al. extracted pyrethroid metabolites such as 3-phenoxybenxoic acid, 4-fluoro-3- 
phenoxybenzoicacid, and cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic 
acid by using LPME coupled with in-syringe derivatization followed by GC-ECD analysis of urine 
samples (Lin et al. 2015). The method showed high enrich factor ranges from 69.8 to 154.6. 
The detection limit ranged from 1.6 to 17 ng/mL. 

Racamonde et al. demonstrated the application of SPME coupled with in-sample derivatization 
for the extraction and determination of amphetamines and ecstasy-related stimulants (metham-
phetamine, 3,4-Methylendioxyamphetamine, 3,4-Methylendioxymethamphetamine, and 3,4- 
Methylendioxyethylamphetamine) in water and urine samples. Isobutyl chloroformate was used as 
a derivatizing reagent, and PDMS-DVB (polydimethylsioloxane-divinylbemzene) fibre was used 
for extraction purposes (Racamonde et al. 2013). The detection limit of method was found to be 
less than1 µg/L in both the matrixes. 

Further, Klimowska et al. developed a technique where off-line microextraction was performed 
using packed sorbent followed by a solid support derivatization process to determine pyrethroid 
metabolites (cis-2,2-dimethyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-cyclopropanecarboxylic 
acid, cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids, cis-(2,2- 
dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid, and 3-phenoxybenzoic acid) in 
urine samples using GC-MS (Klimowska and Wielgomes 2018). Microextraction was performed 
using a manually operated semiautomatic syringe and derivatization using 1,1,1,3,3,3- 
hexafluoroisopropanol and diisopropylcarbodiimide. The developed method showed quantifica-
tion limit ranges from 0.06 to 0.08 ng/mL/. 

A method was developed for the analysis of various metabolites of fluorene by Geimner et al. (2002). 
In this method, SPME was used for the extraction of analytes, whereas HS silylation was performed for 
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on-fibre derivatization purposes using BSTFA and MTBSTFA. The method was found suitable for 
profile analysis of polycyclic aromatic hydrocarbon metabolites in a urine sample of an occupationally 
exposed person. Separation was found satisfactory for all metabolites without matrix interference. 

15.4.3 Other Biological Samples 

In the field of analytical toxicology, biological samples like blood, milk, tissues, etc., play an important 
role where xenobiotics are analyzed to find out the severity of exposure. Several literatures are available 
where application of simultaneous derivatization coupled with microextraction showed a significant 
outcome of the study. 

A solvent-free extraction methodology coupled with on-fibre silylation was explored by Aresta et al. to 
determine phytoestrogens (equol, enterodiol, daidzen, genistein, and glycitein) in different milk samples of 
cows, goats, and soy-rice (Aresta et al. 2019). Direct immersion SPME was used for extraction, whereas 
BSTFA was used for on-fibre derivatization followed by GC-MS analysis. The detection limit ranged from 
0.02 to 0.28 ng/mL, whereas the quantification level ranged from 0.08 to 0.95 ng/mL. 

Bustamante et al. utilized the concept of packed sorbent, LLME, and derivatization for the analysis 
and determination of diet-derived phenolic acids (e.g., phenylacetic acid, butanedioic acid) in gerbil 
plasma samples (Bustamante et al. 2017). In this method, optimization and comparison of extraction 
techniques and derivatization processes were performed. Derivatization was performed using BSTFA. 
Multivariate analysis was also performed to derive the optimum method condition for the extraction and 
derivatization of the analytes. 

Erarpat et al. developed a method for combining ultrasound-assisted derivatization and switchable 
solvent LPME for identifying l-methionine in a human plasma sample (Erarpat et al. 2019). Here, ethyl 
chloroformate was used as a derivatizing reagent followed by LPME. N,N-Dimethyl benzylamine was 
used for the synthesis of a switchable solvent. The method possesses a good detection and qualification 
limit of 3.3 ng/g and 11.0 ng/g, respectively. 

15.4.4 Application on Other Sample Matrixes 

In another report, Sun et al. developed a method by using HS-LPME coupled with needle-based de-
rivatization for the extraction and determination of volatile organic acids (e.g., formic acid, propionic 
acid, caproic acid) in tobacco. Derivatization was performed using BSTFA (Sun et al. 2008). Here, 
the mixture of BSTFA and decane was used as a solvent for HS-LPME. The method found good 
applicability in tobacco samples, with good linearity and repeatability. 

Xu et al. proposed an analytical method for the analysis of 3-monochloropropane-1,2-diol (3-MCPD) 
and 2-monchloropropane-1,3-diol (2-MCPD) fatty acid ester and glycidyl esters in edible oil by using 
in-situ derivatization and HS-SPME (Xu et al. 2020). The central composite design was implemented 
to optimize the extraction time and derivatization temperature. The method possesses detection limits 
of 3.9 µg/L and 5.3 µg/L for 3-MCPD and 2-MCPD, respectively. 

A sensitive and rapid method was developed by Lee et al. to determine 4-methylimidazole in a red 
ginseng product possessing caramel colours by using coupling of DLLME with in-situ derivatization 
followed by GC-MS analysis (Lee et al. 2018). In this method, chloroform and acetonitrile were used as 
extraction and disperser solvents, whereas isobutyl chloroformate was used as a derivatizing reagent. The 
detection limit of the method for 4-methylimidazole was found to be 0.96 µg/L. 

A technique based on DLLME coupled with 2-Naphthalenthiol was developed by Faraji et al. for the 
analysis and determination of acrylamide in bread and biscuit samples using HPLC (Faraji et al. 2018). 
In this technique, ultrasound-assisted DLLME followed the extraction of analyte, whereas derivatization 
was done by using 2-Naphthalenthiol. The method was found to be simple, sensitive, and rapid, with 
a detection limit of 3µg/L and quantification limit of 9 µg/L. 

Farajzadeh et al. developed a method for the extraction and derivatization of parabens by using a 
technique that was lighter than water, air-assisted LLME, by using a homemade device for extraction 
purposes (Farajzadeh et al. 2018). Here, an organic solvent was used, which was lighter than water for 
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the paraben (methyl, ethyl, and propyl parabens) extractions from different samples (cosmetics, hygiene, 
and food samples). Acetic anhydride was used as a derivatizing reagent, and p-xylene was used as an 
extraction solvent. An inverse funnel with capillary tube was used as a homemade device. This method 
showed an enrichment and enhancement factor in the range of 370 to 430 and 489 to 660, respectively. 
The detection limit was found in the range of 0.90 to 2.7 ng/mL. 

A microextraction technique coupled with derivatization was developed by Jouyban et al. to determine 
salbutamol in exhaled breath condensate (EBC) samples by using GC-MS (Jouyban et al. 2020). Extraction 
was performed by using microwave-enhanced air-assisted LLME. In this method, 1-fluoro-2,4-dinitrobenzene 
was used as a derivatizing reagent, whereas a mixture of N,N-diethylethanolammonium chloride, di-
chloroacetic acid, and octanoic acid deep eutectic solvent was used as an extraction solvent. The method 
showed a detection limit of 0.074 and 0.37 µg/L in water and EBC, respectively. 

Norouzi et al. proposed a method for determining morphine and oxymorphone by coupling deriva-
tization with microwave-enhanced three-component deep eutectic solvent-based air-assisted LLME 
followed by GC-MS analysis. The method was based on a ternary deep eutectic solvent, which was 
used as an extraction solvent (Norouzi et al. 2020). The method was found to be cost-effective, rapid, 
efficient, and green. The extraction solvent was a mixture of choline chloride-menthol-phenylacetic acid 
deep eutectic solvent, whereas butyl chloroformate was used as a derivatization agent and picoline was 
used as a catalyst for derivatization. The detection limit for morphine and oxymorphone was found to be 
2.1 and 1.5 ng/mL, respectively. 

One application of SDME coupled with in-syringe derivatization was explored by Saraji et al. in 2006 for 
determining organic acids (Cinnamic acid, o-coumaric acid, caffeic acid, and p-hydroxybenzoic acid) in fruits 
and juices by using GC-MS (Saraji and Mousavinia 2006). Here, hexyl acetate was used as an extraction 
solvent and BSTFA as a derivatizing reagent. Only 2.5 µl of solvent was used to extract the analytes from the 
matrix. The detection limit for different acids was found to be in the range of 0.6 to 164 ng/mL. 

Recently, Jain et al. reported a simple, rapid, and cost-effective analytical procedure based on cou-
pling of DLLME with injection-port silylation for quantitative analysis of morphine in illicit opium 
samples. After performing DLLME with chloroform and acetone as extraction and disperser solvents, 
the sedimented phase along with the derivatizing reagent, i.e., N,O-Bis(trimethylsilyl)acetamide (BSA), 
was injected into the heated injection port of GC-MS. Unlike in-vial silylation, this simple approach 
resulted in instantaneous derivatization of morphine without the need for any external derivatization 
apparatus, lengthy reaction time, and moisture-free conditions (Jain et al.). 

15.5 Conclusion 

Many xenobiotic compounds possess polar functional groups, such as carboxyl, hydroxyl, amine, car-
bonyl, etc., which undergo hydrogen bonding that contributes significantly to intermolecular interactions. 
Additionally, the metabolism of these xenobiotics in the body also adds polar functional groups in order to 
convert them into more hydrophilic compounds. The primary reason for derivatization of such xenobiotics 
is to increase their volatility, reduce their polarity, and improve their chromatographic behaviour, mainly 
for GC analysis. The combination of microextraction strategies with derivatization methods not only 
results in an overall analytical method that is rapid, eco-friendly, cost-effective, and sensitive but also 
provides a versatile analytical platform for analysis of xenobiotics and their metabolites, which has a high 
sample throughput and is less laborious in comparison to traditional sample preparation approaches. 
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