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Preface

Knowledge of the atomic structure of biomacromolecules such as proteins, nu-
cleic acids and carbohydrates is indispensable for an understanding their biolog-
ical function. The sequencing of whole genomes from bacteria to man has pro-
vided the possibility to clone and express their gene products, which in most
cases are proteins. The new field of Structural Genomics, or its synonym Struc-
tural Proteomics, aims at determining the three-dimensional structures of the
whole set of gene products — the so-called targets — or of a biological or medical
important subset of targets. X-ray crystallography is the major technique to de-
termine the atomic structure of biomacromolecules. This book provides the the-
oretical basis and covers the experimental techniques of X-ray crystal structure
determination of such molecules. It documents the state-of-the-art of this meth-
od, including practical case studies. It will be of excellent use for students and
researchers active in this field, and will also serve as source of information for
readers from other related research areas.

This book is not thought of as a simple practical guide, but rather to supply
the theoretical basis necessary to understand the underlying physics and mathe-
matics of the diffraction of X-rays and the related crystal structure determina-
tion of biomacromolecules. The intention is to form a platform to run the many
automated procedures in X-ray crystallography of biomacromolecules, and to be
aware of the great science and technique which is contained in the technical
equipment, prescriptions, and expert computer software systems.

I would like to thank my former director Robert Huber for giving me the op-
portunity to work in his Department of Structural Research at the Max-Planck-
Institute of Biochemistry in Martinsried, and to become familiar with the ever-
fascinating methods of X-ray crystallography of biomacromolecules. I also wish
to express my gratitude to Peter Kroneck for many successful common projects,
and the possibility to act as external teacher at the Biological Faculty of the Uni-
versity of Constance. I am cordially indebted to my wife Beate who sacrificed
plenty of her precious time to prepare a substantial part of the drawings.

Martinsried, September 2006 Albrecht Messerschmidt
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Introduction

1.1
Crystals and Symmetry

Who has not been fascinated by the regular shape of single crystals of minerals,
gemstones, other inorganic compounds and organic substances? Yet, most bio-
logical macromolecules can also be crystallized. A characteristic of the so-called
morphology of crystals is a set of flat faces, forming a closed body. Figure 1.1
shows a regularly shaped quartz crystal, but the shape may also be skewed, as
depicted in Figure 1.2, for lodestone (magnetite, Fe;0,).

It was first shown by Nicolaus Steno (in 1669) that the angles between the
faces are constant, independently of the regularity of a given crystal morphol-
ogy. The analysis of crystal morphologies led to the formulation of a complete
set of 32 symmetry classes — also called “point groups” — which all crystal
morphologies obey. Possible symmetry elements are 1-, 2-, 3-, 4-, and 6-fold ro-
tations, mirror plane m, inversion center and a combination of rotation axis
with inversion center (inversion axis). As explained later, crystals of biological
macromolecules can contain rotation symmetries only, thereby reducing the
possible point groups to the 11 enantiomeric point groups: 1, 2, 3, 4, 6, 222, 32,
422, 622, 23, and 432. A graphical representation of the symmetries and of their
general morphological crystal form is displayed in Figure 1.3.

The morphology of a crystal tells us much about its symmetry, but little about
its internal structure. Before the discovery of X-ray diffraction of crystals by
von Laue, Knipping and Friedrich in 1912, it had been proven that crystals are
built up from atoms or molecules arranged in a three-dimensionally periodic

Fig. 1.1 Regularly shaped quartz crystal.
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(@ (b)
Fig. 1.2 Different forms of the octahedron of lodestone.

(a) Regular shape; (b) skewed shape caused by parallel shift
of faces.

manner by translational symmetry. The crystal is formed by a three-dimensional
stack of unit cells which is called the “crystal lattice” (Fig. 1.4). The unit cell is
built up from three noncolinear vectors a, b, and c. In the general case, these
vectors have unequal magnitudes and their mutual angles deviate from 90°.
The arrangement of the molecule(s) in the unit cell may be asymmetrical, but
very often it is symmetrical. This is illustrated in Figure 1.5 in two-dimensional
lattices for rotational symmetries.

It follows from the combination of the lattice properties with rotational opera-
tions that in crystals only 1-, 2-, 3-, 4-, and 6-fold axes are allowed, and they can
only occur among each other in a few certain combinations of angles as other
angle orientations would violate the lattice properties. The number of all possi-
ble combinations reveals the 32 point groups, and delivers the deviation of the
32 point groups on the basis of the symmetry theory.

Adding an inversion center to the point group symmetry leads to the 11 Laue
groups. These are of importance for the symmetry of X-ray diffraction patterns.
Their symbols are: 1, 2/m, 2/mmm, 3, 3m, 4/m, 4/mmm, 6/m, 6/mmm, m3, and
m3m. Proteins and nucleic acids are chiral molecules and can, therefore, crystal-
lize only in the 11 enantiomorphic point groups, as mentioned above.

The combination of point group symmetries with lattices leads to seven crystal
systems, triclinic, monoclinic, orthorhombic, trigonal, tetragonal, hexagonal and
cubic, the metric relationships of which are provided in Figure 1.6, with 14 differ-
ent Bravais-lattice types which can be primitive, face-centered, all-face-centered,
and body-centered (see Fig. 1.7). It is however possible to describe each translation
lattice as a primitive lattice. Furthermore, different primitive unit cells can be cho-
sen. Both situations are illustrated in Figure 1.8, where a two-dimensional (2D)
face-centered tetragonal lattice is presented. The face-centered unit cell is assigned
in the middle of the figure, and a primitive cell obeying the tetragonal symmetry
has been marked by dashed lines. Three further putative primitive cells have been
drawn in and numbered. Among these possible primitive unit cells or bases a so-
called “reduced basis” a, b, ¢ is important for the automated unit cell and space
group determination of crystals from X-ray diffraction data. Such a basis is
right-handed and the components of the metric tensor G
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Fig. 1.3 Graphical representation of the 11 enantiomorphic point groups.
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/Z Fig. 1.4 (a) A crystal lattice; (b) a unit cell.
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e
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(b) e Origin
a-a b-b c-c
b-c c-a a-b (1.1)

satisfy special conditions listed in International Tables for Crystallography, Vol-
ume A, page 750 (Hahn, 2005).

Furthermore, additional symmetry elements are generated having transla-
tional components such as screw axes or glide mirror planes. There exist 230
space groups, of which 65 are enantiomorphic (for chiral molecules such as
proteins); these are listed in Figure 1.9. As an example for such an additional
symmetry element, the action of 3;- and 3,-screw axes is demonstrated in Fig-
ure 1.10. For a 3;-axis, the object is rotated by 120° anti-clockwise and shifted
by one-third of the translation parallel to the direction of the axis. This is re-
peated twice, and the rotational start position is reached but shifted by one
translational unit, thus generating a right-handed screw axis. For a 3,-axis, the
object is again rotated by 120° anti-clockwise but shifted by two-thirds of the
translation parallel to the direction of the axis. This is repeated twice and the ro-
tational start position is reached but shifted by two translational units. The
missing objects are obtained by applying the translation symmetry. The result is
a left-handed screw axis. Figure 1.11 shows the graphical representation for the
space group P2;2,2; as listed in the International Tables for Crystallography
(Hahn, 2005). The asymmetric unit is one-fourth of the unit cell, and can con-
tain one or several molecules. Multimeric molecules may have their own sym-
metries which are called noncrystallographic symmetries. Here, axes which are
5-fold, 7-fold, etc., are also allowed.

It is useful to describe the relationship between a crystal face and its counterpart
in the crystal lattice. Figure 1.12a shows a crystal face in a general position inter-
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Fig. 1.5 Rotational symmetry elements in two-dimensional
lattices: (a) 1, (b) 2, (c) 4, (d) 3, and (e) 62. The asymmetric

unit is hatched.

Possible
Bravais
Name Lattices Axes of symmetry Lattice
Triclinic P No axes of symmetry azb=c azP=£y
Monoclinic PC 1 dyad axis (parallel to b) axb=c a=y=90°=p
Orthorhombic P, C,I,F  3dyad axes mutually orthogonal a=#b=zc a=B=y=90°
Tetragonal P 1 tetrad axis (parallel to c) a=b#c a=p=y=90°
Trigonal P 1triad axis (parallel to c) a=b=zc o=p=90°y=120°
(or R) a=b=c a=B=y<120° =90)
Hexagonal P 1hexad axis (parallel to c) a=b=z=c a=p=90°ry=120°
Cubic PILF 4 triad axes (along the diagonals a=b=c¢ a=pB=y=90°

of the cube)

Fig. 1.6 The seven crystal systems.



Cubic P Cubic | Cubic F
Tetragonal P Tetragonal |
Orthorhombic P Orthorhombic C ~ Orthorhombic | Orthorhombic F
Monoclinic P Monoclinic C Monoclinic P
% E
Trigonal R Trigonal and hexagonal C (or P)

Fig. 1.7 The 14 Bravais lattices.
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Fig. 1.8 Choice of different primitive unit cells.

secting the underlying coordinate system at distances OA, OB, OC on the a-, b-,
and c-axes, respectively. Figures 1.12b and c depict the relevant crystal lattice,
but only in two dimensions for the sake of clarity. The counterpart of crystal faces
are the lattice planes. In Figure 1.12b the lattice planes have axis intercepts, which
are in a ratio of 2a to 1b. In Figure 1.12c the ratio is 2a to 3b. In general, we have
ma, nb, pc with the rational numbers m, n, and p. In crystallography, it is not the
axis intercepts but rather their reciprocal values which are used to characterize the
position of a crystal face or lattice plane according to Eq. (1.2).

h:k:l=

S|

(1.2)

I
= e

The triple of numbers h, k, | is transformed in such a way that the numbers be-
come integers and relatively prime. The hkl are called Miller indices, and can be
applied to either crystal faces or lattice planes. The lattice planes are a stack of
equidistant parallel planes with a lattice plane distance d(hkl). The larger the
Miller indices of a lattice plane, the smaller is d(hkl).

Crystal system Class  Point group symbols

Triclinic 1 P1
Monoclinic 2 P2, P2, C2

Orthorhombic 222 C222, P222, P2,2,2,, P2,2,2, P222,, C22,, F222,
1222, 12,2,2,
Tetragonal 4 P4, P4,, P4, P4, 14, 14,
422 PA22, PA2,2, PA,22, PA4,2,2, PA,22, P4,2,2,
P4,;2.2, PA;22, 1422, 14,22

Trigonal 3 P3, P34, P3,, R3
32 P312, P321, P3,21, P3,12, P3,12, P3,21, R32
Hexagonal 6 P8, P65, PB, P63, P6,, PB4
622 P622, P6,22, P6,22, P6,22, P6,22, P6522
Cubic 23 P23, F23, 123, P2,3, 12,3
432 P432, P4,32, PA,32, PA;32, FA32, FA,32, 1432,
14,32

Fig. 1.9 The 65 enantiomorphic space groups.
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(2]

a)

(@]

A

c)

b %\\

Fig. 1.12 Relationship between a crystal face and lattice
planes. (a) Axes intercepts of a crystal face; (b) corresponding
2D crystal lattice with lattice plane (120); and (c) with lattice
plane (320).

. (320)

The N atoms contained in a crystal unit cell are at positions
rj = xa + yib + zic (1.3)

for the atom j with the fractional coordinates x;, y;, zj, whose absolute values are
between 0 and 1, and the lattice vectors a, b, and c. The lattice vectors follow
the metric of the crystal system to which the relevant crystal belongs. As the
crystallographic crystal systems are adapted to the existent crystal symmetry, the
analytical form of symmetry operations adopt very concise forms. Each coordi-
nate t.riplet X/, ¥}, 7 is relatec.l to the symm.etry operation that maps a point with
coordinates x,y,z onto a point with coordinates x;,y}, ;. The mapping of x,y,z
onto Y}, 2} is given by Eq. (1.4).

X = Wx; +w (1.4)
with
% xJ// Wi Wi Wi wi
=yl x=(Yy| W=|Wa Wu Wu]|, w=[w|. (15

/
zj z Wi Wi Wi w3
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W is called the rotation part and w the translation part. In Figure 1.11, for ex-
ample, the 2;-axis parallel ¢ going through x =1/4,y =0 maps coordinates
x,y,z onto —x + 1/2, —y,z + 1/2 with

-1 0 0 1/2
W= 0 -1 0 and w=| 0 (1.6)
0 0 1 1/2

which can be verified by matrix multiplication.

1.2
Protein Solubility

Figure 1.13 shows a typical phase diagram illustrating the solubility properties
of a macromolecule. In the labile phase crystal nucleation and growth compete,
whereas in the metastable region only crystal growth appears. In the unsatu-
rated region the crystals dissolve. The solubility of proteins is influenced by sev-
eral factors, as follows.

1.2.1
lonic Strength

A protein can be considered as a polyvalent ion, and therefore its solubility can
be discussed on the basis of the Debye-Hiickel theory. In aqueous solution,
each ion is surrounded by an “atmosphere” of counter ions. This ionic atmo-
sphere influences the interactions of the ion with water molecules and hence
the solubility.

A Supersaturation
\
\ & Supersolubility
\ curve
\
\

™ Labile

~ - Fig. 1.13 Phase diagram illustrating
Metastable the solubility properties of macro-
molecules. (Reproduced by
permission of Academic Press, Inc.,
> from Weber, 1997.)

Solubility
curve /

Unsaturation

Solubility-decreasing parameter

[Macromolecule]
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1.2.1.1 “salting-in”

At low ionic concentration, the “ionic atmosphere” increases the solubility as it
increases the possibilities for favorable interactions with water molecules. Thus,
we obtain Egs. (1.7) and (1.8):

AZ.Z /i

1+aB/i (17)

log S —log Sp =

1
n=5>_67 (18)

where u=ionic strength, S=solubility of the salt at a given ionic strength g,
So=solubility of the salt in absence of the electrolyte, Z,, Z_ the ionic charge of
salt ions, A, B=constants depending on the temperature and dielectric constant,
a=average diameter of ions, and c¢j=concentration of the jth chemical compo-
nent. Ions with higher charge are more effective for changes in solubility. Most
salts and proteins are more soluble in low ionic strength than in pure water;
this is termed “salting-in” (Fig. 1.14).

o NaCl

v KCI [
0.0 F © MgSO, LN %A \O
a (NH,),S0, \.\ \a
m Na,Citrate \
L] Nast4
o K,S0, N \
-1.0 -
1 I A 1
0.0 1.0 2.0 3.0

Square root of ionic strength

Fig. 1.14 Solubility of carboxyhemoglobin in various electro-
lytes at 25°C. (Reproduced by permission of the American
Society for Biochemistry and Molecular Biology, from Green,
1932))
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1.2.1.2 “salting-out”

At higher ionic strength the ions compete for the surrounding water, and conse-
quently the water molecules are taken away from the dissolved agent and the
solubility decreases according to Eq. (1.9):

AZ,Z /i

K. 1.
1+aB\//7 st ( 9)

log S —log Sp =

The term K, predominates at high ionic strengths, which means that “salting-
out” is then proportional to the ionic strength (Fig. 1.14). In a medium with low
ionic strength, the solubility of a protein can be decreased by increasing or de-
creasing the salt concentration. Salts with small, highly charged ions are more
effective than those with large, lowly charged ions. Ammonium sulfate is often
used because of its high solubility.

1.2.2
pH and Counterions

The more soluble a protein, the larger is its net charge, with the minimum sol-
ubility being found at the isoelectric point. The net charge is zero, and hence
the packing in the solid state (in the crystal) is possible owing to electrostatic in-
teractions without the accumulation of a net charge of high energy. All “salting-
out” curves are parallel, K; remains constant, and S, varies with pH (Fig. 1.15a
and b). In some cases the isoelectric point is different at low and high ionic
strengths, owing to interactions of the protein with counterions which can
cause a net charge at the pH of the isoelectric point.

1.2.3
Temperature

Many factors governing protein solubility are temperature-dependent. The di-
electric constant decreases with increasing temperature. In the solution energy,
AG = AH — TAS, the entropy term has an increasing influence with increasing
temperature. The temperature coefficient of the solubility depends on other con-
ditions (ionic strength, presence of organic solvents, etc.). At high ionic strength
most proteins are less soluble at 25°C than at 4°C - that is, the temperature
coefficient is negative. The opposite is valid for low ionic strength.

1.2.4
Organic Solvents

The presence of organic solvents leads to a decrease in the dielectric constant.
This causes an augmentation of the electric attraction between opposite charges
on the surface of the protein molecule, and hence to a reduction in solubility.
In general, the solubility of a protein is reduced in the presence of an organic
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Fig. 1.15 (a) Solubility of hemoglobin
at different pH values in concentrated
phosphate buffers; (b) extracted from
(a). (Reproduced by permission of the
American Society for Biochemistry and
Molecular Biology, from Green, 1931.)

solvent if the temperature decreases. Often, organic solvents denature proteins,
and consequently one should work at low temperatures.

1.3

Experimental Techniques

The whole field of macromolecular crystallography has been excellently re-
viewed in Volumes 114 and 115 and Volumes 276 and 277 of Methods in Enzym-
ology. A collection of review articles concerning the theory and practice of crys-
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tallization of biomacromolecules is provided in Part A of Carter and Sweet
(1997).

A protein preparation to be used in crystallization studies should be “pure” or
“homogeneous” at a level that established chromatographic methods are provid-
ing (protein content >95%). Furthermore, it should meet the requirements of
“structural homogeneity”. These requirements can be enumerated as follows. It
is first necessary to prepare the protein in an isotypically pure state free from
other cellular proteins. It may then be necessary to maintain the homogeneity
of the protein preparation against covalent modification during crystallization
by adding inhibitors of sulfhydryl group oxidation, proteolysis and the action of
reactive metals. It may be necessary to suppress the slow denaturation/aggrega-
tion of the protein and to restrict its conformational flexibility to reduce the en-
tropic barrier to crystallization presented by extensive conformational flexibility.
For the crystallization of biomacromolecules, a broad spectrum of crystallization
techniques exists, the most common of which are described here.

1.3.1
Batch Crystallization

This is the oldest and simplest method (see Fig. 1.16a). In batch experiments,
vials containing supersaturated protein solutions are sealed and left undis-
turbed. In microbatch methods, a small (2-10 pL) droplet containing both pro-
tein and precipitant is immersed in an inert oil which prevents droplet evapora-
tion. In the case that ideal conditions for nucleation and growth are different, it
is useful to undertake the separate optimization of these processes. This can be
done by seeding — a technique where crystals are transferred from nucleation
conditions to those that will support only growth (Fig.1.16b). For macroseed-
ing, a single crystal is transferred to an etching solution, then to a solution of
optimal growth. In microseeding experiments, a solution containing many
small seed crystals, occasionally obtained by grinding a larger crystal, is trans-
ferred to a crystal growth solution.

1.3.2
Vapor Diffusion

Crystallization by vapor diffusion is depicted in Figure 1.17a. Here, unsaturated
precipitant-containing protein solutions are suspended over a reservoir. Vapor
equilibration of the droplet and reservoir causes the protein solution to reach a
supersaturation level where nucleation and initial crystal growth occur. Changes
in soluble protein concentration in the droplet are likely to decrease supersatu-
ration over the time course of the experiment. The vapor diffusion technique
can be carried out as either a hanging drop or sitting drop method.

17
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Batch crystallization
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Fig. 1.16 Schematic presentation of (a) batch crystallization

and (b) seeding techniques. (Reproduced by permission of
Academic Press, Inc., from Weber, 1997.)
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(a) Initial solution Final solution
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(b) Initial conditions Final conditions

Fig. 1.17 Schematic representation of (a) vapor diffusion and
(b) dialysis. (Reproduced by permission of Academic Press,
Inc., from Weber, 1997.)

1.33
Crystallization by Dialysis

In crystallization by dialysis, the macromolecular concentration remains con-
stant, as in batch methods (Fig. 1.17b) because the molecules are forced to stay
in a fixed volume. The solution composition is changed by diffusion of low-mo-
lecular-weight components through a semipermeable membrane. The advantage
of dialysis is that the precipitating solution can be easily changed. Dialysis is
also uniquely suited to crystallizations at low ionic strength and in the presence
of volatile reagents such as alcohols.

1.4
Crystallization Screenings

Screening schemes have been developed which change the most common pa-
rameters of this multiparameter problem, such as protein concentration, the na-
ture and concentration of the precipitant, pH, and temperature. Each screening
can be extended by adding specific additives in low concentrations that affect
the crystallization. Sparse matrix crystallization screens are widely applied. The
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sparse matrix formulation allows the efficient screening of a broad range of the
most popular and effective salts (e.g., ammonium sulfate, sodium and potas-
sium phosphate, sodium citrate, sodium acetate, lithium sulfate), polymers
[e.g., poly(ethyleneglycol) (PEG) of different molecular masses (from 400 to
8000)], and organic solvents [e.g., 2,4-methylpentanediol (MPD), 2-propanol,
ethanol) versus a wide range of pH. Another approach is the systematic screen-
ing of the statistically most successful precipitants. A single precipitant is
screened at four unique concentrations versus seven precise levels of pH be-
tween 4 and 10. Such grid screens can be carried out with ammonium sulfate,
PEG 600, MPD, and PEG 6000 in the presence of 1.0 M lithium chloride or so-
dium chloride. For the crystallization of membrane proteins (see Michel, 1991)
for each detergent which is necessary to solubilize the membrane protein, a
whole grid screen or sparse matrix screen must be constructed. In principle, all
three techniques can be applied for the different screening schemes, but in the
most part the vapor diffusion technique is applied because it is easy to use and
the protein consumption is low. For a typical broad screening, about 2 mg of
protein is sufficient. Chryschem plates (sitting drop) or Linbro plates (hanging
drops) may be used for the vapor diffusion crystallization screening experi-
ments. Once crystals have been obtained, their size and quality can be opti-
mized by additional fine screens around the observed crystallization conditions.
There are no general rules to indicate which method should be used to crystal-
lize which type of protein; however, suggestions for crystallization conditions to
be tested can be obtained from the Biological Macromolecule Crystallization Da-
tabase (Gilliland et al., 1994; http://xpdb.nist.gov:8080/bmcd/bmcd.html).

1.5
High-Throughput Crystallization, Imaging, and Analysis

During recent years, the sequencing of whole genomes from bacteria to higher
organisms, including man, has opened up the systematic determination of their
gene products. Today, this new field is known as “structural genomics” or
“structural proteomics”. Structural genomics represents not only the structure
determination of gene products, by using the old approach of structural biology,
one target, one researcher, but also comprises the creation and application of
high-throughput techniques. Unfortunately, these major efforts can be managed
only by larger consortia, and several such set-ups have been established in the
USA, Japan, and Europe. A complete list can be found on the Internet under
http://sg.pdb.org/target_centers.html. The automation includes the whole work-
flow in protein structure determination from cloning, expression, purification,
quality assessment, crystallization, imaging, X-ray data collection, and structure
analysis.

The focus of the following section is on high-throughput crystallization, crys-
tal imaging, and image analysis. Today, crystallization robots have been devel-
oped that not only automate the crystallization set-ups but also reduce the vol-
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transfer of 96-well crystallization plates web interface is indicated by sample web
between robots. The flow of images and pages. (Reproduced by permission of
control data is shown by black arrows. Elsevier Ltd., from Mayo et al., 2005.)
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ume of the dispensed protein drops from pL quantities to 50 nL. This dramati-
cally increases the number of screening conditions with the same amount of
available protein. Several facilities have been set up, which have completely
automated the liquid and protein dispensing, the plate storage, imaging, and
image analysis. A number of these systems are now also available commercially.
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In principle, all systems contain the same components, and in the following
section a typical large-scale facility installed at the Oxford Protein Production Fa-
cility (OPPF) is described in more detail (Fig. 1.18). The initial crystallization
screening uses a panel of 480 conditions selected from standard (commercially
available) crystallization kits. The kits are reformatted into 96-deep well “Master
blocks” by a Qiagen Biorobot 8000. Pre-barcoded 96-well crystallization plates
(Greiner Bio-One Ltd, UK) are used for the trials, the precipitant being trans-
ferred from the master blocks to the reservoirs using a Hydra-96 microdispen-
ser (Matrix Technologies Ltd, UK). The barcode of the plate is then read and
transferred to the LIMS (Laboratory Information Management System). The
plate is then placed on a Cartesian Technologies Microsys MIC400 (Genomic
Solutions Ltd, UK) where a 100-nL drop of protein solution is placed on the
central position of each crystallization shelf and mixed with 100 nL of the corre-
sponding reservoir. The pipetted plates are sealed and stored in an automated
storage vault (The Automated Partnership Ltd, UK). Imaging is performed
using an Oasis 1700 automatic imaging system (Veeco, UK), which is housed
in an annex to the storage vault. Plates can be picked by a robot arm in the stor-
age vault and transferred to the imaging system controlled by the LIMS. In this
way, a 96-well plate can be imaged in 40 s. The digitized images are transferred
to a RAID storage system, and each well image is classified using the York crys-
tal image analysis software (Wilson, 2004). The program assigns different scores
to the images, ranging from 0 for insignificant objects, such as those due to
shadows at the edge of the drop, to 6 for good single crystals. Figure 1.18 also
shows the components and arrangement of the computer hardware and LIMS.
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2.1
X-Ray Sources

2.1.1
Conventional X-Ray Generators

X-rays are produced when a beam of high-energy electrons, which have been ac-
celerated through a voltage V in a vacuum, hit a target. An X-ray tube run at
voltage V will emit a continuous X-ray spectrum with a minimum wavelength
given by Eq. (2.1):

he 12398

v (2.1)

j~min =

with / in Angstroms (1 A=10""m) and V in volts. The critical voltage, Vo,
which is required to excite the characteristic line of a particular element, can be
calculated from the corresponding wavelength for the appropriate absorption
edge. For the copper absorption edge /,.=1.380 A. Hence:

Ko,

KB
Fig. 2.1 X-ray spectrum emitted from
a copper anode. This shows the
continuous “Bremsspektrum”
starting at Amni, and the two
characteristic copper lines 1
Ka=1.5418 A (superposition of A
Arnin Kay=1.5405 A and 4 Ka,=1.5443 A)
1 L 1 n and 2 Kp=1.3922 A.
0.5 1.0 15 20

MA)
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Fig. 2.2 Schematic drawing of a rotating anode tube. The
take-off angle is close to 4°. For copper, the tube is normally
operated at 50 kV high tension and 100 mA cathode current.
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Provided that V > V,, the characteristic line spectra will be produced (Fig. 2.1).
The oldest and cheapest X-ray sources are sealed X-ray tubes, where the cathode
and anode are situated under vacuum in a sealed glass tube and the heat gener-
ated at the anode is removed by a water-cooling system. For the generation of
higher intensities, as needed in protein crystallography, it is necessary to use a
rotating anode (Fig. 2.2). Here, the anode is rotated, which allows a higher
power loading at the focal spot. In protein crystallography copper targets are
usually taken. The used take-off angle is close to 4°, which results in apparent
focal spot sizes of about 0.3%x0.3 mm.

2.1.2
Synchrotron Radiation

As electrically charged particles such as electrons or positrons of high energy
are kept under the influence of magnetic fields and travel in a pseudocircular
trajectory, synchrotron radiation is emitted. This can be used in many different
types of experiments (for a comprehensive discussion of synchrotron radiation
in macromolecular crystallography, see Helliwell, 1992). For relativistic electrons
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with energy E, the electromagnetic radiation is compressed into a fan-shaped
beam tangential to the orbit with a vertical opening angle ¥ =~ mc?/E, i.e.,
0.1 mrad for E=5 GeV (Fig. 2.3). As this fan rotates with the circulating elec-
trons or positrons, a stationary observer will see n flashes of radiation every
2nR/cs, the duration of each flash being less than 1 ns. The spectral distribu-
tion of synchrotron radiation extends from the infrared to the X-ray region
(Fig. 2.4). An important parameter is the median of the distribution of power
over the spectral region, called the “critical photon energy” E., which divides the
power spectrum into two equal parts. Taking the wavelength A instead of the
photon energy E, we obtain for the critical wavelength

Jo = 18.64/(BE?), (2.3)

where B (=3.34 E/R) is the magnetic bending fielding T, E is in GeV, and R in
meters.

The particles are injected into the storage ring directly from a linear accelera-
tor or through a booster ring (Fig. 2.5), and circulate in a high vacuum for sev-
eral hours at a relative constant energy. In order to keep the bunched particles
traveling in a near-circular path, a lattice of bending magnets is set up around
the storage ring. As the particle beam traverses each magnet, the path of the
beam is altered, and synchrotron radiation is emitted. The loss of energy of the
particle beam is compensated by an oscillating radiofrequency (RF) electric field
at each cycle. Synchrotron radiation is highly polarized. In an ideal ring, where

@_mt‘

-

Fig. 2.3 Synchrotron radiation
emitted by a relativistic electron
traveling in a curved trajectory.
B is the magnetic field perpendi-
cular to the plane of the electron
orbit; y is the natural opening
angle in the vertical plane; P is
the direction of polarization. The
slit, S, defines the length of the
arc of angle, A, from which the
radiation is taken. (From Buras
and Tazzari, 1984.)

25



26 | 2 Experimental Techniques

Wavelength (A)

1000 100 10 1 0.1
1015 T T (T r . T r T e T

1014

E 1013
i)
1012
1011 [ ETI E E It
0.1 1 10 100
Photon energy (keV)

Fig. 2.4 Spectral distribution and critical wavelengths for:
(a) a dipole magnet; (b) a wavelength shifter; and (c) a multi-
pole wiggler at the ESRF. (From Buras and Tazzari, 1984.)

all electrons are parallel to one another in a central orbit, the radiation in the or-
bital plane is linearly polarized, with the electric vector lying in this plane
(Fig. 2.3). Outside this plane, the radiation is elliptically polarized.

The synchrotron radiation can be channeled through different beamlines for
use in research. Other types of magnets — insertion devices called “wigglers”
and “undulators” — can be assembled in the storage ring, which is in practice
not a circle. These have a zero magnetic field integral and may be inserted into
the straight sections (see Fig. 2.5). Unlike the bending magnets — the primary
purpose of which is to maintain the circular trajectory — wigglers and undula-
tors are used to increase the intensity of the emitted radiation. Bending mag-
nets and wigglers cause a continuous spectrum of radiation.

A wiggler consists of one or more dipole magnets with alternating magnetic
field directions aligned transverse to the orbit. The critical wavelength can thus
be shifted towards shorter values because the bending radius can be decreased
over a short section. Such a device is called a “wavelength shifter”. A series of N
dipole magnets constitutes a multipole wiggler. The electron trajectory in such a
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Fig. 2.5 The main components of a dedicated electron
storage-ring synchrotron-radiation source. For clarity, only one
bending magnet is shown. (From Buras and Tazzari, 1984.)

device is shown in Figure 2.6. The flux of N dipoles adds up to N times the flux
of a single dipole.

A multipole wiggler becomes an undulator if the magnet poles have a short
period and 2a << y. Interference takes place between radiation of wavelength
/o emitted at two points 4y apart on the electron trajectory (Fig. 2.6). The spec-
trum at an angle 0 to the axis observed through a pinhole has a peak at a specif-
ic wavelength and a few harmonics.

The importance of synchrotron radiation for macromolecular crystallography
lies in the high brilliance (photons s™' mrad™ mm™ per AJ//; that is, how
small is the source and how well collimated are the X-rays?) of the beam, the
high intensity, and the tunability of the wavelength in the relevant range from
0.5 to 3.0 A. The time structure of the beam is of interest for time-resolved crys-
tallography (Moffat, 1998). The particles circulate in bunches with widths of 50
to 150 ps, and repeat every few microseconds.

About 15 synchrotron radiation facilities equipped with beamlines for macro-
molecular crystallography are available worldwide, and are operated at energies
from about 1.5 to 6-8 GeV for third-generation machines. An aerial view of the
European Synchrotron Radiation Facility (ESRF) in Grenoble, a third-generation

le— 2 —

Fig. 2.6 Electron trajectory within a multipole wiggler or
undulator. /g is the spatial period, a is the maximum
deflection angle, and 6 is the observation angle.

(From Buras and Tazzari, 1984.)
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Fig. 2.7 An aerial view of the European Synchrotron Radiation
Facility (ESRF) in Grenoble. (lllustration courtesy of ESRF.)

machine, is shown in Figure 2.7. The ESRF storage ring is operated at 6 GeV
and has a circumference of 844.39 m. Its critical wavelength, /., is 0.6 A.

213
Monochromators

In the majority of applied diffraction techniques, monochromatic X-rays are
used. Therefore, the emitted white radiation of X-rays must be further mono-
chromatized. With copper Ka radiation generated by a sealed or rotating anode
tube, the Kf radiation can be removed with a nickel filter. However, much better
results can be achieved with a monochromator. The simplest monochromator is
a piece of a graphite crystal which reflects the copper Ka radiation at a Bragg
angle of 13.1° and a glancing angle of 26.2°. Improved beam focusing is ob-
tained by a double mirror system, where total reflection at grazing angles is
used. This technique was first introduced by Kirkpatrick and Baez (1948), and
is shown schematically in Figure 2.8. In this geometry, one reflector focuses in
one dimension. Focusing in the second dimension is obtained by a second re-
flector downstream perpendicular to the first one. In the commercially available
version (Molecular Structure Corporation, The Woodlands, TX, USA), the mir-
ror assembly is composed of two bent nickel-coated glass optical flats, each with
translation, rotation and slit components housed in a helium gas flashed cham-
ber. The prototype and basic theory in the use of this system were discussed in
detail by Phillips and Rayment (1985).

Recently, total reflection coatings have been replaced by appropriate laterally
graded multilayers. X-rays from a divergent source will strike an aspherically
curved surface at different angles of incidence. The graded d-spacing allows
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Vertical
reflector

Horizontal
reflector

Fig. 2.8 Double mirror arrangement according to Kirkpatrick and Baez (1948).

every point along the optic to satisfy the Bragg reflection condition. Thus, this
optic is capable of transforming a divergent beam into either a parallel or
focused beam. Figure 2.9 explains the mode of action of a focusing multilayer
optic. The smaller layer distances at the entrance side of the multilayer block
reflect at larger Bragg angles than the larger ones.

It is an interesting point that the angles are a factor of 3 to 4 larger in Bragg
diffraction compared to total reflection, which makes it feasible to position both
reflectors side-by-side. This has been realized in the Confocal Max-Flux™™ Optic
(Osmic Inc., The Woodlands, TX, USA). Both reflectors are part of the same
block but are positioned at right-angles to each other (Fig. 2.10). The operation
is similar to that of the Kirkpatrick-Baez schemes, in that each reflector focuses
the beam in one direction only, but the situation is slightly more complicated.
The X-rays can pass through the optic in two different ways: either by first re-
flecting from reflector 1 and afterwards from reflector 2 (full line in Fig. 2.10),
or from reflector 2 to reflector 1 (dashed line). In general, the width of the re-
flectors will be larger than required, and consequently reflection will take place

X-ray Focus
source

Fig. 2.9 Mode of action of a focusing graded multilayer reflector for X-rays.
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Fig. 2.10 Beam path in the Confocal Max-Flux™ Optic
(Osmic Inc., The Woodlands, TX, USA).
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Fig. 2.171 Schematic drawing of a double monochromator
system. (Reproduced by permission of Cambridge University
Press, from Helliwell, 1992.)

only near the intersection of the two reflectors. Such monochromators are now
used in many in-house protein crystallography X-ray diffraction machines.

For synchrotron radiation, with its much higher intensity, germanium or sili-
con single crystals can be applied as monochromators which filter out a band-
width of 67/4 from 10 to 10™, two orders of magnitude smaller than with
graphite. Single or double monochromators can be used which are either flat or
bent. The bent monochromators have the advantage that they simultaneously
focus the beam. The double monochromator (Fig. 2.11) has the advantage that
the emergent monochromatic beam is parallel to, and only slightly displaced
from, the incident synchrotron radiation beam. This makes necessary only
small adjustments of the X-ray optics and detector arrangement when it is
tuned to another wavelength compared with a single monochromator, where
the whole X-ray diffraction assembly must be moved. Common beamline optic
modes are shown in Figure 2.12.
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Fig. 2.12 Common beamline optic modes.
(a) Horizontally focusing cylindrical mono-
chromator and vertical focusing mirror
(shown here for station 9.6 at the Daresbury
SRS facility). (b) Rapidly tuning double-

crystal monochromator and point-focusing
toroid mirror (shown here for station 9.5 at
the Daresbury SRS facility). (Reproduced by
permission of Kluwer Academic Publishers,
from Helliwell, 2001.)

2.2
Detectors

2.2.1
General Components of an X-Ray Diffraction Experiment

A principal arrangement for a macromolecular X-ray diffraction experiment is
depicted in Figure 2.13. The primary beam leaves the X-ray source and passes
the X-ray optics, which may be a simple collimator or the various types of
monochromators or mirror systems described above and terminated with a colli-
mator. The crystal is mounted on a goniometer head, either in a quartz capillary
or in a cryo-loop shock-frozen at low temperature. The goniometer head is at-
tached to a device which can perform spatial movements of the crystal around
the center of the crystal. The simplest kind of such a movement is rotation of
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Fig. 2.13 The principal arrangement for a macromolecular X-ray diffraction experiment.

the crystal about a spindle axis, as indicated in Figure 2.13. This device can be a
multiple axis goniostat (2-4 axes) which allows the crystal to be brought into
any spatial orientation around its center. The X-ray detector which registers the
diffracted intensities is mounted on a device which permits the translation and
rotation of the detector. If the active area of the detector is large enough to col-
lect all generated diffracted beams at a given wavelength, then detector rotation
is not necessary and the detector is arranged normal to the primary beam. A
small piece of lead is placed in the path of the primary beam just behind the
crystal to prevent damage to the detector and superfluous gas scattering.

In the past, the classical detectors in macromolecular crystallography have
been photographic films and single-photon counters. The photographic films
were used on specially designed X-ray cameras, and the single-photon counters
on four-circle diffractometers. The main disadvantage of these detectors was
their low sensitivity, and with films it was the limited dynamic range (1:200).
Over the past 15 years, however, powerful detectors have been developed which
will be discussed briefly here. These new detectors have almost completely re-
placed photographic films and single-photon counters.

222
Image Plates

An image plate (IP) consists of a support (either a flexible plastic plate or a me-
tal base) coated with a photostimulable phosphor (150 pm thickness) and a pro-
tective layer (10 um). The photostimulable phosphor is a mixture of very thin
crystals of, for example, BaF(Br,I): Eu®* and an organic binder. This phosphor
can store a fraction of the absorbed X-ray energy by electrons trapped in color
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Fig. 2.14 The Mar 345 IP diffracto-
meter system from Mar Research,
Norderstedt, Germany. The circular
plate rotates for scanning, and the
laser is moved along a radial line.
(Illustration courtesy of Mar
Research.)

centers. It emits photostimulated luminescence, the intensity of which is pro-
portional to the absorbed X-ray intensity, when later stimulated by visible light.
The wavelength of the photostimulated luminescence (4~ 390 nm) is reasonably
separated from that of the stimulating light (1~633 nm, in practice a red laser),
allowing it to be collected by a conventional high quantum efficiency photomul-
tiplier tube. The output of the photomultiplier is amplified and converted to a
digital image, which can be processed by a computer. The residual image on
the IP can be erased completely by irradiation with visible light, to allow re-
peated use.

IPs have several excellent performance characteristics as integrating X-ray
area detectors that make them well suited for X-ray diffraction. The sensitivity is
at least 10-fold higher than for X-ray films, and the dynamic range is much
broader (1:10*-10°). One important point for synchrotron radiation is their high
sensitivity at shorter wavelengths (e.g., 0.65 A). However, a disadvantage is the
relatively long readout times for each exposure (from 45 s to several minutes).
IP diffractomer systems are available commercially from several companies, and
all systems operate reliably and deliver good-quality data. A photograph of the
newest IP system produced by Mar Research (Norderstedt, Germany) is shown
in Figure 2.14.

223
Gas Proportional Detectors

As X-ray counters, gas proportional detectors provide unrivaled dynamic range
and sensitivity for photons in the range which is important for macromolecular
crystallography (for a review, see Kahn and Fourme, 1997). The classical gas
proportional detector is a multiwire proportional chamber (MWPC), widely used
as an in-house detector with conventional X-ray sources. Two MWPC diffrac-
tometer systems are commercially available. Gas proportional detectors use as a
first step the absorption of an X-ray photon in a gas mixture high in xenon or
argon. This photoabsorption produces one electron—ion pair, the total energy of
which is simply the energy of the initial X-ray photon. The ion returns to its
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¢ t Fig. 2.15 Expanded view of a multiwire
proportional chamber (MWPC) showing the
anode plane sandwiched between the two

2 cathode planes. A is the position of the
avalanche. The centers of the induced charge
distributions are used to determine the

coordinates, x and y, of the avalanche.
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neutral state either by the emission of Auger electrons, or by fluorescence. Since
the kinetic energy of these first electrons is far greater than the energy of the
first ionization level of the xenon or argon atoms, fast collisions with atoms (or
molecules) in the gas very quickly produce a cascade of new electron—ion pairs
in a small region extending over a few hundred micrometers around the conver-
sion point. The total number of primary electrons produced during this process
is proportional to the energy of the absorbed X-ray photon, and is thus a few
hundred for ~10 keV photons. These primary electrons then drift to the nearest
anode wire where an ionization avalanche of 10000-1000000 as many ion pairs
results. The motion of the charged particles in this avalanche (chiefly the mo-
tion of the heavy positive ions away from the anode wire) causes a negative-
going pulse on the anode wire and positive-going pulses on a few of the nearest
wires in the back (cathode) wire plane (see Fig. 2.15).

The disadvantages of the MWPC detector are the limited counting rate due to
the build-up of charges in the chamber, together with limitations in the readout
electronics and the lower sensitivity at shorter wavelengths. This makes the ap-
plication of MWPCs with synchrotron radiation poorly effective.
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Charge-Coupled Device-Based Detectors

A remarkable development for the use with synchrotron radiation is the design
and construction of charge-coupled device (CCD) detectors (for a review, see
Westbrook and Naday, 1997). CCDs were developed originally as memory de-
vices, but the observation of localized light-induced charge accumulation in
CCDs quickly led to their development as imaging sensors. These CCD detec-
tors are integrating detectors like the conventional X-ray-sensitive film, IPs and
analog electronic detectors using either silicon-intensified target (SIT) or CCD
sensors. Integrating detectors have virtually no upper rate limits because they
measure the total energy deposited during the integration period (although indi-
vidual pixels may become saturated if the signal exceeds its storage capacity).

The first commercially available analog electronic detector was the fast area
television (FAST) detector produced by Enraf-Nonius (Delft, The Netherlands).
This detector contained a SIT vidicon camera as an electronically readable sen-
sor. The SIT vidicon exhibits higher noise than CCDs, which have therefore re-
placed SIT sensors during the past few years. Because of their high intrinsic
noise, detectors with SIT vidicon sensors need an analog image-amplification
stage, and this limits the overall performance of such detectors. Several CCD
detector systems have also been developed that incorporate image intensifica-
tion. The most important development in detector design for macromolecular
crystallography has been the incorporation of scientific-grade CCD sensors into
instruments with no image intensifier. These detector designs are based on di-
rect contact between the CCD and a fiber-optic taper. There are several commer-
cial systems available based on this construction (Hamlin Detector; Mar Re-
search, Norderstedt, Germany).
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taper
Fig. 2.16 Schematic representation of a CCD/taper detector.
(Reproduced by permission of Academic Press, Inc., from
Westbrook and Naday, 1997.)
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A schematic representation of such a detector is shown in Figure 2.16. An X-
ray phosphor (commonly Gd,0,S:Tb) is attached to a fiber-optic faceplate,
which is tightly connected to a fiber-optic taper. The X-ray-sensitive phosphor
surfaces at the front convert the incident X-rays into a burst of visible-light
photons. Although it is possible to permit the X-rays to strike the CCD directly,
this method has several drawbacks, such as radiation damage to the CCD, sig-
nal saturation, and poor efficiency. The use of a larger phosphor as an active de-
tector area and the demagnifying fiber-optic taper is also necessary because the
size of the scientific-grade CCD sensors is not as large as needed for the de-
mands of the X-ray diffraction experiment. The fiber-optic taper is then bonded
to the CCD, which in turn is connected to the electronic readout system. The
CCD must be cooled to temperatures ranging from —40°C to -90°C, depending
on the various systems. The great advantage of CCD detectors is their short
readout time, which lies in the range from 1 to a few seconds.

23
Crystal Mounting and Cooling

2.3.1
Conventional Crystal Mounting

The purpose of crystal mounting is to isolate a single crystal from its growth
medium so that it can be used in the X-ray diffraction experiment to study its
diffraction properties. It is important that the manipulation of the crystal intro-
duces as little damage as possible to its three-dimensional structure. The most
important aspect of crystal mounting is to preserve the crystal in its state of hy-
dration. This is accomplished by sealing the crystal in a thin-walled (0.001 mm-
thick) glass or quartz capillary tube. The important steps in conventional crystal
mounting are illustrated in Figure 2.17a—c. The crystal must be dislodged from
the surface on which it grew, after which it may be drawn into the capillary
using suction from a small-volume (0.25 mL) syringe, micropipette or mouth as-
pirator which are connected to the funnel of the capillary by a flexible plastic
hose of appropriate diameter. Next, the capillary should be inverted to allow the
crystal to fall to the inner meniscus. The surrounding solution may then be re-
moved using thin strips of filter paper, or with a small glass pipette. The extent
to which the crystal should be dried must be determined by experience. The fi-
nal step is to place a small volume of mother liquor in the capillary and to seal
both ends. The capillary is then glued to a metal base which can be attached to
a goniometer head.
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232
Cryocrystallography

Many macromolecular crystals suffer from radiation damage when exposed to
X-rays with energies and intensities as used in macromolecular X-ray diffraction
experiments with both conventional sources and synchrotron radiation. One
possibility of reducing radiation damage of the crystal during the measurement
is to cool the crystal to low temperatures, usually to 100 K (for a review on cryo-
crystallography, see Rodgers, 1997). For this purpose, the crystal is flash-frozen
to prevent ice formation or damage to the crystal. One method of crystal treat-
ment is to remove the external solution by transferring the crystal in a small
drop to a hydrocarbon oil and either teasing the liquid away or drawing it off
with filter paper or a small pipette. The oil-coated crystal is then mounted onto
a glass-fiber or small glass “spatula’. The oil protects the crystal from drying,
and also acts as an adhesive that hardens on cooling to hold the sample rigidly
in place. A much more frequently used technique is to suspend the crystal in a
film of mother liquor in a small loop (Teng, 1990). This method avoids prob-
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Crystal bathed
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Fig. 2.17 The mounting of a crystal in a glass capillary.
(Reproduced by permission of Academic Press, Inc., from
Rayment, 1985.)
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lems with damage by the oil, or mechanical damage when removing the exter-
nal liquid, and it has proven successful for most samples. It does, however, re-
quire the use of a cryoprotectant to prevent ice formation; the most commonly
used cryoprotectants are glycerol, polyethylene glycol (PEG) of different molecu-
lar weights, glucose, and 2-methyl-2,4-pentanediol (MPD).

The loop is produced from fine fibers which permit unobstructed data collec-
tion in almost all sample orientations. The crystal is held within the loop, sus-
pended in a thin film of cryoprotectant-containing harvest buffer. The loop is
supported by a fine wire or pin, which itself is attached to a steel base used for
placing the assembly on a goniometer head and in storing mounted crystals.
Once in the loop, the crystal is cooled to a temperature at which the increasing

Magnetic
strip

Locating
/ pin

(a)

(b)

Fig. 2.18 Flash cooling in the direct cold gas stream of a
cryostat. (Reproduced by permission of Academic Press, Inc.,
from Rodgers, 1997.)
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viscosity of the liquid prevents molecular rearrangement. The rate of cooling
must be rapid enough to reach this point before ice-crystal nucleation occurs.
Two methods are used: (i) cooling directly in the gas stream of a cryostat; or (ii)
plunging the crystal into a cryogenic liquid. The first method is illustrated in
Figure 2.18. The loop assembly (with crystal) is attached to the goniometer head
with the cold stream deflected (Fig. 2.18a). The cold stream is then unblocked
to flash-freeze the crystal (Fig.2.18D). In this gas-stream position the gonio-
meter head must be heated to prevent ice formation on the goniometer head.
The cryostats and cryocrystallographic tools are all available commercially.

Cryocrystallography has had a major impact on macromolecular crystallogra-
phy by dramatically increasing the lifetime of a crystal during the X-ray experi-
ment. This allows, for example, the collection of several data sets from one crys-
tal at different wavelengths, using synchrotron radiation. In the case of structur-
al genomics projects, automatic sample changers either for in-house investiga-
tions or at protein crystallography (PX) synchrotron beamlines have been
developed. An elegant solution for the PX beamlines at ESRF has been devel-
oped, and is shown in Figure 2.19. The commercially available vials containing
the sample loops with their supports are mounted in baskets, each of which
has a capacity for 10 samples. Four of these baskets can be stored in the cryo-
tank of the sample changer. The pincer on the robotic arm moves to the cryo-
tank, takes a vial, and moves it from right to left to the magnetic base of the go-
niometer head on the goniostat. The support of the loop sticks to the magnetic
base of the goniometer head, and the socket of the vial is moved back by the
pincer. The loop is immediately placed into the cryo-stream, whereupon the
automated centering of the crystal can be started. In the near future, PX beam-
line users will be able to freeze their samples in cryo loops in-house, ship them
in cryo-tanks to the PX beamline, and have the samples tested and measured by
web-based remote control from their home laboratory.

magnetic base of
goniometer

vial with loop assembly

/operation
panel

i / cryo-tank

Fig. 2.19 An automatic sample changer used at ESRF PX
beamlines, developed by EMBL instrumentation group.
(Hllustration courtesy of EMBL outstation, Grenoble.)
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233
Crystal Quality Improvement by Humidity Control

The crystal quality is of decisive significance for a successful X-ray crystal struc-
ture determination. Two principal cases must be distinguished: (i) that the crys-
tals diffract to a resolution only (>4.5 A) which does not allow a structure deter-
mination at all; and (ii) that the crystal quality is good enough to elucidate its
3D structure (resolution <3.5 A, but not better than 2.5 A). However, a structure
determination at higher resolution and accuracy would be necessary, for exam-
ple in the characterization of a metal center in a metalloprotein. Control of the
crystal packing via the solvent content of a crystal is a useful approach to im-
prove the crystal quality of biological macromolecules, and for this purpose a
so-called Free Mounting System (FMS) has been developed and successfully ap-
plied (Kiefersauer et al., 2000). The principal construction of the FMS is shown
in Figure 2.20a. A main part of the FMS is the humidifier unit, which com-
prises the humidifier, the control, and power electronics. A stream of humid air
with defined moisture is produced and transported via a flexible Teflon tube to
the crystal holder (Fig. 2.20b). The very compact construction allows the sample
to be mounted in a controlled environment with minimal restriction for the X-
ray measurement. The head part, into which a heating element and a tempera-
ture sensor are integrated, is freely rotatable relative to the insert, without axial
movement. The humid air stream through the head part is adjusted to the tem-
perature of the head part independently of the ambient temperature. The crystal
may be mounted either in a patch-clamp pipette or a conventional cryo-loop
(Fig. 2.20c¢).

In a typical experiment to increase the crystal quality, X-ray crystal diffraction
is monitored at various defined crystal humidities. Usually, a positive effect is
observed at lower humidity, which causes shrinkage of the unit cell volume and
allows different and possibly more favorable crystal contacts. After having found
the optimal condition, the crystal, mounted in a loop, can be shock-frozen for
any subsequent data collection. By using the FMS in this way, a remarkable im-
provement of crystal quality was observed in about 30% of the different projects
under investigation (Kiefersauer et al., 2000).

24
Data Collection Techniques

2.4.1
Rotation Method

Most macromolecular X-ray diffraction systems use the rotation method for data
collection (for a detailed discussion, see Arndt and Wonnacott, 1977). For each
crystal, a reciprocal lattice can be constructed which is very useful when inter-
preting crystallographic crystal diffraction experiments. Diffraction theory (dis-
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Fig. 2.20 The Free Mounting System. (a) Principle of

construction; (b) schematic view of the crystal holder; (c) the
opened crystal holder with magnetic base and mounting loop.
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cussed later) tells us that an X-ray reflection is generated when a point of this
reciprocal lattice lies on a sphere of radius 1/4 whose origin is 1/4 away from
the origin of the reciprocal lattice in the direction of the primary beam
(Fig. 2.21). The direction of such a diffracted beam is along the connection of
the center of the so-called Ewald sphere (radius 1/4) and the intersection of the
reciprocal lattice point on the Ewald sphere. Owing to certain factors (which will
be discussed later), the apparent reciprocal lattice extends only to a given radius
which defines the resolution sphere. In order to bring all reciprocal lattice
points within the resolution sphere into the reflection position, the crystal must
be rotated around its center. Almost all macromolecular X-ray diffraction sys-
tems apply the rotation technique in the normal beam case, where the rotation
axis is normal to the incident X-ray beam. Rotating the crystal around 360°
brings all reciprocal lattice points within the resolution sphere in the reflection
position, except for the region between the rotation axis and the Ewald sphere;
hence, this is called the “blind region”. This region can be collected when the
crystal has been brought into another orientation. The diffracted beams are
usually registered with a flat detector at distance D from the crystal which is
also normal to the primary beam. To avoid overlapping of reflection spots on
the detector, the crystal is rotated by rotation angle increments; these can vary
from tenths of degrees to 1 to a few degrees, depending on the size of the crys-
tal unit cell, crystal mosaicity, beam collimation, and other factors. Each individ-
ual exposure is processed and the data stored electronically in a computer.
These raw data images are evaluated subsequently with relevant computer pro-
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Fig. 2.21 Diffraction geometry in the rotation method usually
applied in macromolecular X-ray diffraction systems.
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grams (discussed in some detail later) to provide the intensities and geometric
reference values (indices) for each collected intensity.

2.4.2
Precession Method

The rotation method delivers a distorted image of the reciprocal lattice for each
geometry of the detector (flat or curved) and orientation with respect to the rota-
tion axis. However, an undistorted image of the reciprocal lattice can be ob-
tained by using the precession method. The principle of this technique is
shown in Figure 2.22. The detector is a flat film. During the motion of a given
reciprocal lattice plane (in Fig. 2.22 a so-called zeroth plane passing through the
origin O of the reciprocal lattice), the flat detector must always be parallel to
this reciprocal lattice plane in order to obtain an undistorted image of this
plane. The normal of the reciprocal lattice plane — and consequently also the de-
tector — are inclined with respect to the primary X-ray beam by an angle u.
When the normals of the reciprocal lattice plane and the detector carry out a
concerted precession motion of angle x around the primary X-ray beam, a circu-
lar region of the reciprocal lattice plane is registered on the detector (these re-
gions are shown as dashed circles in Fig. 2.22). In a precession camera con-
struction, the crystal and the film cassette are both held in a universal joint; in
this way the film and crystal move together in phase with the precession angle,
. In Figure 2.22 the joints are symbolized as forks, and their linkage by a line.
Parallel to the zeroth reciprocal lattice plane is a set of lattice planes that also
carry out this precession movement. Those parts of the planes that are swung

1st layer A
| Othlayer \./{

X-ra
bear¥1

Fig. 2.22 The principle of the precession method (modified from Buerger, 1964).
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through the Ewald sphere also give rise to an image on the flat detector (first
and second reciprocal lattice layers are also indicated in Fig. 2.22). The images
of these layers would superimpose on the detector, and use of the technique in
this way is denoted the “screenless precession method”. The insertion of a
screen with a suitable annular aperture between the crystal and the detector at
an appropriate distance can be used to screen out the desired reciprocal layer.
This screen is also inclined by the precession angle u and is coupled to the con-
certed precession movement of crystal and film cassette. The strength of the
precession technique is that, in addition to the undistorted imaging of the reci-
procal lattice planes, the indexing of the diffraction spots is straightforward and
the symmetry of the diffraction pattern is readily obtained by inspection.

For this reason, the precession method has for a long time been broadly ap-
plied in macromolecular crystallography. Although, today, film has been largely
replaced by the new generation of detectors, and use of the precession method
has almost ceased, the precession camera can still provide students of the sub-

ject with a familiarity of the reciprocal lattice concept.
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3
Principles of X-Ray Diffraction by a Crystal

3.1
Rational Mathematical Representation of Waves

3.1.1
Simple Harmonic Oscillations

The simplest periodic process in time (oscillation) is given mathematically by the
sine or cosine function. If the process is recurring v times per second, it is written as:

u(t) = Asin2nvt or u(t) = Acos2navt (3.1)

where A is the amplitude and v is the frequency. In many cases, the angular
frequency w = 2zv is introduced. The actual value of wt is called the “phase an-
gle”, and this determines the momentary state, the phase. A process described
by a simple sine or cosine function is not only mathematically but also physi-
cally the simplest oscillation. It is called the harmonic oscillation.

Computation becomes much easier if the imaginary exponential function is
used instead of the trigonometric functions, with their cumbersome computing
rules. The trigonometric functions are related to the exponential function by
Euler’s formula:

exp 27ivt = cos 2mvt + isin 2zt (3.2)

This representation leads to a highly important visualization of the oscillation
process in an Argand diagram, in which

z = Aexp 2mivt (3.3)

a complex number means, the representation point of which rotates on a circle
of radius A with an angular velocity of w. The projections onto the real and
imaginary axis are:

x = Re(z) = Acos2nvt; y = Im(z) = Asin2zavt (3.4)

As physics is dealing with real magnitudes, the final results of a calculation
with complex magnitudes must be translatable into the real. This is done very
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easily. An equation between complex numbers means that both the real and the
imaginary part of each side fulfill the equation. Thus, we can take both the real
and the imaginary parts of the equation as the physical meaning of the equa-
tion. Often, the square of the amplitude A is important, and can be obtained
in the complex computation most rapidly by multiplying the oscillation magni-
tude z by its complex conjugated value z:

A =2z (3.5)

The great advantage of a complex computation emerges if one wants to add two
oscillations with the same frequency, but with different phase. Whether there is
a single oscillation the start of the calculation of times is irrelevant; therefore,
we write it either in the form of Eq. (3.1) or (3.3). If a second oscillation is
added to the first one, this oscillation will not reach its maximum at the same
moment, but at a certain time before or afterwards. In this case, it can be said
that a phase difference ¢ exists between both oscillations. In the real representa-
tion (see Fig. 3.1) we get:

uy () = A; cos 2zvt, u,(t) = A, cos(2mvt — 0)
and the sum of both oscillations
u1(t) + uy(t) = Aq cos 2mvt + A, cosd cos 2nvt + A, sind sin 2zvt . (3.6)

Figure 3.1c shows that not only a new phase ¢ is created but also that the new
amplitude A is not the direct sum of A; and A,.

The last expression can be converted to a single cosine oscillation if one trans-
forms the coefficients of sin2zvt and cos2zvt in such a way that, after separa-
tion of a common factor, they gain the property of sine and cosine of the angle
@ and that the square sum becomes 1:

(A1 + A; cosd) cos 2mvt + A; sind sin 2zvt

A+ A 0
= (A} + Aj + 2A1 A, cos )\ 1+ A2 cos —75 COS 2mvt
(A? + A% + 2A1A; cosd)Y

. A, sind
(A? + A2 +2A1A; cosd

72 sin 27rvt} . (3.7)

If one puts

A; + Aj coso
(A2 + A2 +2A14, cosé)l/2

= Cosg; (3.8)

Az sinod
(A% + A2 + 2A, A cosd)"/?

=sing, (3.9)
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one gets

ur(8) + ua(t) = \/A% + A%+ 2A1A; cosd cos(2mvt — @) = Agp cos(2mvt — @) .
(3.10)

The formulae can be represented in a vector diagram (Fig. 3.2). The amplitude
Ay, of the resultant oscillation is obtained according to the square-root expres-

@)

0< t< 425"
(b)

-2t 1 1 1 1 | 1 7
0 2 4 6 8 10 12
0= 14251
(c)
T T |
-1} i
-2F 1 1 1 1 I I 7
0 2 4 6 8 10 12
01425

Fig. 3.1 Representation of harmonic oscillations: (a) uy(£); (b) u2(t); (c) ui(2) + uz(2).
(Figure was produced with MATCAB; Math Works, Inc., 2005.)
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sion as the third side of a triangle, the other two sides of which are formed by
A and B, with angle (2nvt — 0 + ¢).

(A1 cos 2mvt + Az cos(2mvt — 8))* + (Ay sin 27vt + A; sin(2zvt — 6))) /2
= A%(cos? 2nvt + sin? 27nvt) + A2(cos? (2nvt — &) + sin®(2zvt — 6))
+ 2A1A; cos 2mvt cos(2mvt — J) + 2A1A; sin 2nvt sin(2nvt — 0)
= (A2 + A2+ 24,4, c0s0) "2,
applying cos? @ + sin*a = 1 and cosacos 3+ sinasinff = cos(a — f) . (3.11)

The phase difference ¢ between the resulting oscillation and u,(t) can also be
seen from Figure 3.2. The angle ¢ is the angle that is formed between A, and
Aj. Tt can be derived from the triangle formed by A;, A, and A;, via the law of
cosine.

—A? 4+ A3 4+ A2,

3.12
2A2A1, (312)

Al = A3+ A2, — 2A,A;pco89  cosp =

Substitution of A;; and some conversions lead to Eq. (3.8). Using the expression
sing = (1 — cos? p)"/? results in Eq. (3.9). It follows that the sum of two shifted
cosine oscillations of equal frequency is again a cosine oscillation with the same
frequency, but different phase and amplitude. The used construction completely
corresponds to the addition of two complex numbers in the Argand diagram,

f A, sin(2nvt-5) Az ::
A, |
B A, sin 2nvt Al i E

8 |

) ¢ i

£13Y |

' 4,
Acos 2mvt A,cos(2nvi-5)

Fig. 3.2 Vector diagram for the addition of uy (£) + u, ().
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which are added like vectors, as is generally known. A;, A; and A;, in Figure
3.2 can be regarded as pointers rotating on concentric circles centered at the ori-
gin of the plot with angular frequency 2zv and constant phase shifts ¢ and ¢,
respectively. This construction can be carried out at each moment. The whole
parallelogram rotates as a rigid object with angular frequency 2zv because the
phase differences are constant. One can choose any position by putting, for ex-
ample, the first oscillation onto the real axis. The addition of more than two os-
cillations occurs by vector addition of the individual pointers. The resulting
pointer is the connecting passage of the starting point of the first pointer with
the end point of the last one. This construction will be used frequently in the
respective parts of this book.

3.1.2
Wavelike Propagation of Periodic States

These reflections can now be expanded to all points of space where certain os-
cillation states may occur. The simplest case is the propagation in a certain di-
rection, taken as X-axis, with the state independent of the Y and Z coordinates,
which means that the state is a function of x only. At position x =0 we will
have

u(t,0) = Aexp 2zivt . (3.12)

We now refer to a process as a wave if the same oscillation state is at position
x = x as at position x = 0, though with a phase shift which corresponds to the
finite propagation velocity v of the phase.xThe same state at time t is also met
in x, which has been met in 0 at time t — o~ Thus it must be written:

u(t,x) = Aexp Zm'v(t - %) . (3.13)

In the simplest case, the amplitude is independent of the position. Such waves
are called “undamped”, and only such waves will be considered here. They have
constant amplitudes, and u is not only a periodic function of time but also of
coordinate x. Imagine a snap-shot of the state at time t, for which we get the
equation:

u(ty, x) = Aexp 2mivty exp —2miv> . (3.14)
v

The actual value at position 0 recurs if x increases about an integral multiple of

2rv v . . . C
Ty because the argument of the imaginary exponential function is in-
A RY

creased by 27, the functions remains unchanged. The distance between points
of equal phase is called the wavelength, 1. According to the reflections above,
we obtain the fundamental equation of wave theory:

49
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i:% or lv=w (3.15)

wavelength x frequency = velocity of phase propagation

A wave as the actual one, whose variable u depends except for the time of the
direction of propagation only, is denoted as a plane wave, as u is constant in a
plane perpendicular to the direction of propagation. Figure 3.3 shows the graph-
ical representation of a plane cosine wave u(t,x) with unit amplitude, frequency
v=1s"and A= 1/2 length unit propagating in x direction. The time course
of one wave state is indicated by solid black lines.

If the normal n (i.e., the normal to the planes of equal phase) is arbitrarily
oriented to the axes, the planes of equal phase have the equation rn = const,
and the plane wave is represented by

u(t,r) = Aexp Zni(t - %) . (3.16)

Equation (3.16) is a particulate integral of a most general differential equation,
which can be considered as the definition of an undamped wave. This differen-
tial equation reads as:

u  *u  u 1 d%u

o oy oz MG e (-17)

Another important integral of Eq. (3.17) is the spherical wave, which has a de-
pendency of the distance r from the centre 0 only. This reads:

35
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1
utx) o4

2

position x 1

0o

Fig. 3.3 Graphical representation of a plane cosine wave traveling in x direction.
(Figure was produced with MATCAB; Math Works, Inc., 2005.)
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u(t,r) :?eponi(t—g . (3.18)
v

This is a simple harmonic wave, which propagates uniformly to all sides from 0
in the direction of the radius vectors. In contrast to the plane wave, the ampli-

o1 . .
tude decreases with — corresponding to the extension of the wave planes. The
r

planes of equal phase are given by r = const; thus, they are spherical shells.

3.2
Principles of X-Ray Diffraction by a Crystal

3.2.1
Scattering of X-Rays by an Electron

In order to obtain a deeper understanding of the physical process of X-ray scat-
tering at atoms, we refer in part to the derivations provided in 1948 by von Laue.
As X-rays are electromagnetic waves, Maxwell’s equations are valid here:

1 OH 1 /OE
(A) TOTE—*E TR (B) TOtH—E(E+4nI>
(C) divE =4np, (D) divH=0. (3.19)

X-rays propagate in a vacuum with the velocity of light ¢=2.99793 - 10’ cm s7;
they are transversal waves with the electric and magnetic field components E
and H, respectively, oscillating perpendicularly to the direction of propagation
and perpendicularly to each other. X-rays cover the spectral range limited by

5-107cm>/1>1-10" cm orduetov:%by()olOle*lSvS&1021571. With

regard to the shortness of their wavelength, we must a priori assume the matter
to be atomic complexes rather than continua, and provide the formulae with
the adequate shape instantly. Therefore, we speak of the electric vector E, the
field strength, and the magnetic vector H. Only the electric density p and the
current density I occur from the matter here, the latter being the convection
current of moved charge carriers (in this case, electrons only). We have then

I=pv (3.20)

where v is the velocity of the movement. In order to integrate Maxwell's equa-
tions it is advisable to introduce a vector potential A and a scalar potential @ ac-
cording to the approach:

(A) E= f% 88—1? —grad @ (B) H=r1otA. (3.21)
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This fulfils Egs. (3.19A) and (3.19D) identically. We must also take into account
charges and currents in order to make the following approach to fulfill Egs.
(3.19B) and (3.19C):

2 2
(A) A(D—%aa—g:—ztnp, (B) AAfclzaa—t?:fi:I,
1 00
C) divA+-—=0 3.22
(©) divasl 2 622

Now, it follows from Eq. (3.21B):

rot H = rot rot A = grad div A — AA

1 0® 1 *A 4n_ 1 /0E
7_Egradﬁ_ﬁw+7177(ﬁ+4ﬂ>

and from Eq. (3.21A):

. 10 .. 1 0?0
dlvEf—zadlvA—A@f’S—Z7—Aq5f47zp7

again, in accordance with Egs. (3.19B) and (3.19C). Finally, both potentials can
still be traced back to the Hertz vector Z:

(A) @ =—divZ, (B) A :% a(‘)% , (3.23)
because this satisfies Eq. (3.22C). Equations (3.22A) and (3.22 B) are satisfied if
one sets

107 t
az-5 L= —47'(/ 1t (3.24)

0

As a solution of this wave equation, which corresponds to the waves running
out of the limited current area, the following formula can be derived:

t—r/c

Z:/d—: / 1dt | (3.25)

Here, it must be integrated over the current area, where r represents the dis-
tance of the point of integration to the model point. From Egs. (3.21), (3.23)
and (3.24), the equations below follow:
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t
(A) E=rotrot Z — 4n/ Ldt, (B) H= S ot — (3.26)
0

which immediately traces back the field strengths to the Hertz vector. By using Eq.
(3.24) on most occasions for sine or cosine oscillations, we derive accordingly

I =i(x,y,z)exp2nivt (3.27)

Integration for t in this equation delivers a term which is independent of t be-
cause the lower integration limit is zero. The independence of ¢ of this term
means that it is not related to the oscillation. In contrast, we get

[ Fienpepamioe k) (k=")., (3.28)

 2nmiv c
which comes from the upper limit (&,#,{ are the coordinates of the integration
point).

We apply this equation to the z-component of the vectors and a model point
on the x-axis, the distance of which from the current area is very large com-
pared to the dimensions of the current area. As a consequence, a minimal error
is made in the denominator if r is replaced by an average value ry, though one
has to set r = x — ¢ in the exponential function. Furthermore, we set the com-
plex quantity

ip=1expip,
with both i, and ¢ as spatial function. It follows then:

exp 27i(vt — kx

Z.(x,0,0) ) / dri, exp i(27ké + ¢) . (3.29)

27ivry

The Hertzian solution of Maxwell's equations follows from Eq. (3.29) by setting i
different to zero in an area, which is small compared to the wavelength 2 = 1/k
and the distance from the model point. If this relates to the periodic oscillation
of a point charge —¢ along the z-axis with the amplitude z,, we get according to
Eq. (3.20):

d . .
/ I, = —sd—f = —2mivez, exp 2mivt

thus

i,dt = —2mivez,
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and according to Eq. (3.28):

Z,=2,=0;Z, = fngoexp 2mi(vt — kr) . (3.30)

We are interested in the section of this spherical wave, which propagates in a
x’-direction, making the angle J, with the z-axis. For that purpose we introduce
the coordinates %/, y =y and 2, and split the vector Z into the components

Z, =17,c080,, Z, =7Z,sing, .

The application of Eqgs. (3.26A) and (3.26B) would actually require, except for
the differentiation of the exponent after the coordinates, also the differentiation
of the factor r~!. This delivers higher powers of r~! whereas the other factor
k=7"" adds. Thus, one can neglect the differentiation of r~! if the distances
are large compared to A. The wave then behaves like a plane wave, and one
finds — as Z, is the longitudinal component — that Z, is the single transversal
component of Z:

E, = H, = (21k)*Z, = (27k)*Z,sind,, E, = Hy =0 (3.31)
Thus, according to Eq. (3.30)

Ey = — (2k) ez S0

exp 2mi(vt — kr) . (3.32)

Now the point charge shall be an electron, which in other respects oscillates
freely under the action of the incident wave around its resting position

Ef = Ej exp 27mi(vt — kx)

according to the following equation:

d?z .

If x corresponds to the coordinate of this electron, we get

&

5—Eg exp —2mikx . (3.34)
) p

Z = zpexp 2mivt, 2o =

Substituting this into Eq. (3.32), one gets

& sind,

E, = “Z Ej exp 2mi(vt — k(x + 1)) . (3.35)

The intensity of the scattered wave propagating along x’' is obtained according
to Eq. (3.5) with E, as complex number, and reveals for the scattering of a wave
oscillating in the z-direction Thomson’s scattering formula for polarized radiation:



3.2 Principles of X-Ray Diffraction by a Crystal |55

4
& .
e — msmz 9210 . (336)

If an unpolarized radiation of intensity I, hits the electron, the wave oscillating

in the z-direction has an intensity EIO only. In exchange, a scattering intensity

of an oscillation in the y-direction is added with an inclination 9, of the scatter-
ing direction against the y-axis. Consequently, we obtain Thompson's scattering
formula for unpolarized radiation:

et sin’ 9, +sin® 9, et 14 cos? 9,

= = Iy . 3.3
crutr? 2 0 crutr? 2 0 (3.37)

€

The transformation is based on the identity:
1 = cos® §, + cos” 9, + cos” 9, = cos” 9, + 2 — sin* 9, — sin® 9, .

The direction factor 1/2(1+ cos?9) is denoted as the “polarization factor”,
where & is the scattering angle between the direction of the incident beam and
the scattering direction. Frequency v no longer occurs in Egs. (3.26) and (3.27).

3.22
Scattering of X-Rays by an Atom

In this section, it is the electrons of an atom that cause the scattering. The elec-
trons are numbered by the index n, where the n-th electron may have the coor-
dinate xp + x, with xy the coordinate of an arbitrary reference point O in the
atom (Fig. 3.4a). The field strength, which is generated by the scattering at the
n-th atom as according to Eq. (3.35):

&2 sind,

Ey = ——— ——Eqexp2mi(vt — k(r, + %0 + %)) - (3.38)
iy

We introduce some useful vectors to avoid any special choice of coordinate sys-
tem. We define the wave vector s,, which is parallel to the direction of the inci-
dent beam and has an absolute value of sp = 1/1 = k. Figure 3.4b shows the sit-
uation with the x, y, z-coordinate system in an arbitrary position and s, parallel
to the x-direction in Figure 3.4a. We can substitute kx, in Eq. (3.38) by sory be-
cause xg = ry cos(so, Iy ) and kxo = soxp = Soroy cos(so, Iy ).

We determine the position of the n-th electron by the radius vector R, traced
from the reference point O in the atom (Fig. 3.5). The observation point on the
detector is linked with to reference point O in the atom by vector r;, and the
scattered wave generated by the oscillation electron E, by vector r,. The wave
vector s is parallel to ry and has the same absolute value as s, (Fig. 3.5). We
substitute kr, and kx, by the scalar products of the relevant vectors as we did it
for kxo and obtain for the scattered wave of the n-th electron:
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b)
o e - »; 0
Y 1
I i 1
S, 1
— ]
i el E S ]
————ll_y
Fig. 3.4 (a) Origin O of an atom in system is in an arbitrary position and the
coordinate system x, y, z with a planar X-ray plane wave is traveling in a direction
wave traveling in x direction. (b) The same determined by wave vector so, which is
situation as in (a), but the x, y, z coordinate parallel to the x direction in (a).
2 .
&~ sind .
El = o r—zEg exp 27i(vt — Sory — SoTn — SoRy,) - (3.39)
n

Equations (3.40) to (3.43) follow from Figure 3.5:

R,+1,=19 (3.40)
2 2.2 2
re = (ro — Ry)" =15 + R, — 2roR,, cos(Ry, 19) (3.41)
1/2
2R, R,\?
Tw = 1o [1 ——=cos(Ry,19) + (*) } (3.42)
o o
R,
Tl 1— r—cos(Rmro) + ... (3.43)
0

where (R, /r)* and higher terms were neglected in the expansion of the square
root. It follows that (Eq. 3.44)

Iy & 1y — R, cos(Ry, 1p) . (3.44)
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We can replace r, in the exponent by this expression. As sp = s and s is parallel
to 1y, we obtain Eq. (3.45).

soRy cos(Ry, 19) = sR, cos(Ry,s) = sR, (3.45)
As 1y is large compared to R,, r, can be replaced by ry in the denominator of
Eq. (3.39). With these approximations we obtain from Eq. (3.39):

&2 sind,
ctu

Ej exp 27i(vt — soror — Soro + SR, — soRy) . (3.46)

If we carry out the summation over all electrons, we obtain for the scattered
wave from the whole atom:

2 <ing
E, = ;EZ, = _caTlu SH:O ZE; exp 27i(vt — so(ro + 1)) ;exp 27i(Ry,, 8 — Sp) -

(3.47)

The resultant of the sum in Eq. (3.47) is a complex number with an absolute value
C, which is in general unequal to 1 and characteristic for the scattering from the
atom for the wave incident in direction sy and scattered in direction s. Equation
(3.47) represents the multiplication of two complex numbers with individual abso-
lute Vah%es. The physical meaning is that a complex number with an absolute val-
ue of 82— wES - C rotates in time t with frequency v in the Argand diagram,
whichcré‘preggnts the electric field component E... As the first expression is con-
stant for the scattering experiment, the individual values for C determine the phys-
ical real magnitudes such as the electric field strength |E.| or the intensity |E,|*. If
the scattering of a volume element dv is proportional to the local electron density
p(r), then the scattering amplitude will be proportional to the integral:

£(S) = / p(r) exp(2mirS)dv (3.48)

vol. of atom

with § = s — s and r replacing the individual positional vectors R,.

Detector

Fig. 3.5 Scattering of a planar X-ray wave traveling parallel to
so by an electron E, at position R,.
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3.23
The Atomic Scattering Factor

Equation (3.48) is the general form of the elastic scattering of X-rays by an atom,
and is called the “atomic scattering factor”. Now, we assume that p(r) depends
only on the magnitude of r, and not on its direction, so that the electron density
distribution within the atom is spherically symmetrical. For this case the execution
of the integration illustrated in Figure 3.6 is performed in the following manner.
The surface element is rdadr; this is traced along the circumference 2zr sin a, and
consequently we obtain for the volume element dr = 2zr? sin adadr. With

sin

27rS = 4
Y T /{

sin 0
r-COSa = Urcosa = Xx, <y:4n 7 ), (3.49)

we can write:

f= /p(r) -expix - dr . (3.50)
Now, we introduce x in dr:
. ) dx
x = purcosa, dx = —ursinada, dv = 2zrodr — ( — | . (3.51)
ur
Thus, we get:
27r? ,
f= /Wp(r)drexplx- (—dx) . (3.52)
rsina I
s
§ T
a
6 S 7
dr
2
S, rda.

Fig. 3.6 A schematic diagram to explain the integration of Eq. (3.48).
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If a runs from 0 to n then x from +ur to —ur. The integration limits are now
due to (—dx)

ooz +ur

f= /Z—: / expix - dx (3.53)
0 —ur
+,¢.4r

exp iur — exp —iur

= 2sinur and we get
i

The integral reveals / expix - dx =
for f: Zur

fo / U SB2 g with  U(r) = 4nrp(r) (3.54)
0

The functions U(r) are the radial densities of the electrons of an atom. Func-

4 in 0
tion &;ur with u:%sinﬁ is 1 for all r at Sl;l =0. It is null if
u )

ur=m, 2m, ...

The radial densities of electrons are calculated by quantum mechanical meth-
ods, either by the self-consistent field method or according to the statistical
method of Thomas and Fermi. A diagram of the atomic scattering factor of var-
ious chemical elements is shown in Figure 3.7. The scattering power is equal to

00 0.5 1 1.5 2 2.5 3 3.5 4

0< 1< 2sinb/A

Fig. 3.7 Atomic scattering factors for main non-hydrogen
elements contained in biomacromolecules. (Figure was
produced with MATLAB; MathWorks, Inc., 2005.)
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the number Z of electrons of the element at § = 0, and decreases with increas-
in ¢
ing values of 0 dependent on % Tables of the atomic scattering factors of all

chemical elements can be found in Volume C of the International Tables for
Crystallography (Prince, 2004). These have been incorporated into the relevant
crystallographic computer programs.

3.24
Scattering of X-Rays by a Unit Cell

A unit cell may contain N atoms at positions of their internal origins at r; (j=1, 2, 3,
..., N) with respect to the origin of the unit cell (Fig. 3.8). For atom 1, we obtain:

f; = //)(r) exp[27i(ry + 1)S]dv = fi exp(27ir; S) (3.55)

vol. of atom

with (Eq. 3.56)

h= / p(r) exp 2irSdy (3.56)

vol. of atom

where f; is the atomic scattering factor for atom 1. This reflects the characteris-
tics of the scattering of the individual atoms, and is real if the wavelength of
the incident X-ray is not close to an absorption edge of the atom.

For N atoms this adds up to the total scattered wave of a unit cell F(S)
(Fig. 3.9) according to Eq. (3.57):

N
F(S) = f exp(2nir;S) (3.57)

J=1

o)
'2—\"}3\\—~>.3
2
r f4
rs
4
i. 4
5

Fig. 3.8 Atomic positions in a unit cell.
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i Fig. 3.9 Vector diagram for the
total scattered wave in direction
S added up for five atoms.

3.25
Scattering of X-Rays by a Crystal

3.2.5.1 One-Dimensional Crystal
In a one-dimensional crystal the unit cells are separated by the unit cell vector
a. The contribution of the scattered wave from the unit cell at the origin of the
crystal is F(S). All scatterers in the second unit cell are displaced by the vector a
relative to the origin, which introduces a corresponding phase factor and reveals
for the second unit cell relative to the origin F(S) exp2niaS.
For the nth unit cell relative to the origin we obtain F(S) exp2zi(n — 1)aS.
This sums up for the total wave to Eq. (3.58):

E(S) = XT:F(S) exp 27i(n — 1)aS (3.58)

n=1

Generally, E(S) is of the same order of magnitude as F(S), and no strong scatter-
ing effect is observed (Fig.3.10a). However, when 27aS=2nh or an integral
multiple of 2z or aS=h (h is an integer), the waves add up constructively to a
scattered wave proportional to T|F(S)| (Fig. 3.10D).

3.2.5.2 Three-Dimensional Crystal
In this case, the unit cell is spanned by the unit cell vectors a, b and ¢ and
is repeated periodically by the corresponding vector shifts r = mja+ myb
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i

N

15 —
(b)

Fig. 3.10 Vector diagrams displaying the total wave scattered
by a molecule in a crystal. (a) The phase differences between
waves scattered by adjacent unit cells is 2zaS. (b) The phase
difference is an integral multiple of 2z. (Adapted from
Blundell and Johnson, 1976.)

R

+mgsc (mq, my, ms, integers) in the respective spatial directions. We can then
write for E(S)

e 1 [1+4cos?20_, - ,
E(S) = — = #EOF(S) Zexp 27img (aS)

mp

N, N;
. Z exp 27mim; (bS) Z exp 2mims(cS) (3.58.1)
my ms
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The three sum terms are geometric series which can be easily calculated. For
the first sum we get:

exp 27iN; (aS) — 1

Ny
Z exp 2mim (a$) = exp 2mi(aS) — 1

m;=0

(3.58.2)

The other sums are calculated analogously. We obtain the intensity or flux by
squaring E(S). The squares of the complex magnitudes are received by multiply-
ing it with its complex conjugate. Carrying out these multiplications reveals
concise expressions and we get for the intensity I(S):

4 2 2 2 2
Is) et 1 (1—|—cos 0)1 2 )sm 7Ny (aS) sin® 7N, (bS) sin® 7N3(cS)

2 sinz(aS)  sin’z(bS) sin’ z(cS)
(3.58.3)

ct? 1}

The last three factors are known as interference function Iy, which has interest-
ing properties. The function has maxima of N?N2N? when the three subse-
quent conditions are fulfilled (Eq. 3.59):

aS=h; bS = k; S =1 (3.59)

These conditions are known as Laue equations. The first term becomes, for ex-
1 Sil’l2 7'EN1]’L

ample, ————

" sin’nh

quent differentiation for h, and reveals in this case N2. The function has sub-
sidiary maxima for non-integral values of h, k, | with zeros between the maxima.
The larger the number of unit cells in each crystal dimension Nj, Ny, Ns is, the
closer are the subsidiary maxima to the main maximum and decrease to values
close to zero very rapidly. This means that there are sharp intensity maxima at
or in close vicinity to the integrals h, k, I, and negligible intensity between them.

If we neglect the constant magnitudes in Eq. (3.58.1), we obtain Eq. (3.60) for
the total scattered wave for a three-dimensional crystal with a unit cell contain-
ing N atoms:

. The maximum of this function is obtained by twofold subse-

N
F(S) = _fjexp2zirS (3.60)
j=1

with (Eq. 3.61)
1; = ax; + by, + cz; (3.61)
Hence we have Egs. (3.62) and (3.63):

;S = x;aS + y;bS + zjcS = hx; + ky; + Iz (3.62)
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(from Laue’s equation) and
N
F(hkl) = Zﬁ exp 2mi(hx; + hy; + lz;) = |F(hkl)| exp ia(hkl) (3.63)
=1

with |F(hkl)| — amplitude and a — phase angle. We obtain the intensity of the
scattered wave as the structure factor F(hkl) multiplied by its complex conjugate
value according to (Eq. (3.64)):

I(hkl) = F(hkl)F*(hkl) = |F(hkl)|* . (3.64)

3.2.6
The Reciprocal Lattice and Ewald Construction

The usefulness of the concept of the reciprocal lattice in understanding the dif-
fraction of X-rays from a crystal was outlined in Section 2.4. Now we have the
necessary relationships to derive the reciprocal lattice. One can write the scatter-
ing vector S as:

S = hea* + kb* + Lc* (3.65)

where S is a vector in reciprocal space with the metric a*, b*, and c*. The rela-
tionship to the direct space with metric a, b, and c is still unknown. The vector
S must obey the Laue equations:

aS = a(hea* + k,b* + L.c*) = h = hyaa™ 4 kjab™ + Lac* = h (3.66)

This is fulfilled only when aa* =1, h, = h and ab* and ac* = 0. Similar equa-
tions can be derived for the other two Laue conditions. Thus, vector S is a vector
of a lattice in reciprocal space. The relationship between the direct and recipro-
cal lattices is given by the following set of nine equations (Egs. 3.67):

aa* =1 ba* =0 ca*=0
ab* =0 bb* =1 cb* =0
ac* =0 bc* =0 cct=1 (3.67)

It follows from these that a* L b; ¢; b* L a; ¢; ¢* L a; b; and vice versa. The me-
tric relationships can also be derived from these relationships. They adopt the
following form for the general case of the triclinic crystal system:
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1
-t 2 2 2,
Vfﬁfabc\/l—cos a — cos? i — cos? y + 2 cos a.cos ff cos y
1
V*:V:a*b*c*\/1—cosza*—coszﬁ*—coszy+2cosa*cosﬁ*cosy*
. besina b* ¢* sin a*
a’t = 9=
\%4 Vv
- acsin f§ b a* c* sin f*
-V A
: * LK ik
«  absiny _a*b*siny
cf=——- c=— ——
\% Vv*
* * *
x _ cosfcosy—cosa _cosf*cosy™ —cosa
cosg*=——-—"—"-—  cosa= —
sin ffsiny sin ¥ siny
* * *
« Cosacosy — cospf _ cosa*cosy ™ —cosf
cosff =———— cosfi = ¥ ai ¥
sinasiny sin a™ sin y
* * *
cos a cos ff — cos) cosa™ cos f* — cos)
cosy* = cosacosf — cosy cosy = p 4 (3.68)

sinasin f§ sin a* sin f*
This means that the inverse lattice vectors are perpendicular to the plane, which
is spanned by the two other non-inverse lattice vectors. Bragg’s law can now be
derived by inspection of Figure 3.11. The wave vectors for the incident wave s,
and the scattered wave s have the same absolute value of 1/1. Vector S must be
a vector of the reciprocal lattice, and its absolute value is equal to d*. From Fig-
ure 3.11 we obtain Egs. (3.69-3.71):

a*
sin 6 :7/1 (3.69)

Fig. 3.11 Geometric representa-
tion of diffraction geometry, 26,
glance angle; O, Bragg angle.
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P %30 (3.70)

A=2dsinf for n=1 (3.71)
The general equation for Bragg’s law is:

2dsinf = ni (3.72)

where n is the order of reflection and d the interplanar distance in the direct lat-
tice.

The Ewald construction is contained in Figure 2.21. A sphere of radius 1/4 is
drawn, and the origin of the reciprocal lattice is located where the wave vector
so ends on the Ewald sphere. A diffracted beam is generated if a reciprocal lat-
tice vector djj; with an absolute value of 1/dy, cuts the Ewald sphere. The beam
is diffracted in the direction of the connection of the origin of the Ewald sphere
and the intersection point of the reciprocal lattice point on the Ewald sphere.
The diffraction pattern of a lattice is itself a lattice with reciprocal lattice dimen-
sions.

3.2.7
The Temperature Factor

At first glance it might appear that the thermal motions of the atoms destroy
the sharp reflections deduced for the scattering of X-rays by a crystal. However,
as shown by Debye, one observes sharp reflections further on, but the thermal
motion of the atoms causes a decrease in the scattering power. To derive the ex-
pression for this decrease, one starts from Eq. (3.60) for the amplitude for a
wave scattered by a crystal. The positions of atoms may be given by their equi-
librium position ry and a time-dependent term u(t):

r(t) = 1o +u(?) (3.73)

We assume that each atom oscillates around its equilibrium position completely
independently. Then, the temperatures average yields

J

J

= < (Zﬁ exp 2nir05> > - (exp 2ziu(t)S) (3.74)

<Zﬁ exp((ro + u(t))S)> = <Zﬁ exp 27iroS - exp 27ziu(t)S>

J

where S is equal to the change of the wave vector during the reflection and the
angle bracket (...) denotes the thermal average. The first expression equivalent
to Eq. (3.60) for the equilibrium expression ry ensures the sharpness of all dif-
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fracted reflections. The second term causes a decrease of its intensity. To show
this, one develops it into a potential series:

(exp 2miu(H)S) = 1 + 27 (u(t)S) — % (42 (u®s)) + ... (3.75)

However, (u(t)S) = 0 because u(t) is a random movement, which is in no way
correlated with the direction of S. Furthermore, it holds that:

(u(t)*)(s)* (3.76)

The factor 5 arises as, during the geometrical averaging in three dimensions, the

component of the vector u in the direction of S plays a role. Thus, we obtain
1
(exp2miu(t)S) = 1 — 647z2<u(t)2>(5)2 +.... (3.77)
It is quite useful to note that the function

exp _é4n2<u(t)2>(s)z = 1—%4ﬂ2<u(t)2>(5)2+--. (3.78)

in its series expansion is identical in both first members to that of Eq. (3.77).
This identity can be proved for all members for a harmonic oscillator. By substi-

a2
tuting (S)* = 45321 0 we get
F(S) = Fo(S) exp[— B(sin? 0/1%)] (3.79)

with Fo(S) the scattering amplitude of the rigid lattice and

B =52 (u(ry) (3.80)
The isotropic temperature factor as in this model the thermal motion has been
assumed to be isotropic. In molecules, this is usually not the case and the thermal
motion is described by a tensor ellipsoid with six independent parameters: three of
these represent the dimensions of the principal axes, and three the orientation of
these axes. The symmetric U tensor contributes to the factor, which is responsible
for the temperature-dependence of the scattering, in the following way:

exp[ — 27'[2( Ullhza*z + Uzzkzb*z + U33lzC*2 + 2U12hka* b* Ccos y*
+ 2Upshla* ¢* cos B* +2 Upsklb™ ¢* cos a™)) (3.81)

In protein crystallography, isotropic B values for each atom of the molecules are
used normally. The thermal motion of the atoms is one main reason for the
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fall-off in diffraction intensity, especially at higher diffraction angles. This limits
the possible recordable number of diffraction spots and, as will be seen later,
the resolution of the diffraction experiment. However, due to improved synchro-
tron radiation techniques and crystal quality there is a growing number of ex-
amples where the diffraction extends to real atomic resolution. In such cases
the thermal parameters of the atoms are refined anisotropically.

3.2.8
Symmetry in Diffraction Patterns

An X-ray diffraction data set from a crystal represents its reciprocal lattice with the
corresponding diffraction intensities at the reciprocal lattice points (hkl). As the
reciprocal lattice is closely related to its direct partner, it reveals symmetries, lattice
properties and other peculiarities (e.g., systematic extinctions) that are connected
to the direct crystal symmetry, such as unit cell dimensions and space group. A
detailed discussion of this problem is provided by Buerger (1961).

In the case of real atomic scattering factors f the diffraction intensities are
centrosymmetric according to Friedel's law (Eq. 3.82):

I(hkl) = 1(hkl) (3.82)

This is illustrated in Figure 3.12a and b. The square of a complex number is
the product of this number by its complex conjugate. This is shown for F (hkl)
in Figure 3.12a and for F (hkl) in Figure 3.12b. The resulting intensities are
equal in both cases.

3.29
Electron Density Equation and Phase Problem

An inspection of the equation for the structure factor:

N
F(S) = Zﬁ exp 2mir;S = / p(r) exp 2mirSdv (3.83)
=

vol. of unit cell

shows that it is the Fourier transform (FT) of the electron density p(r).

The FT is of general relevance in broad areas of physics, for example, in op-
tics, X-ray diffraction, FT-NMR techniques, and FT-IR methods. It has the fol-
lowing form as exponential FT:

F(r*) = /p(r) exp(2zir - r*)dr (3.84)

N

r* — vector in space of FT, r — vector in “direct space”.
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i
F(hkl)
ohki) ki)
—a(hki) R
F*(hkl)
(a)
i
F*(Ak)
_a(PKT)\= o hkI) 1(RKT)
(KT = - o kI R
F(hkI)
(b)

Fig. 3.12 Diagram illustrating the basis of Friedel's law.

It must be shown that

pr) = /F(r*)exp(me'r* Sr)dr* . (3.85)

N



70 | 3 Principles of X-Ray Diffraction by a Crystal

The right side of Eq. (3.85) becomes:

/ (/ﬂ(r/) exp(2mir* - r/)dr/> exp(—2mir* - r)dr* (3.86)

*
s N

One can include the exponential functions and invert the integral signs:

/ (/p(r’) exp[2nir*(r' — r)]dr/) dr* (3.87)

s N

/p(r’) /exp[Znir*(r/fr)]dr* dr’ (3.88)

*
s s

The integral expression in parenthesis in Eq. (3.88) is known as a delta function
o(r" — r). This has the following properties:

6=0 for ¥ #r;6=00 for 1 =r; /5(r’—r)dr’:1.
Hence we get:

/ PO — 1)dr = p(r) . (3.89)
One can also say:

F(r*) = T[p(r)] (3.90)
and

p(r) = THE(r")] (3.91)

with F the FT from p and p the FT from F.
The electron density p (r) is then the inverse FT of the structure factor F(S) ac-
cording to Eq. (3.84):

p(r) = F(S) exp —2mirSdy; (3.92)

vol. of diffraction space

The integration is replaced by summation since F(S) is not continuous and is
non-zero only at the reciprocal lattice points. Hence, we have:
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p(32) :% S5 S ROk - expl-2mi(hx 1 ky + I2) (3.93)

h=—00 k=—00 I=—c¢
By knowing the structure factors:
F(hkl) = |F(hkl)| exp ia(hkl) (3.94)

one can calculate the electron density distribution in the unit cell and thus de-
termine the atomic positions of the scattering molecule(s). Unfortunately, the
measured quantities are only the absolute values |F(hkl)| of the structure factor.
Information on the phase angles a(hkl) is lost during the diffraction experi-
ment. The determination of these phases is the basic problem in any crystal
structure determination, and methods for solving the phase problem are dis-
cussed later.

3.2.10
The Patterson Function

The measured X-ray intensities are proportional to the square of the absolute
value of the structure factor according to Eq. (3.64). Would it be possible to use
the intensities directly to calculate from these a function which contains struc-
tural information? The answer is “yes”. By calculating a convolution of the elec-
tron density with itself, Patterson (1934) showed that this is just the FT of the
intensities (Eq. 3.95):

P(u) = p(x)p(x + u)dx (3.95)
vol. of unit cell
1 00
To prove this, we substitute p(X)V: Z Fpexp[—2mihx] and p(x+u) =
1 0 h=—cc
v ,Z Fyy exp[—2nih’ - (x +u)] with the position vector x with components

h'=—oc
(%, y, 2) and the reciprocal vector h with the integral triples of numbers (h, k, I)

and get for the summation over h:

1 ./ . !
P(u) = th: zh; Fy, - Fyy exp[—27ih’ - u] / exp[—2zi(h +h') - x]dx .
vol. of unit cell

(3.96)



72 | 3 Principles of X-Ray Diffraction by a Crystal

Considering the integral

exp[—2mi(h +h') - x]dx

vol. of unit cell

C

_ / exp {—Zni(h—&—h’)ﬂ dx /h exp|~2ni(k + ) Y] ay / exp {—Zni(l—kl’)ﬂ iz
0 0 0
(3.97)

where h = ha* + kb* 4 Ic*, h' = Wa* + kK'b* + I'c* and x = %a —&—%b —&—%c were
explicitly substituted and the relationships [Eq. (3.67)] between the direct and re-

ciprocal lattices were applied. The integration of the individual integrals of the
same type, exemplified with the left-handed integral, reveals:

a

; nX
/ exp [oni(h + 1) ﬂ dx = o {—22:((:::)) “} , (3.98)

0

0

The exponential in the numerator becomes 1 because h and h’ are integers and
X=a or 0. Therefore, the integral is, in general, zero. The same holds for k and
k' and for | and I'. On the other hand, when h = —I/, k= —k’ and I = —I', Eq.
(3.97) degenerates directly into

a b

/ exp(0)dX / exp(0)dY / exp(0)dZ — a /h / dXdYdZ = v (3.99)

0 0

From this it follows that [Eq. (51)]:

1
P(u) = v Z F} exp —2nihu (3.100)
h

Thereby it was taken into account that Fy, -F_j = Fﬁ, which furthermore re-
duces the double sum in Eq. (3.96) into a single sum over h.

The self-convolution of a one-dimensional electron density distribution of three
atoms according to Eq. (3.95) is explained in Figure 3.13a—c, which shows two re-
peats of the cell of length a. The centers of the atoms are at the maxima of p(x) and
between the atoms the electron density has negligible values. The possible intera-
tomic vectors are indicated. The convolution means that p(x) is shifted by u [e.g.,
u=0.7 in Fig.3.13b and u = 3.0 in Fig. 3.13¢] and the product of p(x) and
p(x + u) is integrated for x. If u has values that the maxima in both function
do not coincide with (as in Fig. 3.13D), the products of the relevant electron density
values will have small values. However, in the case that u equals an interatomic
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p(x) .
20
p(x +0.7) .
20
o(x + 3.0) 2
20
P (u) l
20
u

Fig. 3.13 Convolution of a one-dimensional electron density
distribution with itself. (a) Three-atomic structure p(x);

(b) p(x) shifted by u =0.7; (c) p(x) shifted by u =3.0; (d) P(u).
(Figure was produced with MATCAB; Math Works, Inc., 2005.)

distance, the two relevant maxima coincide (as in Fig. 3.13 ¢ for peaks 3 and 1), and
the products of the electron densities around this position will reveal large values,
giving a peak in the function P(u). Figure 3.13d shows the respective complete
function with three self-vectors at the origin and six possible interatomic distances.

In three dimensions, the function P(u) will have maxima if the positions x
and x + u correspond to atoms. In general, we obtain a function that contains
the interatomic vectors as maxima. We expect N peaks for N atoms. The maxi-
ma are proportional to Z;Z;.

The Patterson maxima of a three-atom structure in two dimensions are de-
picted in Figure 3.14. The distribution of the N> = 9 maxima (containing three
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Fig. 3.14 (a) Two-dimensional three atom structure; (b) appropriate Patterson function.

self-vectors at the origin) is centro-symmetric, which means that for each vector
u,v,w a vector —u, —v, —w exists. The centro-symmetry is a general property of
the Patterson function.

The Patterson function is a very useful tool to locate atoms when the number
of atoms in the asymmetric unit of the unit cell is not too high (e.g., <20), or it
contains a subset of heavy atoms among not too many (e.g., <100) light atoms
such as C, N, O, or S. Here, the heavy atom-heavy atom vectors are clearly
prominent. If a protein with 1000 (or a multiple of that) light atoms holds one
or several heavy atoms per molecule, the signal resulting from the heavy atoms
can no longer be resolved. However, when using the method of isomorphous re-
placement (discussed later), a Patterson function of the heavy atom structure
can be calculated, from which it is possible to locate the heavy atoms.

3.2.11
Lorentz Factor and Integrated Intensity Diffracted by a Crystal

We have seen that the interference function Ir contributes to the scattering
power in the immediate vicinity of the reciprocal lattice points. In order to ob-
tain the whole scattering power originating from a particular reciprocal lattice
point, we have to rotate it through the Ewald sphere and carry out an integra-
tion over I(S) [Eq. (3.58.3)]. This is identical to a rotation of the Ewald sphere
in the opposite direction, as shown in Figure 3.15. We assume that the rotation
axis passes through O, the origin of the reciprocal lattice, and is normal to the
incident beam, as in the rotation data collection technique. In position 1, the re-
flection sphere cuts the reciprocal lattice point P (strongly exaggerated in
Fig. 3.15). The space angle element may be chosen sufficiently small that the
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Fig. 3.15 Explanatory diagram
for the derivation of the whole
scattering power originating
from a particular reciprocal
lattice point.

flux I(S) can be assumed as constant. If we run over from flux to power, the re-
flected beam power observed at the model point in distance ry becomes
I(S)r2dQ. Thus, the whole power of the reflection sphere in position 1 observed
at the model point will be

G (S) = /I(S)rgdg . (3.101)

. . . Ar* .

We determine dQ for the first dimension as dQ = = Jdha* and for two di-
mensions dQ = A*dhdka*b*. Thus, we reveal /%

Ci(s) = 2272 / / 1(S)dhdka*b* (3.102)

As the spherical area around P is very small, the tangent plane at the reflection
sphere at point P will be well approximated by the a*b* plane. Thus, we obtain
the whole reflected power in the model point if the reflection sphere sweeps
over the reciprocal point around P in incremental values of the rotation angle &.

C(S):Azré///l(s)dhdka*b*de (3.103)

We replace de by the increment of I, dl. For this purpose, we introduce the third
reciprocal lattice vector c*, which is normal to a* b* and parallel to line PB in

2sin 0 in 20
Figure 3.15. Here, PA = |S|de with |S| = sin and PB — PA cosf — sin .
A
We set c*dl for PB and get with de = ——— dic*
sin 20

7 ]
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_ AT *1,%
sm29/// S)dhdkdla*b*c (3.104)

As the extension of the reciprocal lattice points is very small, it can be assumed
that one reflection is in reflection position in a time only, and that the integra-
tion can range from —oo to +oo. Equation (3.104) contains the interference
function Ir with the product of the three integrals of the type

' sin® Ny (nAh) o [ sin Ni(nAh)
/ sin” M(#ah) pgy, — & / s Miza%) - n

sin® 7Ah n sin® 7Ah
o m
a sin® Nju a sin® v
f:vf/ N g, — 1/ Yy — N

7 u 7 %

(3.105)
Thus, the product of the three integrals reveals:

a*b*c*N1N2N3 = V*N1N2N3 (3106)

We obtain the number of unit cells Ny N;N; of a crystal by dividing its volume
1

V, by the volume V of its unit cell. Taking into account that V* = v e obtain

V,

7’; for Eq. (3.106). The integrated scattering power of a small crystal over the

whole range around the reciprocal lattice point in consideration of Eq. (3.58.3)
is then:

et (1 + cos? 20) 23

) 5 700! h| (3.107)

h =

The described integration has been carried out by H.A. Lorentz, and follows the
1
description provided by Wolfel (1987). The factor 20 L is characteristic for

the treated rotation geometry and is denoted as the “Lorentz factor”. The power
C is related to the total energy E under the reflection curve by C = Ew with o,
the constant angular velocity of the rotation of the reciprocal lattice point through
the Ewald sphere. E is now a quantity to be measured. Hence, we obtain:

I ¢t LAV,
E(h) = i;ﬁﬁpvw(h)ﬁ (3.108)

Here, p=polarization factor, L=Lorentz factor (a geometrical factor taking into
account the relative time that each reflection spends in the reflection position)
and A=absorption factor have been introduced. Equation (3.108) is also known
as Darwin’s equation.



3.2 Principles of X-Ray Diffraction by a Crystal |77

(1 + cos?0)

The polarization factor p for unpolarized radiation is , as in Eq.

(3.107). It adopts different values for radiation emerging from a monochromator
or for synchrotron radiation, which is strongly polarized.

The absorption of an X-ray beam with intensity I, traveling through matter
with a path length of ¢ leads to a reduction in intensity according to

I = Iy exp[—ut] (3.109)

where 4 is the total linear absorption coefficient. Absorption is mainly generated

by two effects:

e Photoelectric absorption, where the absorption may become substantially
stronger if the X-ray photon can strike out an electron of the atom. This is
the case if the energy of the X-ray photon is around the absorption edge of
the atom. The effect is then denoted as anomalous scattering and is exploited
when determining the phases of the structure factors (see Section 5.2).

e Scattering: the X-ray photon is scattered out of its primary direction either
with energy loss (Compton scattering) or without loss (Rayleigh scattering).

Until now, we have assumed that I, is constant within the crystal (kinematic
theory of X-ray diffraction). Ordinary absorption effects have been considered in
Eq. (3.108). Experimental data have shown that Eq. (3.108) represents the total
energy of a reflected beam very well, but for what reason? Real crystals are not
perfect; rather, they should be regarded as consisting of small blocks of perfect
crystals (of size ca. 0.1 um) which have an average tilt angle among each other
of 0.1-0.5° for protein crystals, and diffract independently of each other. Such a
real crystal is denoted a mosaic crystal.

Owing to this mosaicity (0.1-0.5°), each reflection has a corresponding reflec-
tion width which is much larger than that originating from the interference
function Ir. The integrated intensity equation is valid because the mosaic blocks
are so small that no multiple scattering occurs within an individual mosaic
block, and the attenuation of the primary intensity I, is negligible due to regu-
lar Bragg reflection. The model of the mosaic crystal also explains why no Um-
weg excitation occurs, although several reciprocal lattice points may be in reflec-
tion position at the same time due to the large unit cells in protein crystals.

The integrated intensity depends on A to the third power. Increasing the
wavelength causes appreciably stronger diffraction intensities, but this is accom-
panied by greater absorption. Cu Ka radiation with a wavelength of 1.5418 A is
an optimal choice for protein crystallography when using X-ray generator
sources. Also important is the dependence of the integrated intensity on the
unit cell volume V by its negative second power. Doubling of the unit cell vol-
ume with twice as many molecules, taking into account the increase in |F(h)|*
by having now 2n molecules per unit cell, reduces the average intensity for the
reflected beams by a factor of two.

In Eq. (3.108) (2*/wV?) - (e*/c*) - V, - I is a constant for a given experiment.
The corrected intensity on a relative scale I(h) is obtained from:
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I(h) = (3.110)

3.2.12
Intensities on an Absolute Scale

The corrected intensity on a relative scale I(h) can be converted to an intensity
given by:

I(abs,h) = F(h)F(h)* = |F(h)* (3.111)

on an absolute scale by applying a so-called Wilson plot. The basis for this plot
is an equation which connects the average intensity on an absolute scale with
the average intensity on a relative scale by a scale factor C, and considers the
isotropic thermal motion of the scattering atoms by the temperature factor
given in Eq. (3.80). This is written in the form of:

I(h in’
nt® e gpsm
_(f +

J

(3.112)

This is the equation of a straight line. B, the overall temperature factor, and C,
the scale factor, can be obtained by plotting In I(h)/> (f; )? against (sin®6)/22.
J

3.2.13
Resolution of the Structure Determination

The concept of resolution in X-ray diffraction has the same meaning as the con-
cept in image formation in the optical microscope.
After the Abbe theory, we obtain:

A

4 =3NA

(3.113)

where NA is the numerical aperture of the objective lens. In protein crystallog-
raphy, the nominal resolution of an electron density map is expressed in d,,
the minimum interplanar spacing for which Fs are included in the Fourier se-
ries. The maximum attainable resolution at a given wavelength is 1/2. For cop-
per Ka radiation it is 0.7709 A, and this would suffice to determine protein
structures at atomic resolution (the distance of a carbon-carbon single bond is
about 1.5 A). However, the thermal vibrations of the atoms in a protein crystal
are usually so high that the diffraction data cannot be observed to the full theo-
retical resolution limit. The polypeptide chain fold can be determined at a reso-
lution of better than 3.5 A. A medium-resolution structure is in the resolution
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range of 3.0-2.2 A, which makes the amino acid side chains clearly visible. A
high-resolution structure has a nominal resolution better than 2.2 A, and can be
as good as 1.2 A. In such structures the main-chain carbonyl oxygens become
visible as prominent bumps, and at a resolution better than 2.0 A aromatic side
chains acquire a hole in the middle of their ring systems. For some very well
diffracting crystals from small proteins, diffraction data extending to resolutions
below 1.2 A could be collected with synchrotron radiation (Wilson, 1998). Such
structures reveal real atomic resolution where each atom is visible as an isolated

maximum in the electron density map.
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4
Diffraction Data Evaluation

4.1
Introductory Remarks

The analysis and reduction of diffraction data from a single crystal consists of
seven main steps:

1. Visualization and preliminary analysis of the raw, unprocessed data.

2. Indexing of the diffraction patterns.

3. Refinement of the crystal and detector parameters.

4. Integration of the diffraction spots.

5. Finding the relative scale factors between measurements.

6. Precise refinement of crystal parameters using the whole data set.

7.Merging and statistical analysis of the measurements related by space-group

symmetry.

When using electronic area detectors with short read-out times such as charge-
coupled device (CCD) or multiwire proportional chamber (MWPC) detectors it
is possible to collect diffraction images with small rotational increments (0.05—
0.2°). In this case, the reflection profile over the crystal rotation angle can be
registered, giving a three-dimensional picture of the spot. The evaluation of
such diffraction data can be made with computer programs MADNES (Mes-
serschmidt and Pflugrath, 1987), XDS (Kabsch, 1988a,b, 1993), the San Diego
programs (Howard et al., 1985) and related programs XENGEN (Howard et al,,
1987) and X-GEN. IP systems with their longer read-out times are operated in a
film-like mode with rotational increments of 0.5 to 2.0°. Here, mainly the pro-
gram systems MOSFLM (Leslie, 1999) and HKL-2000 (Otwinowski and Minor,
1997) are applied. However, these programs are now able also to handle rota-
tional increments of smaller values (e.g., 0.1°), as are often applied with CCD-
detectors at synchrotron PX beamlines. Currently, MOSFLM, HKL-2000 and
XDS are the most popular data evaluation programs.

81
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4.2
Geometric Principles in the Rotation Technique with Normal Flat Detector

Almost all X-ray diffraction data collection set-ups in protein crystallography ap-
ply the rotation technique, with a flat detector normal to the incident primary
beam. This can be one of the area detectors treated in Section 2.2. Figure 4.1
shows the geometric relationships for the rotation technique with a flat detector
normal to the primary X-ray beam. The definition of the coordinate systems is
those used in the data evaluation program MOSFLM (Leslie, 1999). The origin
of the Ewald sphere and of the ortho-normal laboratory coordinate system X, Y,
Z is in C. The flat detector is in distance D with the ortho-normal coordinate
system Xy, Yq centered at O’. The rotation axis of the crystal is parallel to the Z-
axis, and the sense of rotation is indicated. The origin of the detector pixel coor-
dinate system Xg, Ys is at Os. A reciprocal lattice point P is in reflection posi-
tion in Figure 4.1, and is recorded at P’ on the detector. The reciprocal lattice
point P has the coordinates x, y, z (x as vector) in the ortho-normal coordinate
system x, y, z of the reciprocal lattice with its origin in O. We obtain its coordi-
nates from Miller’s indices h, k, I (h as vector) by Eq. (4.1):

x = @ x PHIZ x PHIY x PHIX x A x h (4.1)

af bf cf
with A= | a§ by ¢ | the matrix of the components of the reciprocal cell
af bf o
vectors with respect to the coordinate system x, y, z.
1 0 0
PHIX = [ 0 cosgp, —sing, |, PHIY and PHIZ are the corresponding rota-
0 sing, cosg,
tions about the x-, y-, and z-axes, respectively. ¢, ¢,, ¢, are designated as mis-
setting angles because they correct for rotational movements of the crystal dur-
ing the data collection. The action of the first four matrices brings the crystal in
the starting position of the crystal rotation axis with ¢ = 0. The rotation of the
crystal about this spindle axis is taken into account by matrix @.
The coordinates x, y, z of P on the reflection sphere can be derived from the
detector coordinates according to Figure 4.1. Thereby, intercept theorems are ap-
plied. The following relationships hold:

O'P' = /X2 + Y2, CP' = /X2 + Y2+ D2 (4.2)

NP CP vy 1/ X

NP CP X X2+Y2+D27 Y VX2 + Y2 + D? ( )
MN CN CP =z 1/2 . Y (4.4)
O,N/_CN,_CP,_Y_1/X'2_|_Y2_’_DZ7 _i*/X2+Y2+D2 ’
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Fig. 4.1 Geometric relationship for the rotation technique with
a flat detector normal to the primary X-ray beam.
CM CP 1/i- 1/ 1 D
;= o = / - /4 X == | (4.5)
CO" CP D VX2 4 v2 £ D? 2\\/X% + Y2 + D?
The detector coordinates X, Y are obtained from the following relationships:
X D Dy
i X = 4.6
y 1/i—x’ 1/l —x (46)
Y D Dz
—=—, Y= . 4.7
z 1/A—x’ 1/h—x (47)

The MOSFLM system defines the following camera constants, which must be
supplied by the user, and calculates corrections for these. XCEN, YCEN are the
coordinates of the beam center in the scanner coordinate system. Any devia-
tions in the refined position of the center of the diffraction pattern from these
coordinates are denoted by the camera constants CCX and CCY. Any deviation
of the angle OMEGA from its expected value of 90° is referred to by the camera
constant, CCOM. The camera constants allow for errors in the user-defined po-
sition of the direct beam (CCX, CCY) and in the alignment of the detector pixel
coordinate system relative to the camera (and detector) axes (CCOM).

If an approximate matrix A is known, the Miller indices of an observed peak
at (X, Y) can be approximately determined using Eqs. (4.3)—(4.6) and (4.1)

h=A1x o ! xx (4.8)
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Hereby, the starting matrices of the inverse matrices of PHIX, PHIY, and PHIZ
are the unity matrices and omitted in Eq. (4.8). The Miller indices have errors
which depend upon the width of the oscillation range, the error in the detector
parameters, and errors in determining the coordinates of the centers of the re-
corded reflections.

4.3
Autoindexing of Oscillation Images

Autoindexing routines have been successfully used in single crystal diffractome-
try with point detectors for initiating data collection (Sparks, 1976, 1982). These
methods are based on accurately determined reciprocal lattice vectors for a few
selected reflections. A challenging task was the autoindexing of oscillation
images of macromolecules recorded on 2D-detectors using randomly oriented
crystals. Indexing of such images without any prior knowledge is important for
several reasons:

e most crystals are frozen in a cryo-loop for data collection and usually have a
random orientation;

o the life time of a crystal in an X-ray beam is limited, and prealignment experi-
ments would shorten its life time or would unnecessarily prolong the user
time at a synchrotron PX beamline;

e the completeness of a diffraction data set is much higher if the crystal is ro-
tated through the reflection sphere in a random orientation. This problem
was solved recently, with the developed methods applying a Fourier analysis
of one-dimensional distributions of observed reciprocal lattice points projected
onto a chosen direction. This is used in the program DENZO, a part of the
HKL-2000 package (Otwinowski and Minor, 1997) and in program DPS (Stel-
ler et al., 1997), which has been integrated into MOSFLM (Leslie, 1999).

Here, the method of program DPS is explained in some detail in order to un-
derstand its principles, using Figure 4.2 as an illustration. The reciprocal lattice
points, which lie between the two circular arcs of the reflection sphere rotated
around the oscillation angle Ag, give rise to reflections that are recorded on the
detector. Their coordinates x in the coordinate system x, y, z centered in O can
be calculated from the detector coordinates X, Y by Eqgs. (4.3) to (4.5). Now, each
reciprocal lattice point is projected onto a chosen unit vector t with polar coordi-
nates y and ¢, as indicated for t; in Figure 4.2. The projection p is then:

p=x-t (4.9)

We must sample all such projections of the reciprocal lattice points onto the
given direction t for the application of a discrete fast-Fourier transform (FFT) al-
gorithm and obtain the frequencies f(p). An experimental frequency distribu-
tion with easily recognizable periodic distributions is depicted in Figure 4.3.
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Xv

Fig. 4.2 Projection of reciprocal lattice vectors which are in
reflection position onto two different direction vectors
t; and t,.

Then, the frequency f(p) in the range p<x-t<p+ Ap can be given by
f(p)Ap = f(j), where j is the closest integer to (p — Pmin)/Ap and Ap = nomay
with pmin, the minimal value of p for the given direction, Gy, maximal real cell
dimension and n, number of grid points between successive reciprocal lattice
planes. Thus, the discrete FT of this frequency distribution will be given by the
summation

m

F(k) = f(j) exp(2nikj) (4.10)

j=0

with m the number of grid points along direction t and is calculated using a
FFT algorithm between 0 and m/2 (Fig. 4.4). In Figure 4.2, two direction vectors
t are shown; vector t; has such a position that the projections (e.g., lines 1;) of
the reciprocal lattice points reveal frequencies f(p) of 1 or 2 only. The situation
is different when t is perpendicular to a reciprocal lattice plane, as t, in Figure
4.2. The frequency is 1 for line 1, but 3 for lines 2 to 5. Thus, the Fourier coeffi-
cients that best represent the periodicity will be large. The largest coefficient
will occur at k= 0 and represent the number of vectors used in calculating the
frequency distribution. The next set of large coefficients will correspond to the
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Fig. 4.3 Frequency distribution of the reciprocal lattice vectors
for a suitable chosen direction of a diffraction pattern from a
fibritin crystal. (Reproduced with permission from Steller et
al., 1997; International Union of Crystallography.)

periodicity that represents every reciprocal lattice plane. Subsequent maxima
will be due to periodicities spanning every second, third, etc. frequency maxi-
mum, and will thus be progressively smaller (Fig. 4.4). The largest F(k) (when
k = 1), other than F(0), will, therefore, correspond to an interval of d* between
reciprocal lattice planes in the direction of t where d* = 1/(namax).

The Fourier analysis is carried out for each direction t in a range from
0<y <m/2,0<¢<2r and the relevant F(k) coefficients related to the largest
local maximum at k = I of each direction t are determined. A set of the y and ¢

120

100

80

F(k) 60

40

0 50 100 150 200 250
k
Fig. 4.4 Fourier analysis of the distribution shown in Figure
4.3. The first maximum, other than F(0), is at k = 27,
corresponding to (1/d*)=41.9 A and a value of F(27)=97.0.
(Reproduced with permission from Steller et al., 1997;
International Union of Crystallography.)
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values associated with the largest maxima are subjected to a refinement proce-
dure. The F(I) values of the refined positions are then sorted by length, and a
linearly independent set of three basis vectors of a primitive real space unit cell
is chosen. As shown in Figure 4.2, the determined periodicities correspond to
the plane distances of the reciprocal lattice d*. Its inverse is a vector in direct
space normal to the stack of planes of the reciprocal lattice. They must be con-
verted to the basis vectors of the reciprocal cell to obtain the components of the
three reciprocal cell axes along the three camera axes, which are the nine coeffi-
cients of the crystal orientation matrix A. Various nonlinear combinations of the
refined vectors with largest F(I) values are selected and used for a test indexing
of the diffraction image. In most cases the best combination conforms to taking
the three largest F(I) values.

Finally, the reduced cell is determined for the best cell obtained. This cell is
then analyzed in terms of 44 lattice characters (Burzlaff et al., 1992; Kabsch,
1993) in order to evaluate the most probable Bravais lattice and crystal system.

4.4
Beam Divergence, Mosaicity, and Partiality

Crystals of biological macromolecules have in general large cell constants (about
100 A and larger), which means that the reciprocal lattice planes are densely pop-
ulated with reciprocal lattice points. The Ewald construction tells us what reflec-
tion pattern is generated for a stack of reciprocal lattice planes in a given orienta-
tion with respect to the incident X-ray beam. If the crystal is stationary during the
exposure a so-called “still” image is obtained. Such an image is shown in Figure
4.5, where the stack of reciprocal lattice planes is nearly normal to the primary
beam with a flat detector perpendicular to the incident beam. The planes cut
the Ewald sphere in circles. The reflected beams lie on cones, with the apex in
the center of the Ewald sphere. The intersection of these cones with the detector
reveals ellipses, as depicted in Figure 4.5. It is now observed on experimental
images that the width of reflections and of the ellipses vary considerably. This is
due to three factors. First, it is assumed that the primary X-ray beam is totally par-
allel. This is not the case with real X-ray sources, which owe a beam divergence 6.
Second, real crystals are not perfect and exhibit a mosaicity #, which is below 0.05°
for good crystals at room temperature but may increase to more than 1° due to
crystal freezing or bad crystal quality. In reciprocal space, this corresponds to en-
largement of the reciprocal lattice points with respect to their size originating
from the interference function Ir (as discussed in Chapter 3). Third, X-radiation
is only monochromatic within a defined wavelength bandpass 64/4, in the range
0f 0.0002-0.001 at synchrotron beamlines, but is considerably larger for laboratory
sources. The bandpass, in effect, thickens the surface of the reflection sphere.

These effects are illustrated schematically in Figure 4.6. The combined result
is that the diffraction of a particular reflection is spread over a range of crystal
rotation.
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Fig. 4.5 The stack of reciprocal reflection of reflections on the detector.

planes that is nearly normal to the incident (Reproduced with permission

X-ray beam and intersecting the reflection from Dauter and Wilson, 2001;

sphere generates a set of concentric ellipses International Union of Crystallography.)

In order to record a complete diffraction data set in the rotation technique the
crystal is rotated or oscillated in incremental values Ag around the spindle axis for
a given time, and the corresponding images are transferred to the controlling com-
puter. Thereby, the whole asymmetric part of the reciprocal lattice must have
passed through the Ewald sphere. One can imagine that the ellipses extend to
lunes with a width proportional to the magnitude of Ap. However, the lunes will
overlap if Ap has been chosen too large, and consequently the choice of a suitable
Ag is crucial for successful data collection. Another important point is that each
reflection diffracts over a defined crystal rotation (referred to as the rocking curve
or angular spread &), which is the combined effect of beam divergence J and crys-
tal mosaicity #. If we assume that £ is less than Ay, then some reflections will start
and finish passing the Ewald sphere and hence diffract within one exposure. Their
full intensity will be recorded on a single image, and these are called fully recorded
reflections or “fullys”. Reflections with & greater than Ag — which are referred to as
partially recorded reflections or partials — will start reflecting on one exposure and
end on the next. It is also possible that they extend over several adjacent exposures.
We will see later how partially recorded reflections can be used in the post-refine-
ment, scaling, and averaging of X-ray diffraction data.

As mentioned earlier, an X-ray data set will be complete if the whole asymmetric
unit of the reciprocal lattice has passed the reflection sphere. The simplest way to
achieve this is to rotate the crystal about 360° around the spindle axis. However, it
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®)
Fig. 4.6 Schematic representation of beam sphere results from the finite wavelength
divergence ¢ and crystal mosaicity & (a) In bandpass d4//. (Reproduced with
direct space; (b) in reciprocal space, where permission from Dauter and Wilson, 2001;
the additional thickness of the reflection International Union of Crystallography.)

is evident that this generates a highly redundant data set and a huge amount of
data. Strategies to carry out an efficient data collection have been elaborated and
are discussed by Dauter and Wilson (2001). The program MOSFLM offers an op-
tion STRATEGY, which proposes an optimal way of recording a data set with the
highest attainable completeness and sufficient redundancy.

In this context, the number of measurable reflections is still of interest. They
lie within the resolution sphere with radius 1/d,, and volume (4/3)rn/d?,, where
dy was the maximal resolution of the diffraction data. This further implies that
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dm is greater than A/2. Hence, we must divide the volume of the resolution
sphere by the volume of the unit-cell of the reciprocal lattice V* =1/V, and
take into account their centering to obtain the number of measurable reflections
N according to

N=-n—, (4.10a)

where n =1 for a primitive lattice, n = 2 for face- and body-centered lattices,
and n = 4 for all face-centered lattices. For a primitive unit cell with a 100 A cell
constant in each direction and a resolution of 2 A, about 500000 reflections can
be measured. For structures of large molecular assemblies (e.g., viral capsids),
this may be about 10 million reflections, assuming a resolution of only 3 A.
This leads to the production of huge amounts of raw data that must be stored
and processed.

4.5
Integration of Diffraction Spots

In order to obtain an optimal integration of the diffraction spots, a row of pa-
rameters must be determined either in advance or during the integration pro-
cess. A prerequisite for autoindexing is knowledge of the wavelength 4, the crys-
tal-to-detector distance, and the camera constants (CCX, CCY, CCOM). After
autoindexing, the unit cell parameters should be refined with the highest possi-
ble accuracy of a few parts per thousand, and the missetting angles (PHIX,
PHIY, PHIZ) should not deviate from zero by more than +0.05°. The crystal
mosaicity can be estimated by visual inspection, and will be refined during the
data evaluation process. MOSFLM refines a couple of additional parameters: YS-
CALE, the relative scale factor in the detector Yy direction; and TILT and TWIST,
deviations from normal incidence on the detector. TILT is a rotation about a hor-
izontal axis, and TWIST about a vertical axis, while ROFF and TOFF are the ra-
dial and tangential offsets for Mar Research scanners. The refinement of DIST
and missetting angles allows for crystal movement during data collection. Non-
orthogonality of the incident X-ray beam and the rotation axis (if not allowed
for), or an off-center crystal, will also give rise to apparent changes in crystal ori-
entation with spindle axis rotation.

The integrated intensities can be determined using either of two different
techniques, namely summation integration and profile fitting. Here, we de-
scribe the summation integration in greater detail. The 3D representation of the
pixel raw data around a reflection is shown in Figure 4.7. The peak becomes ap-
parent as an elevation from a background that is generated by X-ray scattering
from air, the sample holder, and the sample itself. It is evident that a peak and
the background area around the peak must be defined, and for this purpose a
rectangular box of pixels (the measurement box) is centered on the raster coor-
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Fig. 4.7 3D representation of the pixel raw data around a reflection.
(Figure was produced with MATCAB; Math Works, Inc., 2005.)

dinate nearest the calculated reflection position (Fig. 4.8). Each pixel within the
box is classified as being either a background or peak pixel (or neither). This
mask can be defined by the user, or the classification can be made automatically
by the program. The background parameters NRX, NRY and NC can be opti-
mized by maximizing the ratio of the intensity divided by its standard deviation.

The background can be reasonably represented by a plane over the area of a
diffraction spot. With p;, g;, the pixel coordinates, the background total counts
Py is given by py; = ap + bq + ¢, where a, b and ¢ are constants. The back-
ground-subtracted total counts p of a pixel is obtained from p; — p,; and the con-
stants a, b and ¢ defining the best background plane are determined by mini-
mizing

Ry =Y wi(p; — ap; — bg; — ¢)* , (4.10)
i=1

where p; is the total counts at the pixel with coordinates p;, g; with respect to
the center of the measurement box and the summation is over the n back-
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NY Peakarea = g
NC
NX »
Fig. 4.8 The measurement-box definitions peak and background pixels is defined by
used in MOSFLM. The measurement box the widths of the background margins (NRX
has overall dimensions of NX by NY pixels and NTY) and the corner cutoff (NC).

(both odd integers). The separation between (Adapted from Leslie, 2001.)

ground pixels. w; is a weight which should ideally be the inverse of the variance
of p;. The summation integration intensity Is is then obtained by

m

Is = (p;—api—bgi —¢) (4.11)

i

where the summation is over the m pixels in the peak region. As outlined by
Leslie (2001), we obtain for the variance in Ig

o1, = GlIs + Ipg + (m/n)/Iyg] , (4.12)

with the background intensity I, and gain of detector G, which converts pixel
counts to equivalent X-ray photons. Provided that the background and peak
areas are correctly defined, summation integration provides a method for evalu-
ating integrated intensities that is both robust and free from systematic error.

For the treatment of weak reflections, where the peak area contains very little
signal from the Bragg intensity, profile fitting (Rossmann, 1979) delivers an im-
provement of the signal-to-noise ratio. In this approach, “standard” profiles are
determined from well-recorded reflections for different areas of the detector and
applied to the reflections. A detailed discussion of integration by profile fitting
is given by Leslie (2001).
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4.6
Post-Refinement, Scaling, and Averaging of Diffraction Data

As described in Section 4.5, a number of parameters must be refined in order to
obtain an optimal integration of the diffraction data. In the past, this has been done
by minimizing the sum of the differences between observed and calculated spot
positions. However, it transpires that post-refinement procedures (Rossmann et
al., 1979; Winkler et al., 1979), which make use of the estimated ¢ centroids of ob-
served reflections, generally provide more accurate estimates. This is because spot
positions are affected by residual spatial distorsions (after applying appropriate cor-
rections) and estimated ¢ centroids do not obey a correlation between unit-cell pa-
rameters and crystal-to-detector distance, as is the case when using spot positions.

The objective in post-refinement is to compare the observed partiality pops
with the calculated partiality pe.. For this, one needs a reasonable model for
Peale- The effective mosaic spread m will give rise to a series of possible reflec-
tion spheres (Fig. 4.9). Their extreme positions will subtend an angle 2m at the
origin of reciprocal space, and their centers will lie on a circle of radius
0 = m/ .. As the reciprocal lattice is rotated about the Oz axis, perpendicular to
the mean direction of the X-ray beam Ox, a reciprocal lattice point P will gradu-
ally penetrate the effective thickness of the Ewald sphere.

Let q be a measure of the fraction of the path traveled by P between the extreme
reflecting positions P4 and Pg. This path will be proportional to the fraction of the
volume of a sphere, which has penetrated the reflection sphere, and corresponds
to the fraction of the energy already diffracted. The volume of a sphere removed by
a plane at a distance q from its surface is a good approximation for this. The vol-
ume p expressed as a fraction of the volume of the total sphere is then

Pealc = 34" — 24° (4.13)

as q can be determined from the crystal setting parameters. We will not discuss
the derivation of q from these parameters, which is provided by Rossmann et
al. (1979). The observed partialities pops can be obtained from Eq. (4.14):

Fig. 4.9 Penetration of a reciprocal lattice point P
into the Ewald sphere by rotation around Oz. The
extremes of reflecting conditions at P, and Pg are
equivalent to X-rays passing along the lines $;0
and S;0 with centers of the Ewald spheres at S
and S; and subtending an angle of 2m at O.
Therefore, in three dimensions, the extreme
reflecting spheres will lie with their centers on a
circle of radius d = m/L at x = =1/

(Adapted from Rossmann et al., 1979.)
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Pobs = Ihim/Gthi B (414)

where Ij; is the intensity of the ith measurement of reflection h, Ij;, the inten-
sity contribution of reflection h; recorded on frame m, and G,, the inverse linear
scale factor for the respective frame m. Post-refinement is now done by mini-
mizing the function

E= ZW(Pobs _pcalc)z ) (4.15)

where the sum is taken over all partial reflections for which one or more whole

reflections are also observed, and w is a weight. Parameters, which can be re-

fined, are the missetting angles, the independent unit-cell constants, the mosaic
spread, and horizontal and vertical beam divergence. Details of the mathemati-

cal procedure can be taken from Rossmann et al. (1979).

There are many reasons why the different frames of a diffraction intensity
data set must be scaled together to obtain the best estimates of intensities. The
main causes are:

e radiation damage of the crystal, which leads to a weakening of the diffraction
power and an increase of the mosaic spread, or to the death of the crystal,
which requires the use of several crystals for a full data set;

e absorption effects of the crystal; and

e instabilities of the radiation source and the detector.

Nevertheless, a data set can be divided into different batches where the condi-
tions were sufficiently constant to carry out scaling for the separate batches. Fi-
nally, the individual scaled batches will be scaled together. In the classical
approach of Hamilton et al. (1965), only fully recorded reflections were used
and the following function y was used for least-squares minimization

Y=> > Wil — Guln)” (4.16)
h i

where I, is the best estimate of the intensity of a reflection with reduced Miller
indices h and W), is a weight for reflection h;. For all unique reflections h, the
values of I, must correspond to a minimum in . Thus,

/oI, =0 . (4.17)
Carrying out this differentiation leads to the best least-squares estimate of a re-
flection

In= Z WhiGthiZ Wi Gy, - (4.18)

i i

Since y is a non-linear function of the scale factors G,,, the values of the scale
factors must be determined by iterative non-linear least-squares techniques.



4.6 Post-Refinement, Scaling, and Averaging of Diffraction Data

Recent advances in using frozen crystals of biological macromolecules had
generated the situation that the individual images of many collected X-ray inten-
sity data sets contain a high degree or only partially recorded reflections. This
may be due to the increased mosaicity caused by the crystal freezing, the smal-
ler size, and/or larger unit cell of used crystals accessible by the application of
synchrotron radiation. An increase of the oscillation increment Ag is not feasi-
ble as it would introduce a high degree of overlapping reflections. Therefore,
scaling techniques had to be developed that include partially measured intensi-
ties or even data sets consisting only of partially recorded intensities.

Provided that the reflection partiality py;, is known, the full intensity is esti-
mated by

Ihi = Ihim/phime . (419)

Two methods are used for scaling including partially recorded reflections:
1.1If a reflection h; occurs on a number of adjacent frames and all parts of Iy,
are available in the data set, the generalized function y of Eq. (4.16) has the

following form:
2
} . (4.20)

5[ S hin/ 6] (S WinG ) £ S WG

I =Y (Ihine / Guw)

m'#m

The best least-squares estimate of I;, will be

I === =T 421

' 222G, 222 Whim G, (+.21)
with

Ii = > (Inim/Gm) (4.22)

m

and m from 1 to the number of adjacent frames containing the full reflection.
2.1f the theoretical partiality py;, of the partially recorded reflection hy, can be
estimated, the generalized function y is derived as:

Y= Z Z Z Whim(lhim - Gmphimlh)z (4.23)
h i om

and, using Eq. (4.19), the best least-squares estimate of I, will then be
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Z Z Whim Gmphim Ihim

I =- . (4.24)
Z Z Whim G%npl?nm
1 m

The scale factor has been generalized to incorporate crystal damage (Otwinows-
ki and Minor, 1997) in the form

Ghim = G exp{—2B,,[sin 04;/1)*} , (4.25)

where B, is a parameter describing the crystal disorder while frame m was re-
corded, 6y; is the Bragg angle of reflection h;, and 4 is the X-ray wavelength.

When all scale factors have been determined they can be applied to the reflec-
tion intensities, and error estimates and the reflection intensities for the same
reduced Miller indices can then be averaged. This is more complicated for
method 2, and is performed in a two-step procedure.

Finally, estimates for the quality of data scaling and averaging are needed.
Useful definitions of reliability factors R for scaled and averaged Bragg reflec-
tion intensities are:

Ryerge = Ri = [(ZZW - <Ih)|>/221,ﬂ-|} x 100% (4.26)
h i h i

R, = { [Z > (i — <Ih>)2] / ZZI,@} x 100% (4.27)
h i h i

and

Ry = { {ZZ Whi(Ini — (M))ﬂ/zz Whilﬁi} x 100% . (4.28)
hooi —

where Rynerg is the linear, R, the square, and R, the weighted R factor. A com-
monly used R factor is Ryere. This section is based on the report by van Beek et
al. (2001), which discusses the subject in more detail.
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5
Methods for Solving the Phase Problem

5.1
Isomorphous Replacement

5.1.1
Preparation of Heavy-Metal Derivatives

If one can attach one or several heavy-metal atoms at defined binding site(s) to
the protein molecules without disturbing the crystalline order, one can use such
isomorphous heavy-atom derivatives for the phase determination. This so-called
method of isomorphous replacement was introduced by Perutz and co-workers
in 1954 (Green et al., 1954). The lack of isomorphism can be monitored by a
change in the unit cell parameters compared with the native crystal and a deter-
ioration in the quality of the diffraction pattern. The preparation of heavy-atom
derivatives is undertaken by soaking the crystals in mother liquor containing
the dissolved heavy-metal compound. Soaking times may range from several
minutes to months, while the concentrations of the heavy-metal compound may
vary from tenths of millimolar to 50 mM.

The favorite heavy atoms to be used are Hg, Pt, U, Pb, Au, and the rare earth
metals. Potential ligands can be classified as hard and soft ligands according to
Pearson (1969). Hard ligands are electronegative and undergo electrostatic inter-
actions. In proteins, such ligands are glutamate, aspartate, terminal carboxy-
lates, hydroxyls of serines and threonines and in the buffer acetate, citrate and
phosphate. By contrast, soft ligands are polarizable and form covalent bonds;
they include as cysteine, cystine, methionine and histidine in proteins, and CI,
Br, I", S-ligands, CN™ and imidazole in the buffer solution.

Metals are classified according to their preference for hard or soft ligands.
Class (a) metals, which bind preferentially to hard ligands, comprise the cations
of A-metals such as alkali and alkaline earth metals, the lanthanides, some acti-
nides and groups IIIA, IVA, VA and VIA of the transition metals.

ITTIA IVA VA VIA
Sc Ti \Y Cr
Y Zr Nb Mo
Lanth. Hf Ta A%
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Class (b) metals are rather soft and polarizable, and can form covalent bonds to
soft ligands; they include heavy metals at the end of the transition metal groups
such as Hg, Pt and Au.

Their complexes are covalent and often anionic, as for example Pt(CN)}{,
Au(CN)3, [PtCl,]*” and Hgl". The most stable ions are formed with the softest
ligands, so that methionine, cysteine and imidazole will replace CI~ in [PtCl,]*
but not in [Pt(CN),]*". Class (b) metals are at the end of the transition groups
and have outer shells of polarizable d-electrons.

There are also ions in the middle and towards the end of the first subgroups
with transient properties between the class (a) and (b) metals. These can be
ranked with increasing class (b) character:

Fe’* < Co®t < Ni*t < Cu*t < Zn*t.

For example, Zn**, with the highest class (b) character, is usually found with
soft sulfur and imidazole ligands, though carboxylate and water ligands are also
found. There is also an influence of the precipitant, buffer, pH and metal salt
concentration on binding of the metal. For example, the pH determines the pro-
tonation state of putative binding ligands, and with it the binding properties of
the ligand.

In summary, in the protein, the class (b) metals Hg, Pt and Au and their
complex compounds bind to soft ligands such as cysteine, histidine or methio-
nine, while the class (a) metals U and Pb bind to hard ligands such as the car-
boxylate groups of glutamate or aspartate.

Information on the preparation and characterization of heavy-atom derivatives
has been collected (Carvin et al., 1991; Islam et al., 1998), and this heavy-atom
data bank is available at http://www.bmm.icnet.uk/had/. The data bank contains
information on heavy-atom derivatives for approximately 1000 protein crystals.

5.1.2
Single Isomorphous Replacement

The structure factor Fpy for the heavy-atom derivative structure (Fig.5.1) be-
comes (Eq. 5.1):

Fpy = Fp + Fyy (5.1)

where Fp is the structure factor of the native protein and Fy is the contribution
of the heavy atoms to the structure factor of the derivative. The isomorphous
differences, Fpy—Fp, which can be calculated from experimental intensity data
sets of the native and derivative protein, correspond to the distance CB in Fig-
ure 5.1. By inspection of Figure 5.1 we can derive this expression by using sim-
ple trigonometry. For example, we obtain for the distances BD, OC, OD:
BD = Fy cos(apy — ay), OC = Fp and OD = Fp cos(ap — apy). Now, we can cal-
culate



5.1 Isomorphous Replacement

Fig. 5.1 Vector diagram for the

vector addition of the structure

factor of the native protein Fp

and the heavy-atom

contribution Fy to the heavy-
Gpy-ay atom derivative structure factor

Fpy. The relevant phase angles
A Oy in Eq. (5.3) that are used for its

R c (Fo - Fo) derivation are also shown.

BE = BD — (OE-OD) = Fpyy — Fp (5.2)
Then, we substitute the corresponding expressions and obtain
FpH — Fp = FH COS(GPH — aH) — Fp{]. — COS(ap — aPH)}

ap — aPH)

. (5.3)

= FH COS((lpH — CLH) — ZFp Sil’l2<

If Fy is small compared with Fp and Fpy, the sine term will be very small and
we have (Eq. 5.4)

FpH — Fp ~ FH COS(GPH — GH) (54)
When vectors Fp and Fyy are colinear, then:
|Fpr — Fp| = Fy (5.5)

The square of the isomorphous differences, Fpp—Fp, can be used as coefficients
in a Patterson synthesis. Hence, we obtain

. 4(0p — OPH .
(Fpy — Fp)? = 4F2 sin* (#) (i)
+F} cos®(apy — ap) (ii) (5.6)

ap — a
—4Fp Fy sin? (%) x cos(apy — ag)  (iil)

It is a theorem of Fourier theory that the Fourier transform of the sum of Four-
ier coefficients is equal to the sum of the Fourier transforms of the individual
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Fourier coefficients. Here, there are three different terms. (ap — apy) is small if
Fy is small, and term (i), which gives the protein—protein interaction, will be of
low weight. The transform of term (iii) is zero if sufficient terms are included.
However, if Fy < Fp, (ap — apn) is effectively random and term (ii) will give
heavy atom vectors with half the expected peak heights (Eq. 5.7):

1 1
FIZ{ COSZ((ZPH —ay) = EF%I + EFIZ{ cos2(apy — ay) (5.7)

with the second term on the right contributing only noise to the Patterson map
because the angles apy; and ay are not correlated. Such an isomorphous heavy-
atom difference Patterson map allows determination of the positions of the hea-
vy metals on the condition of isomorphism and a not too-large heavy-atom par-
tial structure.

In this context we introduce the structure factor for a centro-symmetric struc-
ture, and explain the meaning of centric zones. In a centro-symmetric atomic
structure we have for each atom with coordinates x;, y;, zj a counterpart with coor-
dinates —x;j, —y;, —z;. That means we must write the structure factor for this case as

N/2

F(hkl) = Zfepom(hxj—&—ky] Z i exp 27i(—hx; — ky; — Iz))
j=1 j=N/2+1
N/2

= fi{cos 2m(hx; + kyj + Izj + isin 2n(hx; + ky; + Iz)) }
j=1

N
+ ) fi{cos2m(ha + ky; + lzj) — isin 2n(hx + ky; + 1z)}
j=N/2+1
N/2
= Z 2f; cos 2n(hax; + ky; + Izj) (5.8)

=1

This means that the structure factor for a centro-symmetric atomic structure is
a real number and is either plus or minus only. Once the sign of the structure
factor has been correctly determined, the error of its phase is zero. It was men-
tioned earlier that crystals of biological macromolecules exhibit acentric symme-
tries only. However, special reflection groups in a part of the allowed acentric
space groups have real structure factors. These groups are denoted as centric
zones, and their meaning is explained in the example of space group P2;
(Fig. 5.2). In this space group, we have for each coordinate triple x;,y;,z; a sym-
metry mate at —x;,y; + 1/2, —z; due to the 2;-screw axis parallel b. For reflec-
tions of the (h 0 ) zone the structure factor becomes

N
F(hkl) = Zf exp 27i(hx; + Oy; + Izj) = Z exp 2mi(hx; + lz)) . (5.9)
j=1 j=1
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— a Fig. 5.2 Explanation of a centric
zone in space group P2;.
’/ Neglecting the yj-coordinate
c leads to a projection of the

atomic structure onto the a,
c-plane. This projection is
Y centrosymmetric.

y,+ 12

The structure factor is independent of the y;-coordinate and centro-symmetrical
with respect to the x;, zj-coordinates. Therefore, the phases of reflections (h 0 I)
are either plus or minus only. There is a simple rule for the occurrence of cen-
tric zones: they are perpendicular to even-numbered rotation and screw axes (re-
gardless of the translational component).

It is important to know what intensity changes are generated by the attach-
ment of heavy atoms to the macromolecule. According to Crick and Magdoff
(1956), the relative root mean square intensity change is given by Eq. (5.10) for
centric reflections:

VAL @n’ ﬁ (5.10)

and by Eq. (5.11) for acentric reflections:

NACT @n’ \/7 (5.11)

where Iy is the average intensity of the reflections if the unit cell were to con-
tain the heavy atoms only, and Ip is the average intensity of the reflections of
the native protein. Attaching one mercury atom (Z=80) to a macromolecule
with varying molecular mass, and assuming 100% occupancy, gives the follow-
ing average relative changes in intensity: 0.51 for 14000 Da, 0.25 for 56000 Da,
0.18 for 112000 Da, 0.13 for 224000 Da, and 0.09 for 448000 Da. From this esti-
mation it is evident that, with increasing molecular mass, more heavy atoms (or
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Fig. 5.3 Harker construction for the phase calculation by the
method of single isomorphous replacement.

for large molecular masses heavy-metal clusters such as TagBr?s (Kniblein et
al., 1997) must be introduced to generate intensity changes which can be statis-
tically measured (precision for intensity measurements between 5 and 10%)
and which are sufficient for the phasing.

The phase calculation for single isomorphous replacement can be seen from
the so-called Harker construction for this case (Fig. 5.3). Fyy, which can be calcu-
lated from the known heavy-atom positions, is drawn in its negative direction
from the origin O ending at point A. Circles are drawn with radii Fp and Fpy
from points O and A, respectively. The connections of the intersection points of
both circles B and C with origin O determine two possible phases for Fp. This
means that the single isomorphous replacement leaves an ambiguity in the
phase determination for the acentric reflections.

5.1.3
Multiple Isomorphous Replacement

The phase ambiguity can be overcome if two or more isomorphous heavy-atom
derivatives are used which exhibit different heavy-atom partial structures. In
Figure 5.4 the Harker construction for two different heavy-atom derivatives is
shown. In addition to Figure 5.3, —Fyy; is drawn from the origin O and a third
circle with radius Fpyy, is inserted around its end-point B. The intersection
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—Fro

Fprz

Fig. 5.4 Harker construction for the phase calculation by the
method of MIR for two different heavy-atom derivatives PH1
and PH2.

point, H, of all three circles determines the protein phase, ap. In the case of n
isomorphous derivatives there are n + 1 circles which have one common inter-
section point whose connection to origin O determines the protein phase, ap.

5.2
Anomalous Scattering

5.2.1
Theoretical Background

So far, in the normal Thomson scattering of X-rays, the electrons in the atom have
been treated as free electrons that vibrate as a dipole-oscillator in response to the
incident electromagnetic radiation and generate elastic scattering of the X-rays.
However, the electrons are bound to atomic orbitals in atoms, and this treatment
is valid only if the frequency w of the incident radiation is large compared with any
natural absorption frequency wy, of the scattering atom. For the light atoms in
biological macromolecules (H, C, N, O, S, P) with frequency w of the used radia-
tion (in the range of 0.4 to 3.5 A), this condition is fulfilled and these atoms really
scatter normally. For heavier elements, the assumption w >> wy,, is no longer val-
id, and the frequency w may be higher for some and lower for other absorption
frequencies. If w is equal to an absorption frequency wy,,, then absorption of radia-
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tion will occur which is manifested by the ejection of a photoelectron with an en-
ergy corresponding to the ionization energy for this electron. This transition goes
to a state in the continuous region because the discrete energy states are all occu-
pied in the atom. The absorption frequencies for the K, L, or M shells are con-
nected with the corresponding absorption edges, which are characterized by a
sharp drop in the absorption curve (absorption versus 4) at the edge position. It
is evident that the scattering from those electrons with their resonance frequen-
cies close or equal to the frequency of the incident radiation will deliver a special
contribution, which is called “anomalous scattering”.

The classical treatment (see James, 1960) is briefly outlined here. It is assumed
that the atoms scatter as if they contain electric dipole-oscillators having certain
definite natural frequencies. The classical differential equation of the motion of
a particle of mass m and charge e in an alternating electric field E = Eoe'* is:

eEp ;
i+k5(—|—w§x:?°e‘“’t (5.12)

where the damping factor, k, is proportional to the velocity of the displayed charge
and wj is the natural circular frequency of the dipole if the charge is displaced. The
steady-state solution for this equation for the moment of the dipole which executes
forced oscillations of frequency under the action of the incident wave is:

62 E 0 euut

M=ex=———-—+7——
m w? — w? + ikow

(5.13)

The amplitude A of the scattered wave at unit distance in the equatorial plane
is given by:

2 ?E,
— i 5.14
me? w2 — w? + ikw ( )

The scattering factor of the dipole, f, is now defined as the ratio of the ampli-
tude scattered by the oscillator to that scattered by a free classical electron under
the same conditions. This amplitude at unit distance and in the equatorial
plane is given by:

62

A/ — _WEO (515)

Hence, we obtain Eq. (5.16) for f:

c02

f= w? — w? — ikw (3.16)

If fis positive the scattered wave has a phase difference of = with respect to the
primary beam (introduced by the negative sign in the equation for A'). If w >>
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s, fis unity. In the case of w << w;, fis negative and the dipole then scatters a
wave in phase with the primary beam.

Equation (5.16) can be split into real and imaginary parts, so that we obtain
Eq. (5.17):

f:f/+l:f/, (517)
with Egs. (5.18) and (5.19):

o (0? — w?)

(@? — wg)2 + k2w?

f=

(5.18)

Ka?

(w? — wg)z + k2w?

= (5.19)

We now extend this for an atom consisting of s electrons each acting as a di-
pole-oscillator with oscillator strength g(s) and resonance frequency w,. We have
to multiply the contribution for each electron by g(s) and form the sum over all
electrons. For the total real part of the atomic scattering factor we obtain:

= ZM (5.20)

w? — w?
S s

which assumes that  is not very nearly equal to g, and a small damping. [’
can be written as:

FeftAf =Yg+ 30 S (5.21)

2 _
w* — w?

For free electrons, we have wy,=0 and f' = fy = > g(s). The real part of the in-
crement of the scattering factor is due to the binding of electrons. Af” is the dis-
persion component of the anomalous scattering.

If w is comparable to wg but slightly greater, ikco must not be neglected. f be-
comes complex:

f=F+i"=fo+ Af +if" (5.22)

The imaginary part lags 7/2 behind the primary wave — that is, it is always /2
in front of the scattered wave. Af” is known as the absorption component of
the anomalous scattering.

In the quantum mechanical treatment of the problem the oscillator strengths
are calculated from the atomic wave functions. Honl (1933), in a series of theo-
retical investigations, used hydrogen-like atomic wave functions. In the frame of
this approach, to each natural dipole frequency s in the classical expression
there corresponds in the quantum expression a frequency wy,, which is the
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Bohr frequency associated with transition of the atom from the energy state k
to the state n, in which it is supposed to remain during the scattering. Modern
quantum mechanical calculations of anomalous scattering factors on isolated
atoms, based on relativistic Dirac—Slater wave functions, have been carried out
by Cromer and Liberman (1970). It follows from the theory of the anomalous
scattering of X-rays that f; is real and independent of the wavelength of the inci-
dent X-rays, but dependent on the scattering angle.

Af’" and Af” depend on the wavelength, 4, of the incident radiation, but are
virtually independent of the scattering angle.

5.2.2
Experimental Determination

Af" is related to the atomic absorption coefficient zo by Eq. (5.23):

A" (@) = 5 to(@) (5.23)

Af" can now be calculated by the Kramers—Kronig transformation:

o8]

Af' (@) :% / %(M (5.24)
0

As fluorescence is closely related to absorption, fluorescence measurements
varying the X-ray radiation frequency are used to determine the frequency de-
pendence of the dispersive components of the different chemical elements. In-
stead of the radiation frequency w, the radiation is often characterized by its
wavelength, A, or photon energy, E. The dispersion correction terms Af’ and
Af" are often simply denoted f’ and f”. Figure 5.5 shows the anomalous scatter-
ing factors near the absorption K edge of selenium from a crystal of Escherichia
coli selenomethionyl thioredoxin. The spectrum was measured with tunable syn-
chrotron radiation. Apart from the “white line” feature at the absorption edge,
f" drops by about 4 electrons approaching the edge from the short wavelength
side; Af’ exhibits a symmetrical drop of -8 electrons around the edge. Similar
values can be observed at the K edges for Fe, Cu, Zn, and Br, whose wave-
lengths all lie in the range 0.9 to 1.8 A, which is well suited to biological macro-
molecular X-ray diffraction experiments. For other interesting heavy atoms such
as Sm, Ho, Yb, W, Os, Pt, and Hg the LII (Sm) or LIII edges are in this range.
Here, the effects are even greater. Considerably larger changes are found for
several lanthanides, such as Yb, where the minimum f’ is -33 electrons and
the maximum f” is 35 electrons.
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T T T T Fig. 5.5 Anomalous scattering factors
L | near the absorption K-edge of
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5.2.3

Breakdown of Friedel’s Law

Under the assumption that the crystal contains a group of anomalous scatterers,
one can separate the contributions from the distinctive components of the scat-
tering factor according to Hendrickson and Ogata (1997) to obtain:

“F(h) = °Fx(h) + °Fa(h) + *F) (h) + i*F} (h) (5.25)

where °Fy is the contribution of the normal scatterers and °F, ’lFfA and 'IFX are
the contributions for the corresponding components of the complex atomic
form factor. For the centrosymmetric reflection, we obtain Eq. (5.26):

*F(~h) = “Fy(~h) + “Fa(—h) + *F\(~h) + i*F.(—h) (5.26)

The geometric presentation for both structure factors is given in Figure 5.6. In-
version of the sign of h causes a negative phase angle for all contributions
where the components of the scattering factor are real. For the f”-dependent
part this is also valid but, owing to the imaginary factor i, this vector has to be
constructed with a phase angle +7/2 with respect to °Fa(—h) and *F),(~h). The
resultant absolute values for *F(h) and “F(—h) are no longer equal, which
means that their intensities (square of the amplitude) are different (breakdown
of Friedel's law).
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Fig. 5.6 Vector diagram explaining the break-
i down of Friedel's law.
. *Fa(h)
Falh) /&
*Fa(h)
Fn(h)
*F(h)
R
)\F(F)
“F(h) _
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5.24
Anomalous Difference Patterson Map

One can show that (Eq. 5.27)

F(h) — “F(—h) ~ Z[*Fa(h) + *F, (h)] sin(ay — aa) (5.27)

N

where ay, is the phase angle of “F(h), a, the phase angle of the anomalous scat-
terers and (Eq. 5.28)

_“Fa(h) +“Fy(h)

5.28
i) 2%
As coefficients for an anomalous difference Patterson, we obtain:
) ) 4 )
AF2 = ["F(h) — *F(=h)]* ~ — [°Fa(h) + *F, (h)]? sin*(ay — ax) - (5.29)

k2

The AF,,,s will be maximal if the phase angle a, is perpendicular to the phase
angle ay, and zero if both vectors are colinear, which is opposite to the MIR case.
The anomalous Patterson map contains peaks of the anomalous scatterers with
heights proportional to half of (4/k?)[°Fa(h) + *F, (h)]* owing to the sin’ term,
and is therefore suited to determine the structure of the anomalous scatterers.
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5.2.5
Phasing Including Anomalous Scattering Information

The combination of anomalous scattering information with isomorphous re-
placement permits the unequivocal determination of the protein phases, as
shown in Figure 5.7. Using the anomalous scattering information alone gives
two possible solutions for the protein phase characterized by the intersection
points H and L in Figure 5.7. Combining it with the corresponding intensities
from the native protein without the anomalous scatterers leaves only one solu-
tion for the protein phase (vector O — H in Fig. 5.7). The case in Figure 5.7 is
called single isomorphous replacement anomalous scattering (SIRAS). Having n
isomorphous heavy-atom derivatives, each with anomalous scattering contribu-
tions, the Harker construction can be extended for this situation and the phas-
ing method is then designated multiple isomorphous replacement anomalous
scattering (MIRAS).

Fig. 5.7 Harker construction illustrating the phase
determination combining information from anomalous
scattering and isomorphous replacement.

m
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5.2.6
The Multiwavelength Anomalous Diffraction (MAD) Technique

During the past few years, the MAD technique has matured to be a routine meth-
od, and has led to a revolution in biological macromolecular crystallography. If
there are one or a few anomalous scatterers in the biological macromolecule it
is possible to determine the whole spatial structure from one crystal (exact iso-
morphism) by the MAD technique. The anomalous scatterers may be either in-
trinsic, as in metalloproteins (e.g., Fe, Zn, Cu, Mo, Mn), or exogenous (e.g., Hg
in a heavy-atom derivative or Se in selenomethionyl proteins; Hendrickson et
al., 1990; Yang et al., 1990). A prerequisite for the MAD technique is well-diffract-
ing crystals (resolution better than 2.8 A), because the anomalous components of
the atomic form factor are virtually independent of the diffraction angle and ac-
quire increasing weight with increasing scattering angle. This advantageous prop-
erty, together with exact isomorphism, serves for the determination of good phases
down to the full resolution, and also leads to the production of excellent experi-
mental MAD-phased electron density maps. A typical MAD experiment is carried
out at three different wavelengths (tunable synchrotron radiation), at minimum f’
and maximum f” at the absorption edge of the anomalous scatterer(s) and at a
remote wavelength where anomalous scattering effects are small.

The basic equations for the MAD technique as formulated by Hendrickson
and Ogata (1997) are as follows. Equation (5.25) can be written as Eq. (5.30):

“F(h) = °Fr(h) + “Fa(h) + i*F} (h) (5.30)
where
OFT — OFN + OFA (531)

with subscript T for the totality of atoms in the structure.
Furthermore, we have Egs. (5.32)—(5.35):

“Fr(f°) = “Frexp(i°g) (5.32)
“Fa(f°) = “Faexp(i®p,) (5.33)
'Fy = f(f) (5.34)
B = f (") (5.35)

In the common case of a single kind of anomalous scatterer, we obtain Egs.
(5.36) and (5.37):

'F, = ! f(i) °Fa (5.36)
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“F) = f;(f) °Fa (5.37)

Separating the experimentally observable squared amplitude into wavelength-de-
pendent and wavelength-independent terms gives Eq. (5.38):

“F(xh)* = °F1 + a(2)°F§ + b(2) Fr"Fa cos(“pr — “p,)
£ c(A)°Fr°Fasin(®gr — “¢p) (5.38)

with (Egs. 5.39-5.41)

a(i) _ flzf_tzfnz (5.39)
b(l) = zj;; (5.40)
c(4) = sz; (5.41)

The derivation of the formula for “F(h)” is illustrated in detail:

“F(h)* is obtained from the triangle formed by the vectors “F(h), °Fr(h) and
a (Fig. 5.8) by use of the cosine rule. The absolute values of the vectors are rep-
resented in italics, and the relevant angle is (180° — °¢p, — J). Hence, we obtain:

. 124 112 i X 12 4 2 1/2
“F(h)* = °F2 + (f fczf ) F% — 2 x °Fr x (f f@zf )
X “Fp X cos(m —0 — "¢ + “¢r) (5.42)

The cosine term in Eq. (5.42) can be obtained using some basic trigonometry:

cos(m + ("Ppr — “Pp —9)) = —cos("Ppr — “pp — ) (5.43)

cos((“pr — “pa) —0) = cos(®pp — “P) X cos0 + sin(“pr — °P,) X sind
(5.44)

with

s (£) o () " () /()" s
ani= () o () on () () s
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Fig. 5.8 Schematic drawing of structure factors of a biological
macromolecule that contains one kind of anomalous
scatterer.

Substituting this in Eq. (5.41), we obtain the expression for F(h)%. *F(—h)* is
determined from the triangle formed by the vectors *F(—h), °Fr(h) and a’
(Fig. 5.8) using a similar approach. Maximum anomalous scattering effects can
be expected in intensity differences of reflections that would be equal for exclu-
sively normal scattering. This is the case for Friedel pairs, h and -h, or their ro-
tational symmetry partners, and the relationship for such differences is given in
Eq. (5.27). Of further interest are dispersive differences between structure am-
plitudes at different wavelengths (Eq. 5.47):

AFx; = “F(h) — “F(h) (5.47)

The anomalous or dispersive intensity differences can be used to determine the
structure of the anomalous scatterers. The methods used are the same as for
isomorphous replacement, and these will be discussed in the next section.

5.2.7
Determination of the Absolute Configuration

As anomalous scattering destroys the centro-symmetry of the diffraction data,
this effect can be used to determine the absolute configuration of chiral biologi-
cal macromolecules. The most common method is to calculate protein phases
based on both hands of the heavy atom or anomalous scatterer structures, and
to check the quality of the relevant electron density map, which should be better
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for the correct hand. Furthermore, secondary structural elements in proteins
(consisting of L-amino acids) such as a-helices should be right-handed.

5.3
Determination of Heavy-Atom Positions

5.3.1
Vector Verification Procedures

A key step in solving the phase problem is to determine the heavy atom or anom-
alous scatterer positions by analyzing the respective isomorphous, dispersive, or
anomalous difference Patterson maps. In simple circumstances, this can be done
by an individual inspection of the difference Patterson maps, and this method has
been applied often in the past. We will explain this approach with an example. Our
crystal has the space group P2,2,2; and three independent molecules in the asym-
metric unit with one heavy atom each (Fig.5.9). Each atom with coordinates
%j,Yj, 2 has symmetry mates at —x; +1/2, —y;, 2+ 1/2; %+ 1/2, —y; + 1/2, —z;
and —x;j,y; +1/2, -z + 1/2 according to the crystallographic symmetry. Vectors
between symmetry mates adopt the following forms: x| —x; = —2x;, —2y;,0;
X! —x; =1/2,-2yi+1/2, =2z; x{" — x; = —2x;,1/2, —22; + 1/2. One can see that
all these vectors lie in special sections of the difference Patterson map, namely in
w=0; u=1/2and v =1/2, respectively. Such vectors are denoted as Harker vec-
tors, and the sections as Harker sections. It can also be seen that the coordinates of
the corresponding heavy atom can be determined from the Harker vectors. In Fig-
ure 5.9, we have three copies of a molecule with one heavy atom per molecule in
the asymmetric unit. These molecules are related by noncrystallographic symme-
try (NCS) among each other. One can independently determine the coordinates of
each atom, but these coordinates are ambiguous with respect to the different ori-
gins that can be chosen for the space group representation. An unambiguous de-
termination is achieved if vectors between heavy atoms within the asymmetric
unit are also considered. As such vectors generally do not lie in any special section
of the Patterson map, it will be more difficult to locate them. Furthermore, the
number of peaks in a heavy-atom Patterson map equals the square of the number
of heavy atoms, N, including the origin peak. This means that the interpretation of
more complex heavy-atom structures becomes increasingly complicated, and auto-
mated methods for solving difference Patterson functions must be applied. These
methods may be divided into two categories: vector search methods (e.g., Terwil-
liger et al., 1987; Steigemann, 1991; Knight, 2000), and superposition methods
(Buerger, 1959; Sheldrick, 1991).

We will shortly explain the vector search method. In Figure 5.9, the full lines
between heavy atoms represent Harker vectors, the dashed ones cross vectors
generated by application of NCS, and the dotted ones vectors generated by com-
bining NCS and space group symmetry (SGS). The complete vector set for the
Harker (3x12) and NCS-cross (2x12) vectors is shown in Figure 5.9. Only two
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Ya Ya Va
Fig. 5.9 Interatomic vectors between heavy vectors are displayed as full lines, NCS-cross
atoms in space group P2,2,2,. There are vectors as dashed lines and NCS-SGS-cross
three copies of a molecule with one heavy vectors (two vectors out of 84 shown only)
atom each in the asymmetric unit. Harker as dotted lines.

of the 84 NCS-SGS-cross vectors are displayed. Each line stands for the positive
and negative interatomic vector. If the NCS operations are known, these can be
incorporated into the search routines. As normally the NCS operations (espe-
cially the translational components) are unknown at the beginning of the phase
determination, they will not be included in the following discussion. The first
step is a single site search. An atomic position x is scanned through the whole
unit cell and for each x vectors u;j(x) are calculated according to

uij(x) _ RiSGSX+ t?GS _ (RjSGSX =+ thGS) — (RiSGS _ RjSGS)X + tiSGS _ thGS )

(5.48)

RSGS tSGS

and are the relevant rotational and translational space group symme-
try operators. In our example, i and j extend from 1 to 4. Values for i =j are
not considered because they represent self vectors of lengths zero. Thus, 12
Harker vectors are calculated for each position x, their relevant Patterson func-
tion value acquired, and a correlation function determined. This correlation
function can be the sum, the product, or the minimum of the respective Patter-
son function values. The sum function is rather insensible against missing
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peaks, and is the opposite to the latter two scoring functions. Although the mul-
tiplication scoring function is highly selective, in isomorphous, dispersive or
anomalous difference Patterson maps some peaks may be absent, and therefore
the sum scoring function often gives the best result. As we have three heavy or
anomalous scatterer atoms in the asymmetric unit, there should be three sym-
metry-independent maxima in the vector search. As they occur repeatedly due
to several possible origins in the unit cell, it is necessary to find their common
origin. This is done in a second step by a cross-vector search. In space group
P1 the only symmetry operation is the identity, and therefore we do not have
Harker vectors. As the choice of the origin in P1 is free, one can choose the po-
sition of one heavy atom arbitrarily. For a cross-vector search one or several
known atomic positions are kept fixed and for each position x vectors uy,(x)
and the score functions are calculated. The vectors adopt the form

Ui (x) = RSGSx + 1565 — (stcsxyf;x 4 tjscs) — RSSSx — stcsxyf;x 558 tjscs .

(5.49)

Such a cross-vector search should have peaks for all heavy atoms with respect to
a common origin in the unit cell, provided that the quality of the respective dif-
ference Patterson is sufficiently good. If the interatomic vectors between two or
more heavy atoms are known, one can determine the translational vector t by
using it as a scan parameter to calculate the vectors

o (€) = RESS (x5 +8°) 4+ 6565 — (RSO (x + 1)) -+ £59)
= (RS — RSOS)E* + (R§%Sx,, — REOSx,,) + (8§95 — £599) (5.50)

and the relevant scoring function values. Vector search procedures based on
these principles and including possible knowledge of NCS are provided in the
program systems PROTEIN (Steigemann, 1991), SOLVE (Terwilliger and Be-
rendzen, 1999), and the CCP4 program RSPS (Knight, 2000).

5.3.2
Direct Methods

The term “direct methods” denotes those methods which try to derive the struc-
ture factor phases directly from the observed amplitudes through mathematical
relationships. Direct methods, implemented in widely used highly automated
computer programs such as MULTAN (Main et al., 1980) and SHELXS (Shel-
drick, 1990) provide computationally efficient solutions for structures with fewer
than about 100 independent non-H atoms. Pushing up the limits to about 2000
independent non-H atoms using exclusively native data was achieved by the de-
velopment of a direct methods procedure (Weeks et al., 1993) that has come to
be known as Shake-and-Bake. The principles and applications of direct methods
in X-ray crystallography of biological macromolecules has been reviewed (Shel-
drick et al., 2001) and served as the basis for this section.

17
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For direct methods it is necessary to replace the usual structure factors Fy, by
the normalized structure factors (Hauptman and Karle, 1953),

Ey = [Ep|expipy,

gy VPl ClexplB(sin0)*/2) Ful (5.51)

o <|F |2>1/2 - N 1/2
T
j=1

where the angle brackets indicate probabilistic or statistical expectation values,
|En| and ¢y, are the amplitude and phase angle of the normalized structure fac-
tor, C and B are the scale and temperature factors from the Wilson plot, and
the e, > 1 are factors that account for multiple enhancement for certain special
reflection classes due to space group symmetry (Shmueli and Wilson, 2001).
The other symbols have the known meanings from the familiar structure factor
equation. The subscript for the indices vector h has been chosen for clarity in
the subsequent mathematical relationships. The condition (|E|*) =1 is always
imposed, and the values for (|E,|) are constant for all concentric resolution
shells unlike (|Fy|), which decreases with increasing sin 6/4. Thus, the normali-
zation process places all reflections on a common basis, and this is a great ad-
vantage with regard to the probability distributions that form the basis of direct
methods.

For determining the positions of heavy atoms or anomalous scatterers, the re-
spective isomorphous, dispersive, or anomalous difference amplitudes are used
in direct methods. However, they must be in the form of normalized difference
structure factor magnitudes |Ex|. This can be done with the programs from
Blessing’s data reduction and error analysis routines (DREAR): LEVY and EVAL
for structure factor normalization according to Eq. (5.51) (Blessing et al., 1996),
LOCSCL for local scaling of the SIR and SAS magnitudes (Matthews and Czer-
winski, 1975; Blessing, 1997) and DIFFE for the determination of the actual dif-
ference magnitudes (Blessing and Smith, 1999).

SIR and SAS differences are calculated as greatest lower bound estimates ac-
cording to Eqgs. (5.52) and (5.53):

Naer 172 Npat 1/2
(Z Uﬂz) |Eder‘ - (2} [6|2> |Enat|
j=

Ner Npat 1/2
j=1 j=1

where |E,at| and |Ege,| are the normalized structure factor magnitudes of the na-
tive and derivative data set, respectively, |fi| = [f*+f +if"| = [(f°+ ]5’)2—&—
" )2]1/ % are the atomic scattering factors which allow for the possibility of
anomalous scattering, q = qo exp(q1S? + ¢2S*) is a least-squares fitted empirical

(5.52)



5.3 Determination of Heavy-Atom Positions

scaling function dependent on S =sinf/1 that imposes the condition
(|Eal*) = 1 and is used to define g, g1 and gs.

1/2
i(ﬁo +f) + (75”)2} [|Esh| — [E-nl|

j=1

‘EA|SAS = (553)

N 1/2
2 g@")z}
f=

|[Ein| and |E_y| are the normalized structure factor magnitudes of the Friedel
pairs, and g is again an empirical renormalization scaling function that imposes
the condition (|Ex|*) = 1.

In general, the phase and the amplitude of a wave are independent quantities.
However, in X-ray diffraction there exist relationships between them, and these
result from two important properties of atomic structures. Their electron den-
sity is everywhere positive — that is, p(r) > 0 (positivity) — and they are com-
posed of discrete atoms (atomicity). Based on these properties, magnitude-de-
pendent entities — which are linear combinations of phases called structure in-
variants — have been derived. They were named in this way because these quan-
tities are independent of the choice of the origin. The most useful of the
structure invariants are the three-phase or triplet invariants

Dpk = ¢ + O+ O_pk - (5.54)

Its conditional probability distribution (Cochran, 1955) is

P(®ri) = [27]o(Ank)] " exp(Apk cos D) (5.55)
where
Apic = (2/N"?)[EREyEn i (5.56)

N is the number of atoms, here presumed to be identical, in the asymmetric
unit of the corresponding primitive unit cell, and I, is a modified Bessel func-
tion. Estimates of the invariant values are most reliable when the normalized
structure factor magnitudes |Ey|, |Ex| and |E_j,_i| are large and the number of
atoms N in the unit cell is small. This is the main reason why direct phasing is
more difficult for macromolecules than it is for small molecules.

The phasing procedure starts in sorting the |E| values with respect to their
magnitude, and a list of invariants with their joint probabilities Apy is calculated
using the largest |E| values. The invariants with the largest Ays are retained.
Now, a start-phasing set is still needed to initiate the calculation of phases by
means of the invariants. Depending on the space group, a small number of
phases can be assigned arbitrarily in order to fix the origin position and, in
non-centro-symmetric space groups, the enantiomer. However, these reflections
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provide an inadequate basis for subsequent phase development. In order to ex-
tend the starting phase set, reflections are assigned a couple of different phase
values. Phases are developed then by running all possible combinations of these
phases in a multisolution approach (Germain and Woolfson, 1968), in the hope
that the correct solution is included. Solutions must be identified on the basis
of some suitable figure of merit.

Once a set of phases has been chosen, it must be refined against the set of
structure invariants whose values are presumed known. This step is denoted as
shaking, and phase refinement or expansion take place in reciprocal space. So
far, only two optimization methods (tangent refinement and parameter shift op-
timization of the minimal function) have been proven to be of practical value.
The tangent formula

- Xk: [EE h i sin(p + ¢_p1)

>k IEE nk| cos(gy + 9y 1)

tan(py,) (5.57)

(Karle and Hauptman, 1956) is used in conventional direct-methods programs,
and also in the phase refinement part of the dual-space Shake-and-Bake proce-
dure (Weeks et al., 1994; Sheldrick and Gould, 1995) to calculate ¢, given a suf-
ficient number of pairs (¢, ¢__i) of known phases. The estimate of ¢, by the
tangent formula is only reliable for |Ey| >> 1 and for structures with a limited
number of atoms N.

Another possibility for phase refinement or phase expansion is the con-
strained minimization of an objective function such as the minimal function
(Debaerdemaker and Woolfson, 1983; Hauptman, 1991):

R(®) = th:Ahk{COS Dpy — [h(Ahk)/Io(Ahk)]}z/;Ahk : (5.58)

R(®) is a measure of the mean square difference between the values of the tri-
plets calculated using a particular set of phases, and the expected values of the
same triplets as given by the ration of the modified Bessel functions. The mini-
mal function is expected to have a constrained global minimum when the
phases are equal to their correct values for some choice of origin and enantio-
mer. It transpired that the minimal function is also an extremely useful figure
of merit.

In principle, any minimization technique could be used to minimize R(®) by
varying the phases. So far, a seemingly simple algorithm, known as parameter
shift (Bhuiya and Stanley, 1963), has proven to be quite powerful and efficient
when used within the Shake-and-Bake context to reduce the minimal function,
which is not described in detail here.

The exploitation of real space constraints due to the atomicity for phasing is
called baking. Automatic real-space electron density map interpretation in the
Shake-and-Bake procedure consists of selecting an appropriate number of the
largest peaks in each cycle to be used as an updated trial structure, without re-
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gard to chemical constraints other than a minimum allowed distance between
atoms. Selecting the largest N, peaks (N,=number of atoms, heavy atoms or
anomalous scatterers per asymmetric unit) for a true small molecule or for hea-
vy-atom or anomalous scatterer substructures delivers satisfying results. The
trial structure is transformed back to reciprocal space and subjected to phase re-
finement by the tangent formula.

The Shake-and-Bake algorithm has been implemented independently in the
two computer programs SnB (Miller et al., 1994; Weeks and Miller, 1999) and
SHELXD (Sheldrick, 1997, 1998). The determination of the anomalous scat-
terers from MAD data with program SnB will be illustrated in Part II of this
book.

5.4
Phase Calculation

5.4.1
Refinement of Heavy-Atom Parameters

Before the protein phases can be calculated, it is necessary to refine the heavy-
atom parameters. These are the coordinates x, y, z, the temperature factor
(either isotropic or anisotropic), and the occupancy. The refinement modifies
the parameters in such a way that |Fpg(obs)| becomes as close as possible to
|Fpp(calc)|. Using the method of least squares, the refinement according to
Rossmann (1960) minimizes Eq. (5.59):

e= Y wh)[(Fen — Fp)” = kFf ) (5.59)
h

where k is a scaling factor to correct FZ . to a theoretically more acceptable
value because, according to Eq. (5.4), Fpy—Fp and Fy have approximately the
same length when Fpy, Fp and Fy point in the same direction. The probability
for this case will be high if the difference between Fp; and Fp is large. An im-
provement can be obtained if the contribution from the anomalous scattering is
included (Dodson and Vijayan, 1971).

For the parameter refinement of anomalous scattering sites, the differences
between the observed and calculated structure factor amplitudes for °F, are sub-
jected to minimization. Another approach treats the anomalous or dispersive
contributions as in MIR phasing.

From the refined heavy-atom parameters, preliminary protein phase angles ap
can be obtained, as shown in the corresponding Harker construction. A further
refinement of the heavy-atom parameters can be achieved by the “lack of clo-
sure” method (Dickerson et al., 1968) incorporating this knowledge. The defini-
tion of “lack of closure” ¢ is illustrated in Figure 5.10a and b. In the case of per-
fect isomorphism, the vector triangle Fp+Fy=Fpy closes exactly (Fig. 5.10a). In
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. Fig. 5.10 Definition of “lack of

! closure”. (a) Perfect isomorphism;
(b) usually, the observed and
calculated values for Fpy differ by
the “lack of closure” e.

(a)

Op

(b)

practice, this condition will not be fulfilled and a difference ¢ between the ob-
served Fpy and the calculated Fpy will remain (Fig. 5.10b). Fpy(calc) can be ob-
tained from the triangle OAB (Fig. 5.10b) with the cosine rule:

Fpr = [F2 + F% + 2Fp x Fy cos(ay — ap)]"? (5.60)

The function which is minimized by the least-squares method is:

E =Y mug(h)? (5.61)
h
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where
&j = kjFppj(obs) — Fpyj(calc) (5.62)

is the “lack of closure” for the heavy-atom derivative j, k; is a scaling factor, and
my, is a weighting factor.

54.2
Protein Phases

As the structure factor amplitudes Fp, Fpy, Fy and ay are known, the protein
phase angle ap can be calculated. For the single isomorphous replacement situa-
tion (see Fig. 5.1), ¢ is zero only for the two protein phase angles ap where the
two circles for Fp and Fpy; intersect. In practice, all these observed quantities ex-
hibit errors. For the treatment of these errors it is assumed that all errors are in
Fpy and that both Fy; and Fp are error-free. For each protein phase angle a, ¢(a)
is calculated. The smaller ¢(a) is, the higher is the probability of a correct phase
angle a. For each reflection of a derivative j a Gaussian probability distribution
is assumed for ¢ according to Eq. (5.63):

P(a) = P(¢) = Nexp {— i(E“z)} (5.63)

where N is a normalization factor and E* the mean square value of &. Small val-
ues of E are related to probability curves with sharp peaks and well-determined
phase angles and the opposite is true for large E values. Such phase-angle prob-
ability curves can be calculated for each individual reflection and derivative. For
single isomorphous replacement this curve is symmetric, with two high peaks
corresponding to the two possible solutions for ap. We obtain the total probabil-
ity for each reflection with contributions from n heavy-atom derivatives by
multiplying the individual probabilities:

v (a)} (5.64)

2
- 28

P(a) = HPJ(a) = N'exp
Jj=1

These curves will be nonsymmetric with one or several maxima (see Fig. 5.11a
and b).

The question arises of which phases should be taken in the electron density
equation to calculate the best electron density function. An immediate guess
would be to use the phases where P(a) has the highest value. This approach
would be appropriate for unimodal distributions, but not for bimodal distribu-
tions. Blow and Crick (1959) derived the phase value that must be applied un-
der the assumption that the mean square error in electron density over the unit
cell is minimal. For one reflection this is given by:

123



124 | 5 Methods for Solving the Phase Problem

Fig. 5.11 Total probability

P(o)
curves P(a) for two different
reflections. (a) For one
derivative; (b) for more than
one derivative.
(a) — >0
P(o)
(b) >«
2 1 2
(Ap7) = 5 (Fs — Fy) (5.65)

v

where F, is the true and F; the structure factor applied in the Fourier synthesis.
The mean square error is then obtained as:

/ (Fs — Fexpia)*P(a)da
(Ap?) = % = /2 (5.66)
P(a)da
a=0

F, has a phase probability of P(a), and has been given as F,=F exp ia. It can be
shown that the numerator integral in Eq. (5.66) is minimal if:
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Fs(best) =F n mF eXp(iabest) (567)

Equation (5.67) corresponds to the center of gravity of the probability distribu-
tion with polar coordinates (mF, apest), Where m is defined as magnitude of m
given by:

2n

/ P(a) exp(ia)da

/ P(a)da

a=0

This magnitude of m is equivalent to a weighting function and is designated
the “figure of merit’. The electron density map calculated with mF and dp.eg is
known as “best Fourier”, and should represent a Fourier map with minimum
least-squares error from the true Fourier map.

For the total error of the “best Fourier”, the following equation has been de-
rived:

(A?) = 55 S0 P (1~ ) (5.69)
h

The order of magnitude of this error may be illustrated by the example of the
structure determination of lysozyme. The root mean square error in the Fourier
synthesis was 0.35 A~ with values of 2.0 A resolution for the diffraction data
and a mean “figure of merit” of 0.6.

The program systems CCP4 (CCP4, 1994) and PROTEIN (Steigemann, 1991)
contain all routines necessary to calculate protein phases according to the
MIRAS technique and a number of different kinds of Fourier maps. Alternative
probabilistic approaches for the phase calculation are used in programs
MLPHARE (Otwinowski, 1991) and SHARP (de La Fortelle and Bricogne,
1997). Both programs can also carry out MAD phasing. The MADSYS program
(Hendrickson, 1991) is based on the algebraic approach outlined in Section
5.2.6, and executes all tasks of a MAD analysis, from scaling to phase-angle cal-
culation.
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543
Maximume-Likelihood Parameter Refinement and Phase Calculation

As the program SHARP (de La Fortelle and Bricogne, 1997) is now a standard
approach to heavy atom and anomalous scatterer parameter refinement and
phase calculation for MIR and MAD methods, the basic principles of the under-
lying maximum-likelihood (ML) formalism is briefly outlined here. The so-far
used least-squares (LS) model is always formulated as a prescription for turning
given values of model parameters into “calculated” (error-free) values to be com-
pared with the observables. Error estimates are obtained a posteriori by examin-
ing the residual discrepancy between the “calculated” and “observed” quantities.
Thereby, a bias is introduced in the model incorporating some degree of ran-
domness whenever a distribution for a random quantity is replaced by a value
for that quantity. On the other hand, a likelihood-based model puts its predic-
tions directly in the form of probability distributions for the observables, the
quantities called “calculated” in the LS formalism usually appearing as parame-
ters in these distributions.

In the LS formalism, the calculated structure factor amplitude |Fpyj(h)|,
which will be denoted as r;, is given (allowing a scale factor kj) by (Eq. 5.70):

r, = kj|Fp(h) + Fy(h)| . (5.70)

Nonisomorphism is estimated a posteriori by an analysis of lack-of-closure er-
rors, but the actual structure of the LS equations precludes its refinement.
Furthermore, no attention is paid to the interaction between the nonisomorph-
ism variance and the relative scale of native and derivative structure factors.

In the ML formalism, the introduction of randomness caused by nonisomorph-
ism is reflected by considering not the values but the distributions of all quantities
affected by it. The key step is now to introduce for each jth data set (heavy-atom
derivative or MAD data) a so-called perturbed Fp;(h) = Fpyj(h)— Fy;(h). A native
data set, if present, is treated as compound j = 1 with zero heavy-atom contribu-
tion and zero nonisomorphism. Under lattice-preserving nonisomorphism Fp;(h)
is a random complex number with mathematical expectation

(Fpj(h)) = Fp+(h) x D; (5.71)

and variance V;. Here, the complex number Fp«(h) denotes the unperturbed na-
tive structure factor, which is not directly observable without error, but whose
(hidden) value acts as a common parameter linking the distributions of all
Fp;j(h) for the various js. The quantity D; is an “attenuation factor”, the value of
which lies between 0 and 1, and is connected to the variance parameter V! in
such a way as to keep the expected value in resolution shells independent of
the degree of nonisomorphism. Substitution of Eq. (5.71) into Eq. (5.70) shows
that Fpj(h) is now a random complex number, the distribution of which is a
two-dimensional Gaussian of variance V; centered at (Fpj(h)).
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If, for each reflection h, we could measure Fp;(h) as a complex number, then
the probability of measuring a complex value R;expiy; (for prescribed values of
the parameters rjexp ip; and V;) would be:

, .2
‘ ‘ 1 |r; exp 19; — Rjexp “//j|
PR expivlryexpipy, V) = 5 orexp | = 2V}

(5.72)

Since one can measure only structure factor amplitudes, there is a need to de-
rive from the previous formula the probability of measuring the amplitude R;,
whatever its phase may be.

This is done by analytical integration of the previous distribution over the
phase, to obtain Eq. (5.73):

P(Rj[Fps, Py, kj, Vi) = R(rj(Fps, Fuyy by

V. . V), Ry, VE) (5.73)

J

where # (Eq. 5.74) denotes the Rice distribution (Rice, 1944):

R 2+ R? R
A(r,R,V) :Vexp(—r 2+V )10<%> . (5.74)

If there are M distinct isomorphous derivatives with statistically uncorrelated
lack-of-isomorphism errors, the conditional joint probability distribution of the
M structure-factor amplitudes for these compounds is:

M

p(Rl,...,RM‘rl,V{,...,I’M, H% rj FP_]vFva J’VJ) Rj er) . (575)
J:l

One could now go over to the likelihood by substituting the measured values
Rj‘?bs for the relevant measurable parameters R;. However, the physical measure-
ment leads in this case only to a Gaussian probability distribution
@obs(RJ‘?bﬂRj,alR), characterized by its mean R; and its standard deviation of.
The likelihood of the current heavy-atom model is obtained by the classical, val-
ue-based, likelihood function over all possible values of the measurement RJ‘-"’S,
each weighted by its observational probability.

We will not further explain the ML method in detail (this is done by de La
Fortelle and Bricogne, 1997, the first part having been used for this paragraph).
Likelihoods are developed on this basis for the heavy-atom model of isomor-
phous replacement and the anomalous scatterer model of the MAD measure-
ments, and these are combined to a common likelihood function which is made
maximal by refining the relevant parameters. Thereby, a suitable parameteriza-
tion for the derivative structure factors, scale factors and lack-of-isomorphism
variances had to be performed. The refined global parameters are then used to
calculate best Fourier phases and Hendrickson—Lattman coefficients, which can
be used for phase combination purposes (for an explanation, see Section 6.7).
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The Fourier phases can be used to calculate residual maps to detect further hea-
vy atoms or anomalous scatterers.

544
Cross-Phasing of Heavy-Atom Derivatives or Anomalous Dispersion Data

It is often the case that several heavy-atom derivatives have been prepared and
respective X-ray data sets have been collected, but only for one derivative can
the heavy-atom positions be determined reliably. The heavy-atom positions of
the other derivatives, provided that they are isomorphous, can then be deter-
mined from a difference Fourier map of the following form:

Ap(r) = %Z(FPH(h) — Fy(h)) exp[—2nihr + iap(h)] . (5.76)
h

This is a Fourier summation with the isomorphous differences as coefficients
and the phases of the protein. As we have phase information from one deriva-
tive only, only the phases of its heavy-atom set ay are available. Using the ap-
proximation relationship for the isomorphous difference (Eq. (5.4), it can be
shown (see Drenth, 1994, p. 151) that:

Ap(r) = % %Z Fya(h) exp[—2rihr + iap ()] . (5.77)
h

Thus, using the isomorphous differences of the other derivative and the SIR
phases as protein phases, the corresponding difference Fourier map shows posi-
tive electron density at the site of attached atoms, and negative density at the
position of removed atoms with half heights. If we take the anomalous or dis-
persive differences we can determine the positions of anomalous scatterers.

A different type of Fourier synthesis is the already-mentioned residual map.
These can be calculated when the structure determination is almost finished,
and they adopt the form:

Residual Fourier = %Z(FPH(h) — |Fp(h) 4+ Fyu(h)|) exp[—2zihr + iapy (h)] .
h

(5.78)

The phase angles apy are calculated for the present model of the derivative.
Similar Fourier maps can be calculated for anomalous data and used to detect
additional minor heavy-atom sites or anomalous scatterers, as mentioned pre-
viously.
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5.5
Patterson Search Methods (Molecular Replacement)

If the structures of molecules are similar (virtually identical), or they contain a
major similar part, this can be used to determine the crystal structure of the re-
lated molecule if the structure of the other molecule is known. This is done by
systematically exploring the Patterson function of the crystal structure to be de-
termined with the Patterson function of the search model. Let us first consider
some important features of the Patterson function. The relationship between
two identical molecules in the search crystal structure (Fig. 5.12a) can generally
be formulated as:

X, = [CX; +d (5.79)

Equivalent positions X; in molecule 1 are at positions X, of molecule 2. [C] is
the rotation matrix and d the translation vector of the movement of the mole-
cule. Figure 5.12b shows the Patterson function belonging to the molecular ar-
rangement in Figure 5.12a. It is evident that around the origin vectors are as-
sembled that are intramolecular, whereas the vectors around lines AB and EF
are intermolecular. The intramolecular vectors depend on the molecule orienta-

(b)
Fig. 5.12 Patterson function of two identical molecules
separated by the spatial movement given in Eq. (5.79).

(a) Positions of the two molecules; (b) interatomic vectors of
structure in (a). A, O, Intramolecular vectors of the left and
right molecule; [J, W, intermolecular vectors.
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tion only, and therefore can be used for its determination. Once the orientation
of the molecule(s) has been elucidated this can be used to reveal the translation
of the molecule(s) by analyzing the intermolecular vector part of the Patterson
function. The distinction between intra- and intermolecular vector sets and ex-
ploiting them for orientation and translation determination was first realized by
Hoppe (1957), while the extension to protein crystallography and the first math-
ematical formulation of rotation function was provided by Rossman and Blow
(1962).

5.5.1
Rotation Function

The intramolecular vectors are arranged in a volume around the origin of the
Patterson function with a radius equal to the dimension of the molecule. The
rotational search is then carried out in this volume U. The rotation [C] of the
molecule is accompanied by a rotation of its corresponding Patterson function
P(u) to the rotated position Ps(u). The search Patterson (deduced either from
the search model (cross-rotation) or from the crystal Patterson itself (self-rota-
tion)) is rotated to any possible rotational orientation [C] 'u characterized by
three rotational angles, a, ff, and y. When a structural model is available, the tar-
get data are calculated by placing the model within a P1 unit cell whose dimen-
sions guarantee that U contains only self vectors. The rotational angles may be
defined in different ways. The situation for Eulerian angles and spherical polar
angles is shown in Figure 5.13a and b, respectively. The now generally used
convention for Eulerian angles is illustrated in Figure 5.13a. In the orthogonal
coordinate system x, y, z, the first rotation is by the angle a around the z-axis,
then a rotation by the angle f around the new y-axis, and finally a rotation by
the angle y around the new z-axis. Spherical polar coordinates (Fig. 5.13b) de-
fine a rotation axis x by the two angles ¢ and y. At each angular position the
actual functional values are correlated with those of the crystal Patterson all
through the volume u and integrated over this volume. The correlation function
may be the sum or the product of each corresponding pair of values. Rossman
and Blow (1962) proposed a product function and the rotation function for this
case, as given by Eq. (5.80):

R@.f.7) =1 / P,(u) Py([C] " w)d’u (5.80)

U

The function has maxima if the intramolecular vector sets are coincident. The
calculation can be carried out in both direct and reciprocal space. In the direct-
space formulation (Huber, 1965; Nordman, 1966), an interpolation is needed
after each rotation since the values of the Patterson functions are only available
at discrete sampling points.

The reciprocal-space formulation of the above integral is obtained by substi-
tuting the Patterson functions by their Fourier summations:
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Fig. 5.13 lllustration of rotations defined by: (a) Eulerian an-
gles (a, 5, 7); and (b) spherical polar angles (¢, v, x).

P(u) = VZ I(h) exp(—2zihu) . (5.81)
h

Taking into account that I(—h) = I(h), one obtains Eq. (5.82):

R(a,B,7) = — ZZIt(h)IS(k)% / exp[2ri(h — K[| uld*u
h k

Vi Vs )

=SS L) LK)y (h - KT (5.82)
ViV,
tVs h k

where y;, the interference function, is the Fourier transform of the characteris-
tic function of U - that is, a function that adopts the value 1 within U and 0
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outside. In principle, the region of integration could have any shape, but a use-
ful choice for the region is a sphere with radius b. Making the substitution
h — k[C] ! ='s, we obtain

n 2n

b
2u = (3/4nb®) / / / exp(2zisu)u? sin(0)dud0de
= 3[sin(27nsh) — 27sh cos(2nsh)] / (2nsh)’ . (5.83)

Although simple, the resulting expression for the rotation function has the dis-
advantage of containing intricate h, k and [C]™" contributions, which makes its
calculation time-consuming if the whole range of rotations must be explored.
Crowther (1972) showed the advantage of expanding the Patterson functions
within a spherical region in terms of spherical harmonics. Indeed, f-sections of
the rotation function are calculated with two-dimensional fast Fourier trans-
forms. Further improvements of these fast rotations functions have been made
by Navaza (1993) and used in his molecular replacement computer program
AMORE (Navaza, 1994). The detailed complicated mathematics has been de-
scribed by Crowther (1972) and Navaza (1993).

If an asymmetric unit contains more than one copy of a molecule, the rota-
tion matrix between the molecules can be determined by a self-rotation func-
tion. Here, the crystal Patterson is rotated against itself and the integration is
taken over the volume U around the origin in the same manner. The identical
molecules may have an arbitrary orientation to each other, or they may be re-
lated by local or so-called non-crystallographic symmetries. Searching for local
rotation axes is best carried out in a polar angle system. The search Patterson is
brought into each polar orientation and then rotated around the angle value for
the local axis being sought, for example, 120° for a threefold local axis.

The rotation function possesses symmetries, which depend on the symme-
tries of the actual Patterson functions. Methods to determine the asymmetric
unit of the relevant rotation function have been developed by Tollin and Ross-
mann (1966), Narasinga Rao et al. (1980), and Moss (1985). The calculations
must be made for this asymmetric unit only, and the computing time is short-
ened considerably, especially if higher symmetries are present.

A practical point of view is the use of an optimal resolution range. Low-reso-
lution data can be excluded because they are rather insensitive to rotation and
contain a considerable contribution of the solvent. High-resolution data can be
used in self-rotation functions, but should be excluded for a search model be-
cause they are more sensitive for the model. A range between 3 and 5 A has of-
ten proved to be optimal.
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55.2
Locked Rotation Function

One can use the rotational NCS, determined by the self-rotation function, to in-
crease the signal-to-noise ratio of cross-rotation functions (Tong and Rossmann,
1990). If {[S],,n =1,..., N} constitutes the set of NCS rotations, including the
identity, and [C] is a correct orientation of the cross-rotation, then [S],[C] must
also correspond to a correct orientation. Here, we are assuming that the rota-
tional NCS is represented by a group. Now, a function may be defined, the
locked cross-rotation, whose values are the average of the cross-rotation values
at orientations related by the rotational NCS:

Ric([C]) = »_ R([S],[C])/N . (5.84)

M=

n

Il
—_

If we substitute the target Patterson function by the average over the NCS of
the rotated target functions we can compute R;c as an ordinary cross-rotation,
similar to Eq. (5.80).

M=

Ric([C]) = (1/V)/Pt(U)Ps([C]fl[S}Jlu)dau/N

—(1/v) /

S rsln
In certain cases the NCS can be defined in advance, and this can be used for
the calculation of a locked self-rotation function. The NCS is given with ele-
ments {[I],,n=1,...,N} in a reference orientation. They are connected with
the actual NCS elements by

I
Il
—

N|Py([C] 'u)d*u (5.85)

[S], = [C[1,[C], " - (5.86)
Since each [S], should be related to a local maximum of the self-rotation, the
function

N

Ris([C]) =Y R((C],[1,[CI,)/N (5.87)

n=1

should also display a maximum for each [C],, but will have a noise level re-
duced by N'/2,
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553
Translation Function

Once the orientation of the molecule(s) has been determined, translation of the
molecule(s) can be obtained from translation searches. These may be carried
out in terms of crystallographic R factor, the correlation coefficient, Patterson
correlation, and electron-density correlation criteria. As the orientation of the
search model is known, the structure factors can be calculated as Eq. (5.88)
(Rae, 1977)

Feae(h) = ) Fn(h) exp{27ih[Toxo} . (5.88)

where x, is a translation vector from a reference position for the search model.
The summation goes over the crystallographic symmetry operators of the space
group, [T], tm, which relates the coordinate vectors x;; in the first asymmetric
unit with the coordinate vectors x,,; according to

Xpmj = [Tm]le +t,. (589)

Fu(h) = > f exp{2mih([ T, s, + )} (5.90)
J

is the contribution of the search model in the mth crystallographic asymmetric
unit to the structure factor at the reference position.

5.5.3.1 R-Factor and Correlation-Coefficient Translation Functions

The crystallographic R-factor is often used as criterion in a translation search. It
is defined as the difference between the observed (F,s(h)) and calculated
(Fealc(h)) structure factor amplitudes (Eq. (5.91),

RF - Z |Fobs(h) - kFFcalc(h)|/ Z Fobs(h) . (591)
h h

Another approach is to calculate a correlation factor, which has the advantage of
being independent of a scale factor like kr in Eq. (5.91). It is defined as:
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%(FobS(h) - <Fob5(h)>)(Fcak(h) - <FcaIC(h)>)

CCr =

1/2

[;(m(h) — (Fape () (Fea(h) <Fcalc<h>>>2]
% Fobs (h)Fcalc (h) - % Fobs(h) % Fcalc (h)/N

{ [g(za,bs(h)f - (; Fobs(m)z/N} {Z(Fuk(h))z - (g Fcalcaa))z/N

h

}1/2

(5.92)

Analogical factors can be formulated on the basis of intensities. The structure
factor calculation can be split up into two steps. The F,,(h) values given in Eq.
(5.90) are constant for a given orientation of the search model, and can be cal-
culated by placing the search model in a P1 unit cell with the same cell dimen-
sions as the unknown crystal unit cell. The calculation of the structure factors
according to Eq. (5.88) is then straightforward.

If more than one molecule is present in the asymmetric unit the calculation
has to start with one molecule and its translation hopefully found by the aid of
these search criteria. It must be stressed, however, that these factors are very
sensitive to the completeness of the search model, and it is evident that in the
easiest case of two molecules in the asymmetric unit the computation of factors
includes 50% of the search model at best. In the lucky case that the first mole-
cule could be positioned this will be kept fixed at its correct position and in-
cluded into a new translation search for the next molecule. This procedure will
be repeated as far as all molecules have been located.

5.5.3.2 Patterson-Correlation Translation Function

In analogy to the rotation functions, a Patterson-correlation function can also be
defined for a translation search (e.g., see Tong, 1993). Rotation functions are
based on the overlap of only a subset of the interatomic vectors in the Patterson
map, the self-vectors within each crystallographically unique molecule. The cor-
rect orientation and position of a molecule in the crystal unit cell should lead to
the maximum overlap of both the self- and cross-vectors — that is, maximum
overlap between the observed (target) and calculated Patterson functions over
the whole unit cell. The definition of the Patterson-correlation translation func-
tion is then given as:

PC(x)) = / Py(u) Peaic (u, Xo)du = > (Fps () (Feare (h, x0)) (5.93)

U h

where the integration goes over the whole unit cell.
Substituting Eq. (5.88), we obtain Eq. (5.94):
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= 3030 P ) o 0)Fs ()  exp{ 2 [T, ~ [To] s}
(5.94)

This equation is similar to that introduced by Crowther and Blow (1967).

As the Patterson-correlation translation function is computed on an arbitrary
scale, it is difficult to compare results from different calculations. The R-factor
or the correlation coefficient can be calculated for the top peaks of the Patter-
son-correlation translation function (Eq. (5.94) to place the results on an abso-
lute scale, but other normalization methods may also be used (see Tong, 2001).

5.5.3.3 Phased Translation Function

If an atomic model needs to be placed in an electron density map that has been
obtained from other sources (e.g., MIR or partial model phases), an electron
density correlation translation function (or to use its common name, a phased
translation function) (Read and Schierbeek, 1988; Bentley and Houdusse, 1992;
Tong, 1993) can be defined:

PTF X0 Z Fobs calc Z Z Fobs exp{ Zﬂll’l[T }XO}

(5.95)

As with the Patterson-correlation translation function, the phased translation
function can be put on an absolute scale by introducing appropriate normalization
factors, or by converting the results to R-factors or correlation coefficients. It has to
be considered that the initially used phases could be in the wrong hand, so that the
enantiomorph phases must also be tried in the phased translation function.

The stationary molecules contribute a constant to the phased translation func-
tion, and this is not shown in Eq. (5.95). However, the phase information from
the stationary molecules can be applied to the observed structure factor ampli-
tudes, and the phased translation function, rather than the Patterson-correlation
function, can be used in the search for additional molecules (Read and Schier-
beek, 1988; Bentley and Houdusse, 1992). This may be especially useful in lo-
cating the last few molecules in cases where there are several molecules in the
asymmetric unit.

The region of the unit cell that should be covered during a translation search
does not generally correspond to the asymmetric unit of the space group. Since
the search model has a defined orientation, it can only reside in one of the
asymmetric units in the unit cell. Lacking knowledge as to which asymmetric
unit the model occupies, the whole unit cell would need to be searched. Once
the first molecule is positioned, the origin of the unit cell is also fixed. The
search for the subsequent molecules will need to cover the whole cell.

If NCS is present and has been determined before, it can be used to compute
a locked translation function (Tong, 1996). It can determine the position of the
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monomer search model relative to the center of the NCS assembly. Using this
information, the whole assembly can be generated and can then be used in a
conventional translation search to locate the center of this NCS assembly in the
unit cell.

A packing check in translation search may be used to exclude unreasonable
translation solutions.

5.5.4
Computer Programs for Molecular Replacement

An early program for molecular replacement, working in direct space, was writ-
ten by Huber (1965). Today, several program packages are available, either being
dedicated exclusively to the molecular replacement technique, or having inte-
grated relevant modules. Pure molecular replacement programs include
AMORE (Navaza, 1994) and GLRF (Tong and Rossmann, 1990), MOLREP (Va-
gin and Teplyakov, 1997) and BEAST (Read, 2001). The rotational and transla-
tional search starting from the search model is fully automated in AMORE, and
includes a final rigid body refinement of each proposed solution. GLRF offers
different types of rotation and translation functions, all operating in reciprocal
space, and a Patterson correlation refinement (Briinger, 1990). One peculiarity
of the GLRF program is the locked rotation function, which takes into account
possible NCS symmetries and is an average of n independent rotation functions
with an improved peak-to-noise ratio. BEAST uses likelihood-based molecular
replacement methods. Other frequently used program packages, including mo-
lecular replacement modules, are the CCP4 program suite (CCP4, 1994), CNS
(Briinger et al., 1998) and PROTEIN (Steigemann, 1991).
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6
Phase Improvement by Density Modification
and Phase Combination

6.1
Introduction

With the methods so far described, an experimental electron density map can

be calculated and if its quality is sufficiently high, the atomic model can be con-

structed. However, there are methods for further phase improvement available

which may be applied in general, or depending on given prerequisites. Such

phase improvement routines have been used routinely over the past 20 years

and have had a large impact on the advancement of biological macromolecular

crystallography. One group of these routines uses the technique of density mod-

ification, which is based on some conserved features of the correct electron den-

sity function. Several features or constraints can be used to improve the quality

of the experimental electron density map:

o flatness of the solvent region of the biomacromolecular crystal, used in sol-
vent flattening;

e ideal electron density distribution, used in histogram matching;

e NCS, used in molecular averaging;

e protein backbone connectivity, used in skeletonization;

e local shape of electron density, used with Sayre’s equation;

e atomicity, used in atomization of the electron density function;

e structure-factor amplitudes, used in Sim weighting; and

e experimental phases, used in phase combination.

Although this list is not long, it covers the most widely used methods.

In density-modification techniques, the chemical and physical constraints of
the electron density function are in real space but must be applied to ampli-
tudes and phases, which are in reciprocal space. Amplitudes and phases have
good estimates of error, which is not the case for the constraints in real space.
These represent expectations about the structure which may be difficult to
quantify, and therefore an iterative method is used with real- and reciprocal-
space steps, as shown in Figure 6.1. A weighted map is computed and used as
a basis for applying all the real-space modifications. The modified map is then
Fourier back-transformed to generate a set of amplitudes and phases. The agree-
ment between the observed amplitudes and the amplitudes calculated from the
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Reciprocal space Real space
Fyu(h) FFT
;1) () > px)
M p, = FTlw,(h) F,y, () exp(io, ()]
Phase Density
combination modification
FFT v
Inverse
Fou®) P (¥)
Pca () Pt = FT[F oo (1) €XP(i0 oy (1))]

Fig. 6.1 The cycle for iterative application of real-space and
reciprocal-space constraints in density-modification methods.

modified map is then used to estimate weights for the modified phases, which
in turn are used to combine the modified phases with experimental phases to
generate new phases.

6.2
Solvent Flattening

Protein crystals have a solvent content of between 75 and 40%. In a highly re-
fined protein crystal structure, the solvent space between the molecules is rather
flat owing to the dynamic nature of this region. Usually, the initial experimental
starting phases are of lower quality than the final ones, and as a result the sol-
vent region (if the molecular boundaries can be identified) contains noise peaks.
It is now obvious to set the noisy solvent space to a low constant value and to
calculate the new improved phases by Fourier back-transforming this corrected
electron density map. However, it is evident that the definition of the molecular
boundaries will be tedious and depend on the quality of the electron density
map. Wang (1985) has proposed an automatic procedure which smoothes the
electron density to define the protein region. This smoothed electron density
map is traced against a threshold value which separates this map into molecule
and solvent space according to their ratio of volumes in the unit cell. The space
inside the molecular envelope is polished to avoid internal voids. Then, a new
electron density map is calculated using the observed structure factor ampli-
tudes and the phases are revealed from the solvent corrected map. The solvent-
corrected map is obtained by setting all electron density values inside the molec-
ular envelope to those of the initial map, and all values outside the envelope to
a low constant value. These phases from the solvent-flattening procedure can be
combined with the MIR or MAD phases. This procedure can be repeated in sev-



6.2 Solvent Flattening

eral iterative cycles because, after each cycle of solvent flattening, the quality of
the electron density map is improved. There are no prerequisites for the appli-
cation of the method of solvent flattening. It is evident that solvent flattening is
most effective for crystals with a high solvent content.

The solvent content of the protein crystal is an important input parameter for
the solvent-flattening procedure. It can be estimated by virtue of the Matthews
parameter Vi, which is defined according to Eq. (6.1):

Vunit cell
Viy — it cell 6.1
M M, Prot ( )

where Vit cenn 1S the volume of the unit cell and Mp,; is the molecular mass of
the protein in the unit cell. Vy; has values in the range of 1.6 to 3.5 A’ Da™" for
proteins. This allows, first, a rough estimation to be made of the number of
molecules in the unit cell. Furthermore, as mentioned above, Vy; can be used to
assess the solvent content of a protein crystal. By calling Vp,, the crystal vol-
ume occupied by the protein, V} its fraction with respect to the total crystal vol-
ume Vand Mp,, the mass of protein in the cell, we obtain:

VProt VI’rot / MProt
vV, = = 6.2
PV Me/V (62)

The first term is the specific volume of the protein, the second the reciprocal of Vi
and, remembering that the molecular weight is expressed in Daltons, we have:

v _ 16604

- 6.3
P dprot Vi (6:3)

Taking 1.35 g cm™ as the protein density, we obtain as first approximation Eqs.
(6.4) and (6.5):

1.23
Vp R —— 6.4
PV (6.4)
Vigy ~1—V; (6.5)

The calculation of the smoothed map in the original proposal of Wang (1985)
was carried out in real space and was very intensive in computing time. Shortly
thereafter, Leslie (1987) found that the calculation could be performed very effi-
ciently in reciprocal space using fast Fourier transforms (FFTs). The map is
smoothed by calculating at each point in the map the mean density over the en-
compassing sphere of radius R. This operation can be written as a convolution
of the truncated map p,,, with a special weighting function w(r) (Eq. 6.6),

Psmooth (X) = Z W(r)ptrunc(x - I’) ) (66)

T

143



144 | 6 Phase Improvement by Density Modification and Phase Combination

where (Eq. 6.7)

win = {o "R ST (67)

The truncated map is calculated according to (Eq. 6.8)

_ P, p(x) = pay
ptrunc(x) - {0’ p(X) S psoiv . (68)

The convolution of Eq. (6.6) can now be written according to the convolution
theorem as (Eq. 6.9)

Psmooth (X) = FT ™ {FT Py (0] FT[w()]} | (6.9)

where FT denotes a Fourier transform and FI™' represents an inverse Fourier
transform. The Fourier transform of the truncated map is readily calculated
using standard FFT programs, and it can be shown that the Fourier transform
of the weighting function is given by Eq. (6.9)

g(S) = FT[w(r)] = Y(27RS) — Z(22RS) , (6.10)
where

S =2sin0/2

Y(27RS) = 3[sin(27RS) — 27RS cos(2nRS)]/(27RS)’? (6.11)

Z(27RS) = 3{4nRSsin(27RS) — [(27RS)* — 2] cos(nRS) — 2} /(27RS)* .
(6.12)

Other weighting functions may be implemented by the same approach.

Now, the boundary between the protein molecule and the solvent region can
be determined from the smoothed electron density map. A cut-off value p, is
calculated, which divides the unit cell into two regions occupying the correct
volumes for the protein and the solvent. All points in the map where
Pemooth (X) < Pyt are defined to be in the solvent region, and a molecular mask
or envelope is obtained as result of this procedure. The radius of the sphere R
for the smoothing of electron densities is generally chosen at around 8 A and,
in most cases, this delivers satisfying results.

The modified electron density map p,,,,q(x) is now gained by setting all points to
the Original values /)(X) for Psmooth (X) > Pecut and to Psolv for Psmooth (X) < Peut Psolv is
the expected value for the solvent region. If the electron density has not been cal-
culated on an absolute scale, the solvent density can be set to its mean value.

In 1996, Abrahams and Leslie improved the method by introducing so-called
“solvent flipping”. For all grid points within the solvent the electron density is
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set 10 Prod(X) = Peow — 17/ (1 — P)][P(X) — peory] With a relaxation factor 7. This
corresponds to a flipping of the features of the solvent and corrects for the prob-
lem of independence in phase combination, which will be discussed later.

6.3
Histogram Matching

Histogram matching is a technique emanating from image processing. It is
aimed at bringing the density distribution of an image to an ideal distribution,
thereby improving the image quality. In the application to electron density maps
it is assumed that a high-quality protein crystal structure has a characteristic fre-
quency distribution of electron density which serves as a standard reference dis-
tribution for other electron density maps. Such maps of lower quality exhibit a
frequency distribution of electron density which deviates from the standard dis-
tribution. Zhang and Main (1988) systematically examined the electron density
histogram of several proteins, and noted that the ideal density histogram de-
pends on resolution, the overall temperature factor, and the phase error. It is,
however, independent of structural conformation. The frequency distribution
may be treated as function of resolution only if the overall temperature factor is
sharpened to Boyeranl = 0.

Beside the derivation of ideal electron density histograms from known protein
structures, such histograms can also be predicted by an analytical formula. We
present the method of Main (1990) in more detail, following the elaborations by
Zhang et al. (2001). The density histogram is split into components that are re-
lated to three types of electron density in the map:

1. A region of overlapping densities, which can be represented by a randomly
distributed background noise with a histogram expressed by a Gaussian distri-

bution (Eq. 6.13),

Py(p) = Nexp[—(p — p)*/207] , (6.13)

where p is the mean density and o is the standard deviation.
2. A region of partially overlapping densities with a histogram modeled by a cu-
bic polynomial function (Eq. 6.14),

Ppo(p) = N(ap® +bp? +cp + d) . (6.14)

3. A region of non-overlapping atomic peaks with a histogram derived analyti-
cally from a Gaussian atom (Eq. 6.15),

Puo(p) = N(A/p)[In(po/p)]"* , (6.15)

where p, is the maximum density, N is a normalizing factor and A is the rela-
tive weight of the terms between Eq. (6.13) and Eq. (6.15). If we use two
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threshold values, p; and p,, regions (1) to (3) are defined as 2p < p,,
2p, <p<p; and 2p, < p <p,, respectively, with the corresponding Egs.
(6.13) to (6.15). The parameters a, b, ¢, d in the cubic polynomial are calcu-
lated by matching function values and gradients at p; and p,. The parameters
in the histogram formulae, p, g, A, py, p1, p,, can be taken from histograms of
known structures.

Histogram matching is now performed in altering the experimental map with
its imperfect histogram in such a way as to make its density histogram equal to
the ideal distribution. The procedure is explained in Figure 6.2. Let P(p) be the
current density histogram and P'(p) the desired distribution, normalized such
that their sums are equal to 1. We can then calculate the cumulative distribu-
tion functions, N(p) and N'(p), according to Egs. (6.16) and (6.17):

P

N(p) = / P(p)dp (6.16)
N() = / P(p)dp (6.17)
Pmin

The cumulative distribution function of a variable transforms a value taken
from the distribution into a number between 0 and 1, representing the position
of that value in an ordered list of values taken from the distribution.

The transformation is now made in the following way: A density value of
P(p) (lower left diagram in Fig. 6.2) is chosen, its corresponding value N(p)
(upper left diagram in Fig. 6.2) is determined, mapped then to the desired cu-
mulative distribution value N'(p) (right upper diagram in Fig. 6.2) and the de-
sired modified value p’ is finally obtained by Eq. (6.18):

p'=N7N(p)]. (6.18)

The distribution of p’ will then match the desired distribution after the above
transformation. In practice, the density is divided in bins ranging from 1 to n,
and the transformation in Eq. (6.18) can be made through a linear transform ac-
cording to Eq. (6.19):

pi = aip; + b; . (6.19)

The density histogram contains some useful properties of the electron density,
such as the minimum, maximum and mean density, the density variance, and
the entropy of the map. The latter three magnitudes for the ideal map are ob-
tained as follows:



6.3 Histogram Matching | 147

1 T v T 1 T T
N(p) N'(p)

08 1 08¢} 1
06} 1 06F 1
04+ 1 04} 1
02+ 1 02rf .

0 I " 0 / " : 1

=05 0 0.5 1 1.5 2 -0.5 0 0.5 1 15 2

1 T T 1 T T T

P(p) P(p)

08 F 1 08+ T
06} 1 06} 1
04} 1 04¢f 4
02t 1 02f 7

0 J " " 0 1 " L

~0.5 0 0.5 1 1.5 2 —0.5 0 0.5 1 15 2
Fig. 6.2 lllustration of the process of histogram matching.
(Reproduced by permission of The International Union for
Crystallography, from Zhang et al., 2001.)
e mean density p (Eq. 6.20),

Prnax
= [ rPo10). (620)
Pmin
e variance of the density o(p) (Eq. 6.21)
— 1/2
a(p) = (/)2 = /’)2> : (6.21)

where

Pmax
P = / P*P(p)dp , (6.22)

Prmin



148 | 6 Phase Improvement by Density Modification and Phase Combination
e entropy S, (Eq. 6.23)

S=— / P(p)pIn(p)dp . (6.23)

Pmin

Summarizing, the process of histogram matching applies a minimum and a
maximum value to the electron density, imposes the correct mean and variance,
and defines the entropy of the new map. The rank of electron density values re-
mains unchanged in the modified map. Histogram matching is applied to the
protein region and is therefore complementary to solvent flattening, which only
operates in the solvent region.

In the process of density modification, structure factors or electron density
from different sources are compared and combined. It is, therefore, very impor-
tant to put all the maps and structure factor amplitudes on a common scale.
The density histogram can be used to scale observed structure factor amplitudes
(Cowtan and Main, 1993; Zhang, 1993). This is a robust method, which also
works well with medium- to low-resolution data, where scaling using Wilson
statistics is often inaccurate.

Histogram matching is normally used together with solvent flattening and is
incorporated into the density modification programs SQUASH (Zhang and
Main, 1990; Zhang, 1993) and DM from the CCP4 program package (CCP4,
1994).

6.4
Molecular Averaging

If there is more than one identical subunit in the asymmetric unit of the crys-
tal, then molecular averaging can be used to improve the protein phases. The
spatial relations between the single identical subunits in the asymmetric unit
may be determined by Patterson search methods (as described in Section 5.5),
or from the arrangement of the heavy atoms or anomalous scatterers. The spa-
tial relation between the identical subunits can be either improper (the relevant
spatial movement consists of a rotation about an unsymmetrical angle value
and a translation component; Fig. 6.3a) or proper (the spatial movements form
a symmetry group which is composed of rotational symmetry elements only;
Fig. 6.3b). Such additional symmetries are called noncrystallographic (NCS) or
local, and there are no limitations concerning the rotational periodicity of the
symmetry axes (e.g., five-, seven- and higher-fold axes are allowed). It is evident
that averaging about the different related subunits, the electron density of which
should be equal in each subunit, must result in an improved electron density
map and therefore in improved protein phases. Molecular averaging is best
done in direct space, and several programs are available for this, including AVE,
RAVE (Kleywegt and Jones, 1994) and MAIN (Turk, 1992).
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(a)

(b)

Fig. 6.3 (a) Improper NCS; (b) proper NCS.

The procedure of molecular averaging is composed of several steps:

e First, the molecular envelope must be determined from the initial electron
density map or from a molecular model which, for example, has been ob-
tained from molecular replacement. In the case of a molecular model from
molecular replacement, this is straightforward. If one starts from an initial
electron density map, the mask can be determined using the local density cor-
relation function as developed by Vellieux et al. (1995). The local correlation
function distinguishes those volumes of the crystal which map onto similar
density under transformations by the NCS operator. Thus, in the case of im-
proper NCS, a local correlation mask will cover only one monomer. In the
case of a proper symmetry, a local correlation mask will cover the whole com-
plex (Fig. 6.3a,b).

o Next, the particular electron density averaging between the related subunits is
performed. All grid points in the molecular envelope are passed through, and
the respective NCS-related electron density values are mapped to the actual
grid point and averaged. The situation for a monomer and a NCS multimer
envelope is shown in Figure 6.4a and b, respectively. In the case of the NCS
multimer envelope, the NCS symmetry operators are defined with respect to
the center of gravity of the whole multimer envelope. Furthermore, it may be
difficult to define the individual NCS monomer. This is best done in the stage
of building the atomic model, where connectivities in the polypeptide chain
of the protein molecule help to identify the tertiary structure of the molecule.
In order to carry out averaging on the basis of the NCS monomer envelope,
the NCS operators related to this envelope must be determined, which can be
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(a)

(b)

Fig. 6.4 Mapping of NCS-related electron density points onto
the molecular envelope. (a) NCS monomer envelope; (b) NCS
multimer envelope.

done, for example, in the CNS program system. Since NCS operators will not
normally map grid points onto each other, an interpolation of electron density
values at non-map grid sites is usually needed. Suitable interpolation func-
tions are described in Bricogne (1974) and Cowtan and Main (1998).

e This is followed by the reconstitution of the complete crystal unit cell with
the averaged electron density. The space outside the molecular envelope is
flattened, and this map is then Fourier back-transformed. The obtained phase
angles can either be taken directly or combined with known phase informa-
tion to calculate a new and improved electron density map. This cycle can be
repeated several times until convergence of the electron density map improve-
ment has been reached. It is very useful to refine the local symmetry opera-
tions after every macrocycle of molecular averaging. This can be done with
the program IMPROVE, from the Uppsala averaging program collection
(Kleywegt and Jones, 1994). Furthermore, molecular averaging can be applied
if proteins crystallize in more than one crystal form.

Molecular averaging is especially efficient if a high NCS is present (as in virus
structures), but the averaging over two related subunits alone (the lowest case
of local symmetry) can give a considerable improvement. In special cases where
high NCS symmetry exists and the phase information extends only to low reso-
lution, cyclic molecular averaging can be used to extend the phase angles to
provide full resolution of the native protein. This was first shown in the struc-
ture analysis of hemocyanin from Panulirus interruptus (Gaykema et al., 1984,
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1985). It has also been used extensively in the analysis of icosahedral structures
(e.g., see Rossmann et al., 1985; Ladenstein et al., 1988) and for large molecular
assemblies (e.g., Lowe et al., 1995).

6.5
Sayre’s Equation

In Section 5.3.2 we introduced the tangent formula (Eq. 5.57) which calculates
the phase for structure factor amplitude F(h) from phases of structure factor
pairs F(k) and F(h — k). A related equation has been derived by Sayre (1952)
which links the corresponding structure factors directly in amplitude and phase.
In reciprocal space, it is given as:

F(h) = [0(h)/V]Y_ F(k)F(h k) , (6.24)
k

where 0(h) is the ratio of scattering factors of real, f(h), and “squared”, g(h),
atoms and V is the unit cell volume, i.e., Eq. (6.25):

0(h) = f(h)/g(h) . (6.25)

Sayre’s equation is exact for an equal atom structure at atomic resolution. The
reciprocal-space function #(h) can be calculated according to Eq. (6.25), where
both scattering factors can be represented by a Gaussian function. At infinite
resolution, one expects 6(h) to be a spherically symmetric function that de-
creases smoothly with increased h. However, for data at non-atomic resolution,
the 0(h) curve will behave differently because atomic overlap changes the peak
shape. Therefore, a spherical-averaging method is adopted to receive an estimate
of the shape function empirically from the ratio of the observed structure fac-
tors and the structure factors from the squared electron density by Eq. (6.26)

0(S) = V<F(h)/ZF(k)F(h—k)> 7 (6.26)
k

[h|

where the averaging is done over the ranges of |h| — that is, over spherical
shells, each covering a narrow resolution range. Here, S denotes the modulus
of h.

The empirically derived shape function only extends to the resolution of the
experimentally observed phases. This is sufficient for phase refinement, but not
for phase extension where no experimentally observed phases are available to
provide the empirical 0(S) for the extension region. Therefore, a Gaussian func-
tion of the form

0(S) = Kexp(—BS?) (6.27)
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is fitted to the available values of 6(S) and parameters K and B are calculated
using a least-squares method. The shape function 6(S) for the resolution be-
yond that of the observed phases is extrapolated using the fitted Gaussian func-
tion.

As Sayre’s equation links all structure factor amplitudes and phases, it is a
powerful tool for phase refinement and extension. It works perfectly at atomic
resolution, but at lower resolution the shape functions 6(S) of Egs. (6.26) and
(6.27) must be used. It transpired that the derivation of the shape function 6(S)
from a combination of spherical averaging and Gaussian extrapolation was key
to the successful application of Sayre’s equation for phase improvement at non-
atomic resolution (Zhang and Main, 1990).

6.6
Atomization

The atomization method uses the fact that the structure underlying the electron
density map consists of discrete atoms. It attempts to interpret the map by auto-
matically placing atoms and refining their positions. A successful application of
this method needs atomic resolution of the diffraction data. For non-atomic res-
olution, Agarwal and Isaacs (1977) proposed a method for the extension of
phases to higher resolutions by interpreting an electron density map in terms
of “dummy” atoms. The placement of such “dummy” atoms is subject to con-
straints of bonding distance and the number of neighbors. This procedure was
not automated, however, and Lamzin and Wilson (1997) subsequently extended
the approach in the ARP (Automated Refinement Program) program for bio-
macromolecular applications. This technique has become very effective for the
solution of structures at high resolution from a poor molecular replacement
model, or even directly from an MIR/MAD map.

Perrakis et al. (1997) later developed the wARP program, which performs im-
provement and extension of crystallographic phases by weighted averaging of
multiple-refined dummy atomic models. Map improvement has been demon-
strated for maps at medium resolution.

6.7
Phase Combination

During the course of a crystal structure analysis of a biological macromolecule,
phase information from different sources may be available, such as information
from isomorphous replacement, anomalous scattering, partial structures, sol-
vent flattening, and molecular averaging. An overall phase improvement can be
expected when these factors are combined, and a useful method to do this was
proposed by Hendrickson and Lattman (1970). The probability curve for each re-
flection is written in an exponential form as Eq. (6.28):



6.8 Difference Fourier Technique
Ps(a) = N exp(Ks 4+ As cosa + Bg sina + Cs cos 2a + Dy sin 2a) (6.28)

Subscript s represents the source from which the phase information has been de-
rived. K; and the coefficients A, B, Cs and Dg depend on the structure factor am-
plitudes and other magnitudes, for example the estimated standard deviation of the
errors in the derivative intensity, but are independent of the protein phase angles a.
The overall probability function P(a) is obtained by multiplication of the individual
phase probabilities, and this turns out to be a simple addition of all K and of the
related coefficients in the exponential term. Hence, we obtain Eq. (6.29):

Z K + (ZAS> cosa + (Z BS> sina
+ <Z CS> cos 2a + (Z DS> sin Za] (6.29)

P(a) = H Py(a) = N'exp

K and the coefficients A—Dg have special expressions for each source of phase
information, and they are explicitly provided, for example, by Drenth (1999).

6.8
Difference Fourier Technique

Supposing that one has solved the crystal structure of a biological macromole-
cule, and has isomorphous crystals of this macromolecule that contain small
structural changes caused by substrate—analog or inhibitor binding, metal re-
moval or replacement, or a local mutation of one or several amino acids, then
these structural changes can be determined by the difference Fourier technique.
The difference Fourier map is calculated by using the differences between the
observed structure factor amplitudes of the slightly altered molecule Fpggi(obs)
and the native molecule Fyari(obs) as Fourier coefficients and the phase angles
of the native molecule ayary as phases according to Eq. (6.30):

1 . .
PDERI — PNATL = VZ m[Fpgri(obs) — Fxari(obs)] x exp(ianatr) exp(—27ihx)
h

(6.30)

where m may be the figure of merit or another weighting scheme. The differ-
ence Fourier map can alternatively be calculated with coefficients Fpggri(obs),
Fperi(calc) and phases apgry(calc).

Fpgri(calc) and apggi(calc) do not include the unknown contribution of the
structural change.

Figure 6.5a and b illustrate the relationship for the structure factors involved
in the difference Fourier technique. It is assumed that the structural change is
small. If Fyar is large, the structure factor amplitude of the structural change
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i Fig. 6.5 Vector diagrams illustrating
different situations (a) and (b) in
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Fsc will be small compared with Fyary, and apgry will be close to ayarr. This is
no longer valid if Fyars is small. Now Fgc is comparable to Fyary, and apggr;
may deviate considerably from ayar;. This implies the necessity to introduce a
weighting scheme that scales down the contributions where the probability is
high that anarr differs appreciable from the correct phase angle. A similar situa-
tion is met if only a partial structure is known, for example from molecular re-
placement or preliminary model building. The structure factor Fp of the partial
structures corresponds to the native structure factor Fyary, the structure factor
Fy of the complete structure to that of the derivative structure factor Fpgg;, and
the structure factor of the structural change Fgsc to that of the structure factor
Fq of the missing atoms, all with the relevant amplitudes and phases. Various
weighting schemes have been elaborated such as those of Sim (1959) and Read
(1986). The weighting scheme of Sim has the following form (Eq. 6.31):
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w= 6.31
o) (6.31)
for acentric reflections and (Eq. 6.32):
X
w= tanhi (6.32)
for centric reflections with (Eq. 6.33)
2Fy X F
x = SEN X (6.33)
DY
Q

Io(X) and I;(X) are modified Bessel functions of zeroth and first order, respec-
tively. Fy is the structure amplitude of the entire structure and Fp that of the
partial structure. The factor ¢ corrects for the difference in expected intensity
for different zones in reciprocal space. The parameter > measures the amount

of missing scattering matter, and is given by: Q
EQ: - <F§2 /s> . (6.34)

We need an estimate of ) from the known structure factor amplitudes Fy and

Q I
Fp. Previously, Bricogne (1976) suggested |F% — Fa|, while Read (1986) proposed

n(Fy — Fp)*/e with n = 1 for centric and n = 2 for acentric reflections. The Sim
weighting scheme has been derived for a partial structure with no errors. This
is of course not true, and Srinivasan (1966) has developed a corresponding for-
mula for a partial structure with errors. Hence, we obtain for X:

X = 20, N Fr /(1 —d2). (6.35)

o) )

oa can be estimated by Eq. (6.36), as provided by Srinivasan (1966)

S

oA = —— (cos 2nhAr)), (6.36)

2 f
j=1

where Ar; represents the finite errors in the coordinates of the calculated partial
structure. Other approaches to estimate o, are discussed by Read (1986).
Furthermore, a g5 plot can be used to estimate the coordinate error of the struc-
tural model, which will be discussed in Section 7.3.2.3.2.
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These equations and weighting schemes can also be used for the calculation
of OMIT maps (where parts of the model have been omitted from the structure
factor evaluation), or when a complete structure must be developed from a

known partial model.
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7
Model Building and Refinement

7.1
Model Building

Once the quality of the MIRAS or MAD maps is good enough, model building
can be started. This is carried out using a computer graphics system, with the
main modeling programs being “O” (Jones et al., 1991) and TURBO-FRODO
(Jones, 1978; Roussel and Cambillau, 1989). An interesting alternative is the
program MAIN (Turk, 1995), which additionally contains routines for molecular
averaging, molecular docking, and other features. A new development is the
program COOT (Emsley et al., 2004) which is now a supported program of the
CCP4 program suite.

Visualization of the relevant electron density map on the computer graphics
system appears as cage-like structures. For this purpose, the standard deviation
from the mean value of the map is calculated and the cage-like structure is built
up for a given contour level (normally 1.0 ¢). The first task in a de-novo protein
crystal structure analysis is to localize the trace of the polypeptide chain. This
can be assisted by routines for automatic chain tracing such as BONES (Jones
and Thirup, 1986), which is an auxiliary program of O. Such automatic chain-
tracing programs generate a skeleton of the electron density map; this represen-
tation was introduced by Greer (1974). Automated chain-tracing modules are
contained in the ARP/WARP program suite (Lamzin et al., 2001) and the pro-
gram RESOLVE (Terwilliger, 2002). The method applied in ARP/WARP was
briefly described in Section 6.5. RESOLVE constructs the model by template-
matching and iterative fragment extension.

It should be noted that the ab initio model building is only successful if the
resolution and phasing of the experimental electron density is sufficient (as a
rule of thumb, better than 2 A). Nonetheless, these techniques are very success-
ful at lower resolutions when a partial model is available. Here, they use a hy-
brid model consisting of the partial and the free atom model.

Very often, the quality of the electron density map is inferior, such that the
model cannot be constructed automatically. Consequently, the manual mode of
model building has to be applied, and this is best started from a skeletonized
version of the electron density map which is simultaneously displayed with the
map. First, attempts are made to recognize secondary structure elements such
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as a-helices or f-strands and f-sheets. When such pieces of the polypeptide
chain have been identified, a Ca trace can be built into the electron density. A
polyalanine chain (or segments of it) can be built from this trace, either by the
use of databases or simply by assigning the identified secondary structure type.
The atomic model is represented as sticks which connect the atomic centers of
bonded atoms. The individual building blocks (amino acids) of the protein mol-
ecule can be generated, interactively manipulated (e.g., linked with each other,
moved, rotated, etc.), and then fitted into the corresponding part of the electron
density map. The geometry of the atomic model is regularized according to pro-
tein standard geometries. At this stage, the direction of the polypeptide chain,
or of its segments, may be incorrectly assigned. Nevertheless, such partial mod-
els can be used to improve the structure factor phases by refining them crystal-
lographically against the observed structure factor amplitudes. This phase infor-
mation can be used directly to calculate a new electron density map, commonly
with 2Fyps—F a1 Fourier coefficient amplitudes. This type of map is the sum of a
normal F,s Fourier and a difference Fourier synthesis. It displays the atomic
model with normal weight, and also indicates errors in the model by its contri-
bution of the difference Fourier map. The parallel determination and inspection
of a difference Fourier map is also very helpful. As mentioned previously, the
model phases can be combined with phases present from other sources or in-
corporated into procedures of phase improvement. A further model-building cy-
cle can be started with such new and improved electron density maps. The
quality of the maps should now improve in such a way that side chains can be
correctly assigned; this allows the correct direction of the polypeptide chain or
of its segments to be determined, and their position in the corresponding ami-
no acid sequence to be located. After several cycles of model building and crys-
tallographic refinement the atomic model will be so well defined that the sol-
vent structure of internally bound solvent molecules can be developed. The
atomic model is now complete and the biochemical interpretation can be
started.

The Uppsala Software Factory (USF, http://xray.bmc.uu.se/usf/) has devel-
oped a suite of programs around “O”, which are very useful in model building,
refinement, and related topics. These programs have been listed and described
briefly by their authors (Kleywegt et al., 2001). The first such program is RAVE,
a suite of programs for electron density improvement and analysis, with a
strong focus on averaging techniques (Kleywegt and Read, 1997). RAVE con-
tains, for example, the following important programs:

e AVE is used for averaging and expanding the averaged electron density ac-
cording to the crystal symmetry;

e COMA serves to calculate local density correlation maps that can be used to
define masks (molecular envelopes);

e IMP optimizes NCS operators by relating two copies of a molecule (or do-
main) inside the same cell;

e NCS6D may be very helpful to find NCS operators in cases where it is diffi-
cult to obtain them by other means.
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The program rotates and translates a skeletonized version (BONES atoms or

atoms in PDB coordinate format) of the electron density map against the same

map in all six dimensions, and then calculates the correlation coefficient be-

tween the transformed atoms and the density around the atoms. RAVE further

contains tools for averaging between crystal forms:

e MASKIT calculates a local density correlation map from the density of the
two different crystal forms using the algorithm of Read (Vellieux et al., 1995);

e MAVE performs the (skew) density averaging and expansion steps, but now
separately because the density of the various crystal forms has also to be aver-
aged. This program also contains the option to improve operators that relate
the position and orientation of the molecular envelope (mask) in one crystal
form with those in the other crystal form.

e CONDEM combines the individual (possibly averaged) density from various
crystal forms.

Finally, two utility programs of RAVE should be mentioned here. The first is

MAMA, a program used to generate, analyze, and manipulate masks. Masks

can, for example, be generated from scratch using BONES atoms, a structural

model contained in a PDB-file or defining a sphere or box around a given point
in the map. The second program, MAPMAN, is used for format conversion,
analysis and manipulation of electron density maps. Maps can be read and writ-

ten in a variety of formats including those used by “O”.

The USF supplies many other utility programs for macromolecular structure
analysis, and two of these will be mentioned here in more detail.

e LSQMAN (Kleywegt, 1996; Kleywegt and Jones, 1997) is a program used for
analyzing and manipulating copies of a molecule or multiple molecules. It
contains tools to superimpose molecules (including an option to find such
superpositioning automatically, which works very efficiently), to improve the
fit of both superimposed molecules in many different ways, to calculate and
plot rm.s. distances, and several other tools. The program can handle pro-
teins, nucleic acids, and other types of molecules.

e MOLEMAN?2 is a general program used for the analysis and manipulation of
molecules (in PDB-format files). Although this program contains too many
options to list here, the tools to analyze and manipulate temperature factors
and occupancies, to orthogonalize, deorthogonalize or shift atomic coordinates
or to renumber the residues in the coordinate set should be especially noted,
though all of the other options are also very beneficial.

Model building and refinement are closely linked to each other. Methods of
crystallographic refinement are covered in the following section.
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7.2
Crystallographic Refinement

7.2.1
Introduction

The structural model has to be subjected to a refinement procedure. Macromo-
lecular crystallography does not differ fundamentally from small-molecule crys-
tallography, but is complicated by several peculiarities. First, typical macromole-
cules contain thousands of atoms and crystallize in unit cells with cell lengths
of up to several hundred Angstréms. This causes a high number of intensity
data in an X-ray experiment, and a large set of parameters to be refined. More-
over, whilst small-molecule refinement programs were simply not designed for
such large structures, the capability of computers was also inadequate some 30
years ago. Second, the resolution of the diffraction data is normally below atom-
ic resolution, which does not allow any application of the least-squares tech-
nique for the parameter refinement — the standard technique used for small
molecules. Therefore, the single atoms cannot be treated as moving indepen-
dently; rather, they must be refined using energy or stereochemistry restraints,
taking care to maintain a reasonable stereochemistry of the macromolecule.
This reduces the number of parameters to be refined considerably and places a
reasonable value on the ratio of observations to parameters to be refined. Nowa-
days, computer performance is high enough also to refine macromolecular
structures at atomic resolution. Indeed, this has been reflected by an extension
of the crystallographic refinement program SHELXL (Sheldrick and Schneider,
1997) to treat macromolecules.

“Improving the agreement” between the observed and calculated data can be
done by different criteria to measure the agreement. The most commonly used
measure is the [, norm of the residuals, which is simply the sum of the
squares of the differences between observed and calculated data,

Ly(x) = |[wilyi — Mi(x)]|| = Zwib’i - M(x)*, (7.1)

where w; is the weight of observation, y; and M;(x) is the calculated value of ob-
servation i given the parameters x. The least-squares refinement now searches
for the set of model parameters that give the minimum variance of the observa-
tions. One problem of the L, norm is that it is very sensitive against large devia-
tions, which occur especially during the early stages of refinement. To overcome
this, it may be better to refine against the L; norm:

Li(x) = Zwi\[)’i - Mi(x)]| , (7.2)

which is the sum of the absolute value of the residuals. However, to date this
technique has not been used in macromolecular crystallography.
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Many of the problems of least-squares refinement can be overcome by chang-
ing the measure of agreement from least squares to maximum likelihood. The
model is adjusted to maximize the probability of the given observations. Maxi-
mum likelihood refinement is particularly useful for incomplete models be-
cause it produces residuals that are less biased by the current model than those
obtained by least squares. Maximum likelihood also provides a rigorous formu-
lation for all forms of error in both the model and the observations, and allows
incorporation of additional forms of prior knowledge (such as additional phase
information) into the probability distributions.

The likelihood of a model represented by a set of observations is the product
of the probabilities of all the observations of the given model. As in our case,
the observations are structure factors F; with a conditional probability distribu-
tion P(F;; Fi.), the likelihood of the model becomes

L=]P(F:Fi) (7.3)

where F;. is the calculated model structure factor. This is usually transformed
in its logarithmic form:

logL =" "log P(F;;Fy.) , (7.4)
which is more tractable.

7.2.2
Principles of Least Squares

A detailed description of the principles of the least-squares technique has been giv-
en by Prince and Boggs (1999). Here, we will present an outline of these studies to
provide a basic understanding of the method. The method of least squares may be

formulated as follows: Given a set of n observations, y; (i = 1,2,...,n), that are
measurements of quantities that can be described by differentiable model func-
tions, M;(x), where x is a vector of parameters, x;(i = 1,2,...,p) find the values

of the parameters for which the sum L, (Eq. 7.1) is minimum. The values of
the parameters that deliver the minimum of L, are called estimates of the param-
eters, and a function of the data that locates the minimum is an estimator. The nec-
essary condition for L, to be a minimum is for the first derivation to vanish, which
results in a set of simultaneous equations, the normal equations, of the form:

OLa/0 = ~2) [y — Mi(x)]OMi(x) /05 = 0. (7.5)

The model functions, M;(x), are, in general, nonlinear, and there are no direct
ways to solve these systems of equations. Iterative methods must be used to
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solve them. In many cases, linear approximations to the model functions are
good approximations in the vicinity of the minimum. The linear approximation
of the ith model function can now be written as:

p
Mi(x) ~ by + ) Ay, (7.6)

=

where A are the elements of a matrix A and b; are the elements of a vector b.
We can write Eq. (7.6) in matrix form with column vectors M(x) (Eq. 7.7) and y,
whose ith elements are M;(x) and y;,

M(x) ~ b+ Ax, (7.7)
and for this linear model, L, (Eq. (7.8) becomes
L = [(y = b) — Ax]'W[(y — b) — Ax], (7.8)

where W is a diagonal matrix whose diagonal elements are Wj; = w;. In this
notation the normal Eq. (7.5) can be written as

ATWAx = ATW(y — b) , (7.9)
and their solution is
x = (ATWA) 'ATW(y —b) . (7.10)

If W; >0 for all I and A has full column rank, then ATWA will be positive
definite, and L, will have a unique minimum at x =% The matrix
H = (A"WA) 'AT™W is a p x n matrix that relates the n-dimensional observation
space to the p-dimensional parameter space and is known as least-squares estimator.
The least-squares estimator has some special properties in statistical analysis, but
the reader is referred to Prince and Boggs (1999) for a treatment of this issue.

The general case is a nonlinear relation between the model parameters and
the observations, and this holds for crystallographic refinement. We can recall
that L, (Eq. (7.1) was valid for the general nonlinear case, but now M;(x) is giv-
en by a nonlinear relation. In Prince and Boggs (1999), two useful ways of solv-
ing the minimization problem are described, the Gauss-Newton algorithm and
the Quasi-Newton method. We will briefly explain the first method. Let x, be
the current approximation X, the solution of Eq. (7.1). We construct a linear ap-
proximation to M;(x) in the vicinity of x = x, by expanding in a Taylor’s series
through the linear terms, obtaining

P
M;i(x) = Mi(xc) + Z]ij(x —X); s (7.11)
j=1
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where ] is the Jacobian matrix, defined by
]ij = aMl(X)/axJ . (7.12)

A straightforward procedure, known as the Gauss-Newton algorithm, may be for-
mally stated as follows:
1. Compute d as the solution of the linear system:

J'WJd = "Wy — M(x,)] . (7.13)

2.Setx, =x. +d.
3.1If not converged, go to (1), else stop.

The convergence rate of the Gauss-Newton algorithm (Dennis and Schnabel,
1983) depends on the size of the residual, that is, on L,(x). If L,(x) =0, then
the convergence rate is quadratic, but if it is small then the rate is linear; how-
ever, if [5(X) is large, then the procedure is not locally convergent at all. Fortu-
nately, this procedure can be changed so that it is always locally convergent,
and even globally convergent — that is, convergent to a relative minimum from
a starting point (for details see Prince and Boggs, 1999). The basis for an under-
standing of the least-squares method has been laid down and we can now pass
over to the crystallographic refinement itself.

7.2.3
Constraints and Restraints in Refinement

The techniques of least squares are applicable for refining almost any model,
but the question of suitability of the model remains. In many cases, the model
implies constraints, the application of which constricts the solutions. The classi-
cal technique for the application of constraints is to use Lagrange undetermined
multipliers, but in this approach the set of p parameters x; is increased by
p—4q(q < p) additional unknowns /;, one for each constraint relationship de-
sired. This is not a beneficial situation for macromolecular refinement, where a
reduction of parameters is desirable by the application of restraints. In most
cases encountered in crystallography the constraints may be applied directly,
thus reducing rather than increasing the size of the normal equations matrix.
For each constraint introduced one of the parameters becomes dependent on
the remaining set, and the rank of the remaining system is reduced by one. For
p parameters and p — q constraints, the problem reduces to q parameters. Using
the Gauss-Newton algorithm, the normal-equations matrix is ATWA, where

Aj = aMl‘/axj‘ , (7.14)

and W is a weight matrix. The constraint relations may be written as

Xk :ﬁ<zl7zz,"'7zq) 9 (715)
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where the zs are the parameters of the constrained model. Applying the chain
rule for differentiation, the normal-equations matrix for the constrained model
becomes BTWB, where

Bix = OM;(x)/0z, = Z[OM x)/ 0] (0%;/ Oz) - (7.16)

This can be written in matrix form B = AC, where C; = 0x;/0z; defines a p x gq
constraint matrix. The application of constraints involves: (i) determination of
the model to be used; (ii) calculation of the elements of C; and (iii) computation
of the modified normal-equations matrix.

Most existing programs calculate the structure factor amplitude F and its par-
tial derivatives with respect to the positional parameters, isotropic or anisotropic
temperature factors, occupancy and an anisotropic overall scale factor. The con-
strained calculation is usually made by evaluating selected elements, 0x;/0z.
The following constraints must taken into account in such crystallographic re-
finement programs:

e the crystal structure contains atoms in special positions or positional parame-
ters are linearly dependent on others, which may occur in trigonal, hexagonal,
tetragonal and cubic space groups;

e occupancies of certain sites in the crystal; and

e some portion of the structure undergoes thermal motion as a rigid.

The reader is referred to Prince et al. (1999) for more details in the mathemati-
cal treatment of these special constraints.

We already mentioned the necessary degree of overdetermination to obtain an
accurate structural model. For well-ordered crystals of small- and intermediate-
sized molecules it is usually possible to measure a hundred or more indepen-
dent reflections for each symmetry-independent atom. With ten parameters per
atom (three positional, six anisotropic B-factors, one occupancy factor) the over-
determinacy is still greater than 10 to 1. The situation is different with X-ray
studies of biological macromolecules, where the number of independent reflec-
tions is often fewer than the number of parameters necessary to define the dis-
tributions of individual atoms. This problem may be overcome either by reduc-
ing the number of parameters describing the model, or by increasing the num-
ber of independent observations. Both approaches utilize knowledge of stereo-
chemistry. Above, we have discussed the use of constraints to introduce this
stereochemical knowledge. Now, we explain a technique that introduces the
stereochemical conditions as additional observational equations. This method
differs from the other in that information is introduced in the form of distribu-
tions about mean values rather than as rigidly fixed geometries. The parameters
are restrained to fall within energetically permissible limits.

For restrained refinement the sum L, (Eq. (7.1) to be minimized now con-
tains several classes of observational equations, in addition to those for structure
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factors. The stereochemical restraints are usually introduced as energy terms
(e.g., Jack and Levitt, 1978) or by expressing all types of stereochemical re-
straints as distances (e.g., Ten Eyck et al, 1976; Konnert and Hendrickson,
1980).

The minimization of a potential energy function E together with a diffraction
term D is done according to:

ILb=E+D (7.17)

where

E=Y kb = b1* + > keltjica) — %2 + D _ ko[l + cos(m6y + )]
+ z:(Ar’12 — Br %) (7.18)

D= Zwi[Fi(obs) - kFi(c:adc)]2 (719)
i

and is applied in the programs EREF (Jack and Levitt, 1978) and CNS (Briinger
et al., 1998), which is now used frequently. The four terms of the right-hand
side of E describe bond, valence angle, dihedral torsion angle, and non-bonded
interactions, kj, is the bond stretching constant, k., is the bond angle bending
force constant, kg is the torsional barrier, m and o are the periodicity and phase
of the barrier, A and B are the repulsive and long-range nonbonded parameters,
D is the crystallographic contribution with w; a weighting factor, Fy,s the ob-
served structure factor, F,. the calculated structure factor, and k a scaling fac-
tor.

Stereochemical restraints as distances are used in the programs PROLSQ
(Hendrickson, 1985) and TNT (Tronrud et al., 1987). The sum to be minimized
adopts the following form:

L= Z wi[ Fitobs) — kFitcalo)) (i) (7.20)

+ Z WDj(dJi'deal _ djmodel)Z (ll)

dist,j

0N wpir(my 1y — dy)? (iii)

planes coplanar

k  atomsi
+ Y we(VER - vy (iv)
chiral
centers |
Y wnam(dp - dpe)? (v)

nonbonded
contacts m
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+ Z WT,t(Xtideal 7Xtrnodel)2 (Vl)
torsion
anglest

where (i) is the conventional structure factor term. The distances d; between
bonded atoms and between next-nearest-neighbor atoms are used to require
bonded distances and angles to fall within acceptable ranges (term (ii)). Groups
of atoms may be restrained to be near a common plane (Schomaker et al.,
1959) (term (iii)), where my is the unit vector normal to the plane, r;; is the po-
sition of an atom and d; is the distance of the least-squares plane from the ori-
gin. my, - 1; — dy is then the distance of the atom from the least-squares plane.

Interatomic distances are independent of the handedness of enantiomorphous
groups such as C,-groups (except of glycine) or C; of threonine and isoleucine
in proteins. If r, is the position vector of a central atom and ry, r, and r; are
the positions of three atoms bonded to it, such that the four atoms are not co-
planar, the chiral volume is defined by

Ve=(r1—1) [(rp — 1) x (15 —1)] (7.21)

where x indicates the vector product. The chiral volume may be either positive
or negative, depending on the handedness of the group. The expression to be
refined for the chiral volumes is given in term (iv). Contacts between non-
bonded atoms are important for determining the conformation of folded, chain
molecules and crystal packing. They have been modeled by a potential function
that is strongly repulsive when the interatomic distance is less than some mini-
mum value, but only weakly attractive, so that it can be neglected in practice,
when the distance is greater than this value. This leads to an expression of the
form of term (v), which is included only if d™i* < dmodel Macromolecules usual-
ly retain flexibility by relatively unrestricted rotations about single bonds. There
are, nevertheless, significant restrictions of these torsion angles X;, which can
be restrained by terms in the form of (vi). The torsion angles are dihedral an-
gles between planar groups at opposite ends of the bond. The weighting factors
in Eq. (7.29) are usually chosen as w = 1/a?, except for wy, which adopts the
form of 1/¢*, where ¢ is the standard deviation of the expected distribution. A
specific feature of the program TNT (Tronrud et al., 1987) is the calculation of
the gradients of the model function via fast Fourier transforms (FFT), which
makes it very efficient.

For both refinement schemes, parameters are employed which were derived
from small-molecule crystal structures of amino acids, small peptides, nucleic
acids, sugars, fatty acids, cofactors, etc. (Engh and Huber, 1991). If NCS symme-
try is present, a corresponding term may be introduced into the energy or
stereochemistry part of the expression to be minimized. It is possible to divide
the structural model into several individual parts and to refine these parts as ri-
gid bodies. This is especially useful with solutions from molecular replacement.
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A measure of the quality of the crystallographic model is calculated from the
crystallographic R-factor:

Z ‘Fobs‘ - ‘k‘Fcalc‘
Z‘Fobs‘

R= (7.22)

Typical R-factors are below 0.2 for a well-refined macromolecular structure.

Beside the atomic coordinates x, y, z, the atomic temperature factor B may be
refined at a resolution better than 3.5 A. This is done in most programs in a
separate step where, for example, in program CNS the target function

T = Exray + Er (7.23)

is minimized, where

B — B}’ Bi — By)?
Bmwy Y BBy, v (BEB)

(iy)-bonds Tbonds (ij.k)-angles Jangles + Ws
B \2
By — By
DD > LLTLL (7.24)
k-group j-equivalences i-unique atoms Ohes

The last term is used only if NCS symmetry restraints should be imposed on
the molecules. Normally, isotropic B-factors are applied and refined in macro-
molecular crystallography only. Even for a high-resolution structure (1.7 A), the
ratio of observations (observed structure factors) to parameters to be refined (x,
¥, 2, B for each atom) is only about 3. Therefore, as already mentioned, as many
as possible additional “observations” (energy or stereochemistry restraints) are
incorporated. In some cases it is useful to refine the individual occupancy of
certain atoms such as bound metal ions or solvent atoms. This must be per-
formed in a separate step.

7.2.4
Refinement by Simulated Annealing

All of the above-mentioned refinement procedures are based on the least-
squares method. The radius of convergence for this method is not very high be-
cause it follows a downbhill path to its minimum. If the model is too far away
from the correct solution, the minimization may end in a local minimum corre-
sponding to an incorrect structure. Briinger and colleagues (Briinger et al.,
1987, 1993) introduced the method of simulated annealing (SA), which is able
to overcome barriers in the L,-function and find the correct global minimum.
The SA algorithm requires a mechanism to create a Boltzmann distribution at
a given temperature T and an annealing schedule T; > T, > ... > T; at which
the Boltzmann distribution is computed. There exist several methods to be
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used. For crystallographic refinement, molecular dynamics (MD) has proven ex-
tremely successful (Briinger et al., 1987) because it limits the search to reason-
able “moves”. A suitably chosen set of atomic parameters can be considered as
generalized coordinates that are propagated in time by the classical equations of
motion (Goldstein, 1980). If the generalized coordinates represent the x, y, z po-
sitions of the atoms of a molecule, the classical equations of motion reduce to
the well-known Newton’s second law:
0%

miaTzl = —V,-E 5 (725)
where the quantities m; and r;, respectively, are the mass and coordinates of
atom i, and E is a target function as given by Eq. (7.17). The crystallographic
term D is treated as a pseudoenergy term. The solution of the partial differen-
tial Eq. (7.25) can be achieved by finite difference methods; this approach is de-
noted as molecular dynamics.

The initial velocities for the integration of Eq. (7.25) are usually assigned ran-
domly from a Maxwell distribution at the appropriate temperature. Assignment
of different initial velocities will generally produce a somewhat different struc-
ture after SA. By performing several different initial velocities, one can therefore
improve the chances of success of SA refinement. The Cartesian MD applies
chemical restraints contained in the energy term E of Eq. (7.17). One can trans-
form these restraints into constraints (e.g., fixed bond lengths and bond angles)
by using torsion angle MD, which was introduced for crystallographic refine-
ment by Rice and Briinger (1994). This method is numerically very robust and
has a significantly increased radius of convergence in crystallographic refine-
ment compared to Cartesian MD (Rice and Briinger, 1994).

SA requires the control of the temperature during the MD. The current tem-
perature of the simulation (Teyy) is calculated from the kinetic energy:

Bon = 3 2 (20 2 (7.26)
kin — i 2 i o .
of the MD simulation,

Tcurr = 2Ekin/3nkB B (727)

where n is the number of atoms and kg is Boltzmann's constant. One com-
monly used approach to control the temperature of the simulation consists of
coupling the equation of motions to a heat bath through a “friction” term (Be-
rendsen et al., 1984). Another approach is to rescale periodically the velocities
in order to match Ty, with the target function.

SA refinement is capable, for example, of overcoming a high-energy barrier
occurring in the flipping of a peptide plane. It can be useful in removing model
bias from the system. Multi-start refinement and structure factor averaging may
give improved results (Rice et al., 1998).
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7.2.5
The Maximum Likelihood Method

In Section 7.2.1, the maximum likelihood method was briefly introduced as an-
other possibility for the crystallographic refinement of macromolecular struc-
tures. The basic assumption in least-squares minimization is that the condi-
tional distribution of each Fg,s or I, when the model is known as Gaussian
with the expected value Fops or Ipps and known uncertainties. In Eq. (7.3), the
conditional probability distribution was used for the observed structure factor
Fobs. In an X-ray diffraction experiment, we determine the amplitude Fps of the
structure factor only. Since likelihood is proportional to the conditional probabil-
ity distribution of experimental data when the model is known, the form of this
conditional probability is needed. The best way to do this would be to find the
joint probability distribution of all structure factors, but this task is not trivial
and requires a large amount of computer memory and time. Therefore, all exist-
ing refinement procedures assume that the errors in different reflections are in-
dependent, and this simplification still delivers useful results.

With this assumption, the required joint probability distribution of all struc-
ture factor amplitudes has the form

p |:(F0bs)all reﬂections; (Fcalc)au reﬂectionsi| _ H P(Fobs,i; Fcalc,i) . (728)

all reflections

Thus, to describe the likelihood function, the conditional probability distribution
of each reflection is generated and these are multiplied together to give the joint
probability distribution.

As mentioned above, the ratio of the number of experimental data to the
number of parameters to be estimated is low, and therefore prior stereochemical
or other information must be used. This means that, from a mathematical point
of view, all macromolecular refinement can be seen as the application of Bayes’
theorem.

With experimental data Fo,s and parameters to be estimated x, Bayes' theo-
rem can be written as

P(x; Fops) = p(x) P(Fobs; X)/ P(Fobs) = p(X)L(X; Fops) - (7.29)
Here, P is the posterior probability distribution of the parameters when the ex-
perimental data are known; x are the parameters to be estimated; and p is the
prior probability distribution of the parameters known before the experiment. L
is the likelihood function which is proportional to the conditional distribution
of experimental data when the parameters are known.

To best estimate the parameters x, the posterior probability distribution func-
tion must be forced to reach its maximum. In order to apply this theorem, the
form of the prior probability distribution and the likelihood is needed. P(Fops; X)
and L(x; Fops) will be applied as P(Fops; Feale) and L(Feaic; Fops), respectively, as
Fe.c is directly calculated from the x.
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Since maximization of a function is equivalent to the minimization of its neg-
ative logarithm, we obtain from Egs. (7.29) and (7.28) the log-likelihood func-
tion LLK:

LLK = —log P(x; (Fobs)""™*"™*) = —logp(x) — > log L(Feaic.i Fobs.i) »

all reflections

(7.30)

where L(Fici; Fobsi) X P(Fobs,i; Fealei). —log p(x) can be written in a straightfor-
ward way from stereochemical information; here, only the second term has to
be taken into account. The minimization of the function on the left-hand side
of Eq. (7.30) represents the amplitude-based maximum-likelihood (MLKF) resid-
ual.

We will not describe the detailed derivation of the actual LLK function used
in programs BUSTER (Roversi et al., 2000), REFMAC (Murshudov et al., 1997)
and CNS (Briinger et al., 1998). We state here the conditional probability distri-
bution for the structure factor amplitude and the respective log likelihood func-
tion as given in Murshudov et al. (1997):

P(Fobs§ (Fcalcj)j:LNpm)

2Fqps exp — ngs + F\Z)VC Iy 2FgphsFwe acentric
20%, + Zwc 201, + Zwc 20%,,, +Zwe

2 sz +F\2X/C 2FbFWC
———= | € —|=—=—2—">_| cosh Sl L centric
|:T[(0'2 —+ ch):| Xp |:2(0'%0bs —+ ch) 20’%—01)5 + ZWC

Fobs
(7.31)

Npart
where Zyc =¢ y (1 - DJZ) D; = (exp[—AB;S? /4] cos 2nSAx;), Ax; is the error
~ &

in position of atoms in the jth partial structure, AB; is the error in B values of
atoms in the jth partial structure, ¢ is the multiplicity of the diffraction plane,
Npar is the number of partial structures, or,, is the experimental uncertainty in
the structure factor amplitude, and Fyc is the amplitude of the weighted sum
of partial calculated structure factors:

Npart

Fwc = Z Dchalcj
=

LLK = Z LLK; , (7.32)

1
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where
LLK;

F?, + Fi 2F s Fwic
ca — log F, log(26% +X —obs T SWC (oo (S5 YC | acentric
@ g Fops +log (207, we) + ZU%DbS + Zwc g Zafrobs + Zwc o

centric

F%  + F} FopsF
CC+%10g(O—%}bs +ZWC)+ obs wC obs 'WC

—9s %> logcosh| ————"—
2ot tIvc) ((a%:obs FEwc)
(7.33)

and ¢, and ¢, are the respective expressions for stereochemical information for
acentric and centric reflections.

If prior phase information is available it can be incorporated into the maxi-
mum likelihood expressions (Bricogne and Irwin, 1996; Murshudov et al., 1997;
Pannu et al., 1998). This additional information strengthens the maximum like-
lihood structure refinement. In summary, the results derived using the maxi-
mum likelihood residual are consistently better than those from least-squares
refinement.

7.2.6
Refinement at Atomic Resolution

If the resolution of a biological macromolecular crystal structure is equal to or
better than 1.2 A with at least 50% of the intensities in the outer shell being
higher than 20, it is in the range of real atomic resolution and the ratio of ob-
servations to parameters is high enough to carry out, in principle, an unre-
strained crystallographic refinement (Sheldrick, 1990). Each atom can be de-
scribed by up to 11 parameters: the atom type, fixed after identification; three
positional parameters (x,y,z); one isotropic atomic displacement parameter
(ADP) or six anisotropic ADPs; one occupancy factor. At atomic resolution, six
anisotropic displacement factors are used in the same way as in Eq. (3.81). The
thermal-ellipsoid model is used to represent ADPs (Fig. 7.1). These reflect both
the thermal vibrations of about the mean position as a function of time (dy-
namic disorder) and the variation of positions between different unit cells of
the crystal arising from its imperfection (static disorder). Following Murshudov
et al. (1999), the apparent ADP (Uyom) may be composed as:

Uatom = Ucrystal + Urts + Utorsion + Ubond (734)

where Ugysta represents the fact that a crystal itself is generally an anisotropic
field that will result in the intensity falling off in an anisotropic manner, Urrs
represents a translation/libration/screw (TLS) — that is, the overall motion of
molecules or domains, Uyysion 1S the oscillation along torsion angles and Upgng
is the oscillation along and across bonds. In principle, all of these contributors
are highly correlated, and it is difficult to separate them from each other. Never-
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@

Fig. 7.1 The thermal-ellipsoid model used to and three the orientation of these axes.
represent anisotropic displacement, with These six parameters are expressed in terms
major axes indicated. The ellipsoid is drawn of a symmetric U tensor whose contribution
with a specific probability of finding an atom  to atomic scattering is given by Eq. (3.81).
inside its contour. Six parameters are (Reproduced with permission from Dauter et
necessary to describe the ellipsoid: three al., 2001, International Union of

represent the dimensions of the major axes Crystallography.)

theless, the splitting up of Uy into this sum of different contributors makes
it possible to apply atomic anisotropic parameters at different resolutions in a
distinct way. Ugystal and Urrs can be applied at any resolution. Ueygal can be re-
garded as anisotropic overall scale factor and increases the number of parame-
ters by at most a factor of five. Ups accounts for the anisotropy of the move-
ment of whole molecules or domains and introduces 20 more parameters per
molecule or domain. As torsion angles exhibit a strong correlation between each
other, they are difficult to model and normally are not separately refined. Usiom
can only be refined at atomic resolution as defined above, and introduces six pa-
rameters per atom. REFMAC (Murshudov et al., 1997), for example, only cor-
rects for Ueysal before refining individual atomic anisotropic displacement fac-
tors. The derived atomic anisotropy is thus the sum of Utrs, Uiorsion and Usiom.
The full refinement with up to 10 (usually nine) parameters per atom can be
made with the classical least-squares residual, as with the programs SHELXL
(Sheldrick and Schneider, 1997) and REFMAC (Murshudov et al.,, 1997) or by
maximum-likelihood procedures (Bricogne and Irwin, 1996; Pannu and Read,
1996; Murshudov et al., 1997; REFMAC). The mathematical approaches to mini-
mize the respective residuals have been outlined in the previous sections. The
least-squares refinement of large structures may become problematic because
the number of terms in the matrix of the normal equations increases with the
square of the number of parameters. The full matrix solution becomes unfeasi-
ble due to computer time and memory problems. A common approach is then
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the block-matrix approximation where, instead of the full matrix, only square
blocks along the matrix diagonal are constructed, including groups of parame-
ters that are expected to be correlated. The correlation between parameters be-
longing to different blocks is therefore neglected completely. In principle, this
leads to the same solution, but more slowly and with less precise error esti-
mates. Nevertheless, block-matrix approaches remain essential for tractable ma-
trix inversion for macromolecular structures. Maximumd-likelihood methods,
when used for full anisotropic refinement, provide results similar to those ob-
tained with least squares, but with improved weights. A remaining limitation is
the use of the diagonal approximation, which prevents the computation of stan-
dard uncertainties of individual parameters.

It is not very long since the achievement of X-ray diffraction data extending to
atomic resolution was a very rare event. However, recent advances in cryogenic
techniques, area detectors and the use of synchrotron radiation have enabled
macromolecular data to be collected to atomic resolution for an increasing num-
ber of proteins (Dauter et al., 1997). Although the importance of a structure de-
termination at atomic resolution is clear, it is extremely significant for the deter-
mination of the metal binding site in a metalloprotein. At lower resolution,
stereochemical restraints must be applied, and it is very difficult to formulate
such restraints for a metal binding site. In the case of atomic resolution, no
prior stereochemical knowledge is necessary and metal-ligand bond distances
and angles can be achieved directly. This allows, for example, determination of
the redox state of the metal because metal-ligand distances differ at various re-
dox states. An example of a complex metal active site determined at atomic res-
olution (1.1 A) is shown in Figure 7.2. The figure depicts the bimetallic active
site of CO dehydrogenase of the eubacterium Oligotropha carboxidovans in its
oxidized state (Dobbek et al., 2002). The atoms of the metal ions and some li-

Fig. 7.2 Geometry of the bimetallic active site of CO
dehydrogenase of Oligotropha carboxidovans. The electron
density map has been contoured at 1.00. (Reproduced with
permission from Dobbek et al., 2002, National Academy of
Sciences of USA.)
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gands are resolved as spheres in the electron density map. The other atoms
show such a resolution that the electron density reduces to more than 50% in
the middle between two atoms. A schematic representation of the metal coordi-
nation is included as cartoon.

73
Verification and Accuracy of Structure Determination

7.3.1
Free R-Factor as a Tool for Cross-Validation in Structure Determination

A measure of the quality of a structure determination is the crystallographic R-
factor given in Eq. (7.22). For a high-resolution structure (e.g., 1.6 A), the factor
should not be much larger than 0.16. As the R-factor is an overall number, it
does not indicate major local errors; rather, these can be obtained by the evalua-
tion of a real space R-factor (Jones et al., 1991) which is calculated on a grid for
nonzero elements according to Eq. (7.34):

Z |pobs — pcalcl
Riyeal space = - obs —Falel (7.34)
e space Z |pobs + pcalc'

where pops is the observed and pcy the calculated electron density.

It has been shown that the conventional R-factor may reach rather low values in
a crystallographic refinement with structural models that were later found to be
incorrect. Fortunately, gross errors can be recognized by independent structure so-
lution or by comparison to known structures of homologous macromolecules.
However, diffraction data can be misinterpreted in more subtle ways. For example,
it is possible to overfit the diffraction data by introducing too many adjustable pa-
rameters, or to make the stereochemical restraints too weak. A typical problem
arises when too many water molecules are fitted to the diffraction data, thus com-
pensating for errors in the model or the data. A related issue is the overinterpreta-
tion of models by placing too much faith in the accuracy of atomic positions at the
particular resolution of the diffraction data. The underlying reason for such an
overfitting can be found in the relationship between the R-factor and the target
function for the crystallographic refinement (Eq. 7.19) that is aimed to be mini-
mized. If one assumes that all observations are independent and normally distrib-
uted, it can be shown that the target function of Eq. (7.19) is a linear function of
the negative logarithm of the likelihood of the atomic model (Press et al., 1986). It
transpires that the target function — and thus the R-factor — can be made arbitrarily
small simply by increasing the number of model parameters used during refine-
ment, regardless of the correctness of the model.

In order to overcome this unsatisfactory situation, Bringer (1992, 1993) pro-
posed the additional calculation of a so-called free R-factor, which corresponds
to an application of the statistical method of cross-validation (Stone, 1974). Fortu-
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nately, single crystal X-ray diffraction data also of biomacromolecules are overde-
termined, and in most cases it is possible to set aside a certain fraction of the dif-
fraction data for cross-validation. For this purpose, the reflections are divided into a
working set (e.g., 90%) and a test set (e.g., 10%). The reflections in the working set
are used in the crystallographic refinement. The free R-factor is then calculated
with reflections from the test set which were not used for the crystallographic re-
finement, and is thus unbiased by the refinement process. Free R-factors are gen-
erally higher than expected (typically 20%, but sometimes above 30%). There exists
a high correlation between the free R-factor and the accuracy of the atomic model
phases. Furthermore, it is empirically related to coordinate error, and thus high
free R-factors may be caused by a relatively high coordinate error of the model.

7.3.2
Determination of Coordinate Uncertainty

The topic of coordinate uncertainty of structural models of biomacromolecules
determined by single crystal X-ray diffraction has been reviewed (Cruickshank,
1999, 2001). Here, we provide some insight into the problem and discuss the
magnitudes used to characterize coordinate uncertainty.

In mathematical statistical theory, a distinction is made between the terms ac-
curacy and precision. A single measurement of the magnitude of a quantity dif-
fers by error from its unknown true value A. For a given experimental proce-
dure, the potential results of an experiment define the probability density func-
tion f(x) of a random variable. Both the true value 1 and the probability density
f(x) are unknown. The problem of assessing the accuracy of a measurement is
thus the double problem of estimating f(x) and of assuming a relationship be-
tween f(x) and A. Precision is linked to the function f(x) and its spread.

The problem of which relationship to assume between f(x) and the true val-
ue / is more difficult, including particularly the question of systematic errors.
The usual procedure, after correcting for known systematic errors, is to assume
that some typical property of f(x), often the mean, is the value of 1. No repeti-
tion of the same experiment will ever detect the systematic errors, so statistical
estimates of precision consider only random errors. Empirically, systematic er-
rors can be detected only by remeasuring the quantity with another technique.
In the case of single crystal X-ray diffraction, this may be the use of synchrotron
radiation in place of a conventional X-ray source, a different crystal or crystal
form, or data collection at another temperature of the crystal. Nowadays, the
term standard uncertainty (s.u.) has replaced the well-established term estimat-
ed standard deviation (e.s.d.).

7.3.2.1 Unrestrained Least-Squares Refinement

The normal equations for the model function M;(x) given by a nonlinear rela-
tionship have been quoted in Eq. (7.13). Here, the model function had been de-
veloped in a Taylor series. As a model function we use either the structure fac-
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tor amplitude Fgs or the intensity Iy It is assumed that we know approximate
values x, for the parameters x, which deviate from x by e, and expand M;(x) as
first-order Taylor series. The normal equations for F.. as model function is
then given by

Z & |:Z W(h)(8Fcalc/8xc,i)(aFcalc/axc,j):| :Z W(h)(Fobs - Fcalc) (aFcalc/axcj) .
i h

h
(7.35)

There are n of these equations for j =1,...,n to determine the n unknown ¢;.

For Iops = F%, and I = F2, the normal equations are:

Z & |:Z W(h)(8Fczalc/ax6,i)(aF(Z:alc/axC-j):| = Z w(h) (F(Z)bs - Fgalc)(aFgalc/axCJ)
i h h
(7.36)

The index triple h has been omitted for the structure factor amplitudes in Egs.
(7.35) and (7.36). Both forms of the normal equations may be abbreviated to

ZeiaU = bj . (737)

Some important points in the derivation of the standard uncertainties of the re-
fined parameters can be most easily understood if we assume that the matrix a;;
can be approximated by its diagonal elements. Each parameter is then deter-
mined by a single equation of the form:

& Z w(h)g? = Zw(h)gA , (7.38)

h h

where g = OFyc/0x.; or OF?

calc

/axcﬂi and A = Fobs - Fcalc or ngs — F!

calc’

Hence,

& = <Zw(h)gA>/Zw(h)g2. (7.39)
h h

At the end of the refinement, when the residual is a minimum the variance
(square of s.u.) of the parameter x; due to the uncertainties is

ot = [Zw(h)zgzaz(F)} / (ZW(h)Zgz) : (7.40)
h h

If the weights have been chosen as w(h) = 1/6?(Fps(h)) or 1/6%(F2  (h)), this
simplifies to



7.3 Verification and Accuracy of Structure Determination

i = 1/ (2}; W(h)g2> =1/a;, (7.41)

which is appropriate for absolute weights. Equation (7.41) provides an s.u. for a
parameter relative to the s.u.’s o(Fops(h)) or a(F2 (h)).
In general, with the full matrix a; in the normal equations,

0',2 = (a_l)ii , (742)

where (a7'),; is an element of the inverse matrix of a;;.

7.3.2.2 Restrained Least-Squares Refinement

The residuals to be minimized in restrained least-squares refinement has been
given by Egs. (7.17) to (7.19) for energy restraints and by Eq. (7.20) for stereo-
chemical restraints. In a high-resolution unrestrained refinement of a small
molecule, the s.u. of a bond length A-B is often well approximated by

o(l) = (o4 +op)"* . (7.43)

However, in a biological macromolecule determination o(I) is often much smal-
ler than either o4 or op, due to the excellent information from the stereochemi-
cal dictionary, which correlates the positions of A and B.

The determination of the precision of a restrained refinement of a biological
macromolecule is, in principle, straightforward. The inverse of the final full ma-
trix delivers estimates of the variances and covariances of all parameters. The di-
mensions of the matrix are the same for both unrestrained or restrained refine-
ment.

The s.u. for a parameter refined with restraints has been derived for a simple
structural model consisting of two bonded atoms to give a flavor of the influence
of the restraints on the s.u. The variance of the restrained length is given as

1/0te(1) = 1/ 0356 (1) + 1/ 0geom(D) (7.44)

where o} (1) is the variance of the diffraction term and o, (1) that of the geo-
metrical restraint. Thus, the restrained refinement determines a length which is
the weighted mean of the diffraction-only length and the geometric dictionary

length.

7.3.2.3  Rough Estimation of Coordinate Uncertainties

With the increasing power of computers and more efficient algorithms (e.g.,
Tronrud, 1999; Murshudov et al., 1999), a final matrix should be computed and
inverted more regularly, and not only for high-resolution analyses. However, in
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the normal practice refinement programs are used that are unable to deliver es-
timates of coordinate uncertainties directly. The standard method applied is to
obtain an estimation of the mean positional error for the whole structural mod-
el. Several approaches can be used, and these will be described briefly in the fol-
lowing sections.

7.3.2.3.1 Luzzati Plot
Luzzati (1952) derived a formula, which determines the R-factor as a function
of (Ar), the average radial error of the atomic position. His analysis shows that

the R-factor is a linear function of S = 2sinf/2 and (Ar) for a substantial range
of S(Ar), with

R(S, (Ar)) = (27)*S(Ar) . (7.45)

The theoretical Luzzati plots of the R-factor are nearly linear for small-to-medi-
um S. If one plots the R-factor as a function of S, it is possible to determine
the actual average radial error (Ar) by comparing the curve with the theoretical
curves given in Eq. (7.45). The determination of (Ar) by a Luzzati plot has been
common in the past. However, as Luzzati plots are very different from other sta-
tistical estimates of error, they have been criticized (see Cruickshank, 2001), and
the use of other estimates derived by a more suitable statistical analysis has
been recommended.

7.3.2.3.2 op-Plot

Read (1986, 1990) proposed another graphical method to obtain the average po-
sitional error (Ar). In this approach, g, is plotted as function of S in the follow-
ing form:

P
1 fo fias
Inoa = Eln =l -7 (Ar)*s? (7.46)

where o, is defined by Eq. (6.36). The summation goes over all N atoms of the
whole structure and P atoms of the partially known structure. The argument of
the logarithm on the right-hand side of Eq. (7.46) should be 1 if the structure
refinement has been finished. However, this is never the case because of the
disordered structure of the solvent atoms in the crystal. These atoms contribute
considerably to low-resolution reflections which should, therefore, be ignored at
the final stage of refinement. g plots can, for example, be calculated with pro-
gram SIGMAA (Read, 1986) or within CNS (Briinger et al., 1998).
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7.3.2.3.3 The Diffraction-Component Precision Index
Cruickshank (1999) introduced a quick and rough guide for the diffraction-data-
only error component for atoms with isotropic B-factor equal to the average B-
factor, By, of the biomacromolecular structure. This is named the diffraction
component precision index (DPI), and is given by:

(%, Bag) = 1.0(Ni/p)"*C/* Rdpnin , (7.47)

where N; is the number of fully occupied atomic sites, p is the difference be-
tween the number of observations n,,s and the number of parameters npsram,
and C is the fractional completeness of the diffraction data to dyi,, the minimal
lattice plane distance.

For low-resolution structures, the number of parameters may exceed the
number of diffraction data. In Eq. (7.47), p is then negative, so that o(x) is
imaginary, but this problem may be circumvented empirically by replacing p
with neps and R with Rgee. The counterpart of the DPI (Eq. 7.47) is then

(%, Bavg) = 1.0(Ni/Ngps) "> C /> Rezeethnin - (7.48)

Here, nqps is the number of the reflections included in the refinement, not the
number in the Rgee set.

Often, an estimate of a position error (Ar), rather than a coordinate error
(Ax), is required. In the isotropic approximation we obtain

(%, Bavg) = 3"/%0(x, Bayg) - (7.49)

Consequently, the DPI formulae for the position errors are

(%, Bayg) = 3Y2(Ni/p)">C ™/ Rdpyin (7.50)
with R and

(%, Bavg) = 32(N;i/obs) /> C 3 Rpyeelumin (7.51)
with Rpee.
733

Validation of the Geometric and Stereochemical Parameters of the Structural Model

In the previous sections we discussed the attainment of the most reliable struc-
tural model of a biomacromolecule and the estimation of its positional uncer-
tainty. Usually, however, the data obtained from the diffraction experiment(s)
are not of sufficiently high resolution to define the atomic positions of a macro-
molecule with adequate precision. In such cases, the crystallographic refine-
ment procedures use additional restraints based on prior knowledge about the
chemical structure of the molecule and its conformational properties.
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When building the model of a protein structure, we must consider the en-
ergy-based rules for the conformation of the polypeptide chain. A polypeptide
chain in extended conformation is shown in Figure 7.3. This consists of the sin-
gle peptide groups which are linked to each other by the peptide bond connect-
ing each main chain C-atom with the adjacent N-atom. For structural proper-
ties, it is useful to divide the main chain into repeating units extending from
one C, atom to the next C, atom. These units are planar and rigid, and are
linked into a chain by covalent bonds at the C, atoms; the only degrees of free-
dom they have are rotations around these bonds. Each unit can rotate around
two of such bonds: the C,-C bond and C,-N bond. The angle of rotation around
the C,-N bond is called ¢, and that around the C,-N bond is called y. Most
combinations of ¢ and w angles for an amino acid are not allowed because of
steric collisions between the side chains and main chain.

The conformation of the main chain folding is verified by a Ramachandran
plot (Ramachandran et al., 1963). The dihedral angles ¢ and y are plotted
against each other for each residue. The data points should lie in the allowed re-
gions of the plot which correspond to energetically favorable secondary struc-
tures such as a-helices, f-sheets and defined turn structures. Exceptions are gly-
cine residues, which may occur at any position in the Ramachandran plot. After
each round of model building and refinement, a Ramachandran plot should be
compiled and, at the final stage, all data points should lie in energetically fa-
vored regions of the plot (see Fig. 7.4). Figure 7.4a shows a Ramachandran plot
of the initial structure of the small subunit of ribulose-1,5-biphosphate carboxy-
lase/oxygenase (RiBisCO), while Figure 7.4b shows a plot of the refined struc-
ture. The initial structure contains several amino acid residues in energetically
disallowed regions, which is no longer the case for the refined structure.

Fig. 7.3 Schematic drawing of a polypeptide chain in fully
extended conformation. The meaning of the dihedral angles ¢
and y is explained in the text. The peptide planes are usually
flat with o = 180°.
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The covalent geometry of the atomic structure is checked by comparisons
against standard values derived from crystals of small molecules. For proteins,
the most commonly used standard values for bond distances and angles are
those compiled by Engh and Huber (1991), from molecular fragments in the
Cambridge Structural Database, CSD (Allen et al., 1979), that most closely re-
semble chemical groups in amino acids.

Protein-structure validation packages, such as PROCHECK (Laskowski et al.,
1993) or WHAT IF (Hooft et al., 1996) flag all bond distances and angles that
deviate significantly from the database-derived reference values. This includes
analysis of the deviations from planarity in aromatic rings and planer side-chain
groups.

Similar checks are performed for the covalent geometry of the atomic models
of RNA or DNA oligo- and polynucleotides. Here, standard ranges for bond dis-
tances and angles are derived from crystal structures of nucleic acid bases,
mononucleosides and mononucleotides in the CSD (Clowney et al., 1996; Gel-
bin et al., 1996).

Validation of the covalent geometry of the so-called “hetero groups” (chemi-
cally modified monomer groups or small molecules that bind to macromole-
cules) is much more difficult because reference data bases cannot be created
easily due to a strong influence on the conformation of the ligand molecule
upon binding to the macromolecule. At present, this is not carried out routinely
in the Protein Data Bank (PDB) (Bernstein et al., 1977; Berman et al., 2000)
and, as result, the quality of the hetero groups deposited in the PDB varies con-
siderably.

Other stereochemical parameters, such as side-chain torsion angles (x1, x2, 13,
etc.), the peptide bond torsion w, the C, tetrahedral distortion, disulfide geome-
try, and non-bonded parameters, such as close van der Waals contacts, geometry
of H-bonds and salt bridges and interactions in the solvent structure, must be
checked. This can conveniently be done with the program PROCHECK (Las-
kowski et al., 1993).

73.4
Validation of the Structural Model against the Experimental Data

The basic concepts and reliability indices and magnitudes have been discussed
and listed in Sections 7.3.1 and 7.3.2. A systematic approach to perform this
task at the end of a structure determination has been offered by the program
SFCHECK (Vaguine et al., 1999). The program reads in the structure factor data
and the PDB-file holding the structural model. It then calculates structure fac-
tors from the model and determines the scale factor between them and the ob-
served structure factors. For the global agreement between the model and the
experimental data, the R- and Rgc.-factors and the correlation coefficient
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(Fobchalc) - <Fobs><Fcalc>

(B30~ (m2) (P2 — (Fa))]

between the calculated and observed structure factor amplitudes are compiled.
The estimation of errors in atomic positions is performed by the DPI (Eq. 7.50)

CCr = (7.52)

and from a Luzzati plot. In addition to the global structure quality measures,
SFCHECK also determines the quality of the model in specific regions. Several
quality estimators can be calculated for each residue in the macromolecule and,
whenever appropriate, for solvent molecules and groups of atoms in ligand mol-
ecules. These estimators are the normalized atomic displacement (Shift), the
correlation coefficient between calculated and observed electron densities (Den-
sity correlation), the local electron-density level (Density index), the average (B-
factor) and the connectivity index (Connect), which measures the local electron-
density level along the molecular backbone. These quantities are computed for
individual atoms and averaged over those composing each residue or group of
atoms.

7.3.5
Deposition of Structural Data with the Protein Data Bank

Almost all spatial structures of biological macromolecules determined either by
X-ray crystallography or nuclear magnetic resonance (NMR) techniques have
been — and will be — deposited with the RCSB Protein Data Bank at Rutgers
University (Berman et al., 2000). The PDB-file of the final structural model and
the structure factor file must be supplied. The data can be submitted online
using the ADIT tool available on the RCSB web site (http://www.rcsb.org/). For
this, one must supply a row of additional information such as the reference to
one or more publications about the structure, biological source, production and
crystallization of the macromolecule, and many more details. The information
relating to the structural model is in a file that contains, for each individual
atom of the model, a record with atom number, atom name, residue type, resi-
due name, coordinates x, y, z, B-value(s), and occupancy. The header records
hold useful information such as crystal parameters, amino acid sequence, sec-
ondary structure assignments, and references.
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8
Crystal Structure Determination of the Time-Course
of Reactions and of Unstable Species

8.1
Introduction

So far, we have discussed the conventional X-ray experiment, in which we obtain a
time-average of the biomacromolecular crystal structure. At first view it appears
that, by using a crystal, the structural characterization of the time-course or of un-
stable species of a chemical or photo-chemical reaction is impossible. This may be
true for crystals of small molecules in which the crystal packing does not allow
transport of the reactant(s) to the molecules. However, photo-chemical reactions
may be an exception. The situation is different for proteins, which constitute
the major class of biomacromolecules. Protein crystals may be regarded as concen-
trated solutions (typically 30-50 mM protein) because of their large solvent con-
tent of, usually, 30-80%. The molecules are held in the crystal lattice by relatively
few weak interactions, allowing for some flexibility and motion. In many cases, a
protein crystal contains solvent channels that allow easy access to the protein by
the reactant(s), and subsequent release of the reaction product(s). Crystalline pro-
teins or enzymes are, therefore, often biochemically active (Rossi, 1992). One no-
table difference from working with concentrated solutions, however, stems from
the arrangement of the solvent in ordered arrays of solvent channels. Thus, con-
vection is impossible, and diffusion is restricted in space. Reaction initiation by
simple mixing of reactants, as occurs in the stopped- or quenched-flow methods
for rapid kinetic experiments in solution, will in general take too long. Also, enzy-
matic inactivity or reduced activity in the crystalline state may be due to steric re-
strictions, such as inaccessibility of the active sites or to an inhibition of substrate
binding or catalysis caused by the crystallization conditions, such as high salt con-
centration or unfavorable pH in the crystal. Therefore, the kinetics of the process
under investigation have also to be measured in the crystal. This information is
also essential for knowing when to collect the diffraction data of an intermediate
when the reaction has been initiated in the crystal. In the ideal case, the kinetics in
the crystal should be analyzed spectroscopically and noninvasively in situ, thereby
adding the advantage that this analysis may also be carried out simultaneously
with the collection of the X-ray diffraction data.

The prerequisites for time-resolved studies are that the reaction to be studied
can be initiated uniformly in space and time throughout the crystal, and that
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the time necessary for triggering the reaction and collecting the data is much
shorter than the typical lifetimes of the reaction intermediates to be character-
ized. Intermediate states can be monitored only if they are sufficiently occupied
and are stable for the data collection time.

The crystal structures of reactive unstable species, as occurring during chemi-
cal reactions, can be determined by time-resolved crystallography or trapping
approaches. As discussed earlier, the reaction must be initiated, and for this
purpose several triggering methods are available (Schlichting and Goody, 1997;
Schlichting, 2000). Both, these methods and the trapping approaches will be
briefly outlined in the following sections.

Time-resolved X-ray crystallography is carried out via Laue diffraction experi-
ments. Although Laue diffraction, in which a stationary crystal is illuminated by
a polychromatic beam of X-rays, was the original crystallographic technique, it
was largely replaced during the 1930s by rotating crystal, monochromatic tech-
niques. With the advent of naturally polychromatic synchrotron X-ray sources
and possible short exposure times of ~100 ps (the duration of a single X-ray
pulse at a third-generation synchrotron source; Bourgeois et al., 1996), the Laue
technique could be used for time-resolved X-ray crystal structure determina-
tions. The Laue technique and its applications have been the subject of several
reviews (Clifton et al., 1997; Moffat, 1997, 2001; Schlichting and Goody, 1997;
Stoddard, 1998; Ren et al., 1999; Schlichting, 2000; Schmidt et al., 2005). A brief
outline of the Laue technique is also presented in the following sections.

8.2
Triggering Methods

Reactions can be initiated by changing thermodynamic parameters such as tem-
perature or pressure, by irradiating with light or other radiation, or by changing
the concentration of substrates, cofactors, protons, and electrons. Concentration
jumps can be generated most easily by diffusion, but rapid reactions require other
approaches. The choice of the trigger depends largely on the physico-chemical
properties of the system and the reaction studied. An ideal starting point for
time-resolved protein crystallography is provided by the presence of a “built-in”
trigger. This may be the case for proteins involved in the conversion of light into
other energy forms (e.g., photosynthetic reaction centers), in the transduction of
light signals (e.g., bacteriorhodopsin), or that have light-sensitive bonds (e.g., car-
bon monoxide complexes of heme proteins). The influence of the rapidity of the
trigger in relation to the time constants of the system on the detection of inter-
mediates has been demonstrated exemplarily for the photoreactive yellow protein
(Ren et al., 1999), which belongs to the systems with built-in triggers, as do light-
sensitive carbon monoxide complexes of heme proteins (Schlichting et al., 1994;
Srajer et al., 1996), photosynthetic reaction centers (Stowell et al., 1997), and bac-
teriorhodopsin (Edman et al., 1999). Triggering enzymatic reactions is usually less
straightforward and may require several strategies for capturing different steps.



8.2 Triggering Methods

There are three processes, which can be used to initiate an enzymatic reac-
tion: (i) photolysis; (ii) diffusion; and (iii) radiolysis.

8.2.1
Photolysis

Photolysis is the cleavage of a molecule by irradiation with light, and is ideal
for the initiation of a reaction because it may be accomplished very rapidly, de-
pending on the respective (photo)chemistry. Furthermore, photolysis is broadly
applicable experimentally. It can be used for crystals mounted in a capillary, in
a loop of a humidity control device at ambient temperatures, or in a loop at
cryogenic temperatures. Systems that are not inherently light-sensitive can be
rendered so by chemically attaching photosensitive, biochemically inactivating
groups to, for example, substrates, cofactors or catalytically important residues
of the protein (Schlichting, 2000 and references therein). Such “caged com-
pounds” render the system light-sensitive and biologically inert. Commonly
used “cage” groups are substituted-2-nitrobenzyls such as 2-nitrophenylethyl
(2NPE) that can be cleaved with light of ca. 350 nm wavelength with concomi-
tant production of a nitroso-ketone. An important application of 2NPE groups
is in the caging of nucleotides such as ATP and GTP, and it has been used in
relation with GTP in a time-resolved Laue study on the Ras protein (Schlichting
et al., 1990). Other cage groups successfully used in crystallographic studies are
3,4-dinitrophenyl (attached to phosphate in glycogen phosphorylase b; Duke et
al.,, 1994) and (4,5-dimethoxy-2-nitrophenyl)ethyl or e-carboxy-2-nitrobenzyl at-
tached to NADP in a study of isocitrate dehydrogenase (Cohen et al., 1997).

8.2.2
Diffusion

Diffusion is an experimentally straightforward approach to generate concentra-
tion jumps of substrates, cofactors, protons, etc. Because of the intrinsic crea-
tion of gradients and the competing effects of diffusion and catalysis, reaction
initiation by diffusion is suitable only for very slow processes (half-lives of min-
utes for the rate-limiting species). Typical diffusion times across 200 pm-thick
crystals are seconds to minutes, depending on the size of the compound and
the solvent channels and the viscosity of the mother liquor. pH changes, if toler-
ated by the crystal lattice, can be used to trap intermediates (Verschueren et al.,
1993) or to initiate single-turnover reactions to be followed by time-resolved
crystallography (Singer et al., 1993) using a flow cell (Petsko, 1985). This set-up
can also be used for the structure determination of intermediates accumulating
under steady-state conditions of the reaction (turnover rates of up to 0.1s7).
Depending on the solvent (water versus, e.g., 70% methanol), flow cells can be
used at ambient and cryogenic temperatures. The study of Filop et al. (1994),
on cytochrome ¢ peroxidase, is an excellent example of reaction initiation by dif-
fusion of substrate used in a time-resolved study.
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823
Radiolysis

Radiolysis caused by the interaction of X-rays with matter may occur in synchro-
tron radiation experiments. Its effect depends on the energy, and thus on the
wavelength and intensity, of the X-rays used. Due to the radiation’s high intensity,
there will be absorption of the radiation, and this may lead to heating and radia-
tion damage of the sample. The latter involves the generation of photoelectrons
that recombine with water to form hydrated electrons, leading to a range of sub-
sequent radical reactions. The absorption will be increased if the protein contains
metals and the wavelength of the used X-rays is close to an absorption edge of the
metal. X-ray-induced reduction has been observed in many metal-containing sys-
tems, and has been used deliberately in experiments on cytochrome P450
(Schlichting et al., 2000). As X-ray absorption is strongly wavelength-dependent,
reduction can be minimized by using very short X-ray wavelengths. Increasing
the wavelength can be used to generate photoelectrons that may reduce the system
under investigation, thereby initiating a reaction (Schlichting et al., 2000).

8.3
Trapping Methods

In the previous section we have described the methods to initiate the reaction.
There are now two possible ways to perform the respective X-ray experiment: (i)
by trapping the unstable intermediate; or (i) by accomplishing a time-resolved
Laue diffraction experiment. Here, we will briefly explain existing trapping
methods. The techniques used to extend the lifetime of an intermediate fall into
two broad categories, namely physical and chemical trapping.

8.3.1
Physical Trapping

The rate constant of a single step in a reaction decreases at lower temperatures,
with the magnitude of decrease being dependent on the absolute activation energy.
For a step with an energy barrier of 4 k.,; mol ™', a rate constant measured at 20°C
can be up to 40-fold lower at —80 °C; for an energy barrier of 10 k¢, mol™!, the same
rate constant can be diminished by over 10*. By rational lowering of the tempera-
ture of the crystal during turnover, it may be possible to trap and observe a rate-
limiting species (“freeze trap”). Using this approach, the total energy available
to the system is decreased substantially. The clear advantage is an increase in
the lifetime of the intermediate of interest which may, under appropriate condi-
tions, become virtually infinite, thereby allowing X-ray data collection with suffi-
ciently long exposure times.

Flash-cooling (as described in Section 2.3.2) can be used for intermediate
trapping. In such experiments, the intermediate species accumulates at a phys-
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iologically relevant temperature in response to natural rate barriers. The reac-
tion or turnover event is then rapidly quenched to cryo-temperatures for data
collection (“trap freeze”). Under these conditions, protein structures experience
a lowering of mobility and flexibility that is similar to a phase transition. This
effect hinders both the dynamic freedom of the protein and the free exchange
of solvent necessary for reactivity.

8.3.2
Chemical Trapping

The population and relative occupancy of a specific catalytic intermediate may
be elevated and its structure determined by adjusting the reaction conditions so
that the respective intermediate has a lower free-energy than any other state. In
essence, the free-energy profile of the catalytic reaction is changed and exploited
in order to impose a novel kinetic rate limit or a thermodynamic dead end.
Such techniques can be used to isolate either an intermediate within the context
of a single turnover experiment or a high-occupancy, steady-state complex dur-
ing the multi-turnover protocol. Such experiments may incorporate either a sig-
nificant change to the pH of the reaction, or a perturbed or even nonaqueous
mother liquor (Yennewar et al., 1994). Alternatively, enzymes that catalyze sin-
gle-substrate/single-product reactions (or that proceed through separable half-re-
actions) may be studied under conditions of thermodynamic equilibrium that
favor a single predominant species. Yet another method of chemical trapping is
the use of site-directed mutagenesis to create a system for a specific catalytic in-
termediate (Bolduc et al., 1995).

8.4
Laue Diffraction

8.4.1
Principles of the Laue Technique

A Laue diffraction pattern is obtained when a stationary crystal is illuminated by a
polychromatic X-ray beam spanning the wavelength range from A, t0 Apyay, the
so-called band pass. Figure 8.1 shows the Ewald construction for the Laue tech-
nique. A reciprocal lattice point that lies in the hatched area (the region between
the limiting Ewald spheres of radii 1/Ami, and 1/, and within a sphere of ra-
dius 1/dpy, the limiting resolution of the crystal) is in diffraction position for the
wavelength /4 and will contribute to a spot on the Laue diffraction pattern. A Laue
pattern may be thought of as the superposition of a series of monochromatic still
diffraction patterns, each taken at a different wavelength of X-rays — that is, a con-
traction of the Ewald spheres with radii from 1/Ayin to 1/Amax. However, it is more
advisable to stretch the reciprocal lattice because the mutual position of the sphere
and the lattice is essential to determine the direction of the reflected beam. This
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T

Fig. 8.1 Ewald construction for the Laue exhibits a radius of 1/dmin. Reciprocal lattice
diffraction technique. The largest sphere has points lying in the hatched area give rise to
a radius of 1//min and the smallest one a reflections. The generation of multiple spots
radius of 1/Amax. The resolution sphere is illustrated.

approach is illustrated in Figure 8.2. Each lattice point H moves on the line OH to
the point H' with a distance from O of (Eq. 8.1)

j'max
OH' = OH ™% (8.1)

Amin

This is carried out in Figure 8.2a for the points H; to Hs. Each point H between
the spheres for Apin and Ama, and no other point intersects the largest sphere in a
point S, and MS indicates the direction of the reflected beam whose indices coin-
cide with those of H; for its wavelength, the following relationship holds,

oS
OH_;Lmin ’

(8.2)

This means that Laue spots arise from mapping of rays (lines emanating from
the origin in reciprocal space) onto the detector, in contrast to spots in a mono-
chromatic pattern that arise from mapping of individual reciprocal lattice
points. Because a ray may contain only one reciprocal lattice point H with in-
dices (b k I) or several (hkl,2h2k2l,... nhnknl) between the origin and
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(b)

Fig. 8.2 Explanation of the geometry of Laue
diffraction patterns. (a) Expansion of
reciprocal lattice by rays along the lines
between the origin of the reciprocal lattice O
and the respective reciprocal lattice points.
(b) Expansion of a circle resulting from the
intersection of a reciprocal lattice plane
passing through origin O with the smallest

Ewald sphere. The expansion is illustrated by
four rays and the expanded circle, which cuts
the largest sphere, as shown. The projection
of this circle from the center M of the
largest Ewald sphere reveals a cone with
cone axis [UVW)]. The directions of reflected
beams lie on the surface of the cone.
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1/dmin, a Laue spot may be single, arising from only one reciprocal lattice point,
wavelength, and structure factor, or multiple, arising from several points. If a
spot is multiple, its integrated intensity is the sum of the integrated intensities
of each component. The generation of multiple spots is also illustrated in Fig-
ure 8.1, where the reciprocal lattice points 2 to 5 from the indicated reciprocal
lattice line produce a multiple Laue spot on the detector.

We consider planes of the reciprocal lattice passing the origin of this lattice,
which do not intersect the largest reflection sphere. As an example, we consider
a plane that intersects the smallest sphere, as depicted in Figure 8.2b, and cuts
this sphere in a circle. Reciprocal lattice points lying on this circle would give
rise to reflections in the directions of a cone with M’ as apex, including the di-
rection M'O. Its axis [UVW] is normal to the reciprocal lattice plane. If we ex-
pand this circle, which is part of the respective reciprocal lattice plane according
to Eq. (8.1), the circle expands along the rays until it cuts the largest reflection
sphere, which when projected from M yields a cone containing the direction
MO with the same zone axis [UVW)] (Fig. 8.2b). This behavior is valid for all re-
ciprocal lattice planes passing the origin of the lattice. Therefore, the spots lie
on conic sections, each corresponding to a zone [UVW). These cones intersect a
detector normal to the incident beam in ellipses or elliptic arcs designated as
“lunes”. This means that all reciprocal lattice points of a plane passing through
the origin of the reciprocal lattice and lying between the largest and smallest
Ewald sphere and the resolution sphere map into the corresponding cone on
the largest Ewald sphere. A typical Laue diffraction image plus its predicted dia-
gram is shown in Figure 8.3. Prominent nodal spots, surrounded by clear areas
devoid of spots, lie at the intersection of well-populated zones and correspond
to rays whose inner point of low, coprime, indices (h k ). The nodal spots al-
ways are multiple. Each single spot is characterized by a unique wavelength 1,
associated with the Ewald sphere on which the reflection lies. Extraction of
structure amplitudes from single Laue spots requires the derivation and applica-
tion of a wavelength-dependent correction factor known as the wavelength-nor-
malization curve or A curve, the value of which varies from reflection to reflec-
tion.

An important question here is what fraction of the reciprocal lattice can be
registered in a given single Laue experiment. The number of possible observed
reflections Niue will be the quotient of the volume between the Ewald spheres
for Amin and A, and the resolution sphere and the volume of the unit cell of
the reciprocal lattice. We quote the result here as

1

Niage = ————
Laue 4dfnin V*

()~max - Amin) . (83)

The complete volume stimulated in a single Laue exposure usually is much
larger than in a typical monochromatic rotation exposure, and Ni,, can be
large, particularly for crystals that diffract to high resolution. Hence, Laue dif-
fraction patterns often are crowded, and spatial overlaps between adjacent spots
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Fig. 8.3 (a) Laue diffraction image of a
crystal of the L29W mutant of sperm whale
myoglobin. Color code: increasing intensity
from red to yellow; data collected at
Advanced Photon Source (APS), Argonne
National Laboratory, Argonne/USA, beamline
141D-B, exposure time 40x100 ps after
initiation of reaction, bandpass, 1.04 to 1.4 A

(maximum at 1.1 A). (b) Calculated
diffraction pattern at the same crystal
orientation. Color code: from purple, higher
energy of X-rays or smaller wavelength to
red, lower energy of X-rays or larger wave-
length. (Source: Dr. Marius Schmidt, Tech-
nische Universitat Miinchnen, Physik
Department, Miinchen, Germany.)
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may be common. Nevertheless, a single Laue exposure yields a completeness of
diffraction data that is far from being sufficient. This is due to the resolution
hole at low resolutions, because all reciprocal lattice points within the smallest
Ewald sphere (Fig. 8.1) give no rise for reflections, and low-resolution reflections
can be obtained only from a very narrow region. Furthermore, for a typical Laue
experiment with (Amax — Amin) = 1 A and dyy, = 2 A, the corresponding rotation
angle in the monochromatic rotation technique would be about 17°, which re-
lates to a low data completeness, even in crystals of higher symmetry. This
means that Laue exposures from several crystal orientations (usually 3 to 10)
must be taken to collect a complete and highly redundant data set. A significant
redundancy is also necessary for the derivation of an accurate wavelength-nor-
malization curve from the Laue intensities (Helliwell et al., 1989).

The Laue experiment affords a significantly lower exposure time than the
monochromatic rotation experiment. The ratio for the Laue exposure time Aty
and the monochromatic rotation exposure time Aty (for a derivation, see Mof-
fat, 1997) is given by

tan 0 &

Aty /Aty = ar

(8.4)

where k is the wave vector. The bandpass Ak/k typically has a value < 2 x 107*.
If we assume realistic values of tanf =0.1 and a=2°=0.035rad, then
Aty /Aty =~ 6 x 107*. For this typical case, the Laue exposure time is thus be-
tween three and four orders of magnitude less than the corresponding mono-
chromatic exposure time. This makes it the method of choice for time-resolved
crystallographic studies.

Crucial to quantitative application of the Laue method is the fact that each re-
flection is measured at a different wavelength. The square of the structure fac-
tor amplitude is related to the measured intensity I of the Laue reflection by

|FI* = ITKg(0)j(x)f ()] ", (8.5)

where values of K and the functions g() and j(x) are generally known. Hence,
the extraction of the square of the structure factor amplitudes from measured
intensities depends on the knowledge of the function f (1), the wavelength-nor-
malization curve. This curve may be derived by one of several methods. At pres-
ent, the usual method is by examination of redundant measurements of the
same reflection, or its symmetry mates, that are stimulated by different wave-
lengths at different crystal orientations (Campbell et al., 1986; Helliwell et al.,
1989; Ren and Moffat, 1995a).
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8.4.2
Advantages and Disadvantages

The Laue technique offers the following advantages:

1.The shortest possible exposure time, making it the method of choice for
time-resolved X-ray structure determinations that demand high time resolu-
tion.

2. No partially recorded reflections; all spots in a local region of detector space
have an identical profile.

3. A large volume of reciprocal space is stimulated in a single exposure; hence
only a few exposures at different crystal settings may yield a data set of the
necessary completeness.

4.A greater coverage of reciprocal space, and hence greater redundancy and
completeness, is achieved automatically at higher resolution where the inten-
sities are naturally weaker.

On the other hand, some disadvantages must also be noted:

1. Multiple Laue spots, activated at several wavelengths (energy overlaps) must
be resolved into their component single spots to obtain Laue data sets with
sufficiently high completeness.

2.The already mentioned “low-resolution hole” causes a low completeness in
the low-resolution region. Very often, there are strong reflections at low reso-
lution. If these are missing, Laue-derived electron density maps will be dis-
turbed due to series termination errors.

3.The exposure of a crystal to an intense polychromatic Laue beam may cause
severe radiation damage, with resulting disorder of the crystal.

4.The wide wavelength bandpass activates more reflections, but at the expense
of an increased background underlying these spots.

5.The Laue technique is inherently sensitive to crystal disorder, which increases
the mosaicity and thus the volume of a reciprocal lattice point. Whatever its
origin, it increases spatial overlaps and reduces the peak intensity value of the
spot, thus lowering the accuracy of the intensity data set.

In summary, the Laue technique is the method of choice for rapid time-resolved
X-ray crystal structure determinations. Data sets from several crystal orienta-
tions must be collected to receive a data set with the required completeness and
quality. Its application will be limited to crystals of low mosaicity and smaller
unit cells in order to avoid the negative effect of overlapping reflections.

8.43
Practical Aspects

Rapid time-resolved Laue diffraction requires some special design of the syn-
chrotron radiation beamline used. The bandpass (Amax — Amin) iS generated by a
bending magnet or wiggler in almost all cases, which provides a broad, smooth

197



198

8 Crystal Structure Determination of the Time-Course of Reactions and of Unstable Species

spectrum extending from the beryllium window cut-off 6keV (2A) up to

roughly three times the critical energy of the source. The following adjustments

are recommended (Moffat, 1997) to collect Laue diffraction data sets of high

quality:

e adjust Appn to 0.5 A or to the wavelength corresponding to three times the
critical energy of the source;

e adjust Ayax to two to three times Ay or to 1.5 A, whichever is higher.

The beam shutter must provide a fast and reproducible opening and closing.

The older shutters of Laue beamlines at ESRF and Advanced Photon Source

(APS) were able to operate in a few microseconds — a time that is comparable

with the revolution time of a single particle bunch in the storage ring. To per-

mit single X-ray pulse diffraction experiments, a fast shutter train has been de-
vised (Bourgeois et al.,, 1996) that can isolate the individual X-ray pulse of
around 100 ps duration, emitted by the particle bunch. Both circuitry and soft-
ware have been developed and applied successfully (Bourgeois et al., 1996; Gen-
ick et al., 1997) that enable the shutter opening and closing to be linked to the
master accelerator clock, and also to the triggering of an external device that ini-
tiates a structural change in the crystal, such as a pulsed laser. This is essential
for rapid time-resolved Laue experiments.

The demands on the properties of a detector used for a Laue experiment are,
in principle, the same as those for monochromatic data collection:

e a large dynamic range;

e a large active area both to record the reflections at higher resolution and to
accommodate the larger crystal-to-detector distances desirable to minimize
spatial overlaps of spots;

e a narrow point spread function so as not to impair the spatial overlap prob-
lem;

e a high detective quantum efficiency (DQE), especially for time-resolved experi-
ments that generate weak diffraction patterns from the quite short exposures;
and

e a fast readout that improves the Laue experiment duty cycle, since the readout
time is always much longer than the very short Laue exposure times.

A fast readout is critical when an irreversible reaction is followed after a single
reaction initiation, since the time resolution in this type of experiment is actu-
ally restricted by the detector readout time. Both image-plate and CCD detectors
have been successfully used for Laue data collection, with their improved DQE
allowing shorter exposure times and the automated readout changing the capac-
ity to record many orientations for multiple Laue exposures compared to the
film techniques used in early days of synchrotron Laue experiments.

As highlighted previously, several data sets at different crystal settings must
be collected in order to obtain a final data set with the necessary accuracy and
completeness. This is due to the fact that a single Laue image from a suitably
oriented crystal will yield a substantial fraction of the unique data, but with low
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redundancy and accuracy and poor coverage of reciprocal space at low resolu-
tion. Furthermore, the wavelength-normalization curve cannot be determined
accurately from such a single exposure. However, the collection of several data
sets at different crystal orientations overcomes these problems. A good Laue
data set needs at minimum between five and 20 images, with the smaller num-
ber being appropriate to cases with high crystal symmetry.

The processing of Laue diffraction data requires special data evaluation
packages. Efficient software packages were developed for this purpose, including
LAUEVIEW (Ren and Moffat, 19954a,b) and the Daresbury Laue Software Suite
(Helliwell et al., 1989; Campbell, 1995). Improvements to specific parts of the
processing were proposed: LEAP (Wakatsuki, 1993), LAUECELL (Ravelli et al,,
1996; Ravelli, 1998), PrOW (Bourgeois et al., 1998) and other implementations
based on Bayesian theory (Bourenkov et al., 1996; Ursby and Bourgeois, 1997).
A flow chart of a typical Laue data processing is presented in Figure 8.4. As in
the monochromatic data processing, this consists of three major parts: geo-
metric prediction of diffraction patterns; integration of diffraction spots; and
data reduction. Laue data reduction includes wavelength-normalization, frame-
to-frame scaling, and harmonic deconvolution.

As mentioned above, the time-resolved crystallography requires use of the Laue
method to allow data collection on the (typically rapid) time scales set by the reac-
tion rates. Studies down to nanosecond time resolution are possible. These ultra-
fast studies need at least an equally rapid means of initiating the reaction, which
translates into laser-induced photolysis or other photo-chemical reactions. In addi-
tion to being light-inducible, reactions to be studied on very rapid time scales
should be reversible, as this allows the averaging of exposures (with the crystal
having the same orientation) to improve the signal-to-noise ratio of the data and
the collection of complete data sets from several crystal settings.

The photoactive yellow protein (PYP) is a very attractive system in which to
study the molecular basis of signal transduction, as it undergoes a fully revers-
ible, light-induced modification of the chromophore (Cusanovich and Meyer,
2003) and is therefore optimally suited to rapid, time-resolved crystallographic
characterization. PYP is a bacterial photoreceptor which is believed to be in-
volved in a negative phototactic response to blue light. After absorbing a blue
light photon, the covalently attached coumaric acid chromophore undergoes
trans to cis isomerization, which initiates a fully reversible photocycle that lasts
on the order of 1s. The photon energy is transduced into a structural signal as
the molecule thermally relaxes through a series of spectroscopically distinguish-
able intermediates, in which the final two intermediates are denoted pP and pB.
A time-resolved crystallographic Laue study on the E46Q mutant of PYP has
been carried out (Anderson et al., 2004) with data collected after photoactivation
at 30 time delays spaced evenly in the logarithm of time from 10 ns to 100 ms
at the end of the photocycle. The photocycle was initiated by illumination with
a 5- to 7-ns laser pulse. Experiments were performed near room temperature in
order to avoid freezing out the pattern of transient structural change. The extent
of photoactivation was unsatisfactory (~6% to 34%), and therefore data sets
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Fig. 8.4 A flow chart of typical Laue diffraction data processing.

were averaged in reciprocal space at adjacent time delays to increase the signal-
to-noise ratio, effectively increasing data quality at the expense of a reduction in
time resolution. The refinement of transient chromophore conformations shows
that the spectroscopically distinct intermediates are formed via progressive dis-
ruption of the hydrogen bond network to the chromophore. Although structural
change occurs within a few nanoseconds on and around the chromophore, it
takes milliseconds for a distinct pattern of tertiary structural change to progress
throughout the entire molecule, thus generating the putative signaling state.
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Only two intermediate chromophore conformations are apparent from 10 ns to
the end of the photocycle, and these have been denoted as pR and pB chromo-
phore conformations. The pR conformation is the sole conformation present in
the first three averaged electron density maps from 10 to 500 ns. The pB chro-
mophore conformation is then present in the final four averaged electron den-
sity maps from 10 ps to 30 ms. The pR state is still close to the trans ground
state, and the pB is the putative signaling state of PYP in the cis chromophore
conformation. Thus, this time-resolved crystallographic study was able to struc-
turally characterize two intermediate states of this rapid photochemical reaction.

Following a reaction on fast time scales is much more difficult if the reaction
is nonreversible. There is a fundamental difference between systems that are in-
herently light-sensitive and those that must be rendered light-sensitive by chem-
ical modifications. In the latter case, data must be collected at the same time
points at different crystal settings in any case. The biggest problem is, how ki-
netically similar the crystals are at the respective data collection time points.
Therefore, when studying fast, nonreversible reactions, it may be worth consid-
ering alternative approaches to time-resolved crystallography, such as trapping
by low temperature. This also holds true if crystals are mosaic or become so
during the reaction (initiation) since, as already mentioned, the Laue technique
is extremely sensitive toward imperfections in the crystal. This was a severe
problem in the time-resolved Laue experiments on the GTP complex of the Ras
protein (Scheidig et al., 1994) and on ligand binding to glycogen phosphorylase
b (Haijdu et al., 1987).
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9
Structural Genomics

9.1
Introduction

High-throughput DNA sequencing is now possible to determine the complete
genomic sequences of whole organisms. Nowadays, the complete genomic se-
quences are available for many bacteria, a row of eukaryotic model systems includ-
ing yeast, worm, the plants Arabidopsis thaliana and rice, fly, chicken, rat, mouse,
monkey and last, but not least, for man. The genomic sequences have been anno-
tated and can be publicly assessed at several data bases such as the EMBL Nucleo-
tide Sequence Bank (Cochrane et al., 2006), which is produced in an international
collaboration with GenBank (USA) and the DNA database of Japan (DDB]J). Each
genomic “open reading frame” (ORF) codes potentially a protein with one or more
biological functions. However, analysis of the genomes known so far indicates that
a large fraction of the encoded proteins cannot be assigned to particular functions
(or to particular pathways), and thus, no assays can be easily devised to investigate
their exact roles. The existent recombinant techniques make it possible, in princi-
ple, to produce the gene product of each ORF of a genomic sequence in amounts
for a functional or structural characterization. Since the function of a gene product
is determined by its three-dimensional structure, this structure or its folding pat-
tern may provide important insight into its biological function which, in turn, may
help to place it in a particular cellular pathway. Efforts to define the three-dimen-
sional structures of all gene products of a complete genome are known as struc-
tural genomics, and may provide an important foundation for the understanding
of the biology of whole organisms.

A structural genomics approach involves:
e the selection of target proteins or domains;
e cloning, expression, purification and quality assessment of the targets;
e crystallization or labeling for nuclear magnetic resonance (NMR) spectrosco-

pY;
e structure determination by X-ray crystallography or by NMR spectroscopy; and
e the archiving and annotation of new structures.

The structural genomics approach can be realized only if structures can be de-
termined both quickly and cheaply, and this has focused attention on high-
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throughput methods for protein production, characterization, crystallization,
and structure determination. We have discussed such methods for crystalliza-
tion, data collection at synchrotron beamlines and for structure determination
in the respective previous chapters, and so will not refer to these again at this
point. With the increasing success of these high-throughput methods, the struc-
tures of gene products might be defined in quite straightforward manner, per-
haps within a few weeks. This will certainly be the case for bacterial targets,
which can be easily produced in the bacterium Escherichia coli. Targets from eu-
karyotic organisms, however, can be prepared only with much more effort, and
with a lower success rate than for their bacterial counterparts. The reasons for
this will be discussed later in this chapter.

Structural genomics projects have been funded — and are currently being
funded — in the United States, Canada, Japan and Europe, with a primary focus
on proteins. However, a major secondary goal is to decrease the average cost
through the development of high-throughput methods for all steps of structural
genomics. Hence, in the following sections we will describe those components
of structural genomics which have not been dealt with in previous chapters.

9.2
Target Selection

There are a very large number of sequences coding for proteins, particularly in
eukaryotes, with for example approximately 30000 genes in the human genome.
Analyses of genome sequences have shown that the functions of very few pro-
teins have previously been identified from genetics or biochemistry, although
functions for about 50% can be deduced with reasonable confidence from
knowledge of close homologs (e.g., Adams et al., 2000). With about 600000 pro-
tein target sequences provided in the UNIPROT data base at the European
Bioinformatics Institute (http://www.ebi.ac.uk), it is clear that a reasonable se-
lection of targets is necessary. One approach is to select representatives of each
homologous family, or even of each superfamily. This should be suited to deter-
mine all possible folds, which have been evolutionarily much more conserved
than amino acid sequences, and should provide clues for the function of such a
homologous family, assuming that the function can be deduced from the three-
dimensional structure. The total number of homologous families can be opera-
tionally defined as the number of representative sequences whose neighbors
(e.g., those within 30% amino acid sequence identity) jointly cover a certain per-
centage (e.g., 90%) of the sequence space. This number is probably 10000 or
more for a reasonable coverage (Linial and Yona, 2000; Vitkup et al., 2001).
However, these homologous families can be grouped into a reduced number of
superfamilies (about 1000 or so). One can assume that the great majority of the
members of a homologous family will exhibit similar functions. For superfami-
lies that have divergently evolved, with conservation of general tertiary structure
but perhaps less than 25% amino acid sequence identity, a related function may
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be preserved. The selection of primary targets could be further focused by
choosing representative structures of families only where there is no clue to
function. Alternatively, one could choose only “core families” — those that are
common to most genomes.

The identification of homologous families and superfamilies has been carried
out using very sensitive approaches to sequence search and alignment. As an out-
come of such studies, the Pfam data base has been created (Bateman et al., 2000),
which currently holds about 8000 different protein domain families. Domains are
the structural and functional building blocks of proteins, and so where the data are
available, structural information has been used to ensure that Pfam families cor-
respond to single structural domains. The domain boundaries used are currently
those defined by the SCOP database (Murzin et al., 1995), and a new web-based
tool allows direct cross-linking from domains on the SCOP web site to the corre-
sponding Pfam families. This matching of families and domains enables an en-
hanced understanding of the function of multi-domain proteins.

Another approach is to select targets that are relevant to important biological
functions, for example to human health. In this case, specific targets from man
or pathogenic organisms must be selected, though this is very demanding as
most of them are from eukaryotic organisms. Problems in preparing recombi-
nant proteins from eukaryotes will be discussed in the next section.

However, a growing number of proteins have been found to be natively un-
folded under physiological conditions (Wright and Dyson, 1999). Therefore, it is
of key interest to predict from the amino acid sequence whether a given protein
sequence is intrinsically unfolded, or not. Web-based tools can be used to
perform this task. For example, the graphic web server, Foldindex® (http://
www.bioportal.weizmann.ac.il/fldbin/findex; Prilusky et al., 2005), is available.
This is based solely on the average hydrophobicity of the protein’s amino acids
and the absolute value of its net charge, and has implemented the algorithm of
Uversky et al. (2000).

9.3
Production of Recombinant Proteins

9.3.1
Introduction

The production of recombinant proteins in large amounts suitable for determi-

nation of their three-dimensional structure either by X-ray crystallography or

NMR has been excellently explained in a contribution by Hughes and Stock

(2001), and this has formed the basis for parts of this section. The production

of recombinant proteins comprises several steps:

e to find an appropriate host for expression of the gene product;

e to design and produce a DNA segment that contains the gene coding for the
desired gene product, which also contains all of the elements necessary for
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high-level RNA expression and to be recognized by the host's translational
machinery;

e to introduce the respective DNA segment into the host system;

e to grow the transformed hosts expressing the desired gene in amounts that
will provide sufficient quantities of the expressed protein; and

e to isolate and purify the desired protein from the grown host material.

The recombinant protein, once expressed, needs to be folded correctly by the
host or, if not, by the experimentalist.

The choice of host for expression depends on the nature of the gene product
to be expressed. Bacterial protein will be properly expressed in bacterial hosts,
and the bacterium E. coli is normally used as the standard expression system.
Eukaryotic proteins are often post-translationally modified (cleavage, glycosyla-
tion, phosphorylation, etc.), and need such modifications in order to be properly
expressed and folded. As a bacterial system is unable to perform these modifica-
tions, eukaryotic proteins must very often be expressed in eukaryotic hosts such
as yeast, insect cells or mammalian cells. These individual points will be dis-
cussed in the following subsections.

9.3.2
Engineering an Appropriate Expression Construct

Initially, the most important decision to be made is which expression system
should be used. As mentioned above, bacterial gene products can be properly
expressed in prokaryotic (E. coli) expression systems, but for eukaryotic proteins
the test of the E. coli expression system may also be useful. This is due to the
ease of use of the E. coli expression system in terms of preparing the expression
construct (cloning), growing the recombinant organism, and purifying the re-
sulting protein. Furthermore, they allow for relatively easy incorporation of sele-
nomethionine into the recombinant protein (Hendrickson et al., 1990), this
being a prerequisite when applying the MAD technique to X-ray crystal struc-
ture determination. For many eukaryotic proteins, a prokaryotic expression sys-
tem will be unsuitable for correct expression of the protein. However, this can
be overcome by introducing changes in the construct that permit its expression
in the prokaryotic system. If this fails, it will be necessary to move along the
evolutionary pathway to yeast, insect cells, and finally to cultured mammalian
cells. Although in these latter situations the problems associated with producing
the protein in its native state are simpler, the difficulties of expressing large
quantities of material both quickly and cheaply in an easy-to-purify manner be-
come greater.

Once the expression system has been chosen, a suitable expression construct
must be prepared. The first problem is to create the target gene, and this can
be generated de novo from the respective genome sequence. However, this is a
tedious task and a special field in its own right (e.g., Sambrook et al., 1989).
Fortunately, cDNA clones or genomic DNA have been prepared for most of the
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sequenced genomes, and can be acquired commercially. If only genomic DNA
is available, it is easy to prepare the desired DNA clone using the polymerase
chain reaction (PCR). Certain peculiarities must be taken into account if the tar-
gets of higher eukaryotes are to be expressed. Most of these genes contain in-
trons, which are removed on the level of mRNA by a so-called splicing process.
As E. coli and yeast have no (with minor exceptions) or different splicing ma-
chineries, respectively, cDNA clones must be used for the expression of such
targets in these systems. Because some introns are large, cDNA clones are often
used as basis of expression constructs in baculovirus systems, as well as in cul-
tured insect and mammalian cells. From now on, for simplicity, we will assume
that the cDNA of the target is available.

Optimizing the expression of the target protein is extremely important be-
cause it reduces the time and effort for growing the host cells or viruses, as well
as simplifying the purification procedure. In order to generate the expression
construct, DNA must be manipulated, and today this is done most effectively by
using the PCR technique. For most constructs, the ends of the cDNA are modi-
fied by PCR with appropriate oligonucleotide primers that have been designed
to introduce useful restriction sites and/or elements essential for efficient tran-
scription and/or translation. Since it can often be advantageous to attempt the
expression of a given target protein in a number of different vectors, it is useful
to introduce carefully chosen restriction sites that enable the fragment either to
be inserted simultaneously or to be transferred seamlessly into different plas-
mids or other vectors (Fig.9.1). Figure 9.1 shows, schematically, the classical
cloning technique with use of restriction and ligation enzymes. PCR can also
be used to generate mutations within the cDNA. Since PCR may introduce mu-
tations it is important to sequence all pieces generated by PCR after they have
been cloned.

The addition of tags and domains, which are subsequently used for efficient
purification by affinity chromatography, is now a standard technique and a prere-
quisite in structural genomics. These tags may be a small peptide or a larger pro-
tein, and can be added to the target sequence either at the amino or carboxyl ter-
minus. The most common tags are hexahistidine (Hisg), biotinylation peptides
and streptavidin-binding peptides (Strep-tag), glutathione S-transferase (GST)
and maltose-binding protein (MBP). The list of possible tags is much greater,
and grows permanently. The introduction of such affinity tags creates a new prob-
lem: whether or not to remove the fused element. There are examples where leav-
ing the tags did not perturb the crystallization for larger fusion elements such as
GST and MBP, but in many cases these additional elements hindered the crystal-
lization. Thus, it is advisable to remove these tags following the affinity chroma-
tography step. For this purpose, a cleavage site for a specific protease must be in-
corporated between the additional element and the target protein.

In structural genomics target sequences will need to be cloned multiple times
into many different expression vectors. However, the cloning of large sets of tar-
gets by conventional methods is impractical, for numerous technical reasons.
Most importantly, these methods involve target-specific restriction analyses and
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Fig. 9.1 The classical technique for creating the desired expression vector. It is often

an expression construct. PCR can be used to possible to choose vectors and primers such
amplify the target sequence. PCR primers that a single PCR product can be ligated to
should be constructed to contain one or different vectors. (Reproduced by permission
more restriction sites that can be used of International Union of Crystallography,
conveniently to subclone the fragment into from Hughes and Stock, 2001.)

rely heavily on the purification of DNA fragments from agarose gels. Altogether,
conventional methods cannot be automated and thus are not compatible with
high-throughput projects. Several alternative cloning systems based on different
recombination reactions have been described. Here, we briefly describe the
GATEWAY® recombinatorial cloning system (Walhout et al., 2000), which has
been used frequently in structural genomics projects (e.g., Vincentelli et al.,
2003). GATEWAY is based on the recombination reactions that mediate the in-
tegration and excision of phage A into and from the E. coli genome, respectively
(Fig. 9.2a). The integration involves recombination of the attP site of the phage
DNA with the attB site located in the bacterial genome. This generates an inte-
grated phage genome flanked by attL and aaR sites. The integration reaction
(Fig. 9.2 a) needs two enzymes: the phage protein integrase (Int), and the bacte-
rial protein integration factor (IHF) referred to as “BP Clonase”. The recombina-
tion reaction is reversible; thus, the phage DNA can be excised from the bacteri-
al genome by recombination between the attL and attR sites (Fig. 9.2a, “LR re-
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reaction to yield the entry clone. (c) Transfer
of the target gene from entry clone by LR
reaction into a given destination clone to
yield the respective expression vector.
(Adapted from Walhout et al., 2000.)

action”). This reaction requires Int, IHF and an additional phage enzyme, excio-
nase (Xis) (collectively referred to as “LR Clonase”).

BR and LR clonases have been purified, allowing the GATEWAY reactions to
take place in vitro. Furthermore, the att sites have been mutated to generate pairs
of derivatives in such a way that the corresponding B and L sites can recombine
only with the relevant P and R sites, respectively. The duplication of att sites per-
mits two independent recombination reactions to take place in the same mole-
cules, one at the 5’ end of the target to be cloned and the other at the 3" end.

The GATEWAY procedure takes the following route. PCR products correspond-
ing to the target sequence flanked by attB1 and attB2 sequences are cloned into a



210

9 Structural Genomics

recombinational cloning (RC) donor vector (Fig. 9.2b). This donor vector holds a
toxic gene flanked by attP1 and attP2 sequences and an antibiotic resistance mar-
ker, in this case for gentamicin. The result is that entry clone now has the inserted
target sequence flanked by attL1 and attL2 sequences. Once a target sequence is
cloned into an entry vector it can be transferred by RC reaction into different des-
tination vectors that contain the toxic gene flanked by attR1 and attR2 sites
(Fig. 9.2¢). In Figure 9.2c the RC reaction is shown for a transfer into a general
destination vector, and the expression vectors for Hisq and GST tags are displayed.
The transfer into other destination vectors is possible, of course.

As result of the LR reaction, the target sequences are flanked by the 25-bp
attB1 and attB2 sites in the resulting expression clones. This leads to an extra
eight amino acids at both N- and C-terminal ends of the expressed proteins, but
this should not influence the protein’s behavior in terms of folding and subse-
quent crystallization. Nevertheless, this point should be borne in mind when
using the GATEWAY system, in order to avoid unsatisfactory results.

9.33
Expression Systems

9.3.3.1 E. coli

In case the protein does not have extensive post-translational modifications, it is
usually appropriate to begin with an E. coli host-vector system (for an extensive
review of expression in E. coli, see Makrides, 1996). Both plasmid and viral-based
(M13, 4, etc.) expression systems are available for E. coli. Although viral-based vec-
tor systems are quite useful for some purposes (expression cloning of cDNA
strands, for example), in general, for the expression of relatively large amounts
of recombinant protein, they are not as convenient as plasmid-based expression
systems. Although there are minor differences in the use of viral expression sys-
tems and plasmid-based systems, the rules that govern the design of the modified
segment are the same. Therefore, the more frequently used plasmid-based systems
will be discussed, ranging from design of plasmid to fermentation conditions.

A large number of different, easy-to-use expression plasmids for E. coli are
available (for a concise review, see Unger, 1997). In most cases, it is possible to
identify expression and/or fermentation conditions that result in the production
of a recombinant protein in amounts of greater than 5 mg L™ of culture, which
makes the scale of fermentation reasonable.

E. coli systems are either constitutive (they always express the coded protein)
or inducible, where a specific change in the culture conditions is necessary to
induce the expression of the recombinant protein. If the desired protein is toxic
to E. coli, then an inducible system must be used. The induction may be created
by a temperature shift, as in systems using the bacteriophage A p; promoter
and the temperature-sensitive repressor CI857ts, or by the addition of an indu-
cer such as isopropyl-f-D-thiogalactopyranoside (IPTG). IPTG-induced systems
can be under the control of the lac repressor (e.g., lacl9) or a lac-controlled oper-
on that encodes the bacteriophage T7 RNA polymerase (e.g., Studier et al,



9.3 Production of Recombinant Proteins

1990). In this system, the respective operon is contained in the genome of the
E. coli host with one copy in the cell only. Induction with IPTG leads to the syn-
thesis of the T7 RNA polymerase, which recognizes a promoter sequence that is
different from the sequence recognized by E. coli RNA polymerase. If such an
E. coli system also carries a multicopy plasmid, in which the target sequence is
linked to a T7 promoter, the T7 RNA polymerase efficiently produces mRNA
from the plasmid. This usually leads to the production of a large amount of the
desired recombinant protein. E. coli strains that carry a lac-inducible T7 RNA
polymerase are readily available, as are the respective expression plasmids that
hold the T7 promoters. In E. coli the initiation of translation requires not only
an appropriate initiation codon (usually AUG, occasionally GUG), but also a
special element, the Shine-Dalgarno sequence, just 5 of the initiator AUG. In
E. coli, the first step in translation involves binding of the 30S ribosomal sub-
unit and the initiator fMET-tRNA to the mRNA. The Shine-Dalgarno sequence
is complementary to the 3’ end of the 16S RNA found in the 30S subunit. Eu-
karyotic mRNAs do not contain Shine-Dalgarno sequences. Some E. coli expres-
sion plasmids carry a Shine-Dalgarno sequence, others do not. If one is not
present in the plasmid, it must be introduced when the cDNA sequences is
modified before introduction into the expression plasmid.

Problems during expression may be caused by proteolytic cleavage by cellular
proteases, most notably ClpA, at the N-terminus with N-terminal amino acids
Phe, Leu, Trp, Tyr, Arg or Lys. Furthermore, codon usage may influence expres-
sion levels. Unfortunately, there are substantial differences in preferences/usage
in prokaryotes and eukaryotes. The expression of eukaryotes in E. coli may be
improved by optimizing the codon usage of the eukaryotic target sequence to be
expressed.

Fermentation is an especially important part of protein expression. By using
an identical strain or plasmid, slight alterations in growth conditions can make
substantial differences in the yield of the protein. In this situation there are
many parameters to be optimized, including the media, the temperature of fer-
mentation and, in a larger fermenter, the aeration and stirring. Very often it is
necessary to develop new fermentation conditions when scaling up the fermen-
tation; indeed, this is a particular problem when the scale is changed from
shake flasks to a fermenter.

When screening expression constructs for production of recombinant protein,
four scenarios are most commonly encountered:

e high-level expression of soluble recombinant protein;

e high-level expression of the recombinant protein with a greater or lesser pro-
portion of the protein in inclusion bodies;

e no expression, or very low expression;

e lysis of cell.

The first of these outcomes is usually the most welcome. It may happen that
not all soluble protein molecules are properly folded, with misfolded proteins
occasionally being expressed at high levels in soluble form. Such proteins usual-
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ly exhibit aberrant behavior during purification, such as precipitation, migration
as broad peaks during column chromatography, and elution in the void volume
during size-exclusion chromatography. In such cases, additional experimenta-
tion is required. Inclusion bodies are usually the result of improper protein
folding, and cell lysis generally indicates severe toxicity. There are two obvious
reasons for failure to produce measurable amounts of recombinant protein: (i)
there is a problem at the level of transcription and/or translation; or (ii) the pro-
tein is being degraded proteolytically.

At this point we will not discuss potential solutions to these problems in de-
tail (for more information, see Hughes and Stock, 2001), but two issues deserve
mention. The formation of inclusion bodies is the result of aggregation of un-
folded protein molecules. The protein molecules may not interact properly with
the E. coli chaperones, or the chaperones are overstrained by the high concen-
tration of recombinant protein in the host cell. The expression of the protein
into inclusion bodies has both positive and negative consequences. Proteins in
inclusion bodies are essentially immune to proteolytic degradation. Additionally,
it is usually relatively easy to obtain the inclusion bodies in relatively pure form,
making it simple to purify the recombinant protein. A variety of protocols are
available for refolding (e.g., De Bernadez Clark, 1998), but there are few simple,
universal, procedures.

Proteolytic degradation is an active process in E. coli, and several strategies
for minimizing the proteolysis of recombinant proteins have been developed
(Enfors, 1992; Murby et al., 1996). These strategies include the secretion of pro-
teins into the periplasm or external media, the engineering of proteins to re-
move proteolytic cleavage sites, and growth at low temperatures, as well as other
strategies to promote folding, such as the use of fusion proteins and coexpres-
sion with chaperones.

9.3.3.2 Eukaryotic Expression Systems

9.3.3.2.1 Yeasts

Yeasts are simple eukaryotic cells. Indeed, considerable effort has been ex-
pended in studying brewers' yeast, Saccharomyces cerevisiae, and in developing
plasmid systems and expression systems that can be used in such systems. Re-
cently, methylotrophic yeasts — most notably Pichia pastoris — have been devel-
oped as alternative systems that offer several advantages over S. cerevisiae.
Although yeast systems are reasonably robust, the expertise required to use
them effectively is less frequently available than the respective expertise for the
manipulation of E. coli strains. Nor are the tools, media and reagents necessary
to grow yeast and select for the presence of the expression plasmids broadly
available as those used for E. coli systems. However, the increasing commercial
availability of complete kits (such as Pichia expression systems from Invitrogen)
is making yeast systems more accessible. While yeast systems do offer some ad-
vantages relative to E. coli, these advantages are, in general, modest. Specifically,
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the problem of mimicking the post-translational modifications found in higher
eukaryotes (particularly glycosylation), which has not been solved for E. coli, has
not yet been solved in yeast either. None of the available systems recapitulates
the post-translational modifications found in higher eukaryotes.

9.3.3.2.2 Baculovirus

Baculovirus expression systems are becoming increasingly important tools for
the production of recombinant proteins for X-ray crystallography. The insect
cell-virus expression systems are more experimentally demanding than bacterial
or yeast, but they offer several advantages. Because insects are higher eukar-
yotes, many of the difficulties associated with the expression of proteins from
higher eukaryotes in E. coli do not occur. There is no need for a Shine-Dalgarno
sequence, there are no major problems with codon usage, and fewer problems
occur with a lack of appropriate chaperones. Although glycosylation is not the
same in insect and mammalian cells, in some cases it is close enough to be ac-
ceptable. Baculovirus systems allow expression at reasonable levels, typically
ranging from 1 to 500 mg L™" of cell culture. Considerable effort has put into
the development of convenient transfer vectors, and today baculovirus expres-
sion kits are available from more than ten commercial sources.

Baculoviruses usually infect insect cells; in terms of the expression of foreign
proteins, the important baculoviruses are the Autographa californica nuclear
polyhedrosis virus (AcNPV) and the Bombyx mori nuclear polyhedrosis virus
(BmNPV). Baculovirus expression vectors have been reviewed widely (e.g., Jones
and Morikawa, 1996; Merrington et al., 1997; Possee, 1997). It is interesting
here briefly to describe the mode of operation of the baculovirus expression sys-
tem in insect cells. In nature, in the late stage of replication in insect larvae, nu-
clear polyhedrosis viruses produce an occluded form, in which the virions are
encapsulated in a crystalline protein matrix, termed polyhedron. When the virus
is released from the insect larvae, this proteinaceous coat protects the virus
from the environment and is necessary for its propagation in the natural state.
However, replication of the virus in cell cultures does not require the formation
of occlusion bodies. In tissue culture, the production of occlusion bodies, is dis-
pensable and the primary protein, polyhedron, is not required for replication.
Cultured cells infected with wild-type AcNPV produce large amounts of polyhe-
dron, and the same applies to cells infected with modified AcNPV vectors, with
other genes inserted in place of the polyhedron gene (or in place of another
highly expressed gene, p10, that is dispensable in cultured cells).

There are several important points to consider when setting up the baculovirus
cell-culture system. Although most baculoviruses have a relatively restricted host
range and AcNPV was first isolated from alfalfa looper (Autographa californica), for
the purpose of expressing foreign proteins, it is usually grown in cells of the army-
worm (Spodoptera frugiperda) or cabbage looper (Trichoplusia ni). The isolation and
purification of the appropriate ACPNV vectors are normally carried out in mono-
layer cultures, whereas large quantities of recombinant protein are normally pro-
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duced in suspension cultures. There is also the issue of whether fetal calf serum
should be included in the culture medium, or not.

Compared to bacteria and yeast cells, cells from higher eukaryotes are quite
delicate, and considerable care must be taken in cell culture. The cells are sub-
ject to shear stress, which can be a problem in stirred and/or shaken cultures.
Compared to bacterial and yeast cells, cultured cells grow relatively slowly and
require rich media that will support the rapid growth of a wide variety of un-
wanted organisms; hence, special care must be taken in order to avoid contami-
nating the cultures. Although antibiotics are commonly used for this purpose,
they will not in general prevent contaminations with yeasts or molds, which of-
ten cause the greatest problems. Thus, a very neat mode of operation is needed.

9.3.3.2.3 Mammalian Cells

In some cases, however, the baculovirus and/or insect cell expression systems are
unable to make the desired recombinant protein product, but if the target is suffi-
ciently important it can be produced in cultured mammalian cells. It must be
noted, however, that the effort required to produce tissue cultured cells which ex-
press high levels of recombinant protein is substantial. Cell lines are usually pre-
pared by transfection, after which some of the cells will incorporate transfected
DNA into their genomes. A number of agents can be used to transfect DNA; these
include (but are not limited to) calcium phosphate, DEAE dextran, and cationic
lipids. This is a complex and poorly defined process, and the transfected DNA
is often incorporated into complex tandem arrays. Neither the amount of trans-
fected DNA nor the location in the host genome is controlled in a standard trans-
fection, and consequently the expression level varies substantially from one trans-
fected cell to another. This makes the process of creating mammalian cell lines that
efficiently and stably express a recombinant protein very labor-intensive. Other
transfection methods include electroporation or homologous recombination.

As mentioned above, tissue culture cells are much more difficult to grow than
those of either yeast or E. coli, and this of course is also valid for mammalian
cell cultures. Proteins for successful X-ray structure determinations have been
prepared, for example, from cultures of Chinese hamster ovary (CHO) cells or
immortalized human B cell clones. Human embryonic kidney (HEK) 293 cells
have been recently tested in the structural genomics project SPINE (Aricescu et
al., 2006) with promising results. These are adhering cells which are relatively
robust, easy to culture, and have a good growth rate.

934
Protein Purification

In the past, when proteins had to be purified from natural materials, purifica-
tion ratios of up to 5000 were not unusual. However, since the development of
efficient systems to express recombinant protein, combined with protein con-
structs provided with tags for affinity chromatography, the required purification
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Fig. 9.3 The general scheme for protein purification.

ratios have been reduced to about 20-50. In particular, this improvement has
also notably diminished the amount of basic raw material required. Further-
more, purification systems have been automated and several types of high-ca-
pacity, high-flow rate chromatography media and columns have been developed
and are now commercially available.

If reasonably good levels of expression can be achieved, then most recombi-
nant proteins can be purified using a relatively simple procedure, as depicted in
Figure 9.3. All purification steps are based on the fact that the biochemical
properties of proteins differ: proteins have different sizes, surface charges, and
hydrophobicities.

9.3.4.1 Precipitation

Precipitation is often used as the first step in a purification procedure, and in
part it can be used to separate proteins from nucleic acids. Nucleic acids are
highly charged polyanions, and their presence in a protein extract can dramati-
cally reduce the efficiency of column chromatography, for example by the satu-
ration of anion-exchange resins. The most commonly used precipitation re-
agents are ammonium sulfate and polyethylene glycols (PEGs). If the precipita-
tion range is broad, it is very efficient simply to precipitate the majority of pro-
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teins by adding ammonium sulfate to 85% saturation, or 30% PEG 6000. Pre-
cipitation can also serve as a useful method for concentrating proteins at var-
ious steps during purification, as well as for storing proteins that are unstable
upon freezing or upon storage in solution.

9.3.4.2 Chromatography

Column chromatography steps in which the protein is adsorbed onto the resin
under one set of conditions and then eluted from the column under a different
set of conditions, can result in significant protein purification. In case the pro-
tein construct holds an affinity tag, the first chromatographic step will be an af-
finity chromatography. Because the process of affinity chromatography is so
powerful (purification ratios of up to 100 can be achieved) and the development
of a specific affinity column is difficult, general procedures for affinity chroma-
tography have been developed. In Section 9.3.2 we have already mentioned the
most common tags, namely Hise, biotinylated peptides and Strep-tag, GST and
MBP. The column material for such an affinity chromatography is produced by
linking the respective substrate or another binding entity to an inert support.
The desired protein binds selectively to the column, and can usually be eluted
by washing the column with the same substrate used to prepare the column
(e.g., glutathione for GST-tagged protein bound to a glutathione agarose col-
umn) or with a competing metal ligand such as imidazole for a Hiss-tagged
protein bound to a nickel-nitrilotriacetic acid (Ni-NTA) column.

In a purification scheme without affinity tag, anion-exchange chromatography
is usually a good starting point. Most proteins have acidic pls, and conditions
can often be found that allow binding of the protein to anion-exchange ma-
trices. If conditions cannot be found under which the protein binds to an an-
ion-exchange resin, then binding to a cation-exchange column can be at-
tempted. Fewer proteins interact with cation-exchange resins, but if the desired
protein does bind this can be a powerful step. The use of an anion-exchange
column does not necessarily preclude the use of a cation-exchange column; un-
der appropriately chosen sets of conditions (most notably adjustment of pH), a
given protein can bind to both resins. Dye-ligand, hydroxyapatite (a variation of
ion-exchange chromatography) and hydrophobic interaction chromatographies
may represent beneficial improvements in the purification procedure.

Size-exclusion chromatography (SEC), which does not involve adsorption of the
protein onto the matrix, rarely provides as much purification as the chromatogra-
phy steps described above. However, this can be a good step to include at the end
of a purification scheme. The isolation of a well-defined peak in the included vol-
ume separates intact, properly folded protein from any damaged/aggregated spe-
cies that may have been generated during the purification procedure. Although
SEC does not provide a definitive analysis of such behavior, migration of the pro-
tein consistent with its expected molecular weight is a good sign. The elution of a
relatively small protein in the void volume suggests a need for further analysis.
The described purification steps may also be very beneficial for affinity-tagged pro-
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tein following the affinity chromatography step. It may also be possible to intro-
duce an affinity tag at both the N- and C-termini; in this case, the respective affin-
ity chromatographies are performed one after the other.

With proteins fused to an affinity tag, there is also the issue of whether to re-
move the tag, or not. Tag removal usually involves engineering a site for a spe-
cific protease, digestion with the protease, and subsequent purification to isolate
the final cleaved product.

As mentioned above, expressing high levels of recombinant prokaryotic and
eukaryotic proteins in E. coli can lead to the production of improperly folded
material that aggregates into insoluble inclusion bodies. Following lysis of the
cells, inclusion bodies can usually be recovered relatively easily by low-speed
centrifugation (5 min at 12000 g). Inclusion bodies are larger than most macro-
molecular structures found in E. coli, and more dense than E. coli membranes.
In most cases, the inclusion bodies contain the desired recombinant protein in
relatively pure form, whereupon the problem lies not with the purification of
the protein but rather in finding the correct way to refold it. Various procedures
for refolding proteins from inclusion bodies have been described (e.g., De Ber-
nadez Clark, 1998). The insoluble inclusion bodies are usually solubilized in a
powerful chaotropic agent such as guanidine hydrochloride or urea, after which
the denaturant is sequentially removed by dilution, dialysis, and/or filtration.
After refolding, the properly folded soluble protein must be separated from the
fraction that did not fold appropriately. In this respect, incorrectly folded pro-
teins are relatively insoluble and can generally be removed by centrifugation.
Once the soluble protein has been obtained, conventional purification proce-
dures may be employed and the integrity of the purified protein should be
checked.

9.3.5
Quality Control of the Purified Protein

Before starting with crystallization screenings, the properties and purity of the
recombinant protein should be carefully checked. Although several proteins
crystallize well from relatively impure preparations, it is advisable to use highly
purified proteins for crystallization trials. There are several reasons for this.
First, it is easier to obtain the high concentrations of protein (>10 mgmL™)
normally needed for crystallization if the protein is pure and the behavior of
highly purified protein is more reproducible. A homogeneous preparation of
protein will precipitate at a specific point, rather than over a broad range of so-
lution conditions. Furthermore, degradation during storage and/or crystalliza-
tion is minimized if all of the proteases have been removed.

The most convenient and widely used methods to check protein purity involve
electrophoresis, SDS-PAGE, and/or isoelectric focusing. SDS-PAGE may be
slightly more convenient for the detection of unrelated proteins: isoelectric fo-
cusing is probably more useful in detecting subspecies of the recombinant pro-
tein target.
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If the preparation is relatively free of unrelated protein, but there is concern
about the presence of multiple species of the desired recombinant protein tar-
get, then several techniques can be applied. Mass spectroscopy is capable of de-
tecting small differences in molecular weights, and for proteins up to several
hundred amino acids in length it is generally able to detect differences in mass
equivalent to a single amino acid. This can be useful in detecting heterogeneity
in post-translational modifications (if present), and in detecting heterogeneity at
both the N- and C-termini.

In terms of crystallization, the ability to produce a highly concentrated mono-
disperse protein preparation is probably more important than absolute purity. A
number of methods can be used to determine whether or not the protein is ag-
gregating. SEC has been widely used, mainly by biochemists, but in structural
genomics projects dynamic light scattering has been used routinely to check
concentrated protein preparations for aggregation (Vincentelli et al., 2003). The
method is relatively simple, it is very sensitive to small amounts of aggregation,
and it has the additional advantage that the protein sample can be used for sub-
sequent crystallization trials, because it is not consumed by the method. If sim-
ple heterogeneity is detected, one is faced with the problem of whether this will
adversely affect the crystallization and, if so, how to remove it. The alteration of
the expression construct may provide improved results.

Usually, the protein will have been produced in larger amounts and will not be
totally consumed in the crystallization experiments. Thus, the produced protein
must be properly stored. As a general rule, it is better to store proteins as highly
purified solutions (concentrations >1 mg mL™"). If the protein contains oxidizable
sulfurs, reducing agents can be added and the solution held in a non-reducing
(N,) atmosphere. It is essential that the protein be stored in a manner that will
not allow microbial growth, which is normally achieved by sterilization of the pro-
tein solution by filtration through 0.2 um filters and/or the addition of antimicro-
bial agents such as NaNj. For long-term storage (periods longer than a few weeks),
protein solutions are often precipitated in ammonium sulfate or frozen either at —
20 or —80°C; for this they should preferably be divided into aliquots in order to
avoid repeated thawing of the protein. Freezing samples at intermediate concen-
trations (1-3 mg mL™) is usually more effective than freezing either extremely di-
lute or concentrated samples. Cryoprotective agents can be added to protein sam-
ples destined to be frozen, but it must be borne in mind that the cryoprotectant
may not be desired in the crystallization experiment. Thus, after thawing the sam-
ple, the cryoprotectant must be removed.

9.4
Aspects of Automation

The need for high-throughput methods in structural genomics projects was dis-
cussed in Section 9.1, the automation of crystallization in Section 1.5, and of
structure determination in Sections 2.3.2 and 6.5, as well as in Chapter 5. To-
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day, the automation of protein production and characterization has been estab-
lished in all structural genomics projects in different variants, depending on the
expression system used. The main objective of automation is to process multi-
ple samples in parallel, saving both time and costs, as well as generating consis-
tent and reproducible results. The process of automating a system constitutes
two distinct parts: miniaturization and automation. In general, automated sys-
tems perform liquid-handling tasks in multi-well plates, with preferred volumes
of 1mL, or less.

The highest degree of automation can be achieved in the E. coli expression
system. A typical automated high-throughput protein production system based
on E. coli has been developed at the Joint Center for Structural Genomics
(McMullan et al., 2005) and will be described here briefly. In order to maximize
flexibility and minimize costs, a conventional cloning approach was chosen.
Subsequently, a robotic platform was developed, which incorporates both liquid
and plate handling, with thermocyclers and a plate reader. In this way a work
flow of up to 384 validated expression clones per week could be achieved. To al-
low expression at a scale sufficient for crystallization trials, the group developed
a parallel fermentation system (GNFermenter), for parallel 96-culture high-den-
sity growth that produces 2—4 g of cell pellet. Processing of the resulting cell
pellets through affinity purification is performed with custom automation
(GNFuge). The fermentation tubes are directly processed in the GNFuge, for
the steps of lysis, removal of cell debris, and affinity purification, after which
the resulting purified proteins can be processed by secondary purification or ad-
vanced directly to quality assessment and crystallization.

A more miniaturized system based on E. coli with N-terminal Hisg-tag has
been developed by Finley et al. (2004). The system was designed to process up
to 384 unique samples in parallel, using the GATEWAY cloning and expression
system in four 96-well plates. All liquid handling steps are carried out in 96-well
plates in volumes of 1 mL or less and, with the exception of the bacterial plating
and colony picking, all steps have been completely automated, including pipet-
ting robots and PCR plate incubators.

The automation of protein production in eukaryotic expression systems is
much more complicated, and preliminary attempts and solution for such sys-
tems have been discussed by Aricescu et al. (2006).
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Part Il
Practical Examples

Introductory Remarks

This part of the book is not intended to be a tutorial for an X-ray crystal struc-
ture analysis. In fact, to write such a book would be completely impossible be-
cause of the many different steps involved in these methods. However, there
are further points of view which must be taken into account. The ideal case
would be that a researcher could pursue the determination of a 3D structure,
from selection of the biomacromolecule through production, crystallization and
X-ray structure analysis itself to annotation and functional characterization.
Whilst this entire procedure would be difficult to achieve for one person, a
growing number of researchers in the field have a biological background and
wish to determine for themselves the 3D structure of their favorite biomacromo-
lecule. Consequently, a series of explanations utilizing practical examples should
be beneficial not only for this group of readers but also — hopefully — for those
with a wider chemical or physical background.

In Part 1 of this book we discussed the practical aspects of protein produc-
tion, crystallization and X-ray data collection; thus, a more detailed argument
would extend the scope of the book. Hence, Part 2 contains a collection of ex-
amples for key steps in an X-ray crystal structure determination, starting with a
suitable X-ray diffraction data set, which may comprise several individual data
sets from different crystals, heavy-atom derivatives, or collected at different
wavelengths.






10
Data Evaluation

10.1
Autoindexing, Refinement of Cell Parameters, and Reflection Integration

One prerequisite for a successful and reliable X-ray crystal structure determina-
tion of a biological macromolecule is sufficiently well-diffracting crystals. If such
crystals are available, the decision must then be made as to which radiation
source and experimental set-up is most appropriate for an optimal diffraction
data collection. When the quality of the crystals is very good, data collection
using in-house X-ray equipment may be sufficient, but in most circumstances it
is much more advantageous to carry out the data collection at a synchrotron
beamline. For molecular replacement and high-resolution projects, a beamline
with fixed wavelengths is adequate, but a wavelength-tunable beamline is neces-
sary for the application of MAD techniques, including a heavy-atom derivative
crystal suitable for MAD. A microfocus beamline is indispensable for all cir-
cumstances when the crystal is small. The crystals are measured at cryogenic
temperatures in almost all cases, apart from those situations where the crystal
cannot be frozen.

Here, the data evaluation will be explained by means of the crystal structure
determination of the enzyme 4-hydroxy-butyryl-CoA dehydratase (4-BUDH)
from Clostridium aminobutyricum (Martins et al., 2004). We will use this exam-
ple to illustrate other steps of crystal structure determination that follow.

The enzyme 4-BUDH catalyzes the reversible oxygen-sensitive dehydration of
4-hydroxybutyryl-CoA and the oxygen-insensitive isomerization of vinyl-CoA to
crotonyl-CoA. Tt is active as homotetramer with up to one [4Fe-4S]** cluster and
one noncovalently bound flavin adenine dinucleotide (FAD) moiety per 54-kDa
subunit. As the enzyme contains a [4Fe-4S]** cluster, the MAD technique could
be applied to solve the phase problem. The respective diffraction data collection
was carried out at the synchrotron beamline PX at the Swiss Light Source at
the Paul Scherrer Institute, Villigen, Switzerland, at cryogenic temperatures.
Data sets were gathered at three different wavelengths: (i) remote
(2=0.90004 A); (i) at the Fe peak (1=1.73652A); and (iii) at the Fe inflection
point (1=1.74314 A). We will discuss the diffraction data evaluation on the basis
of the remote data set. The program MOSFLM has been chosen to demonstrate
course of action.

223
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The MARCCD detector at the PX beamline produced a set of diffraction
images of type img, which can be input directly to the MOSFLM program.
MOSFLM must be installed on your computer, together with the CCP4 suite.
We use the Linux operating system in all of our practical demonstrations. The
following actions must be taken in order to run MOSFLM:

1. Copy the whole set of img-files into a respective directory on your computer.
2. Create an input file similar to that in Figure 10.1. All rows starting with a !
are treated as comments. One has to assign a TITLE, a directory for the GEN-

ERATE-File, a directory for the image-files, an identifier of the image-files,

and the scanner type. You may supply the crystal detector distance DIST and

the beam center individually, but this is also automatically read from the im-

age file(s). Furthermore, one must provide the actual wavelength, resolution,

mosaic spread and first image file to be read. Cell, matrix and symmetry have
been commented out because we have no prior information about the unit
cell and symmetry of the crystal.

3. Enter “ipmosflm” from the Linux prompt.

File Edit Options Buffers Tools Help

_4
GENF /tmps/messersc/dh_hr_4.gen
DIRECTORY /home/messersc/budh
EXTENSION img
IDENT dh_hr_4
SCANNER MARCCD
'SCANNER SMALLMAR
IGAIN 0.411
IDISTORTION YSCALE 1.0000 TILT 0 THIST 0
!BACKSTOP CENTER  80.0 80.0 RADIUS 4.00
dist 113.23
beam 82.35 80.13
1

]
! Parameters for on-line processing

!

FINDSPOTS YOFFSET 8.0 THRESHOLD 30.0
TIMEOUT 1

WAIT 1

!
I X-ray beam characteristics
1

SYNCHROTRON POLAR 0.99
DIVERGENCE 0.020 0.002
DISPERSION 0.000250
WAVELENGTH 0.90004

!

! crystal characteristics
]

RESOLUTION 2.0

REFINEMENT FIX YSCALE

MOSAIC 0.5

RASTER 15 15 6 1 1
SEPARATION 0.30 0.30 CLOSE
PROFILE TOLERANCE 0.010  0.030
POSTREF NREF 6

'CELL 101.27 128.68 173.77 90 90 90
Imatrix xtaldpk_1_001.mat

ISYMMETRY 16

IMAGE ../dh_hr_4_201.img phi 40.0 to 40.2

Fig. 10.1 The initial input file for MOSFLM for running in graphical mode.



Fig. 10.2 Graphical user interface of MOSFLM after input of
start file as displayed in Figure 10.1.

10.1 Autoindexing, Refinement of Cell Parameters, and Reflection Integration | 225

4. Enter “@start.inp” from the MOSFLM prompt, here “@am.inp”. The graphical
user interface of MOSFLM appears (Fig. 10.2), and the left window displays the
parameters we have input so far. The right window shows the actual diffraction
pattern with well-resolved diffractions spots and an acceptable mosaicity.

5. Click the “Find spots” button. This generates a list of reflections, which serves as
input for the Autoindexing procedure. One can use several images for the Auto-
indexing. If desired, you must read in the respective images and find the spots.

6. Click the “Autoindex” button. One must confirm some default settings, after
which the results of the autoindexing appear (Fig. 10.3). The penalty is a mea-
sure of the deviation of the symmetry-corrected unit cell with the observed
unit cell. One chooses the combination of lowest penalty and highest symme-
try. In our example this is No. 4. We select space group P222 from the four
possibilities, because at this stage we do not know if systematic extinction are
present, which would indicate the existence of twofold screw axes. All four
putative space groups belong to the same Laue group, and we will prove the
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10.1 Autoindexing, Refinement of Cell Parameters, and Reflection Integration

correctness of this by calculating the Ruerge Value later. The result of the Auto-
indexing was very promising and one can move to the unit cell refinement as
the next step.

7.Click the “Refine cell’” button. There appears an input window (Fig. 10.4). In
this example, images from three different segments are used with three
images per segment. The refined orientation matrix is stored in the file
“dh_hr_2_201_ref.mat’. The starting spindle axis values and increments are
also indicated. The unit cell refinement is now running automatically and, if
successful, the results will be displayed (Fig. 10.5). The refinement worked
smoothly, with little changes in the unit cell parameters, detector distance
and missetting angles. Large deviations are suspicious and may be an indica-
tion that either something went wrong in previous steps or that the data set
cannot be evaluated at all.

At the end of the unit cell refinement the graphical user interface has the ap-
pearance of Figure 10.6. All actual parameters are displayed. The coincidence of
the predicted and observed spots can be checked by pressing the “Predict” but-
ton, whereupon the predicted spots appear as colored boxes. If there is no per-

E Input reply

For this spacegroup it is advisable to use a minimum
of two segments of data separated by as large an
angle (up to 90) as possihle.

Give number of segments (2) :3

Image number for first image of segment 1 (201) :001
Image identifier (dh_hr_4) :

Give starting phi (0.00)

Oscillation angle (0.20) :

Number of images in this segment (4) :3

Use the current crystal orientation (Y)

Image number for first image of segment 2 (201) :301
Image identifier (dh hr_4) :

Give starting phi (60.00)

Oscillation angle (0.20)

Number of images in this segment (4) :3

Use the current crystal orientation (Y)

Image number for first 1mage of segment 3 (201) :421
Image identifier (dh hr 4

Give starting phi (84.00)

Oscillation angle (0.20) :

Nunber of images in this segment (4) :3

Use the current crystal orientation (¥) :

Filename for final orientation matrix (dh hr_4_201.mat):dh hr_4_201_ref. mat

Post refining cell using 3 segments

Segment 1 images 1 to 3 Starting phi 0.0 0sc angle 0.20
Image identifier dh_hr 4

Segnent 2 images 301 to 303 Starting phi  60.0 0Osc angle 0.20
Image identifier dh_hr_4

Segment 3 images 421 to 423 Starting phi  84.0 0sc angle 0.20
Image identifier dh_hr_4

Do you want to proceed (Y):,

Fig. 10.4 Input window for the refinement of the unit cell and orientation parameters.
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@ Input reply

Cell refinement is complete
Starting cell 101.078 128.611 173.401 90.000 90.000 90.000
Refined cell 101.066 128.478 173.523 90.000 90.000 90.000

Rms positional error (mm) as a function of cycle for each image.
Inage 2 3 301 302 303 421 422 423

Cycle 1 0.035 0.050 0.041 0.026 0.028 0.025 0.026 0.024 0.028

Cycle 2 0.035 0.047 0.045 0.026 0.029 0.027 0.024 0.024 0.026

YSCALE as a function of cycle for each image:

Inage 1 2 3 301 302 303 421 422 423
Cycle 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
cycle 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Detector distance as a function of cycle for each image:

Inage 1 2 3 301 302 303 421 422 423
Cycle 1 119.3 119.3 119.3 119.4 119.3 119.3 119.4 119.4 113.4
Cycle 2 119.4 119.3 119.3 119.3 119.3 119.3 119.3 119.3 118.3

Refined mosaic spread (excluding safety factor): 0.41

Missets for first image ( 1) -0.12 -0.15 0.09
Missets for last image ({ 423) 0.14 0.01 0.03

The current missets are for the last image to be processed.
If you want to integrate the data starting at the first image, you should
reset the misseting angles.

Reset missets to those of the first image ? (Y¥),

Fig. 10.5 Results of the “Refine cell” step for 4-BUDH.

fect match something has failed in the previous steps. One can now start the re-
flection integration, which is best done in batch mode. One exits the graphical
user interface and the actual parameters are saved in a file on request.

Figure 10.7 shows the input file for running MOSFLM in batch mode. The
actual parameters can be copied from the save file produced when exiting the
Graphical User Interface (GUI) of MOSFLM. The refined orientation matrix is
contained in file “dh_hr_4_201_ref.mat’ and is invoked by the keyword MA-
TRIX. Due to the small spindle axis increment of 0.2° per image, most of the
reflections are partials. Therefore, MOSFLM instructions “REFINE INCLUDE
PARTIALS” and “PROFILE PARTIALS” must be included. It is advisable to fix
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Fig. 10.6 GUI of MOSFLM for 4-BUDH after the “Refine cell”
step. The actual parameters are displayed in the left window.
The predicted spots positions are shown.

the unit cell parameters, which have been refined before, during the post-refine-
ment step. This is done by specifying “POSTREF FIX ALL’. Finally, the reflec-
tion integration is done for all 450 images of the data set (PROCESS 1 to 450
START 0.0 ANGLE 0.20). Image 1 starts at spindle angle 0.0° and the angle in-
crement is 0.2° per image. This job produces a large log file (here,
“mos_dh_hr_4.log”), a summary file (here, “budh_dh_hr_4.sum”) and the reflec-
tion output file in CCP4 mtz-file style (here, “budh_dh_hr_4.mtz"). The essen-
tial information of the log file is contained in the summary file. At the end of
this file there is a table displaying the refined detector parameters and Rgyy, val-
ues for all individual images. As in many cases of data collection the crystal is
in an arbitrary orientation, the individual images contain few or no symmetry
related reflections. If no symmetry reflections were present, the Ry, value is
given as 0.0, or if only a few reflections have contributed its value is not mean-
ingful. The last table lists the results of the post-refinement. As the unit cell pa-
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#1/bin/sh A
#

setenv MOSBATCH BATCH

setenv SUMMARY budh_dh_hr_4.sum

setenv SPOTOD /tmp/messersc/spotodbudh_dh_hr_4.dat
setenv COORDS /tmp/messersc/coordbudh_dh_hr_4.dat
#

ipmosflm << mos_end > mos_dh_hr_4.log

TITLE BUDH SLS REMOTE dh_hr_4

GENF /tmp/messersc/budh_dh_hr_4.gen

FINDSPOTS YOFFSET 8.0 THRESHOLD 20.0

TIMEOUT 1

WAIT 1

SYNCHROTRON POLAR 0.93

RESOLUTION 1.60

REFINEMENT FIX YSCALE

DETECTOR MARCCD

WAVELENGTH 0.30004

DIVERGENCE 0.020 0.002

DISPERSION 0.00025

BEAM 82.14 80.10

GAIN 0.30

ADCOFFSET 0

DISTANCE 119.2839

DISTORTION YSCALE 1.0000 TILT 11 TWIST 28
MATRIX dh_hr_4_201_ref.mat

IThis matrix was obtained from postrefinement
lusing 3 segments starting with images 1 301 421 -
SYMMETRY 16

MOSAIC 0.43

TEMPLATE dh_hr_4_###. img

! this TEMPLATE was created from these IDENT and EXTENSION lines
{ IDENT dh_hr_4

! EXTENSION img

DIRECTORY ../

RASTER 15 415 9 4

SEPARATION 0.30 0.30 CLOSE

OVERLOAD CUTOFF 65500

PROFILE TOLERANCE 0.010  0.030 BOUNDARY 4.0

! Problems with too narrow Spots

|
[ikLouT /tmp/messersc/budh_dh_hr_d.mtz
|

|
1l REFINEMENT PARAMETERS
]

REFINE LIMIT 50.0 NSIG 5
OVERLOAD CUTOFF 65000
REFINE USEBOX

REFINE CYLCLES 6 RESID 3.0
REFINE IMIN 3

REFINE INCLUDE PARTIALS

!

i PROFILE FITTING
!

!PROFILE OPTIMISE ! NOOPTIMISE
!PROFILE XLINES 0 S5 110 165 YLINES 0 55 110 165

IPROFILE RATIO 2.00 STOP 0.5

PROFILE PARTIALS

!PROFILE NREF 10 RMSBG 6.0

PROFILE NREF 10 RMSBG 10.0

ISEPARATION 0.25 0.25 CLOSE

!

i REFLECTION INTEGRATION
!

OVERLOAD NOVER O CUTOFF 65000
BACKGROUND BGFRAC 0.60 BGSIG 5.0
REJECTION GRADMAX 0.60 MINB 10

REJECTION BGRATIO 2.0 PKRATIO 2.0 ACCEPT
!

| POST-REF INEMENT
!

IPOSTREF NREF 6

POSTREF FIX ALL SHIFTFAC 5 WIDTH 7.5
IPOSTREF SHIFTAC 5 HIDTH 7.5

IPOSTREF OFF

|

1

PROCESS 1 to 450 START 0,0 ANGLE 0.20 Add 0
RUN

END

mos_end

st . con |
Wrote /home/messersc/budh/dh

7
/ 1

/mosf lm/mosf lm_part2.com

Fig. 10.7 Input file for running MOSFLM in batch mode for 4-BUDH.
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rameters were fixed, the only relevant parameters are the missetting angles
PHIX, PHIY, PHIZ and the effective mosaic spread. In this particular example,
the maximum shift was less than the 0.25° that is acceptable. The effective mo-
saic spread was refined to 0.43°, a value low enough to deliver a high-quality in-
tensity data set.

10.2
Scaling of Intensity Diffraction Data

At this stage, the intensities have been integrated individually in each diffrac-
tion image. As highlighted in Section 4.6, they must be scaled and averaged.
The different data evaluation systems such as MOSFLM (SCALA), HKL2000
(SCALEPACK) or XDS (XSCALE) use their own scaling programs (given in pa-
rentheses). The mathematics behind these programs is quite similar and has
been described in Section 4.6. In our MOSFLM example, we use the CCP4 pro-
gram SCALA. The relevant input file is listed in Figure 10.8. First, the data on
our MOSFLM reflection output file (“budh_dh_hr_4.mtz") must be sorted, as in
the CCP4 routine “sortmtz’. The sorted file is input to routine “scala”. As these
data have been collected in one batch we have one run command only. How-
ever, it is possible that one could not evaluate the data set in one MOSFLM run
due to strong crystal slippage, or the data had to be collected from several crys-
tals due to considerable radiation damage. In this case, one would have several
MOSFLM output reflections files to be sorted in “sortmtz’, and take into ac-
count the different batches by relevant run instructions. Intensities must be in-
tegrated from partials, and anomalous scattering must be switched on because
we want to use information from anomalous diffraction. The “scales batch”
command has many options. The one used here is recommended for anoma-
lous data and integration of partials.

The last part is a CCP4 “truncate step’, which reduces all reflections to the
unique reflections while keeping track of the anomalous information and indi-
vidual reflections contributing to the unique reflection. The CCP4 mtz reflection
file has a record for each reflection holding the indices H, K, L, the intensity I
with standard deviation SIGI, or structure factor amplitude F with standard de-
viation SIGF and a row of other putative items. This data set has been collected
at remote wavelength. The anomalous difference DANO plus its standard devia-
tion has been stored to allow each data set to be treated in a general manner
later in the program SHARP, which will be used for the phase calculation and
refinement. Except for H,K,L, the other items can be given individual labels,
which has not be done in this example (e.g., F=F, which could also be F=<de-
sired label>). The truncated reflection file is output to “hklout’ (here,
“budh_dh_hr_trn.mtz").

The job generates a longer log-file, with two relevant tables, which are also
needed for the data submission to the Protein Data Bank or for a scientific pub-
lication. The first one is the data evaluation analysis against resolution

231
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1/bin/sh X

# first need to sort mtz file output from mosflm or rotaprep
#

#goto SCALA ! csh-specific
sortmtz hklout \
/tmp/messersc/budh_dh_hr_4_sort.mtz <<EOF-sort
H K L M/ISYM BATCH I SIGI
/tmp/messersc/budh_dh_hr_4.mtz
EOF-sort

R
#SCALA: ! csh-specific
#

# Scala - calculating batch scale factors & merging
# Simple case - single scale and B factor for each batch
# see $CEXAM/unix/non-runnable/scala.exam for other examples
# sfssscratch/scr
scala hklin /tmp/messersc/budh_dh_hr_4_sort.mtz \
hklout  /tmp/messersc/budh_dh_hr_4_mrg.mtz \
scales /tmp/messersc/budh_dh_hr_4.scales \
rogues /tmp/messersc/budh_dh_hr_4.rogues \
normplot /tmp/messersc/budh_dh_hr_4.norm \
anomplot /tmp/messersc/budh_dh_hr_4.anom \
<< eof-scala
run 1 batch 1 to 450
sdcorr  1.25 0.03
resolution 58.0 1.60
partials maxwith 10
exclude SDMIN 3.00
REJECT SCALE 6.00 6.00 REJECT
REJECT MERGE 6.00 6.00 KEEP
scales batch brotation spacing 5.0 tails
## Alternative simple scaling models:
# 1) batch scales, smooth Bfactor (recommended for synchrotron data)
# scales batch brotaion spacing 5
# 2) smooth scaling (recommend for laboratory data or “dose-mode” collection)
# scales rotation spacing S
#H
intensities integrated partials
anomalous on
final partials
eof-scala
#
#
truncate hklin /tmp/messersc/budh_dh_hr_4_mrg.mtz \
hklout budh_dh_hr_d4_trn.mtz <<EOF-trunc
title BUDH REMOTE dh_dr_4 SLS Data a - mosflm 1.60 Angstrom 450 images
nresidue 6400
labout F=F SIGF=SIGF DANO=DANO SIGDANO=SIGDANO
#labout F=FP SIGF=SIGFP
EOF-trunc

=y

Fig. 10.8 The SCALA input file for 4-BUDH.

(Fig. 10.9). Rmgr is the Rperge value (Eq. 4.26), and its cumulative value should
not exceed values of about 0.15 as a rule of thumb. For this 4-BUDH data set it
is 0.055, which is very satisfying. I/sigma(I) is the ratio of the mean intensity to
the mean standard deviation of the intensity, and should be not less than about
2 for the last resolution bin (here, a value of 1.8 was still accepted). Figure
10.10 displays the completeness and multiplicity against resolution. The com-
pleteness should be close to 100%, which is the case in this example. The over-
all multiplicity is 3.6, which is a satisfying value.

Until now, we had evaluated assuming the space group P222. The scaling
had proved that the assumption of the orthorhombic Laue group is correct due
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N 1/d"2 Dmin(A) Rmrg Rfull Rcum Ranom Nanom Av_I  SIGMA I/sigma sd Mn(I)/sd Nmeas Nref Ncent FRCBIAS Nbias

3%
1 0.0391 5.06 0.026 0.000 0.026 0.020 7817 26804. 1174.9 22.8 2012. 23.8 29241 8447 1144
2 0.0781 3.58 0.027 0.000 0.027 0.016 14850 40312. 1703.1 23.7 3080. 23.7 51976 15012 1118
3 0.1172 2.92 0.034 0.000 0.029 0.020 20522 22385. 1175.4 19.0 1794. 21.4 71059 20729 1206
4 0.1562 2.53 0.046 0.000 0.032 0.029 24684 10779. 748.5 14.4 962. 1B.2 B434S 24866 1239
S 0.1953 2.26 0.061 0.000 0.035 0.033 28163 72083. 670.9 10.7 742. 15.5 95281 28271 1247
6 0.2344 2.07 0.082 0.000 0.039 0.057 31181 5143. 5%8.4 8.6 659. 12.6 104044 31273 1263
7 0.273¢ 1.91 0.115 0.000 0.043 0.087 34027 3185. 500.2 6.4 S567. 9.3 112451 34131 1282
8 0.3125 1.79 0.176 0.000 0.047 0.136 36555 1732. 410.6 4.2 477, 6.8 117162 36405 1255
9 0.3516 1.69 0.268 0.000 0.051 0.207 38673 1066. 393.5 2.7 448. 4.2 121165 38092 1183
10 0.3906 1.60 0.405 0.000 0.055 0.314 40742 712. 393.4 1.8 452. 2.9 125911 39834 1163
$$

”»<b>For inline graphs use a Java browser<sb></applet>

Overall: 0.055 0.000 0.055 0.033 277214 8087. 742.3 10.9 874. 11.3 912635 277060 12100

Rmrg Rfull Rcum Ranom Nanom Av_I SIGMA I/sigma sd Mn{I)/sd Nmeas Nref Ncent Fi

Fig. 10.9 SCALA: data evaluation analysis against resolution for 4-BUDH.
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0.014
0.026
0.029
0.016
0.000
-0.005
-0.003
-0.008
-0.002
0.003

0.016 4
RCBIAS

12973
24097
33207
39650
45247
43525
54337
58571
61349
63746

42702
Nbias

N 1/resol”2 Dmin Nmeas Nref Ncent ®%poss CX¥poss Mlplct AnoCmpl AnoFrc AnoMlt Rmeas RmeasO (Rsym)
s 3%
$$

1 0.033 5.06 32855 9417 1380 95.7 95.7 3.5 93.9 9.1 1.9 0.036 0.037 0.026

2 0.078 3.58 59957 16921 1473 97.1 96.6 3.5 93.7 93.7 1.9 0.036 0.034 0.027

3 0.117 2.92 81731 22284 1577 99.6 98.0 3.7 98.8 98.8 1.9 0.046 0.043 0.034

4 0.156 2.53 97340 26321 1607 99.9 98.7 3.7 99.9 99.9 1.8 0.062 0.060 0.046

S 0.195 2.26 110318 29792 1614 100.0 99.1 3.7 99.9 99.9 1.8 0.082 0.080 0.061

6 0.23¢ 2.07 120973 32803 1612 100.0 99.3 3.7 100.0 100.0 1.8 0.111  0.109 0.082

7 0.273 1.91 131020 35653 1621 100.0 99.4 3.7 100.0 100.0 1.8 0.156 0.157 0.115

8 0.312 1.79 137972 38231 1618 100.0 99.5 3.6 99.8 99.8 1.8 0.240 0.243 0.176

9 0.352 1.69 144005 40532 1599 100.0 99.6 3.5 99.2 99.2 1.8 0.367 0.368 0.268

10 0.391 1.60 150775 42896 1604 99.9 99.7 3.5 98.7 98.7 1.7 0.555 0.557 0.405

$$
”»<b>For inline graphs use a Java browser</b></applet>

Overall 1066946 294910 15705 99.7 99.7 3.6 99.0 99.0 1.8 0.075 0.074 0.055
Nmeas Nref Ncent Xposs C¥poss Mlplct AnoCmpl AnoFrc AnoMit Rmeas RmeasO (Rsym)

Fig. 10.10 SCALA: completeness and multiplicity against resolution for 4-BUDH.

to the 1ow Rperge Value. The log file contains additional information about in-
tensity distributions on the three reciprocal cell axes, which permits one to de-
termine if the relevant axis is a twofold screw axis, or not. Figure 10.11 depicts
this information for the a*-axis. All reflections with an even value for h have
large intensity and I/sigl values in average compared to those for odd h values.
This means that the extinction rule is fulfilled for a twofold screw axis parallel
to the a*-axis. Similar intensity distributions are found for the b*- and c*-axes,
giving P2,2,2; as exact space group. The exact symmetry information must be
inserted in the header of the output mtz file from “truncate”. This can be done
with CCP4 routine “cad”.

The data sets collected at the peak and inflection point wavelengths have been
evaluated using the same procedure, which gave comparably good reflection sta-
tistics. The three data sets must now be scaled together, which was done with
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$TABLE: Axial reflections, axis h, Unspecified :
63%0 |
75714.69:1,2:%%

$GRAPHS: I/sig

:Ivs. h

h
3 20.
4 1367.
S 197.
6 11467.
7 154.
8 4257.
9 -63.
11 152.
12 2568.
13 408.
14 16373.
15 165.
16 1814.
17 514,
18 60272.
19 262.
20 27120.
21 376.
22 1844.
23 219.
24 26633.
25 3341.
26 21619.
27 -36.
28 2582.
29 1729.
30 18550.
31 -411.
32 37737.
33 -316.
34 68832.
35 747.
36 19325.
37 2473.

38 2845,

Fig. 10.11 SCALA: axial reflections for axis a* (h 0 0) for 4-BUDH.

the proper CCP4 routine. The respective input file is shown in Figure 10.12.
First, the labels for F, SIGF, DANO and SIGDANO were renamed to the indi-
vidual values for the respective data sources, suffix RM for remote, suffix INF
for inflection, and suffix PK for peak. The actual scaling is done in “scaleit’,
and the final reflection file is directed to HKLOUT, here into the file “budh_-
MAD_scaled.mtz’. With this step the data evaluation and reduction has been

Ivs. h:0]
:0] 63%0|

I sigl

16.
7s.
23.
550.
33.
210.
43.
54.
137.
64.

I/sigl

1.
18.
8.
20.
4.
20.
-1
2.
18.
6.
20.
2.
15.
S.
20.
2.
20.
3.
12.
1,
20.
15,
20.
-0.
12.
8.
20.
=2,
20.
=1
20.
4.
20.
11.
13.

266
265
593
840
750
271
474
798
767
405
759
345
366
983
725
777
556
661
777
865
g24
284
462
232
134
912
188
319
455
880
324
492
074
782

208

22.92:1,4:

$$ $$

finished and the phase determination can be started.

The treatment of MIR data sets is similar. The remote data set corresponds to
the native one, and the data sets collected at other wavelength of interest con-

form to the derivative data sets.
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#1/bin/csh -f A
# Scale native and derivative data from MAD after scala
#

setenv REMOTE /home/messersc/budh/dh_hr_4/mosfim/budh_dh_hr_4_trn.mtz
setenv FPRIME /home/messersc/budh/inflection/mosflm/budh_inflection_trn.mtz
setenv FPPRIM /home/messersc/budh/peak/mosf 1m/budh_peak_trn.mtz

#
# Sort and collect into a single set
#
banner “CAD” >> scal_MAD_mosflm.log
#

cad HKLIN1 ${REMOTE} HKLIN2 ${FPRIME} HKLIN3 ${FPPRIM} \
HKLOUT tmpl.mtz \
<< EOF-C »> scal_MAD_mosflm. log

TITLE Merged BUDH MAD Data

SYMMETRY 19

RESOLUTION OVERALL 58.0 1.6

SORT HK L

LABIN FILE 1 E1=F E2=SIGF E3=DANO E4=SIGDAND

CTYP FILE 1 Ei=F E2=Q E3=D E4=

LABOUT File 1 E1=F_RM E2=SIGF_RM E3=DANO_RM E4=SIGDANO_RM

LABIN FILE 2 E1=F E2=SIGF E3=DANO E4=SIGDANO
CTYP FILE 2 E1=F E2=Q E3=D E4=Q
LABOUT File 2 E1=F_INF E2=SIGF_INF E3=DANO_INF E4=SIGDANO_INF

LABIN FILE 3 E1=F E2=SIGF E3=DANO E4=SIGDAND

CTYP FILE 3 Ei=F E2=Q E3=D E4=Q

LABOUT File 3 E1=F_PK E2=SIGF_PK E3=DANO_PK E4=SIGDANO_PK
EOF-C

#

# Scale native and derivative datasets

#

banner “SCALEIT” >> scal_MAD_mosflm. log
#

setenv HKLIN tmpl.mtz

setenv HKLOUT budh_MAD_scaled.mtz

#

scaleit << EOF-S >> scal_MAD_mosf1m. log
TITLE BUDH MAD Data SLS Scaled
RESOLUTION $8.0 1.6

REFINE ANISOTROPIC

GRAPH hk1

CONVERGE NCYC 20

LABIN FP=F_RM  SIGFP=SIGF_RM -
FPH1=F_RM SIGFPH1=SIGF_RM DPH1=DANO_RM  SIGDPH1=SIGDANO_RM -
FPH2=F_INF SIGFPH2=SIGF_INF DPH2=DANO_INF SIGDPH2=SIGDANO_INF -
FPH3=F_PK SIGFPH3=SIGF_PK DPH3=DANO_PK SIGDPH3=SIGDANO_PK

END e

EOF-S - _ ) ) ) 4

Fig. 10.12 Input file for scaling of remote, inflection and peak datasets for 4-BUDH.

10.3
A Complex Example of Space Group Determination

For 4-BUDH the space group could be determined unambiguously from the auto-
indexing and scaling procedure and detected extinctions. We will now discuss a
rather complicated case of a space group determination. This was met when solv-
ing the crystal structure of the catalytic domain of human atypical protein kinase
C-iota (PKC-iota) (Messerschmidt et al., 2005). We will also use this example to
illustrate the application of the method of Molecular Replacement.

The protein had been produced from SF9 insect cells infected with recombinant
baculovirus. The protein construct had an N-terminal Hisg-tag with a TEV cleavage
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List of possible Laue groups, sorted on penalty index. ﬂ
The lower the PENALTY, the better [
No PENALTY LATT a b < alpha beta gamma Possible spacegroups
44 993 cl 137.85 77.96 136.92 74.1 58.1 74.9 123,1213,1432,14132
43 995 hrR 175.18 137.78 77.68 75.1 90.1 80.5 H3,H32 (hexagonal settings of R3 and R32)
42 873 cF 137.12 174.72 139.67 122.0 68.6 122.4 F23,F432,F4132 5
41 850 tI 136.92 139.67 76.92 73.9 106.2 121.4 14,141,1422,14122 .
40 740 tI  137.85 77.96  136.92 74.1 58.1 74.9  14,141,1422,14122 =
39 732 hp 77.68 114.35 76.92 90.0 119.4 91.2 P3,p31,P32,P312,P321,P3112,P3121,P3212,P3221
P6,P61,P65,P62,P64,P63,P622,P6122,P6522,P6222,P6422, P6322
38 680 ol 76.92 77.68 240.16 98.4 99.3 119.4 1222,1212121
37 680 tI 76.92 77.68 240.16 81.6 80.7 119.4 14,141,1422,14122
36 610 tI 137.12 137.78 77.68 75.1 74.1 58.3 14,141,1422,14122
35 608 ol 76.92 136.92 139.67 58.6 73.9 73.8 1222,1212121
34 602 ol 77.68 137.78 137.12 58.3 74.1 75.1 1222,1212121
33 543 hr 76.92 77.96 366.60 89.2 108.3 119.8 H3,H32 (hexagonal settings of R3 and R32)
32 521 OF 76.92 135.30 241.25 88.7 108.6 90.2 F222
31 481 cp 76.92 77.68 114.35 91.2 90.0 119.4 P23,P213,P432,P4232, P4332, P4132
30 476 tP 77.68 114.35 76.92 90.0 119.4 91.2  P4,Pd1,P42,P43,pd22, PA212,PA122, PA1212, PA222, PA2212, PA322, PA3212
29 473 hrR 133.50 137.78 137.12 121.7 90.2 118.1 H3,H32 (hexagonal settings of R3 and 3 )
28 472 hR 77.96 137.78 176.84 100.4 B88.8 107.1 H3,H32 (hexagonal settings of R3 and R32)
27 467 oC 136.92 139.55 76.92 74.1 106.2 68.4 C222,C2221
26 467 mC  136.92 139.55 76.92 74.1 106.2 68.4 c2
25 466 mC 139.55 136.92 76.92 106.2 105.9 111.6 c2
24 409 oC 77.68 240.03 76.92 80.9 119.4 107.7 €222,c2221
23 408 mC  240.03 77.68 76.92 119.4 99.1 72.3
22 403 oC 77.68 240.03 76.92 80.9 119.4 107.7 €222,C2221
21 403 me 240.03 77.68 76.92 119.4 99.1 72.3 cz
20 401 mC 77.68 240.03 77.96 98.4 120.8 72.3 c2
19 397 mC 76.92 241.25 77.68 97.9 119.4 71.4 c2
18 396 mI 77.68 240.03 76.92 99.1 119.4 72.3 €2 (transformed from I12)
17 282 OF 77.96 133.50 240.16 89.5 107.8 89.4 F222
16 278 mC  135.30 76.92 136.92 73.8 118.3 89.8 c2
15 273 mc  133.50 77.96 137.85 74.9 119.4 89.4 c2
14 152 tp 76.92 77.68 114.35 91.2 90.0 119.4 P4,p41,p42,p43,P422,P4212,P4122,P41212,P4222,P42212,P4322,P43212
13 146 op 76.92 77.68  114.35 91.2 90.0 119.4  p222,P2221,P21212,P212121
12 143 mp 77.68 76.92 114.35 90.0 91.2 119.4 p2,P21
11 138 mP 77.68 76.92 114.35 90.0 91.2 119.4 P2,P21
10 19 nC 76.92 135.30 114.35 88.7 90.0 89.8 c2
9 16 hp 76.92 77.68 114.35 91.2 90.0 119.4 P3,P31,P32,P312,P321,P3112,P3121,P3212,P3221
P6,P61,P65,P62,P64,P63,P622,P6122,P6522, P6222,P6422, P6322
8 14 mc 77.96 133.50 114.35 90.7 91.1 89.4 c2
7 14 oC 77.96 133.50 114.35 90.7 91.1 89.4 C222,C2221
6 11 oC 76.92 135.30 114.35 88.7 90.0 90.2 €222,¢2221
5 10 mC  135.30 76.92 114.35 90.0 91.3 89.8 c2
4 9 mP 76.92 114.35 77.68 91.2 119.4 90.0 P2,P21
3 2 mC 135.30 76.92 114.35 90.0 91.3 89.8 c2
2 0 aP 76.92 77.68 114.35 88.8 90.0 60.6 P1
1 0 ap 76.92 77.68 114.35 91.2 90.0 119.4 P1
No PENALTY SDCELL FRACN LATT a b c alpha beta gamma Possible spacegroups
Suggested Solution: 9 P3
penalty: 16
cell: 76.917 77.680 114.353 91.17 89.97 119.44
regularized cell: 77.299 77.299 114.353 90.00 90.00 120.00
etry: hP (Primitive Hexagonal) [l
Select a solunon AND a spacegroup from nst above (eg 3 p42) or 0 to abandon v
K S 5 5 e

Fig. 10.13 MOSFLM: Output of autoindexing for PKC-iota.

site, which was cleaved off before crystallization. Crystals could be obtained as sit-
ting drops by vapor diffusion with PEG 400 (24-34%) as the main precipitant. An
intensity data set was collected to a resolution of 2.8 A at the synchrotron beamline
PX of the Swiss Light Source at the Paul Scherrer Institute, Villigen, Switzerland
using a MAR CCD 165 detector (MarResearch, Norderstedt, Germany). The data
were also evaluated with program MOSFLM, and the output of the autoindexing is
shown in Figure 10.13. The suggested solution is number 9, which has a reason-
ably low penalty and the highest symmetry among this group. The problem is that
this solution comprises a large number of possible space groups. They belong to
four different Laue groups (3,3m,6/m, 6/mmm). Generally, one has to evaluate
the data set for the four Laue groups, each with the space group of the lowest sym-
metry of the respective Laue group. Here, we would run MOSFLM and SCALA for
space groups P3, P3(1)2, P6 and P622. We have also to include P32(1) because the
twofold axes perpendicular to the threefold axis may have two different orienta-
tions 30° apart from each other. The best Ryerge Was obtained for P32(1), as shown
in Figure 10.14. The value of 0.093 is satisfying and is half of the values which
were received for the other four possibilities. The corresponding listing for the
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File Edit  Search  Preferences  Shell Magro  Windows Help
Al
N 1/d42 Dmin{a) Rfac Rfull Rcum Ranom Nanom Av_I SIGMA I/sigma sd Mn(I)/sd Nmeas Nref Ncent FRCBIAS Nbias I
$$
1 0.0111 9.49 0.042 0.035 0.042 0.000 0 4721. 350.9 13.5 239. 36.3 1278 269 104 -0.035 286
2 0.0222 6.71 0.048 0.043 0.045 0.000 0 2357. 216.2 10.9 130. 34.1 2710 502 124 -0.047 969
3 0.0333 5.48 0.061 0.046 0.049 0.000 0 1270. 121.7 10.4 88. 28.2 3622 629 120 -0.021 1709
4 0.0444 4.74 0.057 0.048 0.052 0.000 0 1595. 139.3 11.4 111, 28.5 4426 755 133 -0.045 2049
5 0.0556 4.24 0.063 0.049 0.055 0.000 0 1712, 163.2 10.5 126. 27.3 5030 848 130 -0.051 2419
6 0.0667 3.87 0.084 0.079 0.059 0.000 1] 1186. 147.0 8.1 116. 20.9 4423 747 114 -0.029 2149
7 0.0778 3.59 0.262 0.225 0.071 0.000 0 08. 252.8 2.4 128. 10.8 4092 747 101 0.138 1866
8 0.0889 3.35 0.250 0.227 0.078 0.000 0 363. 124.5 2.9 119 8.2 4668 817 103 0.111 2313
9 0.1000 3.16 0.242 0.241 0.086 0.000 0 282. 94.0 3.0 113 i 6867 1132 129 -0.045 3470
10 0.1111 3.00 0.371 0.414 0.093 0.000 0 171, 86.8 2.0 113 4.7 7186 1183 133 -0.095 3494
$%
"><b>For inline graphs use a Java browser</b></applet>
Overall: 0.093 0.087 0.093 0.000 0 1022. 157.7 6.5 119.. 17.5 44302 7629 1191 -0.027 20724
Rfac Rfull Rcum Ranom Nanom Av_I  SIGMA I/sigma sd Mn(I)/sd Nmeas Nref Ncent FRCBIAS Nbias
Y|
1] 3
Fig. 10.14 Rprge against resolution for the data set of PKC-iota for symmetry P32(1).

File Edit  Search  Preferences Shell Magro  Windows Help
: Rmeas, Rsym & PCV v Resolution :N:2,12,13,14,15,16: $$ Al
N 1/resol”2 Dmin Nmeas Nref Ncent %poss Cm%poss Mlplcty AnomCmpl AnomFrc Rmeas Rmeas0 (Rsym) PCV PCVO $

$$
1 0.011 9.49 1294 285 114 91.7 91.7 4.5 0.0 0.0 0.048 0.048 0.042 0.0S52 0.052
2 0.022 6.71 2720 512 134 99.3 96.6 5.3 0.0 0.0 0.053 0.053 0.048 0.058 0.058
3 0.033 5.48 3632 639 130 100.0 98.1 5.7 0.0 0.0 0.068 0.068 0.061 0.077 0.077
4 0.044 4.74 4426 55 133 100.0 98.8 5.9 0.0 0.0 0.063 0.063 0.057 0.071 0.071
5 0.056 4.24 5030 848 130 100.0 99.1 5.9 0.0 0.0 0.070 0.070 0.063 0.078 0.078
6 0.067 3.87 4437 761 115 83.0 95.3 5.8 0.0 0.0 0.093 0.093 0.084 0.104 0.104
7 0.078 3.59 4161 816 111 80.5 92.2 5.1 0.0 0.0 0.297 0.297 0.262 0.302 0.302
8 0.089 3.35 4698 847 106 79.9 90.0 5.5 0.0 0.0 0.276 0.276 0.250 0.268 0.268 i
9 0.100 3.16 6867 1132 129 100.0 91.6 6.1 0.0 0.0 0.265 0.265 0.242 0.281 0.281
10 0.111 3.00 7186 1183 133 100.1 92.9 6.1 0.0 0.0 0.406 0.406 0.371 0.430 0.430

"><b>For inline graphs use a Java browser</b></applet>

Overall 44451 7778 1235 92.9 92.9 0.0 0.0 0.104 0.104 0.093
Nmeas Nref Necent %poss Cm%poss Mlplcty AnomCmpl AnomFrc Rmeas Rmeas0 (Rsym)

Fig. 10.15 Completeness against resolution for the data set of PKC-iota for symmetry P32(1).

completeness of the data set is depicted in Figure 10.15. This is sufficient, with an
overall of 92.9%. Some reflections had to be omitted because of ice rings docu-
mented by lower values of completeness between 3.87 and 3.35 A resolution.

Finally, one must check for extinctions of the ¢* axis. The relevant intensity
list is displayed in Figure 10.16. It can be clearly seen that only reflections with
I = 3n are present. Reflection (0, 0, 31) has obviously been determined incor-
rectly, probably due to the ice rings on the diffraction images. The observed ex-
tinctions indicate a threefold screw axis parallel to the ¢* axis. From the extinc-
tions, we cannot distinguish between a 3; or 3, axis. Therefore, we have space
groups P3;2(1) or P3,2(1) as possibilities at the end of this analysis. The final
decision can be made during the phase determination, where the wrong space
group delivers incorrect phases. With this example, the problem can be used
during the molecular replacement step. The molecular replacement is calculated
for both space groups and the correct solution is gained for the proper space
group.

Although the data set showed diffraction to 2.8 A resolution, the data have
been evaluated to 3.0 A resolution only, taking into account a threshold of 2 for
I/sigma(I).
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File Edit Search  Preferences  Shell  Macro
Windows Help
$TABLE: Axial reflections, axis 1 : A]
$GRAPHS: I vs. 1:0] 37x0| 19737.48:1,2:
I/sigl wvs. 1:0| 37x0| 31.20:1,4:
1 1 sigI I/sigl
2 23. 5. 4.876
4 3. 6. 0.496
5 1. 7. 0.155
6 2182. 8. 28.102
7 -2. 10. -0.236
8 1. 12. 0.124
9 146. 15. 9.880
10 -10. 12. -0.831
11 -15. 17. -0.896
12 17943. 633. 28.361
13 -7. 16. -0.439
14 -21. 22. -0.971
15 3445. 125. 27.508
16 -38. 22. -1.723
17 14. 26. 0.514
18 4754. 171. 27.770
19 1; 26. 0.246 i
20 -28. 32. -0.859
21 2055. 82. 25.010
22 -10. 37. -0.280
23 -21. 33. -0.632
24 494. 49. 10.097
25 -16. 49, -0.336
26 -39. 45. -0.869
27 5689. 213. 26.675
28 -64. 60. -1.080
30 1560. 95. 16.412
31 4831. 274. 17.655
32 -40. 64, -0.619
34 -63. 5. -0.840
35 -48. 64. -0.749
36 281. 78. 3.583
37 20. 77 0.253
$$ v
<[ - |

Fig. 10.16 SCALA: axial reflections for axis ¢* (0 0 /) for PKC-iota.
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11
Determination of Anomalous Scatterer
or Heavy Atom Positions

The methods used to determine the positions of the anomalous scatterers or heavy
atoms are the same, and their theoretical basis has been explained in Sections 5.3.1
and 5.3.2. Here, we use the structure analysis of 4-BUDH (Martins et al., 2004) to
illustrate the identification of its 16 Fe-sites (four [4Fe-4S] clusters per asymmetric
unit), whose anomalous scattering effect at the Fe K,-absorption edge has been
used. Both direct and vector verification methods will be discussed and compared.

1.1
Application of Direct Methods

Shake and Bake (SnB) (Weeks and Miller, 1999) has been used as the direct
methods program. When one starts SnB, a GUI is opened with information

e:|budh SLS Fe edge pk

- ‘ v. Q ‘ .

Fig. 11.1 SnB Input GUI: General Information.
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eilbudh_peak_all.sca

el budh_peak_drear.dat

C9800,N2352,02840,H15680,Fe 16

Fig. 11.2 SnB Input GUI: Create Es.

Fig. 11.3 SnB Input GUI: Reflections & Invariants.

about SnB. First, we choose the screen tab “General information”, as displayed
in Figure 11.1. A meaningful title, the space group, cell constants with errors
and the number of anomalous scatterers per asymmetric unit (Fe 16 in this
case) must be entered. Three choices are possible for Data Type: Basic, SAS and
SIR. We select SAS, which stands for single anomalous scattering, because we
use the anomalous differences collected at the Fe K,-absorption edge with maxi-
mum f'. “Synchrotron” must be indicated for Radiation. Finally, one must sup-
ply the element of the anomalous scatterer, the ' and f” values and the wave-
length at which the data set has been registered. Values of f and f” for the re-
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Fig. 11.4 SnB Output GUI: Evaluate Trials.

spective wavelengths can be obtained from the X-ray fluorescence scan, which
is usually done at the synchrotron beamline before the MAD data collection.
Before one can run SnB the normalized structure factors E of the anomalous
differences must be calculated. This is done by program DREAR (Blessing and
Smith, 1999) and the input GUI is supplied by choosing screen tab “Create Es”
(Fig. 11.2). SCALEPACK (unique anomalous data) has been selected as File
Type and the relevant reflection file is “budh_peak _all.sca”, the output file from
Scalepack for the respective wavelength. If the diffraction data has been stored

Fig. 11.5 SnB Output GUI: Histogram of minimal function.
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% g z Height
0.523713 0.512371 0.783662 13.95 1
0.999830 0.666434 0.820828 13.80 2
0.788112 0.607752 0.642250 13.36 2
0.673748 0.696553 0.929172 12,11 4
0.634844 0.566257 0.792594 5.75 5
0.473129 0.509502 0.853291 507 6
0.642665 0.983958 0.557271 5.06 7
0.583379 0.929010 0.346669 4.96 8
0.081138 0.583095 0.831681 4.36 8
0.751618 0.61457% 0.987338 4.31 10
0.993713 0.603440 0.677502 4.30 11
0.417241 0.630048 0.307054 4.59 12
0.135312 0.606250 0.717598 4.40 13
0.626621 0.803937 0.936190 4.3 14
0.309837 0.502803 0.829246 4.30 15
0.430717 0.606534 0.681100 4.25 1§
0.500000 0.887500 0.962963 4.20 17
0.348878 0.796226 0.784360 4.13 18
0.424565 0.639770 0.563722 4.14 18
0.262215 0.509760 0.535381 4.13 20
0.521533 0.707531 0.926009 4.11 21
0.077261 0.973432 0.968540 3.99 22
0.143863 0.894501 0.929893 3.98 23
0.307415 0.604365 0.357749 3.92 24

OK

Fig. 11.6 SnB Output GUI: Coordinates.

in a CCP4 MTZ-file, one may create a Scalepack formatted file with the OUT-
PUT SCAL keyword in the CCP4 routine MTZ2VARIOUS. The native contents
of the ASU (asymmetric unit) has been approximated by the relations C=5R,
N=1.2R, O=1.5R and H=8R, where R equals the number of protein residues
in the ASU (here, 4x490=1960). The default values have been taken for the
other parameters.

If the DREAR job has been finished, one can move to the screen tab “Reflec-
tions & Invariants” (Fig. 11.3). For the determination of the positions of the
anomalous scatterers lower to medium resolution reflections should be included
only. Here, a maximum limit of 3.5 A has been chosen. The adjustment of the
other parameters needs some test runs. The number of reflections to be used
and the E/sig(E) are correlated. In this example, a value of 2.0 worked well and
corresponded to 160 reflections. The possible triple invariants are calculated and
their number is compared with the input value. If this number is less than the
input value, the program stops and an error message is written to a file in the
working directory. This file contains the number of triple invariants calculated
for the given parameters and must be entered in the relevant parameter field of
the “Reflections & Invariants” screen tab.

Default values have been taken from the other screen tabs except for “Trials
& Cycles” where a number of 300 trials has been selected. It is the normal case
to run the SnB job interactively, but in the screen tab “Submit job” one can also
write data files suitable to run SnB in batch mode. The screen tab “Evaluate
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Delete Atom Delete Frag

Undelete Atom Undelete All

Center Make Bond
Distance Iist
Angle List
Torsion List

Change Enantiomorph

Start Naming |
Find Type Ne. Chain

Atom|

Show/Hide IDs || Show All IDs

Prune <= || |

Save | Close |

Fig. 11.7 SnB Output GUI: Visualization.

Trials” provides several means to check the results of the SnB job both during
the job process or after completion of the job. In Figure 11.4 the job “budh-
SLS-1” has been chosen. As the resolution is 3.5 A only, the individual Fe-atoms
in the Fe-S clusters will not be resolved. Therefore, the expected number of Fe
sites will be four for one homotetramer, and the number of peaks to use has
been set to four in the input field for “Visualization of Structure”. We will not
discuss all options of this screen tab. The “View Histogram” is very useful. The
final histogram is displayed in Figure 11.5.

The histogram in Figure 11.5 contains the distribution of the minimal func-
tion for all trials. A pronounced bimodal distribution is a reliable indication for
a correct solution, which are in the distribution with the lowest minimal func-
tion values. The list of coordinates (Fig. 11.6) for the best solution can be pro-
duced by pressing the “View Coordinates” button in the “Evaluate Trials” button.
As expected, there are four sites with almost equal heights and clearly separated
from the heights of the following sites. Pressing the button “View Structure” ac-
tivates a window showing a ball-and-stick model based on the peak file and the
maximum distance specified (Fig. 11.7). One can edit the model, identify atoms,
and save the revised model in a file. Here, the four Fe-sites are displayed and
the determination of the inter-site distances with the “Distance” button, and
clicking the sites of interest may be very useful. The coordinates of the four Fe-
sites (see top four peaks in list of Fig.11.6) have y- and z-coordinates all be-
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tween 0.5 and 1.0. For the later use, the Fe-sites have been referred to a unit cell
origin at (0, 0.5, 0.5), what means that their y- and z-coordinates have been sub-
tracted by 0.5, respectively. Origin shifts of 0.5 do not affect the space group
symmetry in space group P2,2,2;, the space group of the 4-BUDH example.

11.2
Vector Verification Methods

We explain the application of the vector verification methods for our 4-BUDH
example by means of the Real Space Patterson Search (RSPS) program of
Knight (2000), which is part of the CCP4 suite (CCP4, 1994). The principles of
vector verification have been described in Section 5.3.1. We illustrate the run-
ning of the CCP4 programs by using the CCP4i GUI. If you type “ccp4i” on
your computer where the CCP4 system has been installed, the GUI for the con-
trol center of CCP4i is opened (Fig. 11.8). We choose the button “FFT for Patter-
son” from the program list because the anomalous difference Patterson map
must be calculated before we can start the RSPS routine. CCP4i opens a win-
dow for entering the input parameters for the Patterson map calculation
(Fig. 11.9). The input MTZ-file is “budh_MAD_scaled.mtz’ and the label DA-
NO_PK, which stands for the anomalous difference of the f” wavelength, must
be selected. The map has been calculated to a maximum resolution of 3.5 A.
RSPS is now started by pressing the program list button “RSPS”. In the re-
spective input window (Fig. 11.10) we select the options “Get list of potential
heavy atoms from scan of Patterson map” and “To analyze sites find sets of sites
with good cross vectors”, and assign files for the input Patterson map and the
output coordinates of sites. The sigma values for picking peaks and sites have
been set to 1.5. The output log-file can be invoked from the CCP4i control cen-
ter. The part for the peak search of the anomalous difference Patterson map is
shown in Figure 11.11. An inspection of this peak list allows some conclusions

¥3 CCP4 Program Suite 5.0.2 CCP4Interface 1.3.20 running on spgrafik1.biochem.mpg.de Project: BL

| Help
Program List —~|[16 08 May 06 FINISHED rsps RSPS Fixed Directories&ProjectDir
Ecalc | 15 08 May 06 FINISHED rsps RSPS Fixed I
14 08 May 06 FINISHED rsps RSPS Fixed View Any File
EZmtzi(mport) | I e May 06 FINISHED rsps RSPS Fixed Y
FFFear || |2 28 apr 06 FvISHED rsps BUDH RSPS F View Files from Job  —
FFJoin I J 11 28 Apr 06 FINISHED rsps BUDH RSPS DeletefArchive Files..
FFT | Kill Job
FFT for Patterson ] ReRun Joh..
Fhscal (scaleit) | Edit Job Data =
Freerflag (import) | Preferences
Lsqkab (superpose) | ]| System Asministration — |1
Mapman (fft) |
/ ] Mail CCP4 Exit
hanmack | ~ |
e ————————

Fig. 11.8 CCP4i control center.
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T3 Patterson - Generate Patterson Map Initial parameters from /home/messersc/budh/C

Exclude reflections with large absolute values | Help
Job title |_BUDH Ui F 3.5 Resoluti
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M Run FFT to generate Patterson using anom diff (D) data —_ |map in CCP4 |fon‘nat
W List peaks to file

| Plot default Harker — Imap sections with coordinates of peaks in map — |

MTZin _Fullpath.. — | Mudh/comMudh_MAD_scaled.miz -—
AnomDif DANO_PK — | Sigmab SIGDANO_PK =l
1 Use ¥ data to r with large sigma

FPH Unassigned —i | SigmaFPH Unassigned il

Map TEMPORARY — [[budh_MAD_scaled_patterson.map “_
Peakcoord  BUDH _4| udh_MAD_scaled_peaks.pdh I

Scale amplitudes for set 1 | and set 2 |0.000001

Extent ¢ asymmetric unit ., orrange x |

W Exclude reflections with difference between F1 and F2 >
Exclude reflections - paramelers for sett and set 2

M Fless than n * sigmaF where n is 0.0 X —
_i Fabsolute value less than [— [—
| Fabsolute value greater than l— I—
W Resolution less than [41.204 A or greater than [3.5 A

~l

Fig. 11.9 CCP4i: generate Patterson parameters input for 4-BUDH.

[} RSPS - Real Space Patterson Search Initial parameters from /home/messersc/ F

| Help

Job title [BUDH RSPS

Get list of potential heavy atom sites  from scan of Pattersonmap ~ — |

To analyse sites find sets of sites with good cross vectors — |
Map in TEMPORARY — |[hudh_mo_sca|eu _patterson.map

Sites out BUDH -] I b scaled_y ) i

Crystal (not Patterson) space group |P21 2121

Find |1 00 potential vectors
Pick vectors correlating to peaks > | 5 sigma in map allowing IZ peak(s) below threshold

Find sets of at least |4.0 sites from the first |1 00.0 in list of potential sites
Pick sites correlating to peaks > | 5 sigma in map allowing |s peak(s) below threshold

T el e e el

Fig. 11.10 CCP4i: RSPS parameters input for finding sets of
sites with good cross vectors for 4-BUDH (first run).
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T3 CCPAalfileviewer 11_rsps.log 2

| Help
PATTERSON SYMMETRY > Promn ﬂ
Linits of Patterson map tested and found valid Ay
Unit cell parameters: 101.27  128.67 173.78 90.00 90.00 90.00
The input )nap bas z-sgchms with Y vazy)ng most rapldly and X most slowly
6rid along X.
Limits along X, Y z : ll 44 IJ 56 0 76

Density statistics on Pattenm map:
Minimm density = 9057

Maximm density = 490.7665
Average density = 0.0003
Std Dev of density = 2.9744

GETPAT :CPU= O0h Om 0.0s EAPS= O0h Om 00s

RSPS >> PICK PATTERSON >> 50
RSPS >> PICK LIMITS
RSPS >>

>> whole map
>> RSPS PICK >> PATTERSON

PATTERSON SYMMETRY > Pmumm
Limits of Patterson map tested and found valid

RSPS PICK >>
Picking Patterson map >>

PICK >> The 42 highest peaks above

Peak 1 g 6rid coordinates Value S/N
1 0.0000 0.0000 0.0000 0.00 0.00 0.00 0 0 0 498.77 167.7
2H 0.5000 0.3285 0.5000 50.63 42.27 86.89 44 37 76 27.10 9.1
3H 0.0000 0.5000 0.1369 0.00 64.3¢ 23.78 0 56 21 21.70 7.3
4 0.0795 0.0000 0.0577 8.05 0.00 10.03 7 0 9 19.22 6.5
5 0.0426 0.0179 0.0000 4.31 2.31 0.00 4 2 0 18.15 6.1
6 0.0554 0.0000 0.0376 5.61 0.00 6.54 5 0 6 17.73 6.0
7 0.0000 0.0348 0.0139 0.00 4.47 2.41 0 4 2 16.62 5.6
8 H 0.4245 0.5000 0.2123 42.98 64.34 36.89 37 56 32 15.79 5.3
9 0.0000 0.0478 0.0345 0.00 6.15 6.00 0 5 5 13.81 4.6
10 0.2831 0.2762 0.3264 28.67 35.54 56.72 25 31 50 13.58 4.6
11 H 0.5000 0.4761 0.4341 50.63 61.26 75.43 44 53 66 13.55 4.6
12 0.0000 0.09: 0.0255 0.00 12.06 4.43 0 10 4 13.40 4.5
13 0.2595 0.0933 0.1398 26.28 12.00 24.30 23 10 21 13.15 4.4 o
14 0.0264 0.3224 0.4012 2.68 41.49 69.71 2 36 61 13.08 4.4
15 0.1816 0.1390 0.2530 18.39 17.88 43.96 16 16 38 12.84 4.3 !I

PICK >> Pick level set to 10.36
RSPS GETCMB >>
RSPS GETINF >>
3 wique have been
GETINF :CPU= O0h Om 0.0s EHAPS= O0Oh Om 0.0s

10.4 are listed in descending order

]

Fig. 11.11 Output for PICK PATTERSON of RSPS for 4-BUDH (first run).

to be drawn about the quality of the Patterson map. At this low resolution one
expects heavy atom vectors with a height of 1/16 of the origin peak, and they
should not be close to the origin. This is quite well satisfied for the top peaks of
the list. Four of these are Harker vectors and have been assigned by the label
“H”. Next, a SINGLE ATOM SCAN is run according to Eq. (5.48). The results
are displayed in Figure 11.12. The three top sites are shown, and they consist of
a set of 12 positions, which correspond to the 12 different possible origins in
this symmetry group. This CCP4i run additionally invokes the GETSETS rou-
tine, which searches for sets of positions. This is performed by looking at the
cross-vectors between all pairs of atoms (and their symmetry mates) in the list.
As cross-vectors are used, sets of consistent sites are related to the same origin
and constitute a solution of our problem.

The results of the GETSETS routine for 4-BUDH are displayed in Figure
11.13. We obtain the expected set of four sites. The score table giving the score
for the Harker and cross vectors generated by these positions shows significant
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L3 CCP4lfileviewer 11_rsps.log <

[ e |
RSPS PICK >>
PICK SCOREMAP >> ﬂ
The 100 highest peaks will be selected from score map with title: K
RSPS SINGLE ATOMS SCAN 28/ 4/06 > —y
Real Space Patterson Search Map\x01@hE\x0e@\x01\x00\x00\x00\x01\x00\x00\x00
Type of scoremap: SINGLE ATOMS
PICK >> Pick level set to 0.00
** WARNING - Too many peaks found - base level reset from 0.0 to 0.6 **
PICK >> 100 peaks found; these are listed in descending order
PosnN Fractional coordinates Angstrom coordinates Score Site
1 1.0000 0.1650 0.1810 101.27 21.23 31.46 6.26 1
2 0.0000 0.8350 0.1810 0.00 107.45 31.46 6.26 1
3 0.0000 0.6650 0.1810 0.00 85.56 31.46 6.26 1
4 0.5000 0.6650 0.1810 50.63 85.56 31.46 6.26 1
5 0.5000 0.3350 0.1810 50.63 43.11 31.46 6.26 1
6 0.5000 0.1650 0.1810 50.63 21.23 31.46 6.26 1
v 1.0000 0.8350 0.1810 101.27 107.45 31.46 6.26 1
8 0.0000 0.1650 0.1810 0.00 21.23 31.46 6.26 1
9 0.0000 0.3350 0.1810 0.00 43.11 31.46 6.26 1
10 1.0000 0.3350 0.1810 101.27 43.11 31.46 6.26 1
11 1.0000 0.6650 0.1810 101.27 85.56 31.46 6.26 1
12 0.5000 0.8350 0.1810 50.63 107.45 31.46 6.26 1
13 0.9392 0.9142 0.2500 95.11 117.63 43.44 4.65 2
14 0.4392 0.0858 0.2500 44.48 11.04 43.44 4.65 2
15 0.4392 0.4142 0.2500 44.48 53.29 43.44 4.65 2
16 0.9392 0.0858 0.2500 95.11 11.04 43.44 4.65 2
17 0.0608 0.0858 0.2500 6.15 11.04 43.44 4.65 2
18 0.0608 0.9142 0.2500 6.15 117.63 43.44 4.65 2
19 0.5608 0.4142 0.2500 56.79 53.29 43.44 4.65 2
20 0.5608 0.5858 0.2500 56.79 75.38 43.44 4.65 2
21 0.5608 0.9142 0.2500 56.79 117.63 43.44 4.65 2
22 0.4392 0.5858 0.2500 44.48 75.38 43.44 4.65 2
23 0.4392 0.9142 0.2500 44.48 117.63 43.44 4.65 2
24 0.5608 0.0858 0.2500 56.79 11.04 43.44 4.65 2
25 0.0608 0.4142 0.2500 6.15 53.29 43.44 4.65 2
26 0.9392 0.4142 0.2500 95.11 53.29 43.44 4.65 2
27 0.0608 0.5858 0.2500 6.15 75.38 43.44 4.65 2
28 0.9392 0.5858 0.2500 95.11 75.38 43.44 4.65 2
29 0.2147 0.6086 0.1427 21.74 78.31 24.80 4.20 3
30 0.7147 0.3914 0.1427 72.37 50.36 24.80 4.20 3
31 0.7853 0.1086 0.1427 79.53 13.98 24.80 4.20 3
32 0.2853 0.8914 0.1427 28.90 114.70 24.80 4.20 3
33 0.7147 0.6086 0.1427 72.37 31 24.80 4.20 3
34 0.2853 0.3914 0.1427 28.90 50.36 24.80 4.20 3
35 0.2853 0.1086 0.1427 28.90 13.98 24.80 4.20 3
36 0.2147 0.3914 0.1427 21.74 50.36 24.80 4.20 3
37 0.2147 0.8914 0.1427 21.74 114.70 24.80 4.20 3
38 0.7853 0.3914 0.1427 79.53 50.36 24.80 4.20 3
39 0.7147 0.8914 0.1427 72.37 114.70 24.80 4.20 3
40 0.7853 0.6086 0.1427 79.53 78.31 24.80 4.20 3
41 0.7147 0.1086 0.1427 72.37 13.98 24.80 4.20 3
42 0.2147 0.1086 0.1427 21.74 13.98 24.80 4.20 3
43 0.2853 0.6086 0.1427 28.90 78.31 24.80 4.20 3
44 0.7853 0.8914 0.1427 79.53 114.70 24.80 4.20 3
_Fm |

Fig. 11.12 Top of the peak list from SINGLE ATOM SCAN of RSPS for 4-BUDH (first run).

scores for all vectors, which are of the same magnitude. It may happen that the
GETSETS routine does not deliver satisfying results. In this case, a cross-vector
scan with one or more known sites fixed according to Eq. (5.49) may be per-
formed (MORE ATOMS SCAN in RSPS). The relevant input window for 4-
BUDH is given in Figure 11.14. The potential heavy-atom sites are read from
the output file “budh_MAD_scaled_peaks.pdb” of the first run of RSPS. The
found peaks are written to file “budh_MAD_peaks_out.pdb’. One site with coor-
dinates (0.9995, 0.1649, 0.1809) has been fixed. The top of the peak list of the
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L3 CCP4lfileviewer 11_rsps.log

| Help ‘
RSPS GETSETS >> %I
Getsets will use 100 stored positions
Minimum accepted vector density = 4.46 { 1.5 sigma above the mean)
For each pair of positions, a maximmn of 1 cross vectors with density smaller than
4.46 are allowed
Minirmum distance between positions = 3.50 Angstrom
Scores are computed as Sum{Rho/Sigma)/Nvec where
Rho is the density at a vector position
Sigma is the rms deviation from the mean of the map
Nvec is the number of vectors contributing to the sum
SETCON >> 156 cormected pairs found
SETCON :CPU= O0Oh Om 0.3s ELAPS= O0Oh On 00s
CONNECT :CPU= Oh Om 2.3s ELAPS= Oh Onm 3.0s
GETSETS >> 1 sets found
Set number 1; 4 members , overall score 3.74
PosnN Fractional coordinates Angstrom coordinates Site
1 0.9995 0.1649 0.1809 101.21 21.22 31.43 1
29 0.2146 0.6085 0.1426 21.73 78.30 24.78 3
65 0.5268 0.0127 0.2168 53.35 1.63 37.68 5
94 0.6779 0.1922 0.0695 68.65 24.73 12.08 7
Score table
PosnN 1 29 65 94 <Score>
1 6.26 3.63 3.37 3.47 4.04
29 4.20 3.70 3.13 3.63
65 3.98 3.89 3.72
94 3.84 3.56
Number of vectors = 60 (all) 12 (Harker) 48 {Cross)
Number of low vectors = 0 (all) 0 (Harker) 0 {Cross)
Score = 3.74 (all) 4.57 (Harker) 3.53 (Cross)
Peak hit frequency = 0.8167 {all) 0.9167 (Harker) 0.7917 {(Cross)
Rmsd peak Eositims = 0.6753 (all) 0.5179 (Harker) 0.7144 (Cross)
Rmsd peak heights = 1.6187 (all) 2.0040 (Harker) 1.5071 (Cross)
Matching index = 0.4580
RSPS >> LIST SET > 74
Set 1, score > 3.74; 4 members > 1 29 65 94
h d
P —
_Find_ | 4

Fig. 11.13 Output of GETSETS of RSPS for 4-BUDH (first run).

score map is displayed in Figure 11.15. We are looking for three further sites,
and these are on top of the list. However, they are ambiguous with two possibi-
lities for each site.

A comparison of the four sites from GETSETS with the list shows that they
are contained in this list. The set from GETSETS is related to a common origin,
whereas the results from the second run are still ambiguous. This can be over-
come by using two fixed sites, but this is not shown here.
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L3 RSPS - Real Space Patterson Search Initial parameters from /home/messersc/bu

Run the job | Hewp |
Joh title [RSPS Fixed sites
Get list of potential heavy atom sites read from coordinate fie  — |

To analyse sites find sites with good cross vectors to fixed site(s) — I
Map in TEMPORARY — |[budh_MAD_scaled _patterson.map

Sites in BUDH —_ ||budh_MAD_scaled _peaks.pdb

Root name for fie{s) Ksting Harker peaks for cross veclors

Peaks out BUDH — ||budh_MﬁD _peaks_out.pdb

Crystal (not Patterson) space group |P21 2121

Set each of the best sites as fixed in tum

Find lsu sites giving best cross vectors and list Harker vectors for |lll best sites
Pick sites correlating to peaks > |1 5 sigma in map allowing |s peak(s) below threshold
Score cross peaks using sum function — |applied to smallest peaks

JSearchmapextentxln—lM—yID—FB—zlﬂ—,m— [

Fig. 11.14 CCP4i, RSPS parameters input for finding sites with
good cross vectors to fixed site(s) for 4-BUDH (second run).

T3 CCPAlfileviewer 14_rsps.log 2
| tep
2|
RSPS PICK >> :
PICK SCOREMAP >>
The 50 highest peaks will be selected from score map with title:
RSPS MORE ATOMS SCAN 8/ 5/06 >
Real Space Patterson Search MapAv\x01ehE\x0e®\x01\x00\x00\x00\x01\x00\x00\x00
Type of scoremap: MORE ATOMS
PICK >> Pick level set to 0.32
PICK >> 50 peaks found; these are listed in descending order
PosnN Fractional coordinates g di. Site
1 0.7885 0.6080 0.1441 79.84 78.23 25.03 3.21 3.70 1 —
2 0.2115 0.6080 0.1441 21.42 78.23 25.03 3.21 3.70 1
3 0.5287 0.0112 0.2182 53.54 1.44 37.92 3.09 3.98 2
4 0.4713 0.0112 0.2182 47.73 1.44 37.92 3.09 3.98 2
5 0.3187 0.1952 0.0721 32.28 25.11 12.53 2.78 3.37 3
6 0.6813 0.1952 0.0721 68.99 25,11 12.53 2.78 3.37 3
7 0.4715 1.0000 0.2175 47.75 128.67 37.80 2.42 2.31 4
8 0.5285 1.0000 0.2175 53.52 128.67 37.80 2.42 2.31 4
9 0.7337 0.7500 0.1776 74.30 96.51 30.87 2.00 0.54 5
10 0.2663 0.7500 0.1776 .97 96.51 30.87 2.00 0.54 5
11 0.8668 0.3393 0.0303 87.78 43.66 5.27 1.95 1.01 6
12 0.1332 0.3393 0.0303 13.49 43.66 5.27 1.95 1.01 6
13 0.2010 0.6037 0.2105 20.35 77.69 36.58 1.90 0.78 7
14 0.7990 0.6037 0.2105 80.91 77.69 36.58 1.90 0.78 7 o
15 0.0000 0.1875 0.1622 0.00 24.13 28.18 1.90 -0.59 8
16 1.0000 0.1875 0.1622 101.27 24.13 28.18 1.90 -0.59 8 !l

Fig. 11.15 Top of the peak list of the score map of MORE
ATOMS SCAN of RSPS for 4-BUDH (second run). Number of
fixed positions = 1. Position 1: 0.9995, 0.1649, 0.1809.
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11.3

Comparison of the Results from SnB and RSPS

The coordinates of the sites from SnB together with the possible left-hand solu-
tion are given in the top part of Table 11.1. The RSPS sites are listed in the
lower part of Table 11.1. The middle part of the table shows the coordinates of
the SnB left-hand solution, together with their symmetry mates. The respective
coordinate list for the SnB right-hand solution has not been given, as one can
see that the RSPS solution corresponds to the SnB left-hand solution. The rele-
vant sites are marked.

Both methods deliver equivalent correct solutions, but the direct methods re-
veal better results in cases with more heavy-atom sites to be determined.

Table 11.1 Comparison of the solutions from SnB and RSPS.

SnB solution, right hand

SnB solution, left hand

x y z x y z

0.999 0.666 0.821 0.001 0.334 0.179
0.524 0.512 0.784 0.476 0.488 0.216
0.788 0.608 0.642 0.212 0.392 0.358
0.674 0.697 0.929 0.326 0.303 0.071

Symmetry mates for SnB solution, left hand

Symmetry operations:

1:x,y,2; 20 =x 4+ 0.5, =,z +0.5; 3: x + 0.5, =y + 0.5, —2; 4: —x,y+ 0.5, -z + 0.5

1: 0.001 0.334 0.179 1: 0.476 0.488 0.216

2: 0.499 0.666 0.679% Site 1 2: 0.024 0.512 0.716 Site 5
3: 0.501 0.166 0.821 3:0.976 0.012 0.784

4: 0.999 0.834 0.321 4: 0.524 0.988 0.284

1: 0.212 0.392 0.358 1: 0.326 0.303 0.071
2:0.288 0.608 0.858 2:0.174 0.679 0.571% Site 7
3:0.712 0.108 0.642% Site 3 3: 0.826 0.197 0.929

4: 0.788 0.892 0.142 4: 0.674 0.803 0.429

RSPS solution

Site X y z

1 0.999 0.165 0.181

3 0.215 0.609 0.143

5 0.527 0.013 0.217

7 0.678 0.192 0.070

a) The coordinates must each be added or subtracted by values

of 0.5, respectively
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12
MIRAS and MAD Phasing with the Program SHARP

We assume that the heavy-atom positions or the positions of the anomalous
scatterers have been determined by means of the methods used in Chapter 11.
Several programs, which have been mentioned in Section 5.4.2, may be used to
calculate the protein phases either from heavy-atom derivatives or anomalous
diffraction data. Here, we will use the SHARP program (de La Fortelle and Bri-
cogne, 1997) for our 4-BUDH example.

121
MAD Phasing with the Program SHARP for 4-BUDH

The SHARP program is operated by a web-based interface. The start screen
(not shown) provides one with the possibility either to run SHARP in the auto-
SHARP mode, or to start it from scratch or on the basis of a previous project,
whereby SHARP offers two different projects for tutorial purposes. On starting
SHARP, the Global Information Editor is opened (Fig.12.1). Here, one must
enter a project name, title, and the reflection data file. The file must be a multi-
column MTZ file with the correct extension (.data.mtz), and be located in the
datafiles directory. The chemical composition of the asymmetric unit must also
be assigned. The actual values for 4-BUDH example are contained in Figure
12.1.

Next, we move to the Geometric Site Editor (Fig. 12.2), where one enters the
coordinates of all heavy-atom or anomalous scatterer sites for the whole ensem-
ble of compounds, crystals, and respective data sets. In the MIR case, one will
have the native and several derivatives, denoted as compounds. Data sets will
have been collected from these compounds, but they may also have been regis-
tered at different wavelengths and from distinct crystals. In the MAD case, one
usually will have only one compound but data sets collected at different wave-
lengths, and they may also be from various crystals. The next step is the Com-
pound Editor (Fig. 12.3). We have one compound only in the MAD experiment
of 4-BUDH; hence, we must select all four Fe-sites from the global sites as C-
sites for this compound. Additional compounds can be assigned by pressing the
“New” button. Now, we can proceed to the Crystal Editor (Fig. 12.4), which holds
information about the occupancies and temperature factors. Further crystals can

253
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Table of Contents
& Global

¢ G-site(s)

¢ ca
Cx-1

€ -1 rotoronce

Help | New | Delete | Submit | Down | Up | Quit

Global Information Editor

(Help)

Identification

Project Name: budht

Cp-1 -
Title: [MAD 3 wavelenghts, 4 Fe sites
Cu-2
Cpa Calculation Options |
Cua ¥ Outlier rejection using likelihood histogram
g1 [~ ML Parameter refinement
Start with cycle |'a_ and end with cycle F
using a maximum of [1-0_ small cycles for each.
Refinement strategy
Cycle | Scale |LOI | Occupancy | XYZ |atomic B |f'/f"" | other
4 |~ 2 ~ ~ For
No sparseness pattern used
v weeding of possible bogus sites.
[7 Residual (LLG Gradient) maps
7 Centroid electron density map
v Using 17 bins for statistics.
Datafile, Symmetry and Cell
Datafile: | budhi.datamz  ~| Space group: [P212121
Cell : a [101.0956 b [1284810 c [173.5362
o [906000 P [90.0000 ¥ [90.0000
[Use cell & symmetry from mtz for SIN [file]
~i
o] %

Other information

Chemical composition of the asymmetric unit

Atom Type Quantity
543 => approx. no. of protein residues: [1959

e

924

}5 => approx. no. of nucleotides: [5

100

—
—

no external phase information used

T

Fig. 12.1 SHARP Global Information Editor for 4-BUDH with 4 Fe-sites.

| I - e
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Table of Contents _Help | New | Delete | Submit | Down [ Up | Quit | —
€ Global ?% ﬂ
€ G-sita(s)

Geometric Site (G-Site) editor
€ oca (Help)

Cx1 1. Create ,1— new G-site(s)

€ -1 rotorence 2. _Add heavy atom sites from file None =

Cpa 3. _Invert | hand
Cu-z 4. Set all coordinates of all G-site(s)to ¢ refine ¢ norefine
€1 5. _Delete | all unused G-site(s)
Cya 6. Delete | G-site(s) marked below
Cp1 7. _Hide | details of G-site(s)
G-site X Refine Y Refine A Refine | Usage | Delete?
1 |p59793 | = |po1se3T | & (283 | B | 1 | ¢
2 |Posse0s | & |Ppieseaz | & 317037 | & | 1 r
3 |p7se2a3 | = |pdovezs | & |pfazsed | B | 1 |
4 |Pe7%676 | & |pisasTt | & |54 | B | 1 r
[0 ©F [oone

L E=Fap

Fig. 12.2 SHARP Geometric Site Editor for 4-BUDH with 4 Fe-sites.

Table of Contents _Help | New | Delete | Submit | Down | Up | Quit |
¢ Global
€ g-site(s)
Compound Editor
& ca (Help)
Cx1 Compound 1/
et e 1 Create | I newC-site(s) oftwpe [
o using G-site(s) starting at G-site ,_
Cwz 2. Delete | C-site(s) marked below
ot 3. _Hide | details of C-site(s)
< w3
Cpa C-Site | Atom G-Site | Delete?
1 |Fe |[GSkeT | I
2 |Fe|[osmzd| r
3 |Fe |[GSte3 o| I
< | |eeeed| T
Notes :
@ €F [ Done | &

Fig. 12.3 SHARP Compound Editor for 4-BUDH with four Fe-sites.
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Table of Contents Help | New | Delete | Submit | Down | Up | Quit
€ Global
[a G-gite(s)
Crystal Editor
Coca (Help)
©Ox1 Compound 1/Crystal 1/
€ W1 remrence
e L Set | all occupancies to F1 and ¢ Norefine ¢ Refine
¢ B-
o 2.  Set | allBvaluesto F1 and ¢ Norefine & Isotropic
€ u-
-2 ¢ Anisotropic
Cp1 )
3. Hide | details of T-site(s)
Cu-3
Cpa Tcil:te: occupancy Refine? Isotropic B value B refinement Anisotropic Incrementto B =
F) p 9
1 ez = [t [isotropic  +| p 3
9
2 F.1579 =2 |1 51.22 | Isotropic  ~| l(_) l(_)
3 pears I [128.03 [isotropic ] fo fo
4 = [a176 [sotropic  ~] p P
Notes :
[ & [Done B

Fig. 12.4 SHARP Crystal Editor for 4-BUDH with four Fe-sites.

be added by pressing the “New” button. Different crystals of one compound
should have the same sites, but they may have various occupancies and tem-
perature factors.

As our 4-BUDH MAD-data have been collected at three different wavelengths,
we have an individual Wavelength Editor for each wavelength. Figure 12.5
shows the respective editor for the remote wavelength. The lowest editor level is
the Batch Editor. This is shown for the remote wavelength (Fig. 12.6). One must
assign the correct columns for the Compound/Crystal/Wavelength/Batch and
provide the relevant values of f and f’. For our example, the actual items for
the other two wavelengths are: W-2 inflection, F_INF, SIGF_INF, DANO_INF,
SIGDANO_INF f=-795, {'=2.83; W-3 peak, F_PK, SIGF_PK, DANO_PK,
SIGDANO_PK, f'=-6.84, {'=4.44.

If one has reached the last Batch Editor, then pressing the “Submit” button
activates the running of the job. A listing of the input-file appears and can be
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Table of Contents Help | New | Delete | Submit | Down | Up | Quit
€ Global ;i —\TJ

€ G-site(s)
Wavelength Editor
C caa (Help)

Cx1 Compound 1/Crystal 1/Wavelength 1/

©¥-1 mioronce Resolution limits: P2.598 - B5 A

-1

C -2 Notes :

-y wavelength 1 remote

Cua

-1

&F [ Done I
Fig. 12.5 SHARP Wavelength Editor for 4-BUDH with four Fe-sites.

checked for correctness before the actual job can be started. The results of the
job are written to cardfiles, which may be used as input files for a new SHARP
run, and to a central SHARP OUTPUT file. At the end of the logfile, residual
maps can be viewed and analyzed to obtain the residual heavy-atom sites; the
calculation of a centroid electron density map and phase improvement by den-
sity modification using the CCP4 program DM (Cowtan, 1994) can also be acti-
vated. We will not explain these output files in detail, but some important infor-
mation has been extracted from these files (Table 12.1). As pointed out earlier,
the determination of the heavy-atom or anomalous scatterer sites does not pro-
vide any information about the correct hand. Now, the usual way to do this in-
volves calculating also the phases of the other hand (included in Table 12.1) and
to examine some quality factors of the phase determination, density modifica-
tion, or the quality of the electron density itself. These should be better for the
correct hand, and the electron density should show right-handed a-helices if a-
helices are present.

Until now, the Fe-sites in the Fe-S-clusters have not been resolved, and in-
spection of the residual maps showed that this is impossible with the quality of
these phases. However, it is important to resolve the individual Fe-sites to ob-
tain improved phases for a better experimental electron density. The 4-BUDH
structure has one homotetramer per asymmetric unit, and the monomers with-
in the tetramer are connected by NCS. Averaging of the MAD-phased electron
density map will improve the quality of the map and allow resolution of the Fe-
sites within each cluster. We will explain the procedure later, but here have used
the resulting 16 Fe- plus 16 S-sites to recalculate the phases with SHARP. As
the correct hand had been determined from the four Fe-sites phases, the phases
were calculated only for the correct hand (Table 12.1).

The quality factors for all phase calculations are reasonable. Higher values for
phasing power and FOM and lower values for Rcp;s correlate with better quali-



258 | 12 MIRAS and MAD Phasing with the Program SHARP

Table of Contents _Help | _New | Delete | Submit | Down | Up | Quit |
€ Glabal
€ G-site(s) (Help)
Compound 1/Crystal 1/Wavelength 1/Batch 1/
¢ ca Assign columns from file : budhl.data.mtz ‘
€xt Item | Column Selected | Item | Column Selected ‘
€41 mimnce PMD| [FRM ] |DANO | [DANGRM < |
oo SMID [[SIGFRM =] | SANO | [SIGOANO R <] |
e Show Columns ISYM - |
€ B1 ‘
Cu-s Scaling parameters Refine? | Estimate? :
e Multiplier scale factor (K) |[1.63566 - r i
Isotropic scale factor (B) h - - 1
Anisotropic scale factor (B6) - r =
P P P
F
— |
Global non-isomorphism parameters | Refine? | Estimate? ‘
on isomorphous differences [0— - - ‘
on anomalous differences h ~ - :
Model imperfection parameters Refine? | Estimate? |
on isomorphous differences h - -
on anomalous differences [O— ~ .
Anomalous scattering properties Sasaki Table
Atom type f Refine? o Refine?
Fe  |[o:289 r|p297 r
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Fig. 12.6 SHARP Batch Editor for 4-BUDH with four Fe-sites.

ty of the electron density map, and should also be indicative of the correct hand.
However, no differences can be found between the two possibilities in our 4-
BUDH example (Table 12.1). Solvent flattening leads to a larger improvement
of phases for the correct hand, and this is reflected in the respective quality fac-
tors. Lower values for SOLOMON and ICOEFL and higher values for “Overall
correlation on |E|**2” are linked to a better quality of the electron density and
to the correct hand. All relevant values for the right hand of 4-BUDH obey this
requirement, but the differences are not very pronounced. A final decision can
be made only by inspection of the corresponding electron density maps. This
has been done and will be shown later. The analysis revealed the right hand as
the correct solution. The phase calculation with 16 Fe-sites for the correct hand
(Table 12.1) resulted in better values for all quality factors and, of course, in a
better electron density map.
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Table 12.1 Quality factors for MAD-phasing with SHARP and
density modification with DM for 4-BUDH.

4 Fe-sites 16 Fe-sites
Right hand Left hand Right hand
ISO ANO ISO ANO ISO ANO
acent cent acent cent acent cent

Phasing power? 0.887 0.802 0.977 0.887 0.802 0.997 1.016 0.807 1.061

Reuic” 0769 0.820 0832 0769 0820 0832 0747 0792 0.808
FOM® 0.507 0.310 0.507 0.310 0.539 0.339

Solvent flattening with DM

SOLOMONY 0.374 0.391 0.349

ICOEFL® 0.334 0.335 0.320

Overall 0.554 0.542 0.610

correlation

on |E|>‘c~k2f)

a) Phasing Power= (|F}, caic|/[phase-integrated lack of closure]).

b) Reyunis=(phase-integrated lack of closure)/(|Fpy — Fp|).

c¢) FOM=Figure of merit, as given in Eq. (5.68).

d) SOLOMON-=sd of solvent before flattening/sd of protein.

e) ICOEFL=Overall R-factor RO, a simple R-factor between
structure factor amplitudes from the modified map and the
observed data.

f) Overall correlation on |E[**2=Overall correlation on |E|**2
between structure factor amplitudes of the observed data
and the modified map.
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13
Molecular Replacement

The method of molecular replacement was discussed in Section 5.5, together
with the commonly used programs. Recently, activities have been completed to
automate the phase determination by molecular replacement methods. One pos-
sibility is to use the program MrBUMP, which is a project of the CCP4 con-
sortium available under the following web-address: http://www.ccp4.ac.uk/
MrBump. Another option is CaspR (Claude et al., 2004). Both approaches use
homology modeling for the construction of a powerful structural start model. It
should be noted that the use of such a web server is not advisable if your pro-
ject is confidential.

Here, we will not discuss a very complicated example, because this would go
beyond the scope of this practical part of the book. However, the example does
feature several points of view, which may lead to failure of the procedure if not
correctly addressed.

13.1
Phase Determination of PKC-iota with Program Molrep

We use the CCP4-supported program Molrep (Vagin and Teplyakov, 1997) for
the performance of the phase determination by molecular replacement. The
subsequent procedure has been used to solve the crystal structure of the catalyt-
ic domain of human PKC-iota (Messerschmidt et al., 2005). The overall struc-
ture of the catalytic domain of all protein kinases is very similar, and as several
crystal structures of such domains have been solved they can be used as struc-
tural search models for the structure determination of related catalytic kinase
domains. In the case of human PKC-iota, the crystal structure of the catalytic
domain of PKC-theta, a member of another PKC subfamily, had been solved
and was available under the Protein Data Bank code 1XJD (Xu et al., 2004). The
catalytic subunit of protein kinases consists of an N- and C-terminal lobe
(Fig. 13.1). The C-terminal lobes superimpose very well for all kinase domains,
but the N-terminal lobes may adopt rather different positions with respect to
the C-terminal lobe. This must be considered when constructing the search
model. Initially, an amino acid sequence alignment between PKC-iota and PKC-
theta was made, and all parts that did not align well were omitted from the
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Fig. 13.1 Overall structure of
the PKC-iota-BIM1 complex.
(Reproduced by permission of
Elsevier, from Messerschmidt
et al.,, 2005.)

Turn motif

C-lobe

search model. In the remaining model, all non-identical residues were mutated
to alanine, and only the C-terminal lobe (residues 440-649 in the PKC-theta
structure) was used.

The interface for initial parameter input for Molrep is shown in Figure 13.2.
One needs the reflection input MTZ-file and the coordinate file of the search
model only. The number of molecules per asymmetric unit had been deter-
mined as 1 by means of the Matthews parameter. The molecular replacement
method should work in straightforward manner if about 50% or more of the
scattering power is known and only one molecule has to be searched for in the
asymmetric unit. The rotation function should be sharper because only one ro-
tation has to be determined. The translation function will also be easier to inter-
pret because only one set of cross-vectors has to be identified. Furthermore, the
weights of the corresponding vector sets are higher when one molecule is to be
searched for compared to more molecules.

In Section 10.3 we explained the space group determination for PKC-iota with
space groups P3;2(1) or P3,2(1) as remaining possibilities. Now, we must run
the molecular replacement with both space group symmetries. Figure 13.3 dis-
plays the crucial part of the Molrep output for space group P3,2(1). The highest
peak of the rotation function has an RF/sigma of 4.95 and rotational angles of
alpha=29.57, beta=35.29 and gamma=212.91. Translation functions are then
performed with each of the top ten solutions of the rotation function. The re-
sults of the translation function for only the first two rotation function maxima
are shown. The best solution is for the highest rotation function maximum with
a correlation factor of 0.387 and translations of Xfrac=0.525, Vfrac=0.464, and
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| et |

This interface is for version 8.1 of Molrep

Job title [pkcio 1XJD_model1_C_lobe 440_649 3.5 A

Do molecular replacement —_ |perrorming rotation and translation function

Get input structure factors from MTZfile — |

_{ Input fixed model
_I Multi-copy search

MTZin _Full path.. — [[fsiscratchipkciofmosfimimos_pkcio_p32z1_100_all_tm.miz

Use _| Intensities
FP Unassigned —i | SIGFP

Model in  Full path.. — ||!fslscramhlpkciolrnosﬂmnXJD_mndeI_C_lohe.pdb
_1 Model is the map

Coords out AH — ||imn;moaa|_.c_'_ma_m1m,

Use data to maximum resolution [35—

minimur resolution in rotation function [ andin translation function [
Use isothermal scaling —|

_1 Apply additional Boverall factor (Badd) |

Apply set Bvalues related to accessiblity & shift to origin e |m model
_| Use sequence
If input PDB is for NMR models then use

Expect [0.6

s {NM Y

Search for |1 monomers in the asymmetric unit
I Locked Rotation Function
Use Self Rototion function with IO peaks from the self-rotation function

fraction completeness of model with [0.5 fraction similarity to input structure

Self RF solutions  AH — |- 5

Search for | peaks in rotation map and in translation function

Do not use = |pseudn-u'anslation vector |
Output the closest of ivalent

to the coordinates file

Space group read from MTZ file P3221 . Run Molrep with test space group  P3221 — I
_1 Use spherically averaged phased translation function with phased rotation function

Use standard RF and TF without rigid body refinement ("fast' mode)

Search radius |
W Use packing function with translation function
W Long listing to log file (molrep.doc)

number of cycles of RB refinement | after TF | before TF
Nesd[o

Angles | Centre |

Nptd [0

Fig. 13.2 CCP4i, Molrep, Initial Parameters for Molecular Replacement.
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[y |

Sol_--- Rotation fumction ---
Sol
Sol_ Radius of integration 33.65
Sol_ Resmin,Resmax 36.91
Sol_ Boff,Badd 873.53
Sol_ Boff_ scl,Badd_scl 441.00
--- rfcoef for model ---
Sol_ Lwin,Lmax 4 52
-—- rfcoef for Fobs --—-
limit DISTANCE : 3.750 / grad /
Nunber of peaks : 10

theta phi chi alpha
Sol_ RF 1 159.59 178.33 120.76 29.57
Sol_RF 2 54.13 168.82 98.89 113.21
Sol_RF 3 55.17 164.92 104.94 111.55
Sol RF 4 157.97 -158.48 130.37 48.02
Sol_RF 5 45.85 86.33 138.96 58.07
Sol RF 6 158.74 156.19 120.94 7.48
Sol RF 7 160.34 -97.34 160.15 93.19
Sol_RF 8 73.16 118.58 171.99 104.99
Sol RF 9 131.05 -132.48 109.33 94.70
Sni_Br 10 71.31 88.67 119.84 27.63
So
Sol_--- Tramslation function ---
Sol_ Resmin,Resmax 36.91
Sol_ Boff,Badd 873.53
Sol_ Boff_scl,Badd scl 441.00
Sol_--- peak number of Rotation Fumction :

alpha beta gamma  Xfrac
Sol TF. 1 1 29.57 35.29 212.91 0.252
Sol TF_1 2 29.57 35.29 212.91 0.586
Sol_ TF.1 3 29.57 35.29 212.91 0.585
Sol TF.1 4 29.57 35.29 212.91 0.252
Sol_ TF. 1 5 29.57 35.29 212.91 0.461
Sol_TF_1 6 29.57 35.29 212.91 0.120
Sol TF_1 7 29.57 35.29 212.91 0.742
Sol TF.1 8 29.57 35.29 212.91 0.251
Sol_ TF_1 9 29.57 35.29 212.91 0.248
Sol _TF_1 10 29.57 35.29 212.91 0.257
Sol_--- peak number of Rotation Function :

alpha beta ganma  Xfrac
Sol TF_ 2 1 113.21 76.00 315.58 0.182
Sol _TF_2 2 113.21 76.00 315.58 0.072
Sol_TF_2 3 113.21 76.00 315.58 0.035
Sol_TF_ 2 4 113.21 76.00 315.58 0.178
Sol TF_ 2 5 113.21 76.00 315.58 0.737
Sol TF_ 2 6 113.21 76.00 315.58 0.511
Sol TF_2 7 113.21 76.00 315.58 0.343
Sol TF_ 2 8 113.21 76.00 315.58 0.723
Sol TF_ 2 9 113.21 76.00 315.58 0.753
Sol _TF_ 2 10 113.21 76.00 315.58 0.592

Sol_--- peak nuber of Rotation Function :

_Fna |

110.11

.50
0.
0.

00
00

=R N—N-N—N—N—N—T-]
[}
=]
-]

Fig. 13.3 CCP4i, Part of Molrep output for PKC-iota, space group P3,2(1).

3 0.538
12.20 0.586
11.76 0.591
10.57 0.5%4
10.02 0.623
10.00 0.604

9.36 0.616
9.19 0.594
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8.98 0.598
TF/sig R-fac
10.50 0.620
10.48 0.639
10.22 0.622
10.16 0.628
9.68 0.626
9.03 0.635
8.83 0.629
8.68 0.624
8.64 0.627
8.55 0.638
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Zfrac=0.196. The corresponding listing for space group P3;2(1) is depicted in
Figure 13.4. The rotation function is identical of course because it depends only
on the point group symmetry. The highest correlation factor of the translation
functions is 0.245, which is much lower than that for space group P3,2(1). The
program Molrep writes the transformed coordinates to an output file in PDB-
format. It can be used directly for phase and subsequent electron density map
calculation. The electron density map for PKC-iota computed with the best solu-
tion from space group P3,2(1) was of good quality and contained the electron
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[

Sol_--- Rotation function --—-
Sol_ !J
Sol_ Radius of integration : 33.65 AN
Sol_ Resmin,Resmax 5 36.93 3.50
Sol_ Boff,Badd : 873.53 0.00
Sol_ Boff_scl,Badd_scl : 441.00 0.00
--- rfcoef for model ---
Sol_ Lmin,Lmax 2 4 52
--- rfcoef for Fobs ---
limit DISTANCE : 3.750 / grad /
Number of peaks : 10

theta phi chi alpha beta gamma RE Rf/sigma
Sol RF 1 159.56 178.66 121.12 29.72 35.41 212.40 2412, 4.97
Sol RF 2 52.84 25.15 157.45 6.89 102.81 136.59 1854. 3.82
Sol_RF 3 51.52 23.40 159.62 7.29 100.79 140.49 1812. 3.73
Sol_ RF 4 77.20 123.49 148.86 71.98 139.89 4.99 1750. 3.60
Sol RF 5 112.00 178.11 105.67 61.81 95.27 245.59 1747. 3.60
Sol RF 6 71.52 118.93 176.08 112.76 142.84 54.90 1649. 3.39
Sol_RF 7 97.12 139.40 144.34 28.32 141.69 289.52 1625. 3.35
Sol RF 8 109.77 -72.27 176.12 113.45 140.29 77.99 1615. 3.33
Sol RF 9 71.26 88.70 119.82 27.70 110.04 30.31 1613. 3.32
Sol_RF 10 73.20 118.69 172.01 105.11 145.49 47.73 1561. 3.21
Sol
Sol_--- Tramslation fumction ---
Sol_ Resmin,Resmax :  36.93 3.50
Sol_ Boff,Badd : 873.53 0.00
Sol_ Boff_scl,Badd scl : 441.00 0.00
Sol_--- peak nmuber of Rotation Function : 1
--- translation function ---

alpha beta gamma Xfrac Yfrac 2frac TF/sig R-fac Corr
Sol TF.1 1 29.72 35.41 212.40 0.617 0.632 0.246 7.19 0.612 0.216
Sol TF.1 2 29.72 35.41 212.40 0.742 0.465 0.361 6.75 0.597 0.241
Sol TF.1 3 29.72 35.41 212.40 0.324 0.335 0.249 6.54 0.609 0.228
Sol TF. 1 4 29.72 35.41 212.40 0.515 0.726 0.195 6.33 0.592 0.245
Sol_ TF.1 5 29.72 35.41 212.40 0.179 0.335 0.348 6.31 0.617 0.200
Sol_TF.1 6 29.72 35.41 212.40 0.558 0.526 0.330 6.02 0.616 0.203
Sol TF. 1 7 29.72 35.41 212.40 0.901 0.630 0.353 5.67 0.615 0.197
Sol_ TF. 1 8 29.72 35.41 212.40 0.170 0.457 0.363 5.65 0.597 0.231
Sol_ TF.1 9 29.72 35.41 212.40 0.318 0.626 0.255 5.62 0.607 0.214
Sol TF_ 1 10 29.72 35.41 212.40 0.514 0.010 0.488 5.55 0.607 0.221

Sol_--- peak number of Rotation Function : 2
--- translation function ---

alpha beta garma Xfrac Yfrac 2frac TF/sig R-fac Corr

Sol TF 2 1 6.89 102.81 136.59 0.631 0.276 0.184 5.58 0.626 0.170
Sol TF 2 2 6.89 102.81 136.59 0.992 0.451 0.436 5.15 0.632 0.171
Sol TF 2 3 6.89 102.81 136.59 0.572 0.177 0.441 5.06 0.632 0.157
Sol TF 2 4 6.89 102.81 136.59 0.430 0.742 0.144 5.06 0.635 0.161
Sol_TF 2 5 6.89 102.81 136.59 0.718 0.176 0.442 5.02 0.633 0.159
Sol TF. 2 6 6.89 102.81 136.59 0.050 0.552 0.376 4.94 0.633 0.157
Sol TF 2 7 6.89 102.81 136.59 0.813 0.223 0.406 4.87 0.636 0.160
Sol TF 2 8 6.89 102.81 136.59 0.298 0.609 0.144 4.75 0.626 0.160
Sol TF. 2 9 6.89 102.81 136.59 0.663 0.076 0.012 4.69 0.632 0.162 /
Sol TF_2 10 6.89 102.81 136.59 0.512 0.490 0.319 4.67 0.626 0.180
Sol_--- peak muber of Rotation Function : 3 i]

Fig. 13.4 CCP4i, Part of Molrep output for PKC-iota, space group P3,2(1).

density for the missing N-terminal lobe. The complete model could be devel-
oped in several model building and structure refinement cycles (for further de-
tails, see Messerschmidt et al., 2005).
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14
Averaging about Non-Crystallographic Symmetry (NCS)
for 4-BUDH

The theoretical basis of NCS electron density averaging was explained in Sec-
tion 6.3.

The first NCS averaging programs, which were written by Bricogne in 1976,
formed the basis for the relevant routines which are available in program
packages today. Program systems such as PHASES (Furey and Swaminathan,
1997), MAIN (Turk, 1995), DM/DMMULIT (Cowtan, 1994), which is a part of
the CCP4 program suite, and the Uppsala Software Factory (USF) (Kleywegt
and Jones, 1994) contain respective routines.

The NCS or local symmetry may be proper (also termed closed). In this case,
the local mask will cover the whole complex, the whole homo-tetramer in our 4-
BUDH example. This may be very useful at the start of the procedure when the
boundaries of the whole complex can often be determined easily, but not the en-
velope of the monomer. If the local symmetry is open or improper, the envelope
can cover only the monomer.

The averaging procedure consists of determining the NCS symmetries, defin-
ing a molecular envelope or mask, averaging of the electron density, and recon-
stituting the averaged map for Fourier back-transforming. This back-transforma-
tion corresponds to a solvent-flattening step because the space outside the mo-
lecular masks has been set to zero. Such a map should have an improved quali-
ty and can be used for further cycles of averaging or averaging plus phase
extension. In many circumstances, it is sufficient simply to average the electron
density map and to build an improved structural model into this averaged map.
The atomic model for the whole asymmetric unit is then generated with the aid
of the current NCS operators, and a new crystallographic structure refinement
can be started. The refined structural model is used to improve the NCS opera-
tors, which are then used when the relevant electron density map is averaged.

Here, we will demonstrate NCS averaging at the example of 4-BUDH using
the relevant programs of the USF throughout. These programs are compatible
with the CCP4 program suite and the modeling program “O” (Jones et al,
1991), which has been mainly employed by the present author and will be dis-
cussed briefly below. This was shown to work reliably and smoothly. The pres-
ent example does not include cyclic averaging or phase extension, which are
subjects for more specialized tracts.

267
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141
Determination of NCS Operators for 4-BUDH

The centers of the four [4Fe—4S] clusters in one homotetramer in the unit cell
of 4-BUDH as determined by SnB are shown in Figure 14.1. The homotetramer
exhibits a proper 222 symmetry. The local diads are drawn into Figure 14.1.
The local symmetry axes can be determined from a Patterson self-rotation func-
tion, but this rotation function will reveal the character of such axes (e.g., two-
fold, threefold, etc., or general rotation) and their orientation in space without
position of translation only. A self-rotation function for 4-BUDH detected three
twofold local axes perpendicular to each other, but we will not discuss this anal-
ysis because the calculation of such a rotation function by, for example, the pro-
gram GLRF is simple and the interpretation of the results straightforward.

The NCS operators can be easily determined if heavy atoms have equally
bound to the NCS monomers or anomalous scatterers such as the Fe-S-clusters
are present. Unfortunately, one needs at least three nonlinear heavy atoms or

@ iron-sulfur cluster

Fig. 14.1 The position of the homotetramer plus the centers
of Fe-S-clusters in the unit cell of 4-BUDH.
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anomalous scatterers per monomer in order to determine unambiguously the
NCS operators directly from their positions. Although this is not the case in the
present example, we do have an experimental electron density map which can
be used for this purpose. This map has been phased with the program SHARP
to a resolution of 2.5 A using one Fe-site per [4Fe—4S]-cluster, four Fe-sites per
asymmetric unit, and subsequently subjected to phase improvement by a sol-
vent-flattening optimization run with the program DM.

The NCS operators are determined using the USF program NCS6D, which
requires a degree of preparation before it is run. The electron density map to be
searched must cover a sufficiently large area, and this has been done by per-
forming the CCP4 routine EXTEND with new map dimensions in the range of
-0.5 to 1.2 for x, y, z, each (fractional coordinates). The name of the actual file
was “eden_flat_43.3pc_rh_ext.ccp4”. Furthermore, we need a skeletonized part
of the map around the Fe-site number 1. Such a skeletonization can be pre-
pared with the USF program MAPMAN. The relevant skeletonization routine is
based on the Greer algorithm (Greer, 1974). All USF programs can be run not
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O@xX OE oS40 VRQRIGPE?

#1/bin/csh -f

source /xrayshlogin

¥

# Extend Fourier map around Fe site at 0.525 0.014 0.283

¥ in a hlock of +/- 17.5 Angstrom (+/- 0.172, 0.135 0.10) to get a
# map for generating bones atoms of the region around that site
#
e

xtend MAPIN ../scr/eden_flat_43.3pc_rh_ext.ccpd \
MAPOUT ../scr/eden_flat_43.3pc_rh_ext_bones.ccpd \
<< eof
XYZLIM 0.353 0.697 -0.121 0.149 0.183 0.383
eof
#
¥
MAPMAN:
#
setenv MAPSIZE S0000000
mapman << eof
read ml ../scr/eden_flat_43.3pc_rh_ext_bones.ccp4 CCP4
NORMALIZE ml
ho sk mi 0.9 0.2 100 ! bones, skeleton, map ml, base 0.9, step 0.2,
! number of spares 100
bo prun ../scr/budh_bones.pdb 5 10.0 ! bones, prune, output file,
! mc S, bfac 10.0
Quit

NCSt E LOr A

esse ones_for_ncséd_comments.com

Fig. 14.2 Input file for the generation of bones atoms with
USF program MAPMAN for 4-BUDH.
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C@XxXO0E>+40BRIS?

#1/bin/csh N
#

# rotation and translation search for ncs symmetry operation of first symmetry

# mate. The reference Fe-site is at 53.071 1.762 49.168. The first ncs related

# Fe-S center is at 100.758 21.337 54.468.

# Translation will be tried in a block of +/- 6.0 Angstrom around the ncs mate

# position.

#

source /xray/hlogin

setenv MAPSIZE 35000000

ncsed << eof

../scr/eden_flat_43.3pc_rh_ext.ccpd ! Input electron density map from SHARP

Linear interpolation using 8 points
File for best RT-operator

P | Read bones in PDB-format
. ./scr/budh_bones . pdb ! Name of bones-file
S ! Use only every Sth homes atom
pl.sym ! File with symmetry operators
100.758 21.337 54.468 ! Approximate center of NSC mate
N ! Use no Euler angles
0.0 350.0 10.0 ! PHI: start, end, step
0.0 180.0 10.0 ! PSI: start, end, step
180.0 180.0 0.0 | KAPPA: start, end, step
-12.0 12.0 2.0 ! Translation X: start, end, step
-12.0 12.0 2.0 ! Translation Y: start, end, step
-12.0 12.0 2.0 ! Translation 2: start, end, step
1
]

Fig. 14.3 Input file for NCS operator search with USF
program NCS6D for mapping monomer 1 onto monomer 2
for 4-BUDH.

only interactively but also in batch mode. We present here input files that can
be used for the batch mode. Figure 14.2 shows the input necessary to generate
the bones file. First, a block of +17.5 A around the Fe-site number 1 is sepa-
rated from the input map to obtain a map for generating bones atoms of the re-
gion around that site (CCP4 EXTEND step). Then, MAPMAN is invoked to run
the actual skeletonization (bones skeleton map m1), storing the bones atoms in
PDB-format in the file “budh_bones.pdb’. Figure 14.3 displays the input for
NCS6D. The program takes the bones atoms around Fe-site number 1 and per-
forms a rotational/translational search around the NCS symmetry mate Fe-site
number 2. Input and output files and parameters have been explained in Figure
14.3. The translation will be tried in a block of +12.0 A around the NCS mate
position. Similar input files have been created for the mapping of monomer 1
onto monomer 3 and monomer 4, respectively.

The top of the output file with the best 100 solutions for mapping monomer
1 onto monomer 2 is shown in Figure 14.4. The correct solution had a correla-
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O@ X OF 540 RBRRIR?

0 created by NCSED V. 040701/3.1.1 at Wed Oct 26 09:50:22 2005 for A. Nonymous

i NCS6D best operator with CC = 0.3322439
.LSQ_RT_NCS6D R 12 (3F15.8)

-0.77303906 -0.62340522 0.11697778
-0.62340522 0.71279168 -0.32139382
0.11697778 -0.32139382 -0.93969262

137.87789917  69.35404205  95.53089905

1

| Top 100 solutions (UNSORTED)

I

!

! Solution # 1 with CC = 0.2947865

.LSQ_RT_OTHER R 12 (3F15.8)

-0.90333521 0.11520062 0.41317591
0.11520062 -0.86270922 0.49240386
0.41317591 0.49240386 0.76604444

128.61421204 -7.50300789 -6.86690140
]
| Solution # 2 with CC = 0.2819878
.LSQ_RT_OTHER R 12 (3F15.8)

-0.62500000 -0.64951903 0.43301269

-0.64951303 0.12500000 -0.75000000
0.43301269 -0.75000000 -0.50000000

114.26161194 91.29280853 57.58209991
1
! Solution # 3 with CC = 0.2871550
.LSQ_RT_OTHER R 12 (3F15.8)

-1.00000000 0.00000000 0.00000000
0.00000009 1.00000000 0.00000000
0.00000000 0.00000000 -1.00000000

154.58598328 19.22504997 104.14467621
|
| Solution # 4 with CC = 0.2983338
.LSQ_RT_OTHER R 12 (3F15.8)

-0.51507682 0.40689883 0.75440651
0.40683883 -0.65857136 0.63302225
0.75440651 0.63302225 0.17364818

90.14778900 -30.62111473 5.89664078 ‘

]
——:——  budh_rt_best_1_2.0 (Text Fill)--L1--CO--Top -
Loading mwheel...done 17

Fig. 14.4 Top of the output file of NCS6D with the best 100
solutions mapping monomer 1 onto monomer 2.

tion coefficient of 0.332 and rank 1. The corresponding values for the two other
NCS operators are 0.341; rank 1 and 0.391; rank 4. Rank 4 for the third NCS
operator was not optimal, but the correlation coefficient was close to the best
value (0.407) and therefore still a candidate for checking. The USF averaging
programs perform all coordinate transformations in a Cartesian coordinate sys-
tem. Atom positions in fractional coordinates must be converted into Cartesian
coordinates. This and the reverse transformation can be done in the USF pro-
gram MOLEMAN (options FRACtional_to_cartesian and CARTesian_to_frac-
tional). The orthogonalization conventions are consistent with those used in the
Protein Data Bank. The NCS operator consists of a 3x3 rotation matrix and a
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Rotation

Fig. 14.5 Explanation of the action of a rotation/translation operator.

File Edit Options Buffers Tools Help |

#!1/bin/csh
source /xray/hlogin
setenv MASKSIZE 10000000
mama -b << END-mama
new grid 120 156 208
new cell 101.0960 128.4810 173.5360 90.0000 90.0000 90.0000
new radius 4.0
new pad 10 10 10
new hall ml 53.071 1.762 49.168 20.0
fill ml
nbr mi
isl ml
smooth mi 10
ov sym pl.sym (get the 0 spacegroup file)
fimi
co mi
co mi
is mt
ex mi
ex mi
ov tri ml 4.5
write ml mask_sharp.mask
quit
END-mama

n)—-

Hrote /home/messersc/budh/ave)mask_sharp_hw.coﬁ
Fig. 14.6 Input file for mask generation with USF program MAMA for 4-BUDH.
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#!/bin/csh

source /xray/hlogin
setenv MAPSIZE 48000000
setenv MASKSIZE 10000000

imp << eof

../scr/eden_flat_43.3pc_rh_ext.ccp4 ! Input electron density map from SHARP
mask_sharp . mask | Mask file for monomer 1

pl.sym ! File with symmetry operators
budh_1_2.0 ! File with NCS operator

A | Do an automatic R/T-search

eof

#

Wrote /hume/messersc/budh/ave/1mprnve 1.2 sharp_comments com

Fig. 14.7 Input file for the improvement of the NCS operator
between monomer 1 and monomer 2 with USF program
IMPROVE for 4-BUDH.

File Edit Options Buffers Tools Help

#!/bin/csh
source /xray/hlogin

setenv MAPSIZE 48000000

setenv MASKSIZE 10000000

ave << eof

A

../scr/eden_flat_43.3pc_rh_ext.ccp4
mask_sharp_new.mask
../scr/eden_flat_43.3pc_rh_ave_vier.ccpd

p13.sym

budh_vier_sharp.o

eof

#

setenv MAPSIZE 15000000

mapman << eof

read mi ../scr/eden_flat_43.3pc_rh_ave_vier.ccp4 CCP4
NORMalise mi

mappage ml ../scr/eden_flat_43.3pc_rh_ave_vier.dn6
quit

eof

#

Hrnte /home/messersc/budh/abe/ave_BuDH‘sharp four bm com

Fig. 14.8 Input file for electron density averaging with
program AVE for 4-BUDH.
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3x1 translation vector. The action of the NCS operator for mapping monomer 1
onto monomer 2 is illustrated in Figure 14.5. First, the coordinates of monomer
1 are rotated by a rotation located at the origin to position 1" and then shifted
by translation t to the end position 2.

Next, it is very useful to run the USF program IMPROVE to check the cor-
rectness of the NCS operator and to improve its position, which is very impor-
tant for the subsequent averaging procedure. For this, one must generate a
mask file; this can be done with the USF program MAMA. At present, we have
minimal information about the extension of an individual monomer. The 4-
BUDH monomer has a molecular mass of about 50 kDa, and a sphere around
the Fe—S-cluster with a radius of about 20 A is a reasonable conservative first ap-
proximation. The respective input file is shown in Figure 14.6. The chosen grid
and unit cell parameters must be consistent with those of the used electron
density map. The input for program MAMA is depicted in Figure 14.7 and ex-
plained by the relevant comments. The IMPROVE procedure enhanced the cor-
relation values as follows: monomer 1 to monomer 2: from 0.057 to 0.197;
monomer 1 to monomer 3: from 0.170 to 0.189; monomer 1 to monomer 4:
0.061 to 0.185.

14.2
Electron Density Map Averaging for 4-BUDH

The actual electron density averaging is done with the USF program AVE, and
the respective input file is shown in Figure 14.8. The input is very easy to per-
form. Parameter “A” stands for mode averaging, after which the names of the
electron density map to be averaged and the mask file must be given. Next, the
name of the averaged output map is entered. The symmetry operators for the
space group P2;2;2; (Nr.19) (file p19.sym) and the NCS operators including
the identity (file budh_vier_sharp.o) must be given. The logfile of AVE contains
as essential parameters the correlation factors for the individual NCS opera-
tions, which should be greater than 0.15 at the initial stages, which is the case
for our 4-BUDH example, and better than 0.40 during later stages as a rule of
thumb. Subsequently, MAPMAN is run to normalize the averaged electron den-
sity map and to convert it from a CCP4 style to a DSNG style file, which can be
read into the graphics program system “O”. We have now reached a point,
where one should inspect the electron density maps and start the model build-
ing. We will use the graphics modeling program “O” and make some related in-
troductory notes in Chapter 15.
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15
Model Building and More

15.1
A Very Personal Short Introduction
to the Computer Graphics Modeling Program “O”

The computer graphics modeling program “O” (Jones et al., 1991) is the present
author’s favorite model-building program. The system is very versatile, allows a
personal tailoring, shares a common environment with the USF programs, and
is compatible with the CCP4 program suite. Here, we will not present a detailed
instruction manual because this has been provided on A. Jones “O” webpage
(http://alpha2.bmc.uu.se/alwyn/) or the tutorial from G. Kleywegt, “O” for mor-
ons, accessible under http://yray.bmc.se/usf/. The latest release of “O” is now
version 10, and the program can be obtained from A. Jones on request for sev-
eral common computer platforms. It contains important changes in the Decor,
Sprout, SST systems. The Decor commands are used during the map interpreta-
tion stage of model building and have been reviewed in a detailed overview
(Jones, 2004). The skeleton (a skeletonized electron density generated, for exam-
ple, in the program MAPMAN) is useful to sketch how a macromolecule folds
in space. The program TRACE provides a more detailed representation of the
molecule, and has local directionality. It can be built more or less automatically
with the Sprout commands, or interactively with the SST commands. The step
in going from the TRACE to a molecule (or part of a molecule) with the se-
quence assigned is assisted by the Decor commands. These require that the user
has built a part of the TRACE molecule, without any gaps, and has created a
continuous skeleton that follows the TRACE. With the tutorials and manuals in
hand, the novice should be able to become familiar with the system in a rather
straightforward manner.

Here, we present a method for model building with “O”, which is rather sim-
ple minded and little automated, requires minimal reading of the manuals, and
is also rather quick. First of all, the program “O” must be installed on your
computer graphics system. The advanced user can make this directly, but the
“normal” user should ask his or her computer administrator to do this. Run-
ning “O” for the first time needs certain preparations, since after starting “O”
one is asked for an existing “O” data base. The “O” data base holds all informa-
tion related to the model building process. Clearly, as one does not have such a
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15.1 A Very Personal Short Introduction to the Computer Graphics Modeling Program “O”

data base at the start of the procedure, the reply to be made is with a “return”
and further “returns” for loading several data files into the data base.

The “O” graphical window (Fig. 15.1) is opened in addition to the dialog win-
dow, where one can issue “O” commands. Initially, this window is blank (black
background, color is default) with the exception of six pull-down menus. At the
start, the most important bars are “Controls” and “Menus”. Clicking (with the
left mouse button if not specified differently) on “Menus” shows five new items.
Clicking on one of the three upper items opens a small box, and clicking on
the left upper corner opens a green box in the right upper corner. Clicking this
box and keeping the mouse button pressed allows this box to be moved to a de-
sired position on the graphical window. We activate the boxes for “Objects”,
“User Menu” and “Fake dials”, and arrange them on the graphical window as
depicted in Figure 15.1. Objects can be, for example, atomic models or graphical
representations of electron densities. The “Dial Menu” can be used to perform
rotations, translations, zooming and slabbing of the displayed objects. Initially,
the box for “User Menu” is empty, but one can bring or remove individual “O”
commands or text into this box with the “O” command: Menu <major_menu_
name or text> <on/off> <colour>.

“O” allows read in “O” commands from a file called macros by using @ as a
suffix in front of the respective file name. Figure 15.2 displays the file “start.
inp”, which was used to add several “O” commands and macros to the “User
Menu” box and to run the setup for “Mutate” and “Lego” commands groups.

File Edit Options Buffers Tools Help

Ce*xO0E s oV
@ ?

1

menu Cent_Id on
menu Cent_at on
menu @acol on

menu @acoll on
menu Yes on

menu No on

menu Dial_prev on
menu dial_next on
menu move_atom on
menu move_zo on
menu move_frag on
menu Tor_resi on
menu Refi_zo on
menu Muta_repl on
menu Muta_del om
menu Lego_si on
menu dist_def on
menu @Cont_Mapl on
menu @Cont_Map2 on
menu @Cont_Map3 on
menu @Cont_Mapé on
|

muta_setup ;
lego_setup ; 4 .
o i L] Fig. 15.2 The “Start input” file for “O”

as used for model building of 4-BUDH.
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Figure 15.3 shows the respective macros for @acol, @Cont_Map3 and setting
symbols for @Cont_Map3.

In macro “acol’, the colors for atom names starting with N, C, O, S, P and F
are set. Then, object “mod1” is created for molecule “mod1” for the whole zone
of the molecule. The molecule “mod1” has been previously read in with the
command “pdb_read modl.pdb mod1”. The macro “Cont_Map3” is old-style
“O” stuff but nevertheless very convenient in use. The files for the maps and
box and contour levels (sd*) are defined via symbols given in the macro sym-
bols3. Furthermore, the colors for the map contours are defined. The respective
“symbols” macro must be read in before invoking the “Cont_Map” macro. The

File Edit Options Buffers Tools Help

CPxXOE S ORI E?

! acol Y
message 'Set atom coulors’

pai_case atom_name 6 nx cx 0% sx px fx blue green red yellow white white
mol modi; obj modi ; zo ; end

message 'Done ’

1

1cont _Map3ll

IMacro to contour three maps at the current active centre.
IThe files for the maps are defined via sumbols
message 'Start contouring mapl’

map_file $map1

map_obj mapl

map_par $hox $hox shox $sdi yellow 0.8 0.1 1
map_act

map_draw

message 'Start contouring map2’

map_file $map2

map_obj map2

map_par $hox $hox shox $sd2 magenta 0.8 0.1 1
map_act

map_draw

message 'Start contouring map3’

map_file $map3

map_obj map3

map_par $hox $hox $hox $sd3 blue 0.8 0.1 1
map_act

map_draw

message ’Done with map contouring’

I

! symbols3

|

symb BOX 30.0

symb SD1 1.0

symb MAP1 ”/tmp/messersc/eden_f lat_43.3pc_rh_ext.dn6”

symb SD2 1.0

symb MAP2 “/tmp/messersc/eden_flat_43.3pc_rh_ave_vier.dng”
symb SD3 1.0

symb MAP3 /tmp/messersc/eden_flat_46.1pc_rh_ext.dn6”
==:-- budh_nacros [(Text Fill)]--L7--C10--Top -
menu-bar buffer 17

<

Fig. 15.3 Macros for @acol, @Cont_Map3 and setting symbols for @Cont_Map3.
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new way to read in the maps is done by the “O” command “q-f <map_file>
<map_name>". Five maps can be read in, and these appear in the “Density’
pull down menu as Q1 to Q5. Clicking the respective item contours the relevant
map, and a box is opened that allows one to adjust the radius of the contour re-
gion, the contour level, and the color of the map contours.

We can now start with the actual model building for 4-BUDH, which will be
described very briefly.

At this stage, the best electron density map has been calculated from density-
modified SHARP phases with four Fe-sites and subsequently averaged fourfold.
A region of the map is shown in Figure 15.1, together with the final structural
model. Initially, only the electron density map is displayed, of course. The map
has been phased to 2.5 A resolution, and therefore secondary structure elements
such as a-helices and f-strands should be recognizable. It may be helpful to
skeletonize the map and read in and display the “bones atoms” as a separate
molecule. In a good-quality map the helices should show up as spirals and the
strands as elongated stretches. However, large side chains such as from argi-
nines, tyrosines, tryptophans, etc. may obstruct the appearance of the secondary
elements in the skeleton. For all stages of model building with the graphics sys-
tem the use of stereo glasses is strongly recommended. An a-helix is located in
the central part of Figures 15.1 and 15.4. The course of this helix can be seen
well, except for Figure 15.4a, where it is more difficult to recognize the feature.
For the correct hand, an a-helix should be right-handed. In this orientation, the
helix should go from the top of a helix-turn towards the spectator and then to
the back, moving up in the back and starting a new turn. This is the case for
the displayed a-helix and all other a-helices in the structure verifying the correct
hand.

The next step is to put a structural model into the recognized parts of the
electron density map with defined secondary structure, or where the trace of
the polypeptide chain is clear. For this purpose, the USF program MOLEMAN
can be used to generate coordinates for pieces of a-helices or f-strands. Program
options “HELIx_generate” or “STRAnd_generate” are used, respectively. At pres-
ent, we start the N-terminus of the secondary structures at (0, 0, 0). For an a-he-
lix, one sets for the coordinates of the C-terminus (1.46*X, 0, 0) and for the p-
strand (3.32%X, 0, 0), where X equals the number of residues in the structural
piece. The coordinates of the generated pieces of secondary structure (polyala-
nine) can be written out with option “WRITe_pdb_file”. Each PDB-file is read
into “O” into a separate molecule and a relevant object is generated. The respec-
tive molecule is moved to the corresponding electron density area and fitted by
eye to the electron density by using the “move_zone” command. The move ac-
tion is terminated either by clicking “Yes” for accepting or “No” for rejecting the
movement. The polarity of an a-helix or a f-strand is not easily seen at the be-
ginning of the model building. For a-helices, the “Christmas-tree” structure of
the side chains may be helpful, with large side chains pointing into the C-termi-
nal direction of the helix. A preliminary assignment of large, medium, and
small side chains and comparison of their sequence in positive and negative di-
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15.1 A Very Personal Short Introduction to the Computer Graphics Modeling Program “O”

rection with this of the amino acid sequence is useful in any case. This can be
done within “O” by the old “Slider” commands, which are now part of the “Dec-
or” commands. If the pieces of secondary structure have been correctly put into
the electron density map, they can be unified into a single molecule. First, a
molecule must be created that holds all amino acid residues of the 4-BUDH
monomer initially as alanines. We need this single molecule at the beginning
only because we build our model into a NCS-averaged map. There are several
techniques to make this, for example with “sam_init_db’, which needs the se-
quence (in our case 490 alanine residues) to be entered (in three-letter code) as
a formatted O datablock.

We take one of the PDB-files of the generated secondary pieces and edit this
file in the following way. We delete all residues except for the first, and rename
this residue to residue name “A0” or “0” as one likes. We set all the coordinates
of this residue to 1500; this assures that the residue is not displayed in “O”.
Next, this small PDB-file is read into “O” to a molecule with the name
“BUDH?”, for example. Now we can use “O” command “muta_insert’ to gener-
ate the whole polyalanine model. The first command would be: “muta_insert
BUDH A0 A1l ala;” the second one: “muta_insert BUDH Al A2 ala;”, and so on
until A490. Do not forget to save your activities by “Save_db’ from time to time
because something unforeseen may happen with your computer system. Now,
you can move the coordinates of your fitted secondary stretches to the molecule
BUDH at the correct positions. This is done by using the “merge _atoms” com-
mand. “Merge_atoms helix] Z1 Z21 BUDH A35;” would move the coordinates
from residues Z1 to Z21 of molecule helixl to molecule BUDH at a position
starting at residue A35. Now, we have the whole molecule built so far in one
molecule. Be aware that the stretch of amino acids to be copied is identical to
the target stretch of amino acids. Here, both sequences were polyalanines. We
can try to complete the model if the electron density is good enough. Extended
secondary structure and loops can be built from stretches of f-strands generated
with MOLEMAN and treated in the same way as the former structural pieces. If
all runs smoothly, the whole polyalanine model has been built and the side
chains can be added. This is done by the commands “muta_replace” followed
by “lego_side_chain”. “Muta_replace BUDH A5 TYR;” would mutate residue A5
of molecule BUDH to a tyrosine. The mutated residue is displayed, but its side
chain has to be fitted to the electron density. This can be assisted by
“lego_side_chain”. After invoking the command, one clicks on the mutated resi-

A
<

Fig. 15.4 Stereo representation of a phases based on 16 Fe- and 16 S-sites per
representative section of the electron density ~ asymmetric unit and subsequently solvent-
map at different stages of phasing plus final flattened with program DM. (d) Map
atomic model. (a) SHARP-phases based on (c) NCS-averaged. All maps have been
four Fe-sites per asymmetric unit and contoured at 1.0 g. The figures were pro-
subsequently solvent-flattened with program duced with BOBSCRIPT (Esnouf, 1997) and
DM. (b) Map (a) NCS-averaged. (c) SHARP- RASTER3D (Merrit and Murphy, 1994).
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due and several rotamers for the side chain are proposed by operating the rele-
vant dial. The action is finished by clicking “Yes” for the best rotamer or exiting
with “No” for no action. The side chain can also be fitted to the electron density
with “O” command “tor_residue”. The molecule will consist of stretches, which
may be continuous in the amino acid sequence but have not been connected
with their respective peptide bonds. This is done with the “refine” commands.
First, the commands “refi_init <molecule_name>" and then “refi_gener
<molecule_name> <start & end residues>” must be run. The second one must
be activated after each “muta_replace” action. Sometimes one or several resi-
dues are missing in the model and these should be built in directly. For this,
the following procedure is quite useful. Look for an alanine residue in the envi-
ronment of the electron density map where the new residue should go to. Acti-
vate this residue with “move_zone”, and then move it into the desired position
in the electron density, but do not finalize the “move-zone” command at this
moment. Merge the coordinates of the moved residue to the target residue in
the target molecule with “merge_atoms BUDH AX AX BUDH AY”. AX is the
residue name of the moved residue, and AY the name of the target residue.
Now, finalize the “move_zone” command with “No”. The moved residue jumps
back to its original position and the new residue is at its desired position. Now,
redraw the molecule BUDH and make a “refi_zone” over the corresponding re-
sidue zone including several more residues on both sides of the zone.

The “lego” commands are very useful to build loop regions or extended sec-
ondary structure, but one can also construct the whole structural model. A pre-
requisite for this approach is the existence of a C,-trace. The respective struc-
ture is built with help from a “database”. Some of the commands are available
from the pull-down menu system (Rebuild/Database). “O” can access both a
main-chain database (Jones et al., 1991; Jones and Thirup, 1986) and side-chain
rotamer database (Kleywegt and Jones, 1998).

The main-chain database consists of 32 protein structures that have been re-
fined at high resolution. The nucleic acid database consists of 11 structures.
The program uses the main-chain database that is appropriate for the structure.
The side-chain rotamers are based on an analysis of high-resolution structures.

The rotamer database is encoded as entries in “O”’s stereochemical library
and must be loaded before the relevant commands can be used. An alternative
set of rotamers has been made available (The “Penultimate Rotamer Library”
from Lovell et al., 2000) and is available at http://kinemage.biochem.duke.edu/
databases/rotamerhtml. This database has a more extensive number of confor-
mations for each amino acid, in particular arginine and lysine residues. Special
care should be taken for putative cis-peptide bonds mainly at cis-prolines, but
non-proline cis-peptide bonds are also possible (Jabs et al., 1999).

The current or final model can be written out to a PDB-file and subjected to
crystallographic refinement calculations. If the quality of the electron density is
not so good it will be necessary to use the phase information of the model built
so far for further model-building cycles. The partial model will be refined and a
new electron density is calculated with these phases, or a combination of these
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phases with the experimental phases. All possible density modifications should
be applied to the new map. Usually, one calculates a Fops—Fcyc map apart from
the 2F,ps—Fcac map to detect gross positive and negative errors in the electron
density function. It is advisable to check the quality of the geometry of the cur-
rent model by producing a Ramachandran plot and a side-chain conformation
analysis, which can be made with program PROCHECK (Laskowski et al.,
1993). Wrong peptide orientations can be corrected with the “O” command
“flip_peptide”.

15.2
Introduction of the Four Fe-Sites per Fe—S-Cluster and New SHARP-Phasing
for 4-BUDH

So far, we have generated two electron density maps. The first map was calcu-
lated from SHARP-phases based on four Fe-sites per asymmetric unit and sub-
sequently solvent-flattened with the program DM. A representative section of
the map showing an a-helix in the central part is displayed in Figure 15.4a. The
same section for the respective NCS-averaged map is depicted in Figure 15.4b.
In Figure 15.4a one can see the main parts of the electron density of the a-he-
lix, but the electron density is interrupted several times. The NCS-averaging has
strongly improved the quality of the electron density map, as can be seen from
Figure 15.4(b). So far, the MAD-phasing was not optimal because each [4Fe—4S]-
cluster was represented only by one Fe-site. It is, however, necessary to intro-
duce the actual four Fe-sites per cluster.

The NCS-averaged map from Figure 15.4b has been contoured at 5.0 ¢ and
shows electron density around the Fe-S-cluster only at this contouring level
(Fig. 15.5). The coordinates of a [4Fe-4S]-cluster from the B-subunit of pyrogal-
lol-phloroglucinol transhydroxylase (Messerschmidt et al., 2004; PDB-code 1TI2)
have been read into the “O” system and fitted into this electron density manu-
ally with “move-zone”. The shape of this electron density is not so well resolved
to fit in the cluster exactly, but to a good approximation as the subsequent
SHARP calculations showed. The actual coordinates were written out. Now, the
coordinates for the Fe-S-clusters in the other NCS-related subunits had to be
generated, and this was done with the USF program LSQMAN using the input
file given in Figure 15.6.

The RT-operators from the NCS averaging were used, which were stored in the
files “budh_1_2_imp.0”, “budh_1_3_imp.0” and “budh_1_4_imp.o’. The gener-
ated coordinates went into files “FeS_mol2.pdb’, “FeS_mol3.pdb” and “FeS_mol4.-
pdb’. The coordinates were transformed to fractional coordinates in the USF pro-
gram MOLEMAN and a new SHARP run was performed with these 32 sites (16
Fe- and 16 S-sites). All quality factors for the MAD-phasing with these 32 sites im-
proved, as can be seen from Table 12.1. This is also valid for the electron density
map (Fig. 15.4¢), the quality of which is comparable to that of the averaged map in
Figure 15.4b. The new map can further be improved by NCS-averaging. In order
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Fig. 15.5 Stereo representation of the electron density map of
Figure 15.4b around the [4Fe—4S]-cluster plus final atomic
model. The map has been contoured at 5.0 . The figures
were produced with BOBSCRIPT (Esnouf, 1997) and RAS-
TER3D (Merrit and Murphy, 1994).

to perform an optimal averaging, the old RT-operators had to be refined with IM-
PROVE. The correlation factors increased as follows: monomer 1 to monomer 2,
from 0.335 to 0.487; monomer 1 to monomer 3, from 0.324 to 0.480; and mono-
mer 1 to monomer 4, from 0.356 to 0.519. The NCS-averaged map is displayed in
Figure 15.4d, and exhibits clearly the best quality. The whole model could easily be
built into this electron density map.

Here, we have described a demanding case of phase calculation, density mod-
ification and model building. To an increasing degree, the quality of the initial
electron density maps in many structure determinations is so good that auto-
mated model building can be applied. This can be done, as mentioned earlier
in Section 7.1 with programs ARP/wWARP (Lamzin et al., 2001) and SOLVE/
RESOLVE (Terwilliger, 2002). The respective web pages are http://www.embl-
hamburg.de/ARP/ and http://solve.lanl.gov for those who are lucky to have gen-
erated such a good electron density map.

15.3
Crystallographic Refinement and Final Steps

The next step is the crystallographic refinement of the structural model. We will
not present a tutorial of this step here because there exist very good manuals
and tutorials for the commonly used crystallographic programs; these include
REFMAC (Murshudov et al., 1997; http://www.ysbk.york.ac.uk/~garib/refmac/)
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File Edit Options Buffers Tools Help
C@x O0OE >4 0RVRQG P ?

#1/bin/csh A
source /xray/hlogin
#

lsgman ~h << EOF-1sqg

read ml FeS_moll.pdb

read m2 FeS_moll.pdb

ol ml m2
../ave_SLS/budh_1_2_imp.o
apply mi m2

write m2 FeS_mol2.pdb
quit

EOF-1sq

#

®

lsgman -b << EOF-1sq

read ml FeS_moll.pdb

read m2 FeS_moll.pdb

ol ml m2
..7ave_SLSsbudh_1_3_imp.o
apply mi m2

write m2 FeS_mol3.pdb
quit r—
EOF-1sq

#

#

lsgman -b << EOF-1sg

read ml FeS_moll.pdb

read m2 FeS_moll.pdb

ol ml m2
../ave_SLSs/budh_1_4_imp.o
apply mi m2

write m2 FeS_mol4.pdb
quit

EOF-1sq

W

Fig. 15.6 Input file for generating the coordinates
of the Fe-S-clusters in the other related subunits.

from the CCP4-suite (http://www.ccp4.ac.uk/main.html/), CNS (Briinger et al,,
1998; http://cns.csb.yale.edu/v1.1/), SHELXL (Sheldrick and Schneider, 1997;
http://shelx.uni-ac.gwdg.de/SHELX) and TNT (Tronrud et al, 1987; http://
www.uoxray.uoregon.edu/tnt/welcome.html). We have used the program CNS
for many structure refinements because it includes the simulating annealing
method. Here, we will provide a short outline of using CNS for the refinement
and respective input files to be referred to, as are available on the CNS web
page.

In some recent cases with medium-quality diffraction data REFMAC delivered
better results, however. REFMAC or SHELXL must be used in any case if the
resolution is so high that a real unrestrained parameter refinement can be per-
formed. The problem of twinned crystals has not yet been mentioned. CNS and
SHELXL can, for example, refine twinned structures; this implies that the kind
of twinning has been determined from the diffraction data. The detection and
overcoming of twinning has been discussed by Yeates (1997), although it must
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be noted that the treatment of twinned crystals is complicated and tedious, and

in most cases it is better to try to grow untwinned crystals.

The crystallographic refinement procedure with CNS includes the following
steps:

1. Preparation of a reflection file in CNS-format; this can be done from a CCP4
MTZ-file with CCP4 routine MTZ2VARIOUS, output option “CNS”.

2.Set up a test array for cross-validation (free R) using a random selection of
data. File: make_cvinp. The percentage of the data for the test set must be
given, usually values between 5% and 10%. The output reflection file has re-
flections for the test and working set differently flagged.

3. Generate a structure file for protein, DNA/RNA, water, ligands and/or carbo-
hydrate. File: generate.inp. Generate needs as input apart of the PDB file of
the structural model topology and parameter files for all chemical groups in
the structure. The topology file contains information about the atom types,
bonds, angles, dihedral angles, improper values for chirality or planarity and
donors and acceptors within a special chemical group, which can be an ami-
no acid, nucleic acid, sugar or solvent molecule, metal group or ligand.
Furthermore, if groups are bonded to amino acid residues or nucleic acids,
then so-called “patch residues” must be defined and be part of the respective
topology file. The corresponding parameter file contains the relevant energy
values for the bonds, angles, non-bonded interactions, etc. Topology and pa-
rameter files for all amino acids, nucleic acids and many ions, solvent mole-
cules, carbohydrates and ligands are part of the CNS system.

Our example structure 4-BUDH contains two non-standard groups, [4Fe—
4S]-clusters and FAD. Topology and parameter files must be generated for
them. For this purpose, the Hetero-compound Information Centre-Uppsala
(HIC-Up) is very useful. Currently, this server holds about 6300 hetero com-
pound entries, including the desired ones for the [4Fe—4S]-clusters (FS4) and
FAD. The names of the hetero groups and of their atoms are consistent with
those used in the Protein Data Bank. Each entry provides a PDB-file with co-
ordinates of the compound, which can be used for placing the group into the
respective position in the electron density map. Furthermore, it contains a
PDB dictionary file, a CNS topology file, a CNS parameter file, an “O” dic-
tionary entry (add to.bonds_angles datablock) and a TNT dictionary file.

Supposed your hetero compound is not contained in this or another similar
data base, it has to be generated from scratch. First, you need the atomic co-
ordinates of the compound. A possible source is the Cambridge Structural
Database (CSD: Allen et al., 1991; Kennard and Allen, 1993). If it is also not
in this database, one must use a graphic molecular modeling program
such as INSIGHT II (Accelrys Software Inc., San Diego, 2006; http://
www.accelrys.com/products/insight) to generate the coordinates. The USF
program XPLO2D can then be used to generate the topology and parameter
files. If necessary, these files must be edited to meet the desired demands.

Output files are the CNS structure file and the PDB file of the structural
model suited for the subsequent CNS activities.



15.3 Crystallographic Refinement and Final Steps

4.Combined simulated annealing, energy minimization, B-factor refinement,
and map calculation. File: refine.inp. Input files are: PDB file of the structural
model, structure file (optional), topology files, protein and DNA-RNA linkage
files (supplied by the CNS system), parameters files, structure factor file,
NCS-restraints/constraints file (where necessary as for 4-BUDH). Unit cell pa-
rameters, space group, high- and low-resolution limits and structure factor
sigma cut-off values must be given. Parameters for the simulating annealing,
energy minimization, B-factor refinement and map calculation can be usually
taken as proposed in the refineinp template file. Output files:
<map_coeff_1>.map, <map_coeff_2>.map and PDB file of refined structural
model. Usually, <map_coeff_1> will be 2Fy,—F.y and <map_coeff_1>=
F, obs_F calc-

The map files are in CNS format and can be converted to CCP4 or DN6
formats in the USF program MAPMAN.

The logfile contains much information about the course of refinement and
map calculation. There must not be warnings about close atomic distances
caused by errors in the single molecules or by crystal packing. Such close con-
tacts should be removed by a careful inspection of the structural model in the
graphical modeling system because they negatively influence the energy mini-
mization and simulated annealing procedures. If all runs smoothly, the most
interesting values that the researcher is keen to obtain are the crystallographic
R-factors for the test (Rgee) and working sets. These should have decreased
and the Rge. not be more than about 5% over the working set R-factor. Nor-
mally, the refinement will be finalized after a first round. One will have to
start a new cycle of model building with the refined structural model and the
new improved electron density maps.

5.Pick water molecules in electron density map. File: water_pick.inp. Input
files: structure file, parameter files, PDB file of refined structural model. Out-
put files: water_pick structure file, water_pick PDB file. This routine searches
the Fops—Fcac-map for possible water molecules, and is a great help in estab-
lishing the solvent structure in case one did not make this by the aid of the
graphics modeling program.

If initially a partial model is available only, it is advisable to run an energy mini-
mization refinement only (template file: minimize.inp) and to start a new model
building cycle. When some parts of the model are poorly defined in the electron
density map, an annealed omit map may be helpful (template file: sa_omit_
map.inp). A rigid body refinement (template file: rigid.inp) may be useful if a
structure with low non-isomorphism (e.g., an enzyme:inhibitor complex struc-
ture with somewhat deviating unit cell parameters) to the parent structure is to
be phased. One should start the rigid body refinement with the unit cell parame-
ters of the parent structure, followed by rigid body runs with moderately changed
unit cell parameters until those of the structure to be phased have been reached.

Satisfactory values for Rge. and R depend on the resolution of the diffraction
data. As a rule of thumb, the following figures are commonly accepted as satis-
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factory: Rpee<25%, R<20%. High-quality data with an overall well-defined mo-
lecular structure deliver lower values. In cases where some parts of the struc-
ture are flexible or disordered, it may happen that the values are higher. How-
ever, values about Rgee~30%, R~ 25% should not be exceeded.

If these criteria are fulfilled, then the actual crystal structure analysis has
been completed. However, there remains much to do further on, as the structur-
al model must be verified and the accuracy determined. This was described in
detail in Section 7.3. If the model has successfully overcome the validation pro-
cess, the coordinates and structure factor file may be submitted to the Protein
Data Bank using the ADIT tool available on the RCSB web site (http://
www.rcsb.org). The normal path is now to study the structure in detail and at-
tempt to draw conclusions related to the function of the biomacromolecule. Fi-
nally, the publication reporting the results must be written. It will be necessary
to prepare pictures visualizing the fold of the structure (ribbon plot), the atomic
structure (optionally with relevant electron density) of selected regions of the
molecule such as the active site or special loop structures, surface representa-
tions (Conolly surface, electrostatic potential, cavities), and many more. Pro-
grams for displaying 3D structures of biomacromolecules include MolScript
(Kraulis, 1991; http://www.avatar.se/molscript/), BobScript (Esnouf, 1997;
http://www.strubi.ox.ac.uk/bobscript/), Raster3D (Merrit and Murphy, 1994;
http://skuld.bmsc.washington.edu/raster3d.html) and PyMol (DeLano, 2003;
http://pymol.sourceforge.net/). Surface representations can be produced, for ex-
ample, with GRASP (Nicolls et al., 1991; http://honiglab.cpmc.columbia.edu/
grasp/ref.html) or DINO (2002; http://www.dino3d.org/). There are yet many
other points to study in order to obtain the optimal information from a given
3D structure of a biomacromolecule, which may be complexed with another bio-
macromolecule, or with relevant small molecules such as substrates, products,
inhibitors, effectors, or other functional molecules. The discussion of these is-
sues is, however, beyond the scope of this book.

It is hoped that this textbook will be helpful both for students and researchers
alike as a useful guide to become familiar with the methods of X-ray crystallog-
raphy of biomacromolecules. These methods are capable of delivering fascinat-
ing insights into the atomic architecture and function of these molecules, which
are the key players in all of life’s processes.
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