

Quantum Chemistry
and Computing for
the Curious

Illustrated with Python and Qiskit® code

Keeper L. Sharkey

Alain Chancé

BIRMINGHAM—MUMBAI

Quantum Chemistry and Computing
for the Curious
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi
Publishing Product Manager: Richa Tripathi
Senior Editor: Matthew Moodie
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Roshan Kawale
Marketing Coordinator: Pooja Yadav

First published: May 2022
Production reference: 1120522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-390-0

www.packt.com

http://www.packt.com

To my mother, Karen, for always encouraging me to pursue my love of
chemistry and who unexpectedly passed away during the writing process of

this book.

- Keeper L. Sharkey

To Elaine, my wife, this book is dedicated with love.

- Alain Chancé

Foreword
I am honored to write this foreword to Quantum Chemistry and Computing for
the Curious.

I met Keeper in 2019 during the Quantum.Tech Congress in Boston, where she was
presenting her ideas on quantum chemistry. It was clear that she was the leading expert
in this field and stayed in touch with her ever since. I have worked in various areas of
quantum computing with mostly financial use cases; however, I have been exposed to
some quantum machine learning and quantum chemistry use cases as well. My general
sense has been that the literature and examples that lay out how quantum computing
applies to chemistry use cases are sorely lacking.

In 2021, during a conversation, I encouraged Keeper to write this book for the benefit
of the quantum computing ecosystem, and it turned out she had already been thinking
of it and agreed. I was even more excited to hear that Alain, who is well known in the
Qiskit community, had agreed to co-author the book with her, knowing that it would
add to the useability and make the topic much more approachable to those with some
Qiskit background.

If you are reading this, clearly you have an interest in quantum computing, but also in
molecule simulations and quantum chemistry use cases. Richard Feynman wrote that
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better
make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look
so easy." All the points of this statement are true and beautifully come out in this book.

Most people in quantum computing are aware that we use the Variational Quantum
Eigensolver (VQE) to efficiently obtain the potential energy surfaces (PES) for small
molecules. However, applying this approach requires understanding classical methods
that may or may not be variational, quantum mechanics, developing the energy equation
or Hamiltonian of the molecule, making very specific assumptions, such as the Born-
Oppenheimer (BO) approximation, and then converting the Hamiltonian into a quantum
circuit before it can be solved using VQE. The Hartree-Fock (HF) theory is used to
describe the motion of each electron by a molecular orbital, which in turn is made up of a
linear set of atom-centered basis functions. STO-3G is one example. Various techniques,
including Bravyi-Kitaev (BK) and Jordan-Wigner (JW) are used to transform a chemical
Hamiltonian into a qubit Hamiltonian. We need to ensure that these transformations use
qubit operators that represent the fermionic operators. We also need to ensure certain
symmetries related to the number of electrons, spin, and time-reversal are preserved
during this transformation. This is the convergence of many disciplines and where things
get complicated very quickly.

Keeper and Alain lead the reader step-by-step through the many topics, techniques, and
fundamentals with detailed explanations and code samples. The book introduces quantum
concepts such as the structure of light and the atom and then dives into the required areas
of quantum mechanics, such as electron orbital structure, the Pauli exclusion principle
(PEP), and Schrödinger's equations. Next, the book introduces key quantum computing
concepts, including the Bloch sphere, quantum gates, Bell states, the density matrix, and
symmetrized versus anti-symmetrized states. We then dive into the core of quantum
simulation with the BO approximation, Fock space, creation and annihilation operators,
basis sets, and fermionic to qubit mappings, before introducing the reader to Qiskit
Nature as a tool to easily apply the above principles. There are detailed explanations,
and the equations and concepts are carefully developed and expanded in far more detail
than even I would have imagined. In the hero's journey, all our intellectual faculties are
challenged as we finally reach our goal as we begin to put all the concepts that we have
meticulously mastered through the VQE algorithm and find the ground state of three
different molecules on a quantum computer.

In 2019, Keeper mentioned to me that one day, quantum computers could provide more
accurate simulations of complex molecules, where approximations required for classical
computations would not be needed. Is this the future for quantum simulations? You will
find out more as Keeper takes us beyond Born-Oppenheimer.

This book is a goldmine for those wanting the breadth and depth of information required
to understand quantum simulations in one place. Keeper and Alain have made a sizable
and worthy contribution to the growing wealth of quantum computing literature. I think
Richard Feynman would be proud.

Alex Khan

Entrepreneur, advisor, and educator in quantum computing

Baltimore, MD

March 2022

Contributors

About the authors
Keeper L. Sharkey, PhD is the founder and CEO of ODE, L3C, a social enterprise that
serves through Quantum Science, Technology and Research, qSTAR. She is Chair of
Quantum Applied Chemistry at the Quantum Security Alliance. She obtained a PhD in
chemical physics from the University of Arizona as a US National Science Foundation
graduate research fellow, May 2015, and a Bachelor of Science in both mathematics and
chemistry, May 2010. She remains a Designated Scientific Research Campus Colleague at
the University of Arizona. She has published over 30 manuscripts in top peer-reviewed
journals regarding non-Born-Oppenheimer quantum mechanical finite-nuclear mass
variational algorithms and has been cited over 400 times; H-index and i10-index of 10.

Alain Chancé is business advisor to ODE, L3C and is the founder and CEO of Quantalain
SASU, a management consulting startup. He has over 30 years of experience in major
enterprise transformation projects with a focus on data management and governance
gained in major management consulting firms. He has a diploma ingénieur civil des
Mines from École des Mines de Saint-Étienne (1981).

He is a Qiskit® Advocate and is an IBM Certified Associate Developer - Quantum
Computation using Qiskit® v0.2X since 2021. He has completed a number of hackathons
pertaining to quantum computing since 2018.

Acknowledgments
We would like to thank the technical reviewer, Bruno Fedrici, PhD,
Professor Ludwik Adamowicz for insights into quantum education,

Robert and Suzanne Scifo for artistic renderings of physics and chemistry
concepts as it relates to historical quotes in the chapters, Mellissa Larson
for photographing the lead author, and Quantum Interns of ODE, L3C,

who proofread the chapters and assisted in compiling the glossary: Bhagya
Gopakumar and Sneha Thomas.

About the reviewer
Bruno Fedrici has a PhD in quantum engineering from the University of Nice Sophia
Antipolis along with a university certificate in digital transformation from the University
of Lyon. He contributes to the public and business awareness of quantum technologies by
providing a bridge between higher education, research, and industry. For three years now,
he has been introducing quantum computing basics and quantum-safe security solutions to
executives and technical leaders as well as to computer science and engineering students.

Bruno is a lecturer in quantum information science at INSA Lyon. He has also launched
Quantum for Everyone, a new online course for non-technical business professionals.
Currently Bruno is also a program manager at Quantum Business Europe, a new event
focusing on end user applications of quantum technologies.

Table of Contents
Preface

1
Introducing Quantum Concepts

Technical requirements� 3
1.1. Understanding the
history of quantum
chemistry and mechanics� 3
1.2. Particles and matter� 7
Elementary particles� 8
Composite particles� 9

1.3. Quantum numbers and
quantization of matter� 10
Electrons in an atom� 10
The wave function and the PEP� 11

1.4. Light and energy� 12
Planck constant and relation� 12
The de Broglie wavelength� 13
Heisenberg uncertainty
principle� 13

Energy levels of atoms and
molecules� 13
Hydrogen spectrum� 14
Rydberg constant and formula� 15
Electron configuration� 15
Schrödinger's equation� 19
Probability density plots of the
wave functions of the electron
in a hydrogen atom� 19

1.5. A brief history of
quantum computation� 20
1.6. Complexity theory
insights� 21
Summary� 23
Questions� 23
Answers� 24

References� 24

2
Postulates of Quantum Mechanics

Technical requirements� 31
2.1. Postulate 1 – Wave functions�32

2.1.1. Spherical harmonic functions� 34
2.1.2. Addition of momenta
using CG coefficients� 40

xii Table of Contents

2.1.3. General formulation of the
Pauli exclusion principle� 50

2.2. Postulate 2 – Probability
amplitude� 56
2.2.1. Computing the radial
wave functions� 57
2.2.2. Probability amplitude
for a hydrogen anion (H−) � 59

2.3. Postulate 3 – Measurable
quantities and operators� 63
2.3.1. Hermitian operator� 64
2.3.2. Unitary operator� 65
2.3.3. Density matrix and mixed
quantum states� 66

2.3.4. Position operation� 67
2.3.5. Momentum operation� 69
2.3.6. Kinetic energy operation� 70
2.3.7. Potential energy operation� 72
2.3.8. Total energy operation� 75

2.4. Postulate 4 – Time-
independent stationary
states� 75
2.5. Postulate 5 – Time
evolution dynamics� 76
Questions� 76
Answers� 76
References� 77

3
Quantum Circuit Model of Computation

Technical requirements� 81
Installing NumPy, Qiskit, QuTiP,
and importing various modules� 81

3.1. Qubits, entanglement,
Bloch sphere, Pauli matrices� 82
3.1.1. Qubits� 83
3.1.2. Tensor ordering of qubits� 83
3.1.3. Quantum entanglement� 84
3.1.4. Bloch sphere� 84
3.1.5. Displaying the Bloch
vector corresponding
to a state vector� 86
3.1.6. Pauli matrices� 89

3.2. Quantum gates� 93
3.2.1. Single-qubit quantum gates� 94
3.2.2. Two-qubit quantum gates� 96
3.2.3. Three-qubit quantum gates� 97
3.2.4. Serially wired gates and
parallel quantum gates� 98

3.2.5. Creation of a Bell state� 98
3.2.6. Parallel Hadamard gates� 101

3.3. Computation-driven
interference� 103
3.3.1. Quantum computation
process� 103
3.3.2. Simulating interferometric
sensing of a quantum superposition
of left- and right-handed enantiomer
states� 104

3.4. Preparing a
permutation symmetric or
antisymmetric state� 107
3.4.1. Creating random states� 107
3.4.2. Creating a quantum circuit
and initializing qubits� 108
3.4.3. Creating a circuit that swaps
two qubits with a controlled
swap gate� 108

Table of Contents xiii

3.4.4. Post selecting the control
qubit until the desired state
is obtained� 112

3.4.5. Examples of final symmetrized
and antisymmetrized states� 116

References� 123

4
Molecular Hamiltonians

Technical requirements� 127
Installing NumPy, Qiskit, and
importing the various modules� 127

4.1. Born-Oppenheimer
approximation� 130
4.2. Fock space� 132
4.3. Fermionic creation and
annihilation operators� 135
4.3.1. Fermion creation operator� 136
4.3.2. Fermion annihilation
operator� 136

4.4. Molecular Hamiltonian
in the Hartree-Fock orbitals
basis� 137
4.5. Basis sets� 138
4.5.1. Slater-type orbitals� 139
4.5.2. Gaussian-type orbitals� 141

4.6. Constructing a fermionic
Hamiltonian with Qiskit
Nature� 144
4.6.1. Constructing a fermionic
Hamiltonian operator of the
hydrogen molecule � 144

4.6.2. Constructing a fermionic
Hamiltonian operator of the
lithium hydride molecule� 150

4.7. Fermion to qubit
mappings� 155
4.7.1. Qubit creation and
annihilation operators� 155
4.7.2. Jordan-Wigner
transformation� 156
4.7.3. Parity transformation� 158
4.7.4. Bravyi-Kitaev
transformation� 159

4.8. Constructing a qubit
Hamiltonian operator
with Qiskit Nature� 162
4.8.1. Constructing a qubit
Hamiltonian operator of the
hydrogen molecule� 163
4.8.2. Constructing a qubit
Hamiltonian operator of the
lithium hydride molecule� 166

Summary� 167
Questions� 167
References� 168

5
Variational Quantum Eigensolver (VQE) Algorithm

Technical requirements� 172 Installing NumPy, Qiskit, QuTiP,
and importing various modules� 173

xiv Table of Contents

5.1. Variational method� 177
5.1.1. The Rayleigh-Ritz
variational theorem� 178
5.1.2. Variational Monte Carlo
methods� 179
5.1.3. Quantum Phase Estimation
(QPE)� 186
5.1.4. Description of the VQE
algorithm� 188

5.2. Example chemical
calculations� 191
5.2.1. Hydrogen molecule (H2)� 201
5.2.2. Lithium hydride molecule� 209
5.2.3. Macro molecule � 216

Summary� 222
Questions� 223
Answers� 223
References� 223

6
Beyond Born-Oppenheimer

Technical requirements� 231
Installing NumPy, SimPy,
and math modules� 231

6.1. Non-Born-Oppenheimer
molecular Hamiltonian� 232
Internal Hamiltonian operator� 234
Explicitly correlated all-particle
Gaussian functions� 236
Energy minimization� 236

6.2. Vibrational frequency
analysis calculations� 237

Modeling the vibrational-rotational
levels of a diatomic molecule� 238
Computing all vibrational-rotational
levels of a molecule� 243

6.3. Vibrational spectra for
ortho-para isomerization
of hydrogen molecules� 246
Summary� 249
Questions� 249
Answers� 249
References� 250

7
Conclusion

7.1. Quantum computing� 254
7.2. Quantum chemistry� 254

References� 255

8
References

Table of Contents xv

9
Glossary

Appendix A
Readying mathematical concepts

Technical requirements� 290
Installing NumPy, SimPy, and
Qiskit and importing various
modules � 290

Notations used� 291
Mathematical definitions� 292
Pauli exclusion principle (PEP) #� 292
Angular momentum quantum
number #� 293
Occupation number operator #� 293
Quantum Phase Estimation
(QPE) #� 293
Complex numbers� 293
Vector space� 294
Linear operators� 294
Matrices� 295
Eigenvalues and eigenvectors� 295
Vector and matrix transpose,
conjugate, and conjugate
transpose� 295
Dirac's notation #� 296
Inner product of two vectors� 296

Norm of a vector� 297
Hilbert space� 298
Matrix multiplication with a
vector� 298
Matrix addition� 298
Matrix multiplication� 299
Matrix inverse� 300
Tensor product� 300
Kronecker product or tensor
product of matrices or vectors� 301
Kronecker sum� 302
Outer product� 302
Hermitian operator� 303
Unitary operator� 303
Density matrix #� 304
Pauli matrices� 305
Anti-commutator #� 307
Anti-commutation #� 308
Commutator� 308
Total wave function #� 309

References� 310

Appendix B
Leveraging Jupyter Notebooks on the Cloud
Jupyter Notebook� 311
Google Colaboratory� 312
IBM Quantum Lab� 312

Companion Jupyter notebooks� 312

References� 313

xvi Table of Contents

Appendix C
Trademarks
Index
Other Books You May Enjoy

Preface
"Learning is finding out what you already know. Doing is demonstrating

that you know it. Teaching is reminding others that they know just as well
as you. You are all learners, doers, teachers."

– Richard Bach

Figure 0.1 – Learning quantum computing and quantum chemistry [authors]

This book aims to demystify quantum chemistry and computing, discuss the future of
quantum technologies based on current limitations, demonstrate the usefulness and
shortcomings of the current implementations of quantum theory, and share our love of
the topic.

xviii Preface

This book is not a traditional presentation of quantum chemistry nor quantum
computing, but rather an explanation of how the two topics intertwine through the
illustration of the postulates of quantum mechanics, particularly with Python code and
open-source quantum chemistry packages.

Quantum chemistry has many applications in industry, from pharmaceutical design
to energy creation and the development of quantum computing in recent years. With
adequate knowledge of quantum chemistry and the postulates of quantum mechanics, we
can overcome some of the major hurdles humanity faces and achieve positive impacts. We
hope that you can learn sufficient details to be a part of the new and productive solutions
moving forward.

Readers we target
All kinds of readers are welcome. However, the people who will benefit the most are those
interested in chemistry and computer science at the early stages of learning; advanced
high school and early college students, or professionals wanting to acquire a background
in quantum chemistry as it relates to computing, both from an algorithm and hardware
standpoint. We also summarize useful mathematics and calculus as it relates to solving
chemistry problems. The topics will appeal to people of various industry verticals who are
interested in a career in quantum computational chemistry and computing.

You will be at the forefront of exciting state-of-the-art opportunities to expand your ideas
and start experimenting with your simulations.

A fast path to using quantum chemistry
We chose to write this book in such a way as to demystify the fundamentals of quantum
concepts for a curious audience. This book introduces the basics of quantum chemical
concepts by describing the five postulates of quantum mechanics, including how these
concepts relate to quantum information theory, including basic programming examples of
atomic and molecular systems with Python, SimPy [Simpy], QuTiP [QuTiP], and open-
source quantum chemistry packages PySCF [PySCF], ASE [ASE_0], PyQMC [PyQMC],
Psi4 [Psi4_0], and Qiskit [Qiskit] code. An introductory level of understanding Python
is sufficient to read the code, and a browser is all that is required to access the Google
Colaboratory and run the companion Jupyter notebooks we provide in the cloud. Each
chapter includes an artistic rendering of quantum concepts related to historical quotes.

Preface xix

Through the 1990s, 2000s, and 2010s, there has been amazing progress in the development
of computational chemistry packages and, most recently, Qiskit Nature [Qiskit_Nature]
[Qiskit_Nat_0]. We outline and introduce basic quantum chemical concepts that are
discussed in a modern fashion and relate these concepts to quantum information theory
and computation. We use Python, PySCF, and Qiskit Nature for illustrative purposes.

Quantum chemistry
The fundamentals of quantum mechanics and the five postulates directly impact material
research and computational chemistry for finding new drugs and catalysts, enabling
efficient and cleaner processes for converting chemicals from one form to another.
Quantum chemistry is also essential for designing future quantum computers that use the
properties of atoms and/or ions. However, quantum chemistry remains an elusive topic
that seemingly takes many years to master.

We think that the traditionally long-term achievement of literacy of the topic is directly
related to the perceived complexity of the topic and historical approximations made to
increase accessibility and usability with conventional computing. With approximation
in place and wide acceptance by the scientific community as the only way forward, some
fundamental concepts are often overlooked, misunderstood, and eliminated from the
disciplines depending on these ideas. We see this as an opportunity to share our love of
quantum chemistry in its full potential to enhance the friendliness of and approachability
of the topic.

We will share sufficient details so that you understand the limitations that were historically
established. For instance, we present a general formulation of the Pauli exclusion principle
for all elementary particles that also holds for composite particles, which many textbooks
do not adequately explain.

There is more to the quantum story but too much to be included as a first book for the
curious. Therefore, we plan to write a following book that expands cutting-edge quantum
ideas that are not yet widely used in the scientific community.

xx Preface

How to navigate the book
We advise you to follow the sequential ordering of chapters and gradually master the
concepts, methods, and tools that will be useful later in the book.

•	 Chapter 1, Introducing Quantum Concepts, presents a history of quantum chemistry
and quantum computing, and introduces the fundamental building blocks of
nature, particles and matter, light and energy, and quantum numbers.

•	 Chapter 2, Postulates of Quantum Mechanics, gives a non-expert in quantum
physics the concepts, definitions, and notation of quantum mechanics and quantum
information theory necessary to grasp the content of this book.

•	 Chapter 3, Quantum Circuit Model of Computation, introduces the quantum
circuit model of computation and Qiskit Nature, an open-source framework
that provides tools for computing ground state energy, excited states, and dipole
moments of molecules.

•	 Chapter 4, Molecular Hamiltonians, presents the molecular Hamiltonian, modeling
the electronic structure of a molecule and fermions to qubit mappings.

•	 Chapter 5, Variational Quantum Eigensolver (VQE) Algorithm, shows a process
for solving the ground state of a molecule, focusing on the Hydrogen molecule,
illustrated with the Variational Quantum Eigensolver (VQE) algorithm using
Qiskit Nature.

•	 Chapter 6, Beyond Born-Oppenheimer, gives a glimpse of the beyond Born-
Oppenheimer approaches that have not yet been popularized.

•	 Chapter 7, Conclusion, is the opening to the next book.

•	 Chapter 8, References, provides a consolidated list of all the references given at the
end of each chapter.

•	 Chapter 9, Glossary, provides a convenient way to look up terms.

•	 Appendix A, Readying Mathematical Concepts, introduces concepts with illustrations
in Python code.

•	 Appendix B, Leveraging Jupyter Notebooks in the Cloud, explains how to use free
environments on the cloud to run the companion Jupyter notebooks we provide.

•	 Appendix C, Trademarks, lists all the trademarks of the products used in this book.

Preface xxi

To get the most out of this book
With the following software and hardware list you can access the Google Colaboratory
(Colab), which is a free Jupyter Notebook environment that runs entirely in the cloud
and provides online, shared instances of Jupyter notebooks without having to download
or install any software:

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Quantum-Chemistry-and-Computing-
for-the-Curious. If there's an update to the code, it will be updated in the
GitHub repository.

To download the full version of the companion notebooks you can scan the following QR
code or go to the provided link to download them.

https://account.packtpub.com/getfile/9781803243900/code

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://account.packtpub.com/getfile/9781803243900/code
https://github.com/PacktPublishing/

xxii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "There is no loop in a quantum circuit, but we can have a classical
loop that appends a quantum sub-circuit. In Qiskit we use the QuantumRegister class
to create a register of qubits and the QuantumCircuit class to create a quantum circuit."

A block of code is set as follows:

q = QuantumRegister(2)

qc = QuantumCircuit(q)

qc.h(q[0])

qc.cx(q[0], q[1])

qc.draw(output='mpl')

Any command-line input or output is written as follows:

Mo: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d⁴

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com

Preface xxiii

References
[ASE_0] Atomic Simulation Environment (ASE), https://wiki.fysik.dtu.dk/
ase/index.html

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Psi4_0] Psi4 manual master index, https://psicode.org/psi4manual/
master/index.html

[PyQMC] PyQMC, a python module that implements real-space quantum Monte Carlo
techniques, https://github.com/WagnerGroup/pyqmc

[PySCF] The Python-based Simulations of Chemistry Framework (PySCF), https://
pyscf.org/

[Qiskit] Qiskit, https://qiskit.org/

[Qiskit_Nat_0] Qiskit_Nature, https://github.com/Qiskit/qiskit-nature/
blob/main/README.md

[Qiskit_Nature] Introducing Qiskit Nature, Qiskit, Medium, April 6, 2021, https://
medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004

[QuTiP] QuTiP, Plotting on the Bloch Sphere, https://qutip.org/docs/latest/
guide/guide-bloch.html

[Simpy] SimPy Discrete event simulation for Python, https://simpy.
readthedocs.io/en/latest

https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://psicode.org/psi4manual/master/index.html
https://psicode.org/psi4manual/master/index.html
https://github.com/WagnerGroup/pyqmc
https://pyscf.org/
https://pyscf.org/
https://qiskit.org/
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://qutip.org/docs/latest/guide/guide-bloch.html
https://qutip.org/docs/latest/guide/guide-bloch.html
https://simpy.readthedocs.io/en/latest
https://simpy.readthedocs.io/en/latest

xxiv Preface

Share Your Thoughts
Once you've read Quantum Chemistry and Computing for the Curious, we'd love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-803-24390-2

1
Introducing

Quantum Concepts
"There are children playing in the streets who could solve some of my top
problems in physics, because they have modes of sensory perception that I

lost long ago."

– Robert J. Oppenheimer

Figure 1.1 – Girl looking at the image of an atom [Adapted from image licensed by Getty]

2 Introducing Quantum Concepts

Predicting the behavior of matter, materials, and substances not yet measured
experimentally is an exciting prospect. Modern computational tools enable you to conduct
virtual experiments on freely available resources. Understanding modern models of how
chemistry works is essential if you want to get results that match the way Nature operates.

Classical physics works fine for predicting the trajectory of a ball with Newton's law
of gravitation or the trajectory of planets around the sun. However, a more accurate
description of Nature, especially chemistry, can be found via quantum physics, which
encapsulates the postulates of quantum mechanics, the foundation of quantum
chemistry, and quantum computing. To gain the next level of understanding of chemistry
predictions, quantum chemistry algorithms need to be designed to achieve a high level of
accuracy. It is not enough to simply program approximate methods and have a quantum
computer run them to achieve higher accuracy than the same method implemented on a
classical computer.

The postulates of quantum physics are not considered laws of nature and cannot be
proven either mathematically or experimentally; rather, they are simply guidelines for the
behavior of particles and matter. Even though it took a few decades for these postulates
to be formulated and a century for them to be understood by the broader scientific
community, they remain a powerful tool for predicting the properties of matter and
particles and are the foundation of quantum chemistry and computing.

This chapter is not an exhaustive presentation of the entire history of quantum physics;
however, we will mention some of the crucial figures and introduce the topics that we
think are the most influential in the 20th century. We discuss the fundamental concepts
of particles and the composition of matter, the physical properties of light and its
behavior, plus energy and its relation to matter. We extend these concepts to present
the quantum numbers related to certain types of chemical applications and properties
that can be specifically used for the advancement of quantum computing and predicting
states of matter.

In this chapter, we will cover the following topics:

•	 Section 1.1, Understanding the history of quantum chemistry and mechanics

•	 Section 1.2, Particles and matter

•	 Section 1.3, Quantum numbers and quantization of matter

•	 Section 1.4, Light and energy

•	 Section 1.5, A brief history of quantum computation

•	 Section 1.6, Complexity theory insights

Technical requirements 3

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information.

1.1. Understanding the history of quantum
chemistry and mechanics
Knowing the development of quantum chemistry during the early part of the 20th
century is important in order to understand how the postulates of quantum mechanics
were discovered. It will also help you grasp the major approximations that have enabled
us to achieve scientific milestones. We will mention concepts that will be discussed and
described in later chapters of the book, so don't be concerned if you don't understand
what the ideas mean or imply. We want to simply start using the terminology of quantum
concepts to give some context to the five postulates of quantum mechanics presented in
the rest of the book.

Figure 1.2 – Robert J. Oppenheimer – Ed Westcott (U.S. Government photographer), Public domain, via
Wikimedia Commons

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

4 Introducing Quantum Concepts

Quantum mechanics has been a disruptive topic of conversation in the scientific
community for just over a century. The most notable controversy of quantum mechanics
is that it gave rise to the atomic bomb during World War II. Robert J. Oppenheimer
(Figure 1.2), considered the father of the atomic bomb, is also the inventor of one of the
most widely used and influential approximation to date: the Born-Oppenheimer (BO)
approximation of 1926 [Intro_BOA_1] [Intro_BOA_2]. This will be described in depth in
Chapter 6, Beyond Born-Oppenheimer. The BO approximation assumes that the motions
of the nuclei are uncoupled from the motions of the electrons and led to the formulation
of the majority of the computational techniques and software packages available to date,
including the basic design of a qubit used for quantum computing.

By the time Oppenheimer published his PhD thesis on the BO approximation with Max
Born, his academic advisor, many scientists had contributed to quantum chemistry.
The term quantum mechanics appeared for the first time in Born's 1924 paper Zur
Quantenmechanik [Born]. Quantum mechanics was formulated between 1925 and 1926
with other major contributions from the following:

1.	 Max Planck for the Planck constant and the Planck relation (Section 1.4, Light
and energy)

2.	 Louis de Broglie for the de Broglie wavelength (Section 1.3, Quantum numbers
and quantization of matter)

3.	 Werner Heisenberg for the Heisenberg uncertainty principle (Section 1.4, Light
and energy)

4.	 Erwin Schrödinger for the Schrödinger equation (Section 1.4, Light and energy)
5.	 Paul Dirac for the Dirac equation, a relativistic wave equation for fermionic systems,

and for the Dirac notation, also known as bra-ket notation (Section 1.3, Quantum
numbers and quantization of matter)

6.	 Wolfgang Pauli for the Pauli exclusion principle (Section 1.3, Quantum numbers and
quantization of matter)

These scientists attended the 5th Solvay conference on quantum mechanics (Figure 1.3)
along with other very influential scientists that are not discussed. This image captures the
first cohort of quantum scientists that had a great influence on the 20th century.

1.1. Understanding the history of quantum chemistry and mechanics 5

Figure 1.3 – Solvay Conference on quantum mechanics, 1927. Image is in the public domain

The BO approximation was a necessary development primarily because of the Pauli
exclusion principle (PEP), which was formulated in 1925. Pauli described the PEP
for electrons, and it states that it is impossible for two electrons of the same atom to
simultaneously have the same values of the following four quantum numbers: 𝑛𝑛 , the
principal quantum number; 𝑙𝑙 , the angular momentum quantum number; 𝑚𝑚𝑙𝑙 , the
magnetic quantum number; and 𝑚𝑚𝑠𝑠 , the spin quantum number. His work has been
further extended to bosonic particles. The PEP leads to a certain type of computational
complexity that initiated the necessity for the BO approximation; see Section 1.6,
Complexity theory insights for more details. We will go into the detail of quantum
quantities and describe PEP for different particle types in Section 1.3, Quantum numbers
and quantization of matter.

The rapid development by the aforementioned group of thought leaders came about with
the important groundwork laid out by their predecessors and their discoveries related to
the hydrogen atom – the simplest of all elements of the periodic table:

•	 Johan Balmer in 1885 discovered the Balmer emission line series [Balmer_series].

•	 Johannes Rydberg in 1888 generalized the Balmer equation for all transitions of
hydrogen [Chem_spectr].

6 Introducing Quantum Concepts

•	 Theodore Lyman from 1906 to 1914 discovered the Lyman series of hydrogen atom
spectral lines in the ultraviolet [Lyman_series].

•	 Friedrich Paschen in 1908 discovered the Paschen spectral lines in the infrared
band [Chem_spectr].

The structure of the hydrogen atom will be discussed in Section 1.4, Light and
energy, and outlined computationally in Chapter 5, Variational Quantum
Eigensolver (VQE) Algorithm.

The work of Johannes Rydberg led to the definition of the fundamental constant used
in spectroscopy. Rydberg worked side-by-side with Walter Ritz in 1908 to develop the
Rydberg-Ritz combination principle about the relationship between frequencies and the
spectral lines of elements [Rydberg-Ritz]. Rydberg states of atoms are used in quantum
computation, and this is discussed in Chapter 3, Quantum Circuit Model of Computation.

A year after the development of the Rydberg-Ritz combination principle, Ritz developed
a way to solve the eigenvalue problem [Rayleigh–Ritz], which is widely used today in the
field of computational chemistry and is known as the Rayleigh-Ritz variational theorem.
This method is the inspiration for the Variational Quantum Eigensolver (VQE)
discussed in detail in Chapter 5, Variational Quantum Eigensolver (VQE) Algorithm.

In conjunction with the testing of the Rayleigh-Ritz variational method mechanically by
John William Strutt, 3rd Baron Rayleigh, known for the Rayleigh scattering of light, this
method is called the Rayleigh-Ritz method even though it was written and formulated by
Ritz. In short, it allows for the approximation of the solutions to the eigenvalue problem.
His work led to the method of applying the superposition principle to approximate the
total wave function; this mathematical expansion is one of the postulates of quantum
mechanics described in Chapter 2, Postulates of Quantum Mechanics.

With a better understanding of the hydrogen atom, in 1913, Niels Bohr attempted
to describe the structure of atoms in more detail with fundamental concepts about
quantization and quantum theory [Bohr_1] [Bohr_2]. He received the Nobel Prize in
1922 for his Bohr model. In his dissertation, many articles verify, predict, and assess
very accurate Rydberg states of small atoms (Z < 7) as well as the rotational-vibrational
(rovibrational) states of small molecules. Bohr's atomic model describes the electron
energy transitions starting from the second, first, and third atom electron layers, known
as Balmer series, Lyman series, and Paschen series, and the corresponding hydrogen
emission spectrums discovered previously.

In the 1930s, Linus Pauling and Edgar Bright Wilson Jr. popularized quantum mechanics
as it is currently applied to chemistry [Pauling]. Pauling eventually received a Nobel
Prize for Chemistry in 1954, and later on, he received a Nobel Peace Prize in 1964 for his
political activism regarding quantum mechanics.

1.2. Particles and matter 7

The development of the postulates of quantum mechanics since these major contributions
has remained, in general, the same to date.

Thanks to the development of classical computers and clever computational methods,
many computational chemistry packages have been produced to further our
understanding of chemistry. Some notable methods, other than the Rayleigh-Ritz
variational theorem, are the Quantum Monte Carlo (QMC) [QMC], Hartree-Fock (HF)
method, Coupled-cluster (CC), and Density-functional theory (DFT), among others.
In this book, we will illustrate some of these methods with Python and open-source
quantum chemistry packages such as PySCF, ASE, PyQMC, Psi4, and Qiskit in
subsequent chapters.

In the late 20th century, Richard Feynman stated that quantum concepts could be
used for quantum computing [Preskill_40y]. Physicists Jonathan Dowling and Gerard
Milburn wrote in 2002 that we have entered a second quantum revolution, actively
employing quantum mechanics in quantum information, quantum sensing, quantum
communication, and analog quantum simulation [Dowling]. We will summarize the
history of quantum computation in Section 1.5, A brief history of quantum computation.
This second quantum revolution is seen as a way to overcome computational complexity
using matter and the postulates of quantum mechanics.

The question becomes: what is the purpose of implementing approximate methods in a
quantum computer? Are quantum computers supposed to help us in reaching beyond the
aforementioned methods? We intend to address these questions in this book, specifically
in Chapter 6, Beyond Born-Oppenheimer.

1.2. Particles and matter
In general, particles and matter have three unique properties that do not change: mass,
charge, and magnetic spin. For some particles, these properties can have a value of zero;
otherwise, these properties are real numbers and can be measured experimentally. Mass
can only be positive, while charge can be positive or negative.

In the following subsections, we will review elementary and composite particles, which
include both fermions and bosons. Understanding these kinds of particles is fundamental
to the understanding of quantum chemistry and the potential use of quantum computing.

8 Introducing Quantum Concepts

Elementary particles
Elementary particles are either fermions or bosons [Part_1]. The term fermion was coined
by Dirac, who was inspired by the physicist Enrico Fermi. Elementary boson particles
are part of the Standard Model [Std_model] and do not necessarily take part in quantum
chemistry, but rather fundamental physics.

The electron (𝐞𝐞−) is the primary elementary fermionic particle associated with quantum
chemistry. Electrons have a mass of 9.1093837015 x 10-31 kilograms (kg) [e_mass]
and an electric charge of negative one (-1). The size of the electron is on the order of
approximately 10-15 centimeters (cm). In most computational methods simulations,
we change the reference mass so that an electron's mass is equal to 1, making the
computation easier. There are also the muon (𝜇𝜇−) and tau (𝜏𝜏−) particles, which have a
negative one electric charge (-1) but are much heavier than the electron. The associated
antiparticles, the positron (𝑒𝑒+), antimuon (𝜇𝜇+), and antitau (𝜏𝜏+), have the same mass but
opposite electric charge (+1) to their counterparts. The standard computational model
can only handle the electron. Recent advanced scientific programs are capable of handling
electronic substitutions with muons and taus and the antiparticles.

The current view of how matter is structured is depicted in Figure 1.4, using a hydrogen
atom as the simplest example. We depict quarks in this image, but to learn more about
this, visit CERN [CERN_quark]. Please note that we have included a fuzzy electron
cloud around the nucleus and are trying to move away from the old model of an electron
following a well-defined trajectory.

Figure 1.4 – Scaling structure of the hydrogen atom [authors]

1.2. Particles and matter 9

Composite particles
The composite particles that contribute mostly to quantum chemistry and computing
are atomic nuclei, atoms, and molecules, all of which can be either fermions or bosons.
Fermion and boson particles obey the PEP, which is discussed in more detail in Section
1.3, Quantum numbers and quantization of matter.

Atomic nuclei
The building blocks of atomic nuclei are nucleons. Nucleons are protons and neutrons. A
nucleus contains one or more protons and zero or more neutrons, which are held together
by the strong nuclear force. The size of protons and neutrons is in the order of ~10-13 cm,
whereas atomic nuclei range from ~10-13 cm to about ~10-12 cm.

Protons have an electric charge of positive one (+1), which is equal in magnitude to that
of an electron and have a mass that is 1,836.15267343 times greater than the electron
[proton-electron-mass-ratio].

Neutrons have an electric charge of zero and a mass that is 1,838.68366173 times
greater than the electron [Neutron-electron-mass-ratio]. The neutron is slightly
heavier than the proton.

The number of protons in the nuclei determines the type of element in the periodic table
(Figure 1.6). The hydrogen atom is the only element that does not contain a neutron in
the nucleus. Isotopes of the elements are determined by varying the number of neutrons
within the nucleus. The isotopes for hydrogen are deuterium and tritium. Isotopes play
an important role in quantum chemistry as the quantum properties can vary. This is an
important aspect in computational chemistry as nuclear effects have an impact using the
BO approximation (covered in more detail in Chapter 6, Beyond Born-Oppenheimer).

Atoms
An atom defines the chemical properties of the bulk matter. Atoms are the combination
of atomic nuclei and the electrons that move about outside the nuclei. An atom has no
overall electric charge since the number of electrons is equal to the number of protons.
The size of atoms is of the order of ~10-8 cm. An ion is an atom with a net electric charge,
either positive or negative, acquired by losing or gaining one or more electrons. Atomic
isotopes can also lose or gain electrons and be considered ions. If an atom has gained
an electron, the atom will have a negative charge; conversely, it will become positively
charged whenit loses an electron. The size of ions can vary. A positive ion is called a
cation, and a negative ion is called an anion. Atoms, isotopes, and ions are core topics of
quantum chemistry and computing.

10 Introducing Quantum Concepts

Molecules
A molecule is the smallest unit of matter that maintains the chemical properties of a
substance. Molecules are composed of two or more atoms and/or isotopes of atoms. They
are considered the smallest building blocks of substances that maintain the chemical
properties of more than one molecule of the substance. Molecules can also be ions as they
can also lose and gain electrons. A molecule is one of the most basic units of matter.

1.3. Quantum numbers and quantization
of matter
Quantization is the concept that matter, particles, and other physical quantities, such as
charge, energy, and magnetic spin, can have only certain countable values. These certain
countable values can be either discrete or continuous variables. Discrete values are defined
as countable in a finite amount of time. Continuous values are defined as countable in
an infinite amount of time. Whether or not a quantum system is discrete or continuous
depends on the physical system or the observable quantity.

We will discuss the particles that are most associated with quantum chemistry: protons,
neutrons, electrons, and hydrogen atoms. The neutrons and protons comprise the
nucleus of atoms and are held together by the strong nuclear force, and they do not have
a measurable angular momentum quantum number within the nucleus. In contrast, free
protons and neutrons not bound within a nucleus can be in motion and then possess an
angular momentum quantum number. Within a nucleus, all the protons and neutrons
couple (or add) together with their given magnetic quantum numbers so that the nucleus
has an overall magnetic quantum number. This is also true for the spin momentum
(𝑆𝑆) quantum number for these particles, which for each is 1/2. In general, we consider
the overall magnetic and spin momentum quantum numbers of a nucleus and not the
individual protons and neutrons of the nucleus.

Electrons in an atom
The following five quantum numbers correspond to electrons in an atom:

•	 The principal quantum number, 𝑛𝑛 , describes the energy level or the electron's
position in a shell of the atom and is numbered from 1 up to the shell containing
the outermost electron of that atom. Technically, 𝑛𝑛 can range from 1 to infinity,
thus it is a continuous quantum number. However, as the electron is excited to
higher and higher values of 𝑛𝑛 , and dissociates from the atom, it is then considered
a free electron, and an ion. This process is called ionization, and 𝑛𝑛 is then
considered discrete.

1.3. Quantum numbers and quantization of matter 11

•	 The angular momentum quantum number, 𝑙𝑙 , also known as the orbital quantum
number or the azimuthal quantum number, describes the electron subshell and
gives the magnitude of the orbital angular momentum through the relation:
𝐿𝐿2 = ℏ2𝑙𝑙(𝑙𝑙 + 1) . In chemistry and spectroscopy, 𝑙𝑙 = 0 is called the 𝑠𝑠 orbital, 𝑙𝑙 = 1
the 𝑝𝑝 orbital, 𝑙𝑙 = 2 the 𝑑𝑑 orbital, and 𝑙𝑙 = 3 the 𝑓𝑓 orbital. Technically, there are more
orbitals beyond the 𝑓𝑓 orbital, that is, 𝑙𝑙 = 4 = 𝑔𝑔 , 𝑙𝑙 = 5 = ℎ , and so on, and are of
higher energy levels.

•	 The magnetic quantum number, 𝑚𝑚𝑙𝑙 , describes the electron's energy level within its
subshell and the orientation of the electron's orbital. It can take on integer values
ranging from −𝑙𝑙,… , 0,… ,+𝑙𝑙 .

•	 The spin quantum number, 𝑠𝑠 , varies for each particle type, and there is no classical
analog to describe what it is. The spin quantum number describes the intrinsic spin
momentum of a certain particle type; for the electron, it is equal to 1/2.

•	 The spin projection quantum number, 𝑚𝑚𝑠𝑠 , gives the projection of the spin
momentum 𝑠𝑠 along the specified axis as either "spin up" (+½) or "spin down" (-½)
in a given spatial direction. This direction in quantum computing is defined as
the 𝑧𝑧 -axis.

The wave function and the PEP
A wave function is a mathematical tool that describes the state, or the motion, and the
physical properties of particles and matter. This concept is the first postulate of quantum
mechanics. We will go into the details of this in Chapter 2, Postulates of Quantum
Mechanics. The variables of the wave function are the quantum numbers previously
described, as well as position and time. The PEP ensures that the full wave function for a
given system is complete and is different for fermions, bosons, and composite particles.

Fermions
In 1925, Wolfgang Pauli stated that in a single atom, no two electrons can have an
identical set of quantum numbers, 𝑛𝑛 , 𝑙𝑙 , 𝑚𝑚𝑙𝑙 , and 𝑚𝑚𝑠𝑠 . This principle was supplemented by
stating that only antisymmetric pair permutations of the electronic wave function are
allowed [Kaplan] [Dirac_2]. Antisymmetric refers to obtaining a minus sign (-) of the
wave function upon applying the permutation operator to the wave function.

12 Introducing Quantum Concepts

Bosons
The only possible states of a system of identical bosons are those for which the total wave
function is symmetric [Kaplan]. Symmetric refers to obtaining a plus sign (+) of the wave
function upon applying the permutation operator wave function.

Composite particles
The following general formulation of the PEP for all elementary particles also holds for
composite particles [Kaplan]: The only possible states of a system of identical particles
possessing spin are those for which the total wave function is symmetric for integer values
of (the Bose–Einstein statistics) and antisymmetric for half-integer values of (the Fermi–
Dirac statistics).

Dirac notation
Dirac notation is also known as bra-ket notation. The state of a quantum system, or the
wave function, is represented by a ket, |𝑥𝑥⟩ , which is a column vector of coordinates and/
or variables. The bra, ⟨𝑓𝑓| , denotes a linear function that maps each column vector to a
complex conjugate row vector. The action of the row vector ⟨𝑓𝑓| on a column vector |𝑥𝑥⟩ is
written as ⟨𝑓𝑓|𝑥𝑥⟩ . In Chapter 2, Postulates of Quantum Mechanics, we will show how Dirac
notation relates to the aforementioned quantum numbers. Dirac notation will be further
explained and illustrated in Chapter 3, Quantum Circuit Model of Computation.

1.4. Light and energy
Light and energy are fundamental to the behavior of matter. In this section, we will outline
how light and energy are related to mass, momentum, velocity, wavelength, and frequency.
We will also introduce electronic transitions of the hydrogen atom.

Planck constant and relation
In 1900, German physicist Max Planck explained the spectral-energy distribution of
radiation emitted by a black body by assuming that the radiant energy exists only in
discrete quanta that are proportional to the frequency. The Planck relation states that the
energy (𝐸𝐸) of a photon is proportional to its frequency (𝜈𝜈) and inversely proportional to
the wavelength (𝜆𝜆): 𝐸𝐸 = ℎ𝜈𝜈 = ℎ𝑐𝑐/𝜆𝜆 . ℎ is the Planck constant, ℎ = 6.62607015×10-34 Joule
x Hertz-1 (J x Hz-1), with Hertz being defined as inverse seconds (Hz = s-1), and 𝑐𝑐 is the
speed of light, which is equal to 299,792,458 meters per second (ms-1).

1.4. Light and energy 13

The de Broglie wavelength
The de Broglie wavelength formula relates the mass (𝑚𝑚), momentum (𝑝𝑝), and velocity

(𝑣𝑣) of a particle to the wavelength (𝜆𝜆): 𝜆𝜆 = ℎ
𝑝𝑝 = ℎ

𝑚𝑚𝑚𝑚 , and it is the scale at which a particle
behaves like a wave.

Heisenberg uncertainty principle
The uncertainty principle is related to the associated accuracy of measuring physical
quantities. We define the accuracy of measuring physical quantities using the standard
deviation (𝜎𝜎), or average variance of a given set of measurements. The uncertainty
principle asserts a lower bound on the accuracy for predicting certain pairs of physical
quantities of a particle from initial conditions. The more accurately you know one
quantity, the less you know about the other quantity.

For instance, momentum (𝑝𝑝) and position (𝑥𝑥) are a pair of physical quantities that follow
uncertainty such that if you know exactly where a particle is, the less you know about its
momentum. Conversely, the more you know about its momentum, the less you know
about exactly where it is.

The standard deviation of position (𝜎𝜎𝑥𝑥) and the standard deviation of momentum

(𝜎𝜎𝑝𝑝) are related by the following inequality, ≥
ℏ
2

 , where ℏ = ℎ
2𝜋𝜋 is the reduced

Planck constant.

Energy levels of atoms and molecules
Transitions between different electron energy levels in an atom, or between different
vibration or rotation energy levels in a molecule, occur by the processes of absorption,
emission, and/or stimulated emission of photons. Only when the energy of a photon
matches the exact difference in the energy between the initial and final states does a
transition occur. In an atom, the energy associated with an electron is that of its orbital.
High energy states close to when an atom is being ionized are called Rydberg states. An
atomic or molecular orbital describes the probability of finding an electron at a given
point in space in an atom or molecule. In the simplest atom, when a hydrogen atom
absorbs a photon of light, the electron jumps to a higher energy level, for example from
𝑛𝑛 = 1 to 𝑛𝑛 = 2 . Conversely, a photon is emitted when an electron jumps to a lower
energy level, for instance from 𝑛𝑛 = 3 to 𝑛𝑛 = 2 [Byjus].

14 Introducing Quantum Concepts

Hydrogen spectrum
The hydrogen spectrum has been divided into spectral lines [Chem_spectr]:

•	 T﻿he Lyman series corresponds to transitions from excited states 𝑛𝑛 > 1 to 𝑛𝑛 = 1 .
•	 The Balmer series corresponds to transitions from excited states 𝑛𝑛 > 2 to 𝑛𝑛 = 2 .

•	 The Paschen series corresponds to transitions from excited states 𝑛𝑛 > 3 to 𝑛𝑛 = 3 .
•	 The Brackett series corresponds to transitions from excited states 𝑛𝑛 > 4 to 𝑛𝑛 = 4 .

•	 The Pfund series corresponds to transitions from excited states 𝑛𝑛 > 5 to 𝑛𝑛 = 5 .

Figure 1.5 – Emission spectrum of hydrogen

1.4. Light and energy 15

Rydberg constant and formula
The Rydberg formula, also known as the Rydberg-Ritz recombination principle, calculates
the inverse of the wavelengths (𝜆𝜆) of element spectral lines [Chem_spectr]:

where 𝑅𝑅 is the Rydberg constant, 𝑍𝑍 is the atomic number, 𝑛𝑛1 is the principal quantum
number of the lower energy level, and 𝑛𝑛2 is the principal quantum number of the upper
energy level. The Rydberg constant for heavy atoms is 𝑅𝑅 = 10,973,731.568160(21)
meters−1 (m−1) [Rydberg_R].

Electron configuration
In the early 1920s, Niels Bohr and Wolfgang Pauli formulated the Aufbau principle (from
German, Aufbauprinzip, building-up principle), which states that electrons fill subshells of
the lowest energy available before filling subshells of higher energy. The Aufbau principle
is based on the Madelung rule, which states that electrons fill the orbitals in order of
increasing 𝑛𝑛 + 𝑙𝑙 such that whenever two orbitals have the same value of 𝑛𝑛 + 𝑙𝑙 , they are
filled in order of increasing 𝑛𝑛 . The symbols used for writing the electron configuration
start with the energy level 𝑛𝑛 followed by the atomic orbital letter, and finally the
superscript, which indicates how many electrons are in the orbital. For example, the
notation for phosphorus (P) is 1s² 2s² 2p⁶ 3s² 3p³.

Calculating the electron configuration of atomic elements
using the Madelung rule
The following Python program calculates the electron configuration of all elements up to
Rutherfordium (N=104) using the Madelung rule. It is derived from a program published
by Christian Hill on his website, Learning Scientific Programming with Python, Question
P2.5.12 [Hill].

1
𝜆𝜆 = 𝑅𝑅𝑍𝑍2 (1𝑛𝑛12

− 1
𝑛𝑛22
)

16 Introducing Quantum Concepts

Setting up a list of atomic symbols
The following array contains a list of atomic symbols:

atom_list = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F',
'Ne', 'Na','Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca',
'Sc', 'Ti', 'V', 'Cr', 'Mn','Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga',
'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr','Y', 'Zr', 'Nb', 'Mo',
'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb','Te', 'I',
'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu',
'Gd','Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta',
'W', 'Re', 'Os', 'Ir','Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po',
'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th','Pa', 'U', 'Np', 'Pu', 'Am',
'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No','Lr','Rf']

Setting up a list of atomic orbital letters
The following block of code initializes the list of orbitals as introduced in Section 1.3,
Quantum numbers and quantization of matter:

l_orbital = ['s', 'p', 'd', 'f', 'g']

Setting up a list of tuples in the order in which the corresponding orbitals
are filled
The following block of code initializes nl_pairs as a list of tuples that is used to
calculate the electron configuration of all atomic elements:

nl_pairs = []

for n in range(1,8):

 for l in range(n):

 nl_pairs.append((n+l, n, l))

nl_pairs.sort()

print(nl_pairs[:9])

print(nl_pairs[9:18])

print(nl_pairs[18:len(nl_pairs)])

1.4. Light and energy 17

Here's the result:

Figure 1.6 – List of tuples in the order in which the corresponding orbitals are filled

Initializing a list of orbitals and the electrons they contain
with the 1s orbital
The following block of code initializes these variables:

•	 nl_index: Index of the subshell in the nl_pairs list.

•	 n_elec: Number of electrons currently in this subshell.

•	 config: Electronic configuration, an array of arrays. In each of these arrays,
the first item is a string concatenating the energy level 𝑛𝑛 followed by the atomic
orbital letter, and the second item is the number of electrons in the orbital to be
displayed in superscript.

•	 el_config: Dictionary of electron configurations.

nl_idx, n_elec = 0, 0

n, l = 1, 0

config = [['1s', 0]]

el_config = {}

The superscript function returns an integer in superscript from 0 to 9:

def superscript(n):

 return "".join(["⁰123⁴⁵⁶⁷⁸⁹"[ord(c)-ord('0')] for c in
str(n)])

This code calculates the electronic configurations of all atomic elements:

for element in atom_list:

 n_elec += 1

 if n_elec > 2*(2*l+1):

 # This subshell is full: start a new subshell

 nl_idx += 1

 _, n, l = nl_pairs[nl_idx]

 config.append(['{}{}'.format(n, l_orbital[l]), 1])

 n_elec = 1

18 Introducing Quantum Concepts

 else:

 # Add an electron to the current subshell

 config[-1][1] += 1

 # Building configuration string from a list of orbitals and
n_elec

 el_config[element] = ' '.join(['{:2s}{:1s}'.format(e[0],

 superscript(e[1])) for e in
config])

This code prints the electronic configurations of the first five atomic elements:

for element in atom_list[:5]:

 print('{:2s}: {}'.format(element, el_config[element]))

Here's the result:

H: 1s¹

He: 1s²

Li: 1s² 2s¹

Be: 1s² 2s²

B: 1s² 2s² 2p¹

Figure 1.7 – Electronic configurations of the first five atomic elements

This code prints the electronic configuration of the element molybdenum (Mo):

element = 'Mo'

print('{:2s}: {}'.format(element, el_config[element]))

Here's the result:

Mo: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d⁴

Figure 1.8 – Electronic configuration of the element molybdenum

1.4. Light and energy 19

Schrödinger's equation
Schrödinger's equation can be used to describe the time dynamics (evolution) or static
(stationary) states of a quantum mechanical system. For time dynamics, Schrödinger's

equation is: 𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑 |𝜓𝜓⟩ = 𝐻̂𝐻|𝜓𝜓⟩ , where 𝑖𝑖 is the imaginary unit (𝑖𝑖2 = −1),

𝑑𝑑
𝑑𝑑𝑑𝑑 is the time

derivative, 𝐻̂𝐻 is the Hamiltonian operator (an observable that accounts for the total energy
of that system and is the sum of the kinetic energy and potential energy), and |𝜓𝜓⟩ is the
state vector (or wave function) of the quantum system as a function of time (𝑡𝑡). The time-
independent Schrödinger equation can be written as follows, i.e. static: 𝐻̂𝐻|𝜓𝜓⟩ = 𝐸𝐸|𝜓𝜓⟩ ,
where 𝐸𝐸 is the energy eigenvalue, and |𝜓𝜓⟩ is the state vector of the quantum system not as
a function of time.

Probability density plots of the wave functions of the
electron in a hydrogen atom
The electron configuration of an atom or a molecule is described by its orbitals based on
the quantum numbers described in Section 1.3, Quantum numbers and quantization of
matter, which can be depicted by probability clouds. Figure 1.9 shows the probability density
plots of the wave functions of the electron in a hydrogen atom at different energy levels for
principal quantum numbers up to 4. We will describe in more detail in Chapter 2, Postulates
of Quantum Mechanics, why these images look the way they do.

Figure 1.9 – Hydrogen density plots. Each plot indicates (, ,). Credit: [PoorLeno]. Image is in the
public domain

20 Introducing Quantum Concepts

The orbital approximation is a method of visualizing electron orbitals for chemical species
that have two or more electrons [Orb_Approx].

Now that we've gone through all the key concepts of quantum chemistry, you have the
foundation you need to understand how this relates to quantum computation.

1.5. A brief history of quantum computation
The first revolution was the formulation of the postulates in the early 1900s. Following the
first revolution, in 1936, Alan Turing created a theoretical model for automatic machines,
now called Turing machines, which laid the theoretical foundations of computer science.
In 1980, Paul Benioff published a paper that described a quantum mechanical model of
Turing machines [Benioff]. With this and the advancements in quantum chemistry, the
foundations were in place for quantum computers.

The first time that quantum computation was discussed within the broader scientific
community was when Richard Feynman gave a keynote lecture at a conference called
the Physics of Computation held in May 1981 at Massachusetts Institute of Technology
(MIT). This keynote lecture discussed harnessing quantum physics to build a quantum
computer [Preskill_40y]. In May 2021, on the anniversary of the conference, IBM
organized an event called QC40: Physics of Computation Conference 40th Anniversary
[QC40], celebrating the second quantum revolution.

A few decades before the first conference, in 1964 John Stewart Bell published a paper
"On the Einstein Podolsky Rosen Paradox." He proved that there are no local hidden
variables of quantum mechanics [Bell_1], an important development that paved the way
for quantum information theory, with applications in quantum computing and quantum
communication. This is the basis of using quantum advantage.

Building on these ideas for quantum computation, in 1985, David Deutsch published
a paper that laid the foundations of the quantum theory of computation. He stated
the Church–Turing–Deutsch principle, which is that a universal computing device
can simulate every physical process. He also published the Deutsch–Jozsa algorithm
with Richard Jozsa in 1992, which is the first example of a quantum algorithm that is
exponentially faster than any possible deterministic classical algorithm [Deutsch-Jozsa].

Peter Shor created a polynomial-time quantum computer algorithm for integer
factorization, which is now known as Shor's algorithm [Shor], in 1994. In 1996, Emanuel
Knill and Raymond Laflamme developed a general theory of quantum error correction
[Knill]. In 2000, David P. DiVincenzo discussed five requirements for the physical
implementation of quantum computation and two more requirements pertaining
to quantum communication [DiVincenzo]. In 2001, IBM researchers published an
experimental realization of Shor's algorithm [Vandersypen].

1.6. Complexity theory insights 21

In 2014, an article by lead author Alberto Peruzzo et al. in Nature Communications
introduced the hybrid Variational Quantum Eigensolver (VQE) algorithm for finding
an estimate of the ground state energy (lowest energy) of a molecule [VQE_1]. Please
be reminded that the variational method was mentioned in Section 1.1, Understanding
thehistory of quantum chemistry and mechanics. The IBM Quantum team used the VQE
algorithm in 2017 to simulate the ground state energy of the lithium hydride molecule
[VQE_2]. VQE algorithms are available on several platforms; for instance, Qiskit, enabling
experimentation on a variety of quantum processors and simulators, which is used in this
book. So far, at the time of this book being published, no claim has been made that a VQE
algorithm has outperformed classical supercomputers in computational chemistry based
on first principles (ab initio).

On October 23, 2019, John Martinis, Chief Scientist Quantum Hardware, and Sergio
Boixo, Chief Scientist Quantum Computing Theory, at Google AI Quantum published
the results of a quantum supremacy experiment in the Nature article Quantum Supremacy
Using a Programmable Superconducting Processor [Arute], which is a controversial claim
and suggestion. Quantum supremacy is an experimental demonstration that a quantum
computing device can perform a particular computation that no classical computer could
do in a reasonable amount of time.

In the current Noisy Intermediate-Scale Quantum (NISQ) era, an ever-increasing number
of actors from academia and industry with massive funding programs take part in the
so-called race to demonstrate a quantum advantage, either a computational speedup or a
reduction in energy costs or both. Current quantum processors have limitations such as
too few qubits and limited circuit depths. The goal is to obtain fault-tolerant devices that
may need to leverage an advanced understanding of quantum chemistry.

1.6. Complexity theory insights
Complexity theory has two important facets: one is regarding the PEP and the use of
the BO approximation, to which we dedicate part of Chapter 2, Postulates of Quantum
Mechanics; and two is the complexity of computation. This section describes the
complexity of computation as it relates to quantum systems.

22 Introducing Quantum Concepts

In his keynote lecture at the Physics of Computation Conference at MIT in 1981
[MIT_QC_1981], Richard Feynman asked the question: "Can a classical computer
simulate either a classical system or a quantum system exactly?" He also stated that the
number of computer elements required to simulate a large physical system should only
be proportional to the size of the physical system. Feynman pointed out that calculating
the probability of each of 𝑅𝑅 particles of a large quantum system being at each of 𝑁𝑁 points
require an amount of memory proportional to 𝑁𝑁𝑅𝑅 , that is, increasing exponentially with
𝑅𝑅 . His next question was whether a classical system could simulate probabilistically a
quantum system. Using Bell's theorem, which rules out local hidden variables [Bell_1]
[Bell_2], Feynman showed that the answer was again negative.

Feynman suggested that quantum systems could simulate other quantum systems and he
challenged the computer scientists to work out the classes of different kinds of quantum
mechanical systems that are intersimulatable — that is, equivalent — as has been done in
the case of classical computers [Preskill_40y]. Computational complexity theory, a field
of theoretical computer science, attempts to classify computational problems according to
their resource usage, space, and time.

In this theory, problems that can be solved in polynomial (P) time are in class P, problems
for which an answer can be verified in polynomial time are in class nondeterministic
polynomial (NP) [PvsNP], and problems for which no efficient solution algorithm has
been found and it is easy to check that a solution is correct are in class NP-complete.
For example, we do not know an efficient way to decompose a number into its prime
components, while it is easy to check that the product of prime numbers is a solution.

The question whether P = NP is in the list of seven Millennium Prize Problems [Clay].
Problems that can be solved by a quantum computer in polynomial time are in class BQP.

In his 2008 article The Limits of Quantum Computers [Aaronson_1] [Aaronson_2], Scott
Aaronson pointed out that a common mistake is to claim that, in principle, quantum
computers could solve NP-complete problems by processing every possible answer
simultaneously. We will explain in Chapter 4, Molecular Hamiltonians, that a quantum
computer can process simultaneously all possible states of a quantum register prepared
in superposition. The difficulty is to design algorithms that use quantum interference and
entanglement so that the quantum computer only gives the right answers. Scott Aaronson
also manages a list of all the complexity classes, Complexity Zoo [Comp_Zoo]. Stephen
Jordan manages a quantum algorithm zoo [Qa_Zoo].

A new discovery in complexity theory establishes why the gradient descent algorithm
cannot solve some kinds of problems quickly [Fearnley] [Daskalakis]. Training variational
quantum algorithms is an NP-hard problem [Bittel]. These results impact all variational
quantum algorithms, such as VQE, because they rely on a classical optimizer to optimize
the set of parameters of a quantum circuit.

Summary 23

Summary
Using the postulates of quantum mechanics to understand both quantum chemistry and
computing will help the next generation of scientists to predict the behavior of matter not
yet measured experimentally. This is an exciting prospect for humanity, and we hope that
the historical perspective provides a reference point for the current state of the industry
revealing new opportunities for progress. There is a circular thought process between
quantum chemistry, the use of quantum computing, and the use of both in conjunction.

Questions
Please test your understanding of the concepts presented in this chapter with the
corresponding Google Colab notebook.

1.	 What is the primary elementary fermionic particle associated with quantum
chemistry?

2.	 What value of 𝑙𝑙 (angular momentum quantum number) corresponds to a 𝑝𝑝 orbital?
3.	 What is the value of the spin quantum number 𝑠𝑠 for an electron?
4.	 Fermions obey the PEP, which means that the paired particle permutation of the

wave function must be antisymmetric. What is the sign for antisymmetry?
5.	 What is the energy of a photon whose wavelength is 486.1 nanometers?

In the International System of Units (SI):

 ℎ = 6.62607015×10-34 J x Hz-1 is the Planck constant

𝑐𝑐 = 299,792,458 (ms-1) is the speed of light

Hint: Look at the blue line in the visible spectrum of the hydrogen atom. You also
need to convert from meters to nanometers.

6.	 To which series of hydrogen atoms does the wavelength in the previous question,
486.1 nanometers, correspond? Lymer, Balmer, or Paschen?

7.	 Regarding the Rydberg formula, what is the principal quantum number n2 of the
upper energy level corresponding to this transition of 486.1 nanometers?

8.	 Provide the full electron configuration of the hydrogen element.

Enter the full electron configuration without superscript.
9.	 Provide the full electron configuration of the Nitrogen element.

24 Introducing Quantum Concepts

Answers
1.	 Electron
2.	 1
3.	 ½
4.	 -
5.	 4.086496311764922e-19
6.	 Balmer
7.	 4
8.	 1s1
9.	 1s2 2s2 2p3

References
[Aaronson_1] Scott Aaronson, The Limits of Quantum Computers, Scientific
American, March 2008, https://www.scientificamerican.com/article/
the-limits-of-quantum-computers/

[Aaronson_2] Scott Aaronson, The Limits of Quantum Computers (DRAFT), https://
www.scottaaronson.com/writings/limitsqc-draft.pdf

[Arute] Arute, F., Arya, K., Babbush, R. et al., Quantum supremacy using a
programmable superconducting processor, Nature 574, 505–510 (2019), https://doi.
org/10.1038/s41586-019-1666-5

[Balmer_series] Balmer Series, Wikipedia, https://en.wikipedia.org/wiki/
Balmer_series

[Bell_1] Bell, J. S., On the Einstein Podolsky Rosen Paradox, Physics
Physique Fizika 1, 195: 195–200, 1964, https://doi.org/10.1103/
PhysicsPhysiqueFizika.1.195

[Bell_2] "Chapter 2: On the Einstein-Podolsky-Rosen paradox". Speakable and
Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Alain
Aspect introduction to 1987 ed.), Reprinted in JS Bell (2004), Cambridge University Press.
pp. 14–21. ISBN 978-0521523387

https://www.scientificamerican.com/article/the-limits-of-quantum-computers/
https://www.scientificamerican.com/article/the-limits-of-quantum-computers/
https://www.scottaaronson.com/writings/limitsqc-draft.pdf
https://www.scottaaronson.com/writings/limitsqc-draft.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://en.wikipedia.org/wiki/Balmer_series
https://en.wikipedia.org/wiki/Balmer_series
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

References 25

[Benioff] Benioff, P., The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing machines,
https://doi.org/10.1007/BF01011339

[Bittel] Lennart Bittel and Martin Kliesch, Training variational quantum algorithms
is NP-hard — even for logarithmically many qubits and free fermionic systems,
DOI:10.1103/PhysRevLett.127.120502, 18 Jan 2021, https://doi.org/10.1103/
PhysRevLett.127.120502

[Bohr_1] N. Bohr, I., On the Constitution of Atoms and Molecules, Philosophical
Magazine, 26, 1-25 (July 1913), DOI: 10.1080/14786441308634955

[Bohr_2] Bohr's shell model, Britannica, https://www.britannica.com/
science/atom/Bohrs-shell-model#ref496660

[Born_1] Born, M., Jordan, P. Zur Quantenmechanik, Z. Physik 34, 858–888 (1925),
https://doi.org/10.1007/BF01328531

[Byjus] BYJU'S, Hydrogen spectrum, Wavelength, diagram, Hydrogen emission spectrum,
https://byjus.com/chemistry/hydrogen-spectrum/#

[CERN_quark] CERN Voyage into the world of atoms, , https://www.youtube.
com/watch?v=7WhRJV_bAiE

[Chem-periodic] Chemistry LibreTexts, 5.17: Electron Configurations and the Periodic
Table, https://chem.libretexts.org/Bookshelves/General_Chemistry/
Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_
Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_
Periodic_Table

[Chem_spectr] Chemistry LibreTexts, 7.3: The Atomic Spectrum of Hydrogen,
https://chem.libretexts.org/Courses/Solano_Community_College/
Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_
The_Atomic_Spectrum_of_Hydrogen

[Clay] Millenium problems, https://www.claymath.org/millennium-
problems

[Comp_Zoo] Complexity Zoo, https://complexityzoo.net/Complexity_Zoo

[Daskalatis] Costis Daskalakis, Equilibrium Computation & the Foundations of Deep
Learning, Costis Daskalakis on Foundation of Data Science Series, Feb 18, 2021,
https://www.youtube.com/watch?v=pDangP47ftE

https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevLett.127.120502
https://www.britannica.com/science/atom/Bohrs-shell-model#ref496660
https://www.britannica.com/science/atom/Bohrs-shell-model#ref496660
https://doi.org/10.1007/BF01328531
https://byjus.com/chemistry/hydrogen-spectrum/#
https://www.youtube.com/watch?v=7WhRJV_bAiE
https://www.youtube.com/watch?v=7WhRJV_bAiE
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems
https://complexityzoo.net/Complexity_Zoo
https://www.youtube.com/watch?v=pDangP47ftE

26 Introducing Quantum Concepts

[Deutsch-Jozsa] David Deutsch and Richard Jozsa, Rapid solutions of problems by
quantum computation, Proceedings of the Royal Society of London A. 439: 553 558,
https://doi.org/10.1098/rspa.1992.0167

[DiVincenzo] David P. DiVincenzo, The Physical Implementation of Quantum
Computation, 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E,
https://arxiv.org/abs/quant-ph/0002077

[Dirac_2] Dirac, P.A.M., The physical interpretation of the quantum dynamics, Proc. R.
Soc. Lond. A 1927, 113, 621–641, https://doi.org/10.1098/rspa.1927.0012

[Dowling] Jonathan P. Dowling and Gerard J. Milburn, Quantum technology: the second
quantum revolution, Royal Society, 20 June 2003, https://doi.org/10.1098/
rsta.2003.1227

[E_mass] fundamental physical constants, electron mass, NIST, https://physics.
nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass

[Fearnley] John Fearnley (University of Liverpool), Paul W. Goldberg (University of
Oxford), Alexandros Hollender (University of Oxford), and Rahul Savani (University
of Liverpool), The Complexity of Gradient Descent: CLS = PPAD ∩ PLS, STOC 2021:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
June 2021 Pages 46–59, https://doi.org/10.1145/3406325.3451052

[Getty] Girl looking up, https://media.gettyimages.com/photos/
you-learn-something-new-every-day-picture-id523149221?k
=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-
uYXccQwiuNKEk0hGKKIU=

[Hill] Learning Scientific Programming with Python, Chapter 2: The Core Python
Language I, Problems, P2.5, Electronic configurations, https://scipython.com/
book/chapter-2-the-core-python-language-i/questions/problems/
p25/electronic-configurations/

[Intro_BOA_1] M. Born, J.R. Oppenheimer, On the Quantum theory of molecules,
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-
translated-s-m-blinder.pdf

[Intro_BOA_2] M. Born and R. J. Oppenheimer, Zur Quantentheorie der Molekeln,
Annalen der physik, 20, 457-484 (August 1927), https://doi.org/10.1002/
andp.19273892002

[Kaplan] Ilya G. Kaplan, Modern State of the Pauli Exclusion Principle and the
Problems of Its Theoretical Foundation, Symmetry 2021, 13(1), 21, https://doi.
org/10.3390/sym13010021

https://doi.org/10.1098/rspa.1992.0167
https://arxiv.org/abs/quant-ph/0002077
https://doi.org/10.1098/rspa.1927.0012
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227
https://physics.nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass
https://physics.nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass
https://doi.org/10.1145/3406325.3451052
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-translated-s-m-blinder.pdf
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-translated-s-m-blinder.pdf
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.3390/sym13010021
https://doi.org/10.3390/sym13010021

References 27

[Knill] Emanuel Knill, Raymond Laflamme, A Theory of Quantum Error-Correcting
Codes, https://arxiv.org/abs/quant-ph/9604034

[Lyman_series] Lyman series, From Wikipedia, https://en.wikipedia.org/
wiki/Lyman_series

[MIT_QC_1981] MIT Endicott House, The Physics of Computation Conference,
Image "Physics of Computation Conference, Endicott House MIT May 6-8, 1981",
Mar 21, 2018, https://mitendicotthouse.org/physics-computation-
conference/

[Neutron-electron-mass-ratio] neutron-electron mass ratio, NIST, https://physics.
nist.gov/cgi-bin/cuu/Value?mnsme

[Orb_Approx] Definition of Orbital Approximation, https://www.chemicool.com/
definition/orbital-approximation.html

[Part_1] List of particles, Wikipedia, https://en.wikipedia.org/wiki/List_
of_particles

[Pauling] L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with
Applications to Chemistry, Dover (1935)

[PoorLeno] File:Hydrogen Density Plots.png, From Wikipedia, https://
en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png

[Preskill_40y] John Preskill, Quantum computing 40 years later, https://arxiv.org/
abs/2106.10522

[PvsNP] P and NP, www.cs.uky.edu. Archived from the original on 2016-09-19,
https://web.archive.org/web/20160919023326/http://www.cs.uky.
edu/~lewis/cs-heuristic/text/class/p-np.html

[QC40] (Livestream) QC40: Physics of Computation Conference 40th Anniversary,
https://www.youtube.com/watch?v=GR6ANm6Z0yk

[QMC] Google Quantum AI, Unbiased fermionic Quantum Monte Carlo with a
Quantum computer, Quantum Summer Symposium 2021, 30 July 2021, https://www.
youtube.com/watch?v=pTHtyKuByvw

[Qa_Zoo] Stephen Jordan, Algebraic and Number Theoretic Algorithms, https://
quantumalgorithmzoo.org/

[Rayleigh_Ritz] Rayleigh-Ritz method, Wikipedia, https://en.wikipedia.org/
wiki/Rayleigh%E2%80%93Ritz_method

https://arxiv.org/abs/quant-ph/9604034
https://en.wikipedia.org/wiki/Lyman_series
https://en.wikipedia.org/wiki/Lyman_series
https://mitendicotthouse.org/physics-computation-conference/
https://mitendicotthouse.org/physics-computation-conference/
https://physics.nist.gov/cgi-bin/cuu/Value?mnsme
https://physics.nist.gov/cgi-bin/cuu/Value?mnsme
https://www.chemicool.com/definition/orbital-approximation.html
https://www.chemicool.com/definition/orbital-approximation.html
https://en.wikipedia.org/wiki/List_of_particles
https://en.wikipedia.org/wiki/List_of_particles
https://en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png
https://en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png
https://arxiv.org/abs/2106.10522
https://arxiv.org/abs/2106.10522
https://web.archive.org/web/20160919023326/http://www.cs.uky.edu/~lewis/cs-heuristic/text/class/p-np.html
https://web.archive.org/web/20160919023326/http://www.cs.uky.edu/~lewis/cs-heuristic/text/class/p-np.html
https://www.youtube.com/watch?v=GR6ANm6Z0yk
https://www.youtube.com/watch?v=pTHtyKuByvw
https://www.youtube.com/watch?v=pTHtyKuByvw
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Ritz_method
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Ritz_method

28 Introducing Quantum Concepts

[Rydberg_R] Rydberg constant, Wikipedia, https://en.wikipedia.org/wiki/
Rydberg_constant

[Rydberg_Ritz] Rydberg-Ritz combination principle, Wikipedia, https://
en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle

[Shor] Peter Shor, The Story of Shor's Algorithm, Straight From the Source, July 2, 2021,
https://www.youtube.com/watch?v=6qD9XElTpCE

[VQE_1] Peruzzo, A., McClean, J., Shadbolt, P. et al., A variational eigenvalue solver
on a photonic quantum processor, Nat Commun 5, 4213 (2014), https://doi.
org/10.1038/ncomms5213

[VQE_2] Qiskit Nature, Ground state solvers, https://qiskit.org/
documentation/nature/tutorials/03_ground_state_solvers.html

[Vandersypen] Vandersypen, L., Steffen, M., Breyta, G. et al., Experimental realization
of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414,
883–887 (2001), https://doi.org/10.1038/414883a

https://en.wikipedia.org/wiki/Rydberg_constant
https://en.wikipedia.org/wiki/Rydberg_constant
https://en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle
https://en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle
https://www.youtube.com/watch?v=6qD9XElTpCE
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://doi.org/10.1038/414883a

2
Postulates of

Quantum Mechanics
 "The vivid force of his mind prevailed, and he fared forth far beyond the
flaming ramparts of the heavens and traversed the boundless universe in

thought and mind."

– Titus Lucretius Carus

Figure 2.1 – Titus Lucretius Carus gazing at the Milky Way galaxy [authors] built from an image of Titus
Lucretius in the public domain and an image of the Milky Way galaxy [NASA]

30 Postulates of Quantum Mechanics

In the first two books of his six-book poem De Rerum Natura (On the Nature of Things),
Titus Lucretius Carus, a Roman poet and philosopher, discusses life and love and explains
the basic principles of Epicurean physics, a Greek way of understanding the world before
Christ [Lucr_1]. He put forward the idea that matter is both active and indeterminate
[Lucr_2], a very "quantum" way of thinking to say the least.

Using an analogy of dust particles in a sunbeam, Lucretius described what is now
known as Brownian motion [Lucr_3]. He talked about matter and used concepts such as
mostly empty space to describe it. It would take more than 2 millennia for these ideas to
become widely adopted and put into the postulates of quantum mechanics. We reviewed
the milestones of the late 1800s and early 1900s that lead to the postulates of quantum
mechanics in Chapter 1, Introducing Quantum Concepts.

The five postulates of quantum mechanics are not considered the law of nature and cannot
be shown to be true, neither mathematically nor experimentally. Rather, the postulates
are simply guidelines for the behavior of particles and matter. Even though it took a few
decades for the postulates to be formulated and a century to be utilized by the broader
scientific community, the postulates remain a powerful tool for predicting the properties
of matter and particles and are the foundation of quantum chemistry and computing.

In this chapter, we will cover the following topics:

•	 Section 2.1, Postulate 1 – Wave functions

•	 Section 2.2, Postulate 2 – Probability amplitudes

•	 Section 2.3, Postulate 3 – Measurable quantities and operators

•	 Section 2.4, Postulate 4 – Time independent stationary states

•	 Section 2.5, Postulate 5 – Time evolution dynamics, Schrödinger's equation

In this chapter, we primarily focus on the significance of Postulate 1, Wave functions,
because we think that this postulate has powerful repercussions for useful innovations.
Traditionally, Postulate 1 is hard to grasp conceptually and has been a scientific challenge
to represent mathematically and artistically. We have taken active steps to overcome this
artistically, as shown in Figure 1.4 and in Figure 2.2. The other four postulates support
Postulate 1. We do not go into as much detail with these postulates as we do with Postulate
1 in this chapter; however, will be utilizing them in subsequent chapters. Readers who are
not familiar with linear algebra or with Dirac notation are invited to refer to Appendix A –
Readying Mathematical Concepts.

Technical requirements 31

Figure 2.2 – Artistic image of a hydrogen atom wave function [authors]

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information. The companion Jupyter notebook automatically installs the following
list of libraries:

•	 Numerical Python (NumPy) [NumPy], an open-source Python library that is used
in almost every field of science and engineering

•	 SymPy, [SymPy] a Python library for symbolic mathematics

•	 Qiskit [Qiskit], an open-source SDK for working with quantum computers at the
level of pulses, circuits, and application modules

•	 Qiskit visualization support to enable the use of its visualization functionality and
Jupyter notebooks

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

32 Postulates of Quantum Mechanics

Install NumPy using the following command:

pip install numpy

Install SymPy using the following command:

pip install sympy

Install Qiskit using the following command:

pip install qiskit

Install Qiskit visualization support using the following command:

pip install 'qiskit[visualization]'

Import math libraries using the following commands:

import cmath

import math

2.1. Postulate 1 – Wave functions
The total wave function describes the physical behavior of a system and is represented by
the capital Greek letter Psi: 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . It contains all the information of a quantum system and
includes complex numbers (𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖) as parameters. In general, 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a function
of all the particles in the system {1,… , 𝑖𝑖, … , 𝑁𝑁} , where the total number of particles is 𝑁𝑁 .
Furthermore, 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 includes the spatial position of each particle (𝒓𝒓𝑖𝑖 = {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖}), the spin
directional coordinates for each particle (𝒔𝒔𝑖𝑖 = {𝑠𝑠𝑥𝑥𝑖𝑖, 𝑠𝑠𝑦𝑦𝑖𝑖, 𝑠𝑠𝑧𝑧𝑖𝑖}), and time (𝑡𝑡) :

where 𝒓𝒓 and 𝒔𝒔 are vectors of single-particle coordinates:

The total wave function for a one-particle system is a product of a spatial 𝜓𝜓(𝒓𝒓1) , spin
𝜒𝜒(𝒔𝒔1) , and time 𝑓𝑓(𝑡𝑡) functions:

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓1, 𝒔𝒔1, 𝑡𝑡) = 𝜓𝜓(𝒓𝒓1) ∗ 𝜒𝜒(𝒔𝒔1) ∗ 𝑓𝑓(𝑡𝑡)

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑡𝑡)

𝒓𝒓 = {𝒓𝒓1,… , 𝒓𝒓𝑖𝑖, … , 𝒓𝒓𝑁𝑁}
𝒔𝒔 = {𝒔𝒔1,… , 𝒔𝒔𝑖𝑖, … , 𝒔𝒔𝑁𝑁}

2.1. Postulate 1 – Wave functions 33

If the wave function for a multiple-particle system cannot be factored into a product
of single-particle functions, then we consider the quantum system as entangled. If the
wave function can be factored into a product of single-particle functions, then it is not
entangled and is called a separable state. We will revisit the concept of entanglement in
Chapter 3, Quantum Circuit Model of Computation.

The spatial part of the wave function 𝜓𝜓(𝒓𝒓) can be converted from Cartesian coordinates
(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) to spherical coordinates (𝑟𝑟, 𝜃𝜃, 𝜑𝜑) where 𝑟𝑟 is the radial distance determined by the
distance formula √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 , 𝜃𝜃 is the polar angle ranging from 0 to 𝜋𝜋 (∈ [0,]),
and 𝜑𝜑 is the azimuthal angle ranging from 0 to 2𝜋𝜋 (𝜑𝜑 ∈ [0, 2𝜋𝜋]), through the
following equations:

•	 𝑥𝑥 = 𝑟𝑟 sin 𝜃𝜃 cos 𝜑𝜑

•	 𝑦𝑦 = 𝑟𝑟 sin 𝜃𝜃 sin 𝜑𝜑

•	 𝑧𝑧 = 𝑟𝑟 cos 𝜃𝜃

Figure 2.3 – Spherical coordinates [public domain]

There are certain properties of a wave function that need to be properly considered in
order to accurately represent a quantum system:

•	 Single-valued, meaning that for a given input variable there is only one
possible output

•	 Positive definite, meaning that the complex conjugate transpose of the wave
function, indicated by a dagger (†) , times the wave function itself is strictly greater
than zero: 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡† 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 0

34 Postulates of Quantum Mechanics

•	 Square integrable, meaning that the positive definite product is less than infinity

when integrated over all space (𝒓𝒓) : ∫ 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
† (𝒓𝒓)𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝒓𝒓) 𝑑𝑑𝒓𝒓

∞

−∞
< ∞ , where

𝑑𝑑𝒓𝒓 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
•	 Normalizable, meaning that a particle must exist in a volume (𝜏𝜏) and

at a point in time, that is, it must exist somewhere in all space and time:

∫ 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
† (𝒓𝒓, 𝑡𝑡)𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝒓𝒓, 𝑡𝑡) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∞

−∞
= 1 , where 𝑑𝑑𝑑𝑑 = 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

•	 Complete, meaning that all statistically important data that is needed to represent
that quantum system is available such that calculations of properties converge to a
limit, that is, a single value

For quantum chemistry applications, we will use Python code to show how to include the
spatial 𝜓𝜓(𝒓𝒓) and spin 𝜒𝜒(𝒔𝒔) functions:

•	 Section 2.1.1, Spherical harmonic functions, which are related to the quantum
numbers 𝑛𝑛, 𝑙𝑙,𝑚𝑚𝑙𝑙 and to the spatial variables 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 or 𝑟𝑟, 𝜃𝜃, 𝜑𝜑

•	 Section 2.1.2, Addition of momenta using Clebsch-Gordan (CG) coefficients, which
is for coupling multiple particles and can be applied to both orbital (𝑙𝑙,𝑚𝑚𝑙𝑙) and spin
quantum numbers (𝑠𝑠,𝑚𝑚𝑠𝑠)

•	 Section 2.1.3, The general formulation of the Pauli exclusion principle, which ensures
the proper symmetry requirements for a multiple particle system: either totally
fermionic, totally bosonic, or a combination of the two

From a machine learning perspective, there are other parameters that the wave function
can depend on. These parameters are called hyperparameters and are used to optimize the
wave function to obtain the most accurate picture of the state of interest.

2.1.1. Spherical harmonic functions
Spherical harmonic functions (𝑌𝑌𝑙𝑙

𝑚𝑚𝑙𝑙) are used to describe one-electron systems and
depend on the angular momentum (𝑙𝑙) and the magnetic quantum number (𝑚𝑚𝑙𝑙), as well as
the spatial coordinates:

and are a set of special functions defined on the surface of a sphere called the radial wave
function 𝑅𝑅(𝑟𝑟) :

𝜓𝜓𝑙𝑙𝑚𝑚𝑙𝑙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≈ 𝜓𝜓𝑙𝑙𝑚𝑚𝑙𝑙(𝑟𝑟, 𝜃𝜃, 𝜑𝜑)

𝜓𝜓𝑛𝑛𝑛𝑛𝑚𝑚𝑙𝑙(𝑟𝑟, 𝜃𝜃, 𝜑𝜑) = 𝑅𝑅(𝑟𝑟) 𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙(𝜃𝜃, 𝜑𝜑)

2.1. Postulate 1 – Wave functions 35

Since the hydrogen atom is the simplest atom, consisting of only one electron around a
single proton, in this section we will illustrate what these functions look like. Some of the
spherical harmonic functions for the hydrogen atom are shown in Figure 2.4:

Figure 2.4 – Spatial wave functions of the hydrogen atom with quantum numbers and

Recall the following:

•	 The principal quantum (𝑛𝑛) is a continuous quantum variable that ranges from 1 to
infinity such that in practice, due to ionization, it becomes a discrete variable.

•	 The angular momentum quantum number (𝑙𝑙) is contained in the discrete set
determined: 𝑙𝑙 ∈ {0,… , 𝑛𝑛 − 1} .

•	 The magnetic quantum number (𝑚𝑚𝑙𝑙) is contained in the discrete set determined by
the angular momentum quantum number (𝑙𝑙): 𝑚𝑚𝑙𝑙 ∈ {−𝑙𝑙, … , 0,… , 𝑙𝑙}.

36 Postulates of Quantum Mechanics

The spherical harmonic functions, 𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙(𝜃𝜃, 𝜑𝜑) , can be split into a product of

three functions:

𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙(𝜃𝜃, 𝜑𝜑) = 𝐴𝐴(𝑙𝑙, 𝑚𝑚𝑙𝑙) 𝑃𝑃𝑙𝑙

𝑚𝑚𝑙𝑙(cos 𝜃𝜃) 𝑆𝑆𝑚𝑚𝑙𝑙(𝜑𝜑) ,

where 𝐴𝐴(𝑙𝑙,𝑚𝑚𝑙𝑙) is a constant that depends only on the quantum numbers (𝑙𝑙,𝑚𝑚𝑙𝑙) ,
𝑃𝑃𝑙𝑙

𝑚𝑚𝑙𝑙(cos 𝜃𝜃) is a polar function, also known as the associated Legendre polynomial
functions, which can be a complex function if the angular momentum (𝑙𝑙) is positive or
negative, and 𝑆𝑆𝑚𝑚𝑙𝑙(𝜑𝜑) = 𝑒𝑒𝑖𝑖𝑚𝑚𝑙𝑙𝜑𝜑 is a complex exponential azimuthal function. To illustrate
spherical harmonic functions, we use the following code, which computes them [SciPy_
sph], then casts them into the following real functions [Sph_Real]:

and finally displays these real functions in three dimensions with Python's Matplotlib
module. Let's now implement this in Python.

Importing NumPy, SciPy, and Matplotlib Python modules
The following Python statements import the required NumPy, SciPy, and
Matplotlib modules:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

from scipy.special import sph_harm

Setting-up grids of polar (theta − 𝜽𝜽) and azimuthal (phi −) angles
We define a function called setup_grid() that creates a grid of polar coordinates and
the corresponding cartesian coordinates with the following Python functions:

•	 numpy.linspace: Returns evenly spaced numbers over a specified interval

•	 numpy.meshgrid: Returns coordinate matrices from coordinate vectors

The setup_grid() function has one input parameter, num, which is a positive integer
that is the number of distinct values of polar coordinates.

𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙 = {

√2 (−1)𝑚𝑚𝑙𝑙 𝐼𝐼𝐼𝐼 [𝑌𝑌𝑙𝑙
|𝑚𝑚𝑙𝑙|] , 𝑚𝑚𝑙𝑙 < 0

𝑌𝑌𝑙𝑙
0, 𝑚𝑚𝑙𝑙 = 0

√2 (−1)𝑚𝑚𝑙𝑙 𝑅𝑅𝑅𝑅 [𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙], 𝑚𝑚𝑙𝑙 > 0

2.1. Postulate 1 – Wave functions 37

It returns the following:

•	 theta, phi: Two-dimensional NumPy arrays of shape num x num

•	 xyz: Three-dimensional NumPy array of shape (3,num,num)

def setup_grid(num=100):

 theta = np.linspace(0, np.pi, num)

 phi = np.linspace(0, 2*np.pi, num)

 # Create a 2D meshgrid from two 1D arrays of theta, phi
coordinates

 theta, phi = np.meshgrid(theta, phi)

 # Compute cartesian coordinates with radius r = 1

 xyz = np.array([np.sin(theta) * np.sin(phi),

 np.sin(theta) * np.cos(phi),

 np.cos(theta)])

 return (theta, phi, xyz)

Let's check the shape of the NumPy arrays returned by setup_grid():

(theta, phi, xyz) = setup_grid()

print("Shape of meshgrid arrays, theta: {}, phi: {}, xyz: {}".
format(theta.shape, phi.shape, xyz.shape))

Here's the output:

Shape of meshgrid arrays, theta: (100, 100), phi: (100, 100),
xyz: (3, 100, 100)

Coloring the plotted surface of the real functions of the spherical
harmonic function (Y)
We define a function called colour_plot() that colors the plotted surface of the real
functions of the spherical harmonic 𝑌𝑌𝑙𝑙

𝑚𝑚𝑙𝑙 according to the sign of its real part, 𝑅𝑅𝑅𝑅 [𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙] . It

has the following input parameters:

•	 ax: A three-dimensional Matplotlib figure

•	 Y: A spherical harmonic function

•	 Yx,Yy,Yz: Cartesian coordinates of the plotted surface of the spherical
harmonic function

38 Postulates of Quantum Mechanics

•	 cmap: A built-in colormap accessible via the matplotlib.cm.get_cmap
function [Cmap], for instance, autumn, cool, spring, and winter:

def colour_plot(ax, Y, Yx, Yy, Yz, cmap):

 # Colour the plotted surface according to the sign of Y.real

 # https://matplotlib.org/stable/gallery/mplot3d/surface3d.
html?highlight=surface%20plots

 # https://matplotlib.org/stable/tutorials/colors/
colormaps.html

 cmap = plt.cm.ScalarMappable(cmap=plt.get_cmap(cmap))

 cmap.set_clim(-0.5, 0.5)

 ax.plot_surface(Yx, Yy, Yz,

 facecolors=cmap.to_rgba(Y.real),

 rstride=2, cstride=2)

 return

Defining a function that plots a set of x, y, z axes and sets the title of
a figure
We define a function called draw_axes() that plots the axes of a Matplotlib figure and
sets a title. It has three input parameters:

1.	 ax: A three-dimensional Matplotlib figure
2.	 ax_lim: A positive real number that controls the size of the plotted surface
3.	 title: A string of characters that will be shown as the title of the output figure:

def draw_axes(ax, ax_lim, title):

 ax.plot([-ax_lim, ax_lim], [0,0], [0,0], c='0.5', lw=1,
zorder=10)

 ax.plot([0,0], [-ax_lim, ax_lim], [0,0], c='0.5', lw=1,
zorder=10)

 ax.plot([0,0], [0,0], [-ax_lim, ax_lim], c='0.5', lw=1,
zorder=10)

 # Set the limits, set the title and then turn off the axes
frame

 ax.set_title(title)

 ax.set_xlim(-ax_lim, ax_lim)

 ax.set_ylim(-ax_lim, ax_lim)

2.1. Postulate 1 – Wave functions 39

 ax.set_zlim(-ax_lim, ax_lim)

 ax.axis('off')

 return

Defining a function that computes the real form of the spherical
harmonic function (Y)
Please be cautious in this part of the code because SciPy defines theta (𝜃𝜃) as the azimuthal
angle and phi (𝜑𝜑) as the polar angle [SciPy_sph], which is opposite of the standard
definitions used for plotting.

The comb_Y() function takes the following input parameters:

•	 l: Angular momentum quantum number

•	 m: Magnetic quantum number 𝑚𝑚𝑙𝑙

•	 theta, phi: Two-dimensional NumPy arrays of shape num x num

It returns the real form of the spherical harmonic function 𝑌𝑌𝑙𝑙
𝑚𝑚𝑙𝑙 presented earlier:

def comb_Y(l, m, theta, phi):

 Y = sph_harm(abs(m), l, phi, theta)

 if m < 0:

 Y = np.sqrt(2) * (-1)**m * Y.imag

 elif m > 0:

 Y = np.sqrt(2) * (-1)**m * Y.real

 return Y

Defining a function that displays the spatial wave functions for a
range of values of the angular momentum quantum number and
the magnetic quantum number
The following function displays spatial wave functions for 𝑙𝑙 in range [0,], where 𝑘𝑘 is a
parameter and 𝑚𝑚𝑙𝑙 is in range [− ,] as illustrated in the following code for the hydrogen
atom in states = 0, = 1, = 2:

def plot_orbitals(k, cmap = 'autumn'):

 for l in range(0, k+1):

 for m in range(-l, l+1):

 fig = plt.figure(figsize=plt.figaspect(1.))

 (theta, phi, xyz) = setup_grid()

40 Postulates of Quantum Mechanics

 ax = fig.add_subplot(projection='3d')

 Y = comb_Y(l, m, theta, phi)

 title = r'$l={{{}}}, m={{{}}}$'.format(l, m)

 Yx, Yy, Yz = np.abs(Y) * xyz

 colour_plot(ax, Y, Yx, Yy, Yz, cmap)

 draw_axes(ax, 0.5, title)

 fig_name = 'Hydrogen_l'+str(l)+'_m'+str(m)

 plt.savefig(fig_name)

 plt.show()

 return

Spatial wave functions of the hydrogen atom
The spatial wave functions for the one electron of the hydrogen atom in states

= 0, = 1, = 2 , and 𝑚𝑚𝑙𝑙 in range [− ,] are computed and displayed with the plot_
orbitals Python function defined earlier:

plot_orbitals(2)

The result is shown in Figure 2.4.

Questions to consider
What happens to the spherical harmonic functions when we have more than one electron,
that is, in heavier elements? How do these functions operate or change? For instance, what
happens when there are three electrons with non-zero angular momentum, as in the case
with the nitrogen atom?

To accomplish this kind of complexity and variability, we need to add or couple angular
momentum using Clebsch-Gordon (CG) coefficients, as presented in Section 2.1.2,
Addition of momenta using CG coefficients.

2.1.2. Addition of momenta using CG coefficients
The addition or coupling of two momenta (𝑗𝑗1 and 𝑗𝑗2) along with the associated
projections (𝑚𝑚𝑗𝑗1 and 𝑚𝑚𝑗𝑗2) is described by the summation of two initial state wave
functions |𝑗𝑗1,𝑚𝑚𝑗𝑗1⟩ and |𝑗𝑗2,𝑚𝑚𝑗𝑗2⟩ over the possible or allowed quantum numbers:

|𝑗𝑗1,2, 𝑚𝑚𝑗𝑗1,2⟩ = ∑ ⟨𝑗𝑗1, 𝑚𝑚𝑗𝑗1, 𝑗𝑗2, 𝑚𝑚𝑗𝑗2|𝑗𝑗1,2, 𝑚𝑚𝑗𝑗1,2⟩|𝑗𝑗1, 𝑚𝑚𝑗𝑗1⟩|𝑗𝑗2, 𝑚𝑚𝑗𝑗2⟩
𝑗𝑗1, 𝑗𝑗2

𝑚𝑚𝑗𝑗1=−𝑗𝑗1, 𝑚𝑚𝑗𝑗2=−𝑗𝑗2

2.1. Postulate 1 – Wave functions 41

to a final state wave function of choice |𝑗𝑗1,2,𝑚𝑚𝑗𝑗1,2⟩ . Yes, we can choose the final state as
we please, if we follow the rules of vector addition. The CG coefficients are the expansion
coefficients of coupled total angular momentum in an uncoupled tensor product basis:

𝐶𝐶𝑗𝑗1,𝑚𝑚𝑗𝑗1,𝑗𝑗2,𝑚𝑚𝑗𝑗2

𝑗𝑗1,2,𝑚𝑚𝑗𝑗1,2 = ⟨𝑗𝑗1, 𝑚𝑚𝑗𝑗1, 𝑗𝑗2, 𝑚𝑚𝑗𝑗2|𝑗𝑗1,2, 𝑚𝑚𝑗𝑗1,2⟩

We use a generic 𝑗𝑗 and 𝑚𝑚𝑗𝑗 to represent a formula where either angular (𝑙𝑙 and 𝑚𝑚𝑙𝑙) and/
or spin (𝑠𝑠 and 𝑚𝑚𝑠𝑠) momentum can be coupled together. We can couple angular momenta
only, or spin momenta only, or the two together. The addition is accomplished by knowing
the allowed values for the quantum numbers.

Using CG coefficients with Python SymPy
The Python SymPy library [SymPy_CG] implements the formula with the CG class
as follows.

Class (1, 1 , 2, 2 , 1,2, 1,2) has the following parameters:

•	 1, 1 : Angular momentum and the projection of state 1

•	 2, 2 : Angular momentum the projection of state 2

•	 1,2, 1,2 : Total angular momentum of the coupled system

Importing the SymPy CG coefficients module
The following statements import the SymPy CG coefficients module:

import sympy

from sympy import S

from sympy.physics.quantum.cg import CG, cg_simp

Defining a CG coefficient and evaluating its value
We can couple two electrons (fermions) in a spin paired state in two different
ways: symmetric or antisymmetric. We denote spin up in the 𝑧𝑧 direction as

|𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩ =↑ and spin down in the 𝑧𝑧 direction as |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 = −12⟩ =↓ .

We can also couple spin states with angular momentum states. When coupling angular
momentum (𝑙𝑙) with spin (𝑠𝑠), we change the notation to 𝑗𝑗 . We go through these three
examples next.

42 Postulates of Quantum Mechanics

Fermionic spin pairing to symmetric state (𝒔𝒔𝟏𝟏,𝟐𝟐 = 𝟏𝟏,𝒎𝒎𝒔𝒔𝟏𝟏,𝟐𝟐 = 𝟎𝟎)
The coupling of the symmetric spin paired state is |𝑠𝑠1,2 = 1,𝑚𝑚𝑠𝑠1,2 = 0⟩ and is described
by the following equation:

|𝑠𝑠1,2 = 1,𝑚𝑚𝑠𝑠1,2 = 0⟩ =
⟨𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2 , 𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12 |𝑠𝑠1,2 = 1,𝑚𝑚𝑠𝑠1,2 = 0⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩

+⟨𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 = −12 , 𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2 |𝑠𝑠1,2 = 1,𝑚𝑚𝑠𝑠1,2 = 0⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 = −12⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩

Using the following code, we obtain the CG coefficients for the preceding equation:

CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 1, 0).doit()

CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 1, 0).doit()

Here's the result:

Figure 2.5 – Defining a CG coefficient and evaluating its value

Plugging in the CG coefficients as well as the up-spin and down-spin functions, we get
this:

|𝑠𝑠1,2 = 1,𝑚𝑚𝑠𝑠1,2 = 0⟩

= 1
√2

{|𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩ + |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 = −12⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩}

|𝑠𝑠1,2 = 1, 𝑚𝑚𝑠𝑠1,2 = 0⟩ = 1
√2

{↑↓ + ↓↑}

Fermionic spin pairing to antisymmetric state (𝒔𝒔𝟏𝟏,𝟐𝟐 = 𝟎𝟎,𝒎𝒎𝒔𝒔𝟏𝟏,𝟐𝟐 = 𝟎𝟎)
The coupling of the antisymmetric spin paired state, |𝑠𝑠1,2 = 0,𝑚𝑚𝑠𝑠1,2 = 0⟩ , is described by
the following equation:

|𝑠𝑠1,2 = 0,𝑚𝑚𝑠𝑠1,2 = 0⟩ =

⟨𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 =

1
2 , 𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12 |𝑠𝑠1,2 = 0,𝑚𝑚𝑠𝑠1,2 = 0⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩

+⟨𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 = −12 , 𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2 |𝑠𝑠1,2 = 0,𝑚𝑚𝑠𝑠1,2 = 0⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 = −12⟩ |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩

2.1. Postulate 1 – Wave functions 43

Using the following code, we obtain the CG coefficients for the preceding equation:

CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 0, 0).doit()

CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 0, 0).doit()

Here's the result:

Figure 2.6 – Defining a CG coefficient and evaluating its value

Plugging in the CG coefficients as well as the up-spin and down-spin functions,
we get the following:

|𝑠𝑠1,2 = 0,𝑚𝑚𝑠𝑠1,2 = 0⟩

= 1
√2

{|𝑠𝑠1 =
1
2 ,𝑚𝑚𝑠𝑠1 =

1
2⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩ − |𝑠𝑠1 =

1
2 ,𝑚𝑚𝑠𝑠1 = −12⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩}

|𝑠𝑠1,2 = 0, 𝑚𝑚𝑠𝑠1,2 = 0⟩ = 1
√2

{↑↓ − ↓↑}

Coupling spin and angular momentum (𝒋𝒋𝟏𝟏,𝟐𝟐 =
𝟏𝟏
𝟐𝟐 , 𝒋𝒋𝒔𝒔𝟏𝟏,𝟐𝟐 =

𝟏𝟏
𝟐𝟐)

Let's couple together angular momenta with 𝑙𝑙1 = 1 and 1 = {1, 0, −1} to a fermionic

spin state 𝑠𝑠2 =
1
2 and 𝑚𝑚𝑠𝑠2 = {1

2 , − 12} for a final state of choice of |𝑗𝑗1,2 =
1
2 , 𝑗𝑗𝑠𝑠1,2 =

1
2⟩ :

|𝑗𝑗1,2 =
1
2 , 𝑗𝑗𝑠𝑠1,2 =

1
2⟩ =

⟨𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 0, 𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 =

1
2 |𝑗𝑗1,2 =

1
2 ,𝑚𝑚𝑗𝑗1,2 =

1
2⟩ |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 0⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩

+⟨𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 1, 𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 = −12 |𝑗𝑗1,2 =

1
2 ,𝑚𝑚𝑗𝑗1,2 =

1
2⟩ |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 1⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩

+⟨𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = −1, 𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 =

1
2 |𝑗𝑗1,2 =

1
2 ,𝑚𝑚𝑗𝑗1,2 =

1
2⟩ |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = −1⟩ |𝑠𝑠2 =

1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩.

The CG coefficients of this equation are calculated using the following code:

CG(1, 0, S(1)/2, S(1)/2, S(1)/2, S(1)/2).doit()

CG(1, 1, S(1)/2, -S(1)/2, S(1)/2, S(1)/2).doit()

CG(1, -1, S(1)/2, S(1)/2, S(1)/2, S(1)/2).doit()

44 Postulates of Quantum Mechanics

Here's the result:

Figure 2.7 – Defining a CG coefficient and evaluating its value

Plugging the result of the preceding code into the formula, we obtain the following:

Now, we reduce this and plug in the up-spin and down-spin functions:

|𝑗𝑗1,2 =
1
2 , 𝑗𝑗𝑠𝑠1,2 =

1
2⟩ =

√3
3 {−|𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 0⟩ ↑ +√2|𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 1⟩ ↓}.

In the last step, we plugged in the spherical harmonic functions for the following:

•	 |𝑙𝑙1 = 1, 𝑚𝑚𝑙𝑙1 = 0⟩ = 1
2

√3
√𝜋𝜋

cos 𝜃𝜃

•	 |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 1⟩ = −12
√3
√2𝜋𝜋

𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃

In doing so, we obtain this:

|𝑗𝑗1,2 = 1
2 , 𝑗𝑗𝑠𝑠1,2 = 1

2⟩ = − √3
3 {1

2
√3
√𝜋𝜋

cos 𝜃𝜃 ↑ + √2
2

√3
√2𝜋𝜋

𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 ↓} = − 1
2

1
√𝜋𝜋

{cos 𝜃𝜃 ↑ +𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 ↓}.

Then we can drop the factor of −
1
2
1
√𝜋𝜋

 , as it is a global factor, so that the final state
is as follows:

|𝑗𝑗1,2 = 1
2 , 𝑗𝑗𝑠𝑠1,2 = 1

2⟩ = {cos 𝜃𝜃 ↑ +𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 ↓}.

|𝑗𝑗1,2 =
1
2 , 𝑗𝑗𝑠𝑠1,2 =

1
2⟩ =

−√33 |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 0⟩ |𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩

+√63 |𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = 1⟩ |𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 = −12⟩

+0|𝑙𝑙1 = 1,𝑚𝑚𝑙𝑙1 = −1⟩ |𝑠𝑠2 =
1
2 ,𝑚𝑚𝑠𝑠2 =

1
2⟩.

2.1. Postulate 1 – Wave functions 45

Some of you might recognize this function as a qubit wave function for computing
without including time dependence. In fact, for the state of a qubit, we change the up
arrow (↑) to ket 0 (|0⟩) to indicate the magnetic projection of zero (𝑚𝑚𝑙𝑙1 = 0), and likewise
for the down arrow (↓) to ket 1 (|1⟩) to indicate the magnetic projection of zero (𝑚𝑚1 = 1).
With this, we have the following:

We cover this topic in more detail in Chapter 3, Quantum Circuit Model of Computation.

Spatial wave functions of different states of the nitrogen atom with
three p electrons
Now we would like to illustrate the wave function of the nitrogen atom with three 𝑝𝑝
electrons [Sharkey_0]. We chose this system because we are coupling more than two
non-zero momentum vectors by expressing its coupled total momentum in an uncoupled
tensor product basis of each electron [Phys5250]. This means that we assumed the wave
function is not entangled. We must apply the addition of angular momenta formula
twice (recursively) so that we have all the combinations of coupling with the final state of
choice. The different shapes of the spatial wave function of the nitrogen atom with three 𝑝𝑝
electrons are shown here:

Figure 2.8 – Spatial wave functions of different states of the nitrogen atom with three 𝑝𝑝 electrons

|𝑗𝑗1,2 = 1
2 , 𝑗𝑗𝑠𝑠1,2 = 1

2⟩ = {cos 𝜃𝜃 |0⟩ + 𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 |1⟩}.

46 Postulates of Quantum Mechanics

We will go through the example for the final state of𝐿𝐿 = 0 , 𝑀𝑀 = 0 .

Spatial wave function of the ground state of the nitrogen atom
with 3 𝒑𝒑 electrons in 𝑳𝑳 = 𝟎𝟎 , 𝑴𝑴 = 𝟎𝟎
Electrons are fermions, and therefore they cannot occupy the same set of quantum
numbers. Because we are working with three 𝑝𝑝 electrons, the orbital angular momentum
(𝑙𝑙) for each electron is as follows:

𝑙𝑙1 = 1, 𝑙𝑙2 = 1, and 𝑙𝑙3 = 1, .
This couples with the final momentum state of 𝑙𝑙123(𝐿𝐿) = 0. The allowable set of magnetic
momenta (𝑚𝑚𝑙𝑙) for each electron is as follows:

𝑚𝑚𝑙𝑙1 = {1,0, −1}, 𝑚𝑚𝑙𝑙2 = {1,0, −1}, and 𝑚𝑚𝑙𝑙3 = {1,0, −1} ,
and the final coupled magnetic projection state is:

To accomplish this type of coupling of three momenta, we must apply the addition of
angular momenta formula twice (recursively) so that we have all the combinations of
coupling with the final state, | = 0, = 0⟩.

Each electron is in the same shell or principal quantum number (𝑛𝑛) level; however, each
is in a different subshell (𝑚𝑚𝑙𝑙) and has a spin of either up or down. For this example, the
spin state is irrelevant, and we are choosing to not include it. Since these electrons are
in different subshells, that means they cannot have the same combination of quantum
numbers (𝑙𝑙 and 𝑚𝑚𝑙𝑙):

Figure 2.9 – Electron configurations of = 0, = 0

𝑚𝑚𝑙𝑙123(𝑀𝑀) = 0

2.1. Postulate 1 – Wave functions 47

Setting up a dictionary of six configuration tuples
Each tuple contains 𝑙𝑙1,𝑚𝑚𝑙𝑙1, 𝑙𝑙2,𝑚𝑚𝑙𝑙2, 𝑙𝑙12,𝑚𝑚𝑙𝑙12, 𝑙𝑙3,𝑚𝑚𝑙𝑙3, 𝑙𝑙123(𝐿𝐿),𝑚𝑚123(𝑀𝑀) , where 𝑙𝑙12,𝑚𝑚𝑙𝑙12 is
the first coupling from electron 1 with 2, and , 𝑙𝑙123(𝐿𝐿),𝑚𝑚123(𝑀𝑀) is the second coupling of
electrons 1 and 2 with 3:

T00 = {0: (1,-1, 1,0, 1,-1, 1,1, 0,0),

 1: (1,-1, 1,1, 1,0, 1,0, 0,0),

 2: (1,0, 1,-1, 1,-1, 1,1, 0,0),

 3: (1,0, 1,1, 1,1, 1,-1, 0,0),

 4: (1,1, 1,-1, 1,0, 1,0, 0,0),

 5: (1,1, 1,0, 1,1, 1,-1, 0,0)}

Defining a function that computes a product of CG coefficients
The comp_CG() function has the following input parameters:

•	 : Dictionary of configuration tuples

•	 : Index of the array in the dictionary

•	 : None by default, set to True to display the computation

It returns the following product of CG coefficients pertaining to the entry 𝑘𝑘 :

•	 (1, 1, 2, 2, 12, 12) ∗ (12, 12, 3, 3, 123(), 123())

def comp_CG(T, k, display = None):

 CGk = CG(*T[k][0:6]) * CG(*T[k][4:10])

 if display:

 print('CG(', *T[k][0:6], ') = ', CG(*T[k][0:6]).doit())

 print('CG(', *T[k][4:10], ') = ', CG(*T[k][4:10]).doit())

 print("CG{} =".format(k), 'CG(', *T[k][0:6], ') * CG(',
*T[k][4:10], ') = ', CGk.doit())

 return CGk

For instance, for 𝑇𝑇 = 𝑇𝑇00 and 𝑘𝑘 = 0 with the display option set to True,
use the following:

CG0 = comp_CG(T00, 0, display=True)

48 Postulates of Quantum Mechanics

We get the following detailed output:

Figure 2.10 – Output of comp_CG for the first entry in the T00 dictionary

Computing and printing the CG coefficients
The following Python code calls the comp_CG() function for each entry in the T00
dictionary and prints the result of the computation of the CG coefficients:

for k in range(0, len(T00)):

 s = 'CG' + str(k) +' = comp_CG(T00, ' + str(k) + ')'

 exec(s)

s00 = ["CG0: {}, CG1: {}, CG2: {}, CG3: {}, CG4: {}, CG5: {}".

 format(CG0.doit(), CG1.doit(), CG2.doit(), CG3.doit(),
CG4.doit(), CG5.doit())]

print(s00)

Here's the result:

Figure 2.11 – CG coefficients for computing the ground state of the nitrogen atom with three 𝒑𝒑 electrons
(= 0, = 0)

Defining a set of spatial wave functions
Since electrons in the same orbital repel one another, we define a set of spatial wave
functions, adding a phase of 𝜋𝜋/3 and 2 𝜋𝜋/3 in the wave functions of the second and third
electron respectively:

def Y_phase(theta, phi):

 Y10a = comb_Y(1, 0, theta, phi)

 Y11a = comb_Y(1, 1, theta, phi)

 Y1m1a = comb_Y(1, -1, theta, phi)

 Y10b = comb_Y(1, 0, theta, phi+1*np.pi/3)

 Y11b = comb_Y(1, 1, theta, phi+1*np.pi/3)

 Y1m1b = comb_Y(1, -1, theta, phi+1*np.pi/3)

 Y10c = comb_Y(1, 0, theta, phi+2*np.pi/3)

 Y11c = comb_Y(1, 1, theta, phi+2*np.pi/3)

2.1. Postulate 1 – Wave functions 49

 Y1m1c = comb_Y(1, -1, theta, phi+2*np.pi/3)

 return(Y10a, Y11a, Y1m1a, Y10b, Y11b, Y1m1b, Y10c, Y11c,
Y1m1c)

Computing the wave function of the Nitrogen atom with three 𝒑𝒑 electrons
(𝑳𝑳 = 𝟎𝟎 , 𝑴𝑴 = 𝟎𝟎)
We compute the wave function as a sum of the products of the wave functions defined
previously:

def compute_00_Y(ax_lim, cmap, title, fig_name):

 fig = plt.figure(figsize=plt.figaspect(1.))

 (theta, phi, xyz) = setup_grid()

 ax = fig.add_subplot(projection='3d')

 (Y10a, Y11a, Y1m1a, Y10b, Y11b, Y1m1b, Y10c, Y11c, Y1m1c) =
Y_phase(theta, phi)

 Y_00 = float(CG0.doit()) * Y1m1a * Y10b * Y11c

 Y_01 = float(CG1.doit()) * Y1m1a * Y11b * Y10c

 Y_02 = float(CG2.doit()) * Y10a * Y1m1b * Y11c

 Y_03 = float(CG3.doit()) * Y10a * Y11b * Y1m1c

 Y_04 = float(CG4.doit()) * Y11a * Y1m1b * Y10c

 Y_05 = float(CG5.doit()) * Y11a * Y10b * Y1m1c

 Y = Y_00 + Y_01 + Y_02 + Y_03 + Y_04 + Y_05

 Yx, Yy, Yz = np.abs(Y) * xyz

 colour_plot(ax, Y, Yx, Yy, Yz, cmap)

 draw_axes(ax, ax_lim, title)

 plt.savefig(fig_name)

 plt.show()

 return

Displaying the wave function of the ground state of the nitrogen atom
with three 𝒑𝒑 electrons (𝑳𝑳 = 𝟎𝟎 , 𝑴𝑴 = 𝟎𝟎)
We now show the graphical representation of the spherical harmonic function for the
ground state of the nitrogen atom with three 𝑝𝑝 electrons:

title = '$Nitrogen\ with\ 3p\ electrons\ (L=0,\ M=0)$'

fig_name ='Nitrogen_3p_L0_M0.png'

compute_00_Y(0.01, 'autumn', title, fig_name)

50 Postulates of Quantum Mechanics

Here's the result:

Figure 2.12 – Spatial wave function of the ground state of the nitrogen atom with three electrons
(= 0, = 0)

2.1.3. General formulation of the
Pauli exclusion principle

Remember that fermions are particles that have half-integer spin (𝑠𝑠 =
1
2 ,
3
2 ,
5
2 , …) and

bosons are particles that have integer spin (𝑠𝑠 = 0,1,2,…). The general formulation of
the PEP states the total wave function 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for a quantum system must have certain
symmetries for all sets of identical particles, that is, electrons and identical nuclei, both
boson and fermions, under the operation of pair particle permutation [Bubin]:

•	 For fermions, the total wave function must be antisymmetric (−) with respect to the
exchange of identical pair particles (𝐴̂𝐴𝑖𝑖𝑖𝑖) :
𝐴̂𝐴𝑖𝑖𝑖𝑖𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
meaning that the spatial part of the wave function is antisymmetric while the spin
part is symmetric, or vice versa.

•	 For bosons, the total wave function must be symmetric (+) with respect to the
exchange of pair particles (𝑆̂𝑆𝑖𝑖𝑖𝑖):

𝑆̂𝑆𝑖𝑖𝑖𝑖𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = +𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2.1. Postulate 1 – Wave functions 51

meaning that both the spatial wave function and spin function are symmetric, or
both are antisymmetric.

•	 For composite systems with both identical fermions and identical bosons, the
preceding operations must hold true simultaneously.

In general, the symmetrizer and antisymmetrizer operations combined for a given
quantum system are referred to as the projection operator (𝑌̂𝑌) . The total wave function
(𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑡𝑡)) , including the PEP, is then written as:

For a given quantum system, the projection operator that satisfies the PEP is obtained as
a product of the antisymmetrizer and the symmetrizer, 𝑌̂𝑌 = 𝑆̂𝑆𝐴̂𝐴 , and strictly in this order,
not 𝑌̂𝑌 = 𝐴̂𝐴𝑆̂𝑆 . Making this mistake in a calculation will result in incorrect operations.

The projection operator (𝑌̂𝑌) can be expressed as a linear combination:

where the index 𝑖𝑖 indicates a particular order of particles in a set of possible orders, 𝑃𝑃𝑖𝑖
is the permutation associated with a particular order, an associated expansion coefficient
𝑎𝑎𝑖𝑖 , and 𝑛𝑛 is the total number of identical particles. This equation is dependent on a
factorial (!) relation of permutations, making this a non-deterministic polynomial time
hard (NP-hard) computation. Please note that you cannot add and subtract operations,
you can only combine like terms. As the system grows larger in the number of identical
particles, the complexity increases exponentially, making this an NP-hard calculation.

The process of determining the symmetrizer (𝑆̂𝑆𝑖𝑖𝑖𝑖) and antisymmetrizer(𝐴̂𝐴𝑖𝑖𝑖𝑖) for the
projection operation to apply PEP to a given quantum system is as follows:

•	 Identify all sets of identical particles 𝑛𝑛 , that is, electrons and nuclei, and fermions
and bosons. Please do not confuse this 𝑛𝑛 for the identical number of particles with
the principal quantum number 𝑛𝑛 as we are using the same notation.

•	 Build a partition function for positive integers. Remember we only have a positive
count of particles, not a negative count. A partition of a positive integer 𝑛𝑛 is a
sequence of positive integers (𝑝𝑝1, 𝑝𝑝2,… , 𝑝𝑝𝑙𝑙) such that 𝑝𝑝1 ≥ 𝑝𝑝2 ≥ … ≥ 𝑝𝑝𝑙𝑙 and
𝑝𝑝1 + 𝑝𝑝2 + ⋯ + 𝑝𝑝𝑙𝑙 = 𝑛𝑛 , where 𝑙𝑙 is the last possible integer for the set.

•	 Then use the partition to build a Young frame. A Young frame (diagram) is a series
of connected boxes organized in rows that are left-aligned and arranged so that
every row contains an equal or lower number of boxes than the row above it.

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑡𝑡) = 𝑌̂𝑌𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑡𝑡)

𝑌̂𝑌 = ∑ 𝑎𝑎𝑖𝑖

𝑛𝑛!

𝑖𝑖=1
𝑃̂𝑃𝑖𝑖

52 Postulates of Quantum Mechanics

The totally symmetric irreducible representation of a system with 𝑛𝑛 identical bosons is a
vertical Young tableau of 𝑛𝑛 boxes. The totally antisymmetric irreducible representation
of a system with 𝑛𝑛 identical fermions and total quantum spin (𝑠𝑠) , is a horizontal Young
tableau of 𝑛𝑛 boxes. We calculate the symmetry quantum (𝑝𝑝) number as:

𝑝𝑝 = |𝑛𝑛2 − 𝑠𝑠|

The partition function (μ) describes how to build a Young frame. There are two boxes in
the first 𝑝𝑝 rows and one box in the remaining 𝑛𝑛 − 2𝑝𝑝 rows, which we write as follows:

Please note that the superscripts are not exponents. The convention for filling the numbers
in the boxes is increasing from left to right, and second increasing from top to bottom.
Here are some examples of how to put together the Young frame:

•	 When there are two identical boson particles (𝑛𝑛 = 2) with total spin 𝑠𝑠 = 0 , the
symmetry quantum number is 𝑝𝑝 = 1 , the partition function is μ = [2110] , and the
corresponding Young frames is:

Figure 2.13 – Young frame for the partition function μ = [2110]
This Young frame corresponds to a totally symmetric operation.

•	 When there are two identical boson particles with total spin 𝑠𝑠 = 2 , the symmetry
quantum number is 𝑝𝑝 = 1 , the partition function is μ = [2110] , and the
corresponding Young frame is the same as the previous Young frame.

•	 When there are two identical fermion particles with total spin 𝑠𝑠 = 0 , the
symmetry quantum number is 𝑝𝑝 = 1 , the partition function is μ = [2110] , and the
corresponding Young frame is the same as the previous Young frame. We use this
state in Section 2.2.2, Probability amplitude for a hydrogen anion (H−) .

•	 When there are two identical fermion particles with total spin 𝑠𝑠 = 1 , the
symmetry quantum number is 𝑝𝑝 = 0 , the partition function is μ = [2012] , and the
corresponding Young frame is as follows:

Figure 2.14 – Young frame for the partition function μ = [2012]

μ = [2𝑝𝑝1𝑛𝑛−2𝑝𝑝]

2.1. Postulate 1 – Wave functions 53

This Young frame corresponds to a totally antisymmetric operation.

•	 When there are three identical fermion particles (𝑛𝑛 = 3), with the total spin 𝑠𝑠 =
1
2 ,

that is, two paired electrons and one lone electron, the symmetry quantum number
is 𝑝𝑝 = 1 , the partition function is μ = [2111] , and the corresponding Young frame
is as follows:

Figure 2.15 – Young frame for the partition function μ = [2111]

This Young frame corresponds to both symmetric and antisymmetric operations
combined.

•	 When there are three identical fermion particles (𝑛𝑛 = 3), with the total spin 𝑠𝑠 = 3
2

, that is, three unpaired electrons, the symmetry quantum number is 𝑝𝑝 = 0 , the
partition function is μ = [2013] , and the corresponding Young frame is as follows:

Figure 2.16 – Young frame for the partition function μ = [2013]

•	 For the four electrons in lithium hydride (LiH), with spin pairing (𝑠𝑠 = 0), the
symmetry quantum number 𝑝𝑝 = 2 , the partition is 𝜇𝜇 = [2210] , and we have the
following Young frame:

Figure 2.17 – Young frame for the partition function μ = [2210]

In this example, since the nucleus is the only particle of its kind, we do not include it in
the numbering of the set.

54 Postulates of Quantum Mechanics

We can generalize the Young frame for fermions, bosons, and composite systems as shown
in Figure 2.18.

Figure 2.18 – Young frames for fermions, bosons, and composite systems [authors]

The frame() function creates a Young frame given a partition as input:

•	 mu: This partition is represented as a dictionary whose keys are the partition
integers and the values are the multiplicity of that integer. For example, [2110] is
represented as {2: 1, 1:0}.

It returns a Young frame as follows:

•	 f: A dictionary of lists whose keys are the index of the lines starting from 0
and the values are the list of integers in the corresponding line. For example,
{0: [1,2], 1: [3]} represents the Young frame Figure 2.15 where the first line
contains 1,2 and the second line 3:

def frame(mu):

 a = 0

 b = 0

 f = {}

 for k, v in mu.items():

 for c in range(v):

 f[a] = list(range(b+1, b+k+1))

2.1. Postulate 1 – Wave functions 55

 a += 1

 b += k

 return f

Let's run the frame() function with μ = [2110] :

print("F_21_10 =", frame({2: 1, 1:0}))

Here is the result:

F_21_10 = {0: [1], 1: [2]}

Let's run the frame() function with μ = [2111] :

print("F_21_11 =", frame{2: 1, 1:1}))

Here is the result:

Now we are ready to define the antisymmetrizer (𝐴̂𝐴) and symmetrizer (𝑆̂𝑆) operations for
many particles in the system that are governed by the Young frame we determined. The
antisymmetrizer operator (𝐴𝐴) for the rows of the Young frame is:

where 𝛿𝛿 is positive for odd permutations and negative for even permutations. An odd
permutation has an antisymmetric permutation matrix. An even permutation has a
symmetric permutation matrix. We also define a symmetrizer operator (𝑆̂𝑆) for the
columns of the Young frame:

Recall that the projection operator is then the product: 𝑌𝑌 = 𝑆𝑆𝑆𝑆 .

For the example of the four electrons in LiH, with spin pairing (𝑠𝑠 = 0), we derive the
following operators from Figure 2.17:

F_21_11 = {0: [1,2], 1: [3]}

𝐴̂𝐴 = ∏ ∑ 𝛿𝛿𝑃̂𝑃𝑖𝑖

𝑛𝑛!

𝑖𝑖=1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑆̂𝑆 = ∏ ∑ 𝛿𝛿𝑃̂𝑃𝑖𝑖

𝑛𝑛!

𝑖𝑖=1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐴̂𝐴 = { [𝟙𝟙 − 𝑃̂𝑃12] [𝟙𝟙 − 𝑃̂𝑃34] }

𝑆̂𝑆 = { [𝟙𝟙 + 𝑃̂𝑃13] [𝟙𝟙 + 𝑃̂𝑃24] }

56 Postulates of Quantum Mechanics

where 𝑃̂𝑃𝑎𝑎𝑎𝑎 : is the permutation of particles 𝑎𝑎 and 𝑏𝑏 , and 𝟙𝟙 is the Identity operator.

The projection operator is computed using the rules of distributivity and multiplication
of permutations:

With this, we will move on to Section 2.2, Postulate 2 – Probability amplitude, where we
will revisit the PEP in an example calculation.

2.2. Postulate 2 – Probability amplitude
Consider the motion of a particle in the position space where 𝒓𝒓 is the position vector. The
probability density of finding the particle at a particular position and at a given instant in
time is calculated as a function of position: ||𝜓𝜓(𝒓𝒓)⟩|2 . In an orthonormal basis, the inner
product of two wave functions measures their overlap. Two wave functions are orthogonal
if their inner product is zero. To find the probability that a state |𝜓𝜓(𝒓𝒓)⟩ will be found in
the state |𝑒𝑒𝑖𝑖⟩ upon measurement, we must compute the magnitude squared of the inner
product between state |𝜓𝜓(𝒓𝒓)⟩ and |𝑒𝑒𝑖𝑖⟩ , 𝜃𝜃𝑖𝑖 = |⟨𝜓𝜓(𝒓𝒓)|𝑒𝑒𝑖𝑖⟩|2 .

The wave function in space for a multiparticle system is |𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)⟩ , with 𝑁𝑁 being the
total number of particles, which is interpreted as the probability amplitude function at
a given point in time using the following integration over the volume element 𝑑𝑑𝜏𝜏𝑖𝑖 for all
particles in the system {1,… , 𝑖𝑖, … , 𝑁𝑁} :

𝑌̂𝑌 = 𝑆̂𝑆𝐴̂𝐴 = [𝟙𝟙 + 𝑃̂𝑃13 + 𝑃̂𝑃24 + 𝑃̂𝑃13𝑃̂𝑃24][𝟙𝟙 − 𝑃̂𝑃12 − 𝑃̂𝑃34 + 𝑃̂𝑃12𝑃̂𝑃34]
𝑌̂𝑌 = 𝑆̂𝑆𝐴̂𝐴 =

𝟙𝟙 − 𝑃̂𝑃12 − 𝑃̂𝑃34 + 𝑃̂𝑃12𝑃̂𝑃34
+𝑃̂𝑃13 − 𝑃̂𝑃13𝑃̂𝑃12 − 𝑃̂𝑃13𝑃̂𝑃34 + 𝑃̂𝑃13𝑃̂𝑃12𝑃̂𝑃34

+𝑃̂𝑃24 − 𝑃̂𝑃24𝑃̂𝑃12 − 𝑃̂𝑃24𝑃̂𝑃34 + 𝑃̂𝑃24𝑃̂𝑃12𝑃̂𝑃34
+𝑃̂𝑃13𝑃̂𝑃24 − 𝑃̂𝑃13𝑃̂𝑃24𝑃̂𝑃12 − 𝑃̂𝑃13𝑃̂𝑃24𝑃̂𝑃34 + 𝑃̂𝑃13𝑃̂𝑃24𝑃̂𝑃12𝑃̂𝑃34

⟨𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)|𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)⟩
= ∫𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)†𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1𝑑𝑑𝑧𝑧1 …𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑦𝑦𝑁𝑁𝑑𝑑𝑧𝑧𝑁𝑁

= ∫ ∫ ∫ …∫ ∫ ∫ 𝜓𝜓(𝑟𝑟1,… , 𝑟𝑟𝑁𝑁)†𝑌̂𝑌†𝑌̂𝑌𝜓𝜓(𝑟𝑟1,… , 𝑟𝑟𝑁𝑁)𝑟𝑟12 sin 𝜃𝜃1𝑑𝑑𝑟𝑟1𝑑𝑑𝜃𝜃1𝑑𝑑𝜑𝜑1 …𝑟𝑟𝑁𝑁2 sin 𝜃𝜃𝑁𝑁𝑑𝑑𝑟𝑟𝑁𝑁𝑑𝑑𝜃𝜃𝑁𝑁𝑑𝑑𝜑𝜑𝑁𝑁
2𝜋𝜋

0

𝜋𝜋

0

∞

0

2𝜋𝜋

0

𝜋𝜋

0

∞

0

2.2. Postulate 2 – Probability amplitude 57

Please note we converted from Cartesian coordinates to spherical coordinates. In
this setup, we can include spherical harmonic functions coupled together using CG
coefficients that we discussed in the previous section in the wave function 𝑌̂𝑌𝜓𝜓(𝑟𝑟1,… , 𝑟𝑟𝑁𝑁) .
We will also need to include the radial wave functions. We describe how to determine the
radial wave functions in Section 2.2.1, Computing the radial wave functions, and then go
through an example of how to calculate the probability amplitude for a specific quantum
chemistry system in Section 2.2.2, Probability amplitude for a hydrogen anion (H−) .

2.2.1. Computing the radial wave functions
The radial wave functions for hydrogen-like systems are given by:

where 𝜌𝜌 is calculated by:

with 𝑎𝑎0 being the Bohr radius set equal to the Committee on Data of the International
Science Council (CODATA) value in SI units, and the coefficients 𝑎𝑎𝑘𝑘+1 are defined by the
following recursion relation:

for which the series terminates at 𝑘𝑘 = 𝑛𝑛 − 𝑙𝑙 − 1 . We initialize 𝑎𝑎0 with the following
Python code:

a0 = 5.29177210903e-11

The comp_ak() function has the following input parameters:

•	 n: Integer, principal quantum number

•	 l: Angular momentum quantum number with values ranging from 0 to 𝑛𝑛 − 1

•	 a0: Bohr radius, defined by 𝑎𝑎0 =
ℏ

𝛼𝛼𝛼𝛼𝛼𝛼 = 5.29177210903 × 10−11 , where 𝛼𝛼 is the
fine structure constant, 𝑐𝑐 is the speed of light, and 𝑚𝑚 is the rest mass of the electron

•	 ak: Coefficient defined by the preceding recursion relation

𝑅𝑅(𝜌𝜌) = 𝜌𝜌𝑙𝑙 ∑ 𝑎𝑎𝑘𝑘
𝑛𝑛−𝑙𝑙−1

𝑘𝑘=0
𝜌𝜌𝑘𝑘𝑒𝑒−𝜌𝜌 2⁄

𝜌𝜌 = 2𝑍𝑍
𝑛𝑛𝑎𝑎0

𝑟𝑟

𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘(𝑘𝑘 + 𝑙𝑙 + 1 − 𝑛𝑛)/((𝑘𝑘 + 1)(𝑘𝑘 + 2𝑙𝑙 + 2))

58 Postulates of Quantum Mechanics

It returns a dictionary whose keys are integers 𝑘𝑘 and values are the corresponding
coefficients 𝑎𝑎𝑘𝑘 :

def comp_ak(n):

 n = max(n,1)

 # Create a dictionary with integer keys, starting with a0

 dict = {0: a0}

 for l in range (n-1):

 for k in range(n-l-1):

 ak = dict.get(k)

 #display("l: {}, k: {}, ak: {}".format(l, k, ak))

 dict[k+1] = ak*(k+l+1-n)/((k+1)*(k+2*l+2))

 return dict

Let's get the first ten coefficients:

d = comp_ak(10)

for k, v in d.items():

 print("{}, {}".format(k,v))

Here is the result:

Figure 2.19 – Coefficients that appear in the radial wave functions

Import the SymPy functions:

from sympy.physics.hydrogen import R_nl

from sympy.abc import r, Z

2.2. Postulate 2 – Probability amplitude 59

The sympy.physics.hydrogen.Rnl(n,l,r,Z=1) function returns the hydrogen
radial wave function 𝑅𝑅𝑛𝑛𝑛𝑛 [SymPy_Rnl]. It has the following input parameters:

•	 n: Integer, principal quantum number

•	 l: Angular momentum quantum number with values ranging from 0 to n−1

•	 r: Radial coordinate

•	 Z: Atomic number (or nuclear charge: 1 for hydrogen, 2 for helium, and so on)

Let's try it first with 𝑛𝑛 = 1, 𝑙𝑙 = 0 :

R_nl(1, 0, r, Z)

Here's is the result:

Next with 𝑛𝑛 = 2, 𝑙𝑙 = 0 :

R_nl(2, 0, r, Z)

Here's is the result:
√2
4 (−𝑍𝑍𝑍𝑍 + 2)√𝑍𝑍3𝑒𝑒−𝑍𝑍𝑍𝑍 2⁄

Last with 𝑛𝑛 = 2, 𝑙𝑙 = 1 :

R_nl(2, 1, r, Z)

Here's is the result:
√6
12 𝑍𝑍𝑍𝑍√𝑍𝑍

3𝑒𝑒−𝑍𝑍𝑍𝑍 2⁄

2.2.2. Probability amplitude for a hydrogen anion (H−)
Let's calculate the probability amplitude at time 𝑡𝑡 = 𝑡𝑡0 for a hydrogen anion, also called
hydride, with one proton and two electrons in a spin paired ground state.This example is
for illustration purposes only, and is not meant to be a rigorous calculation.

2√𝑍𝑍3𝑒𝑒−𝑍𝑍𝑍𝑍

60 Postulates of Quantum Mechanics

We label the two electrons as particles 1 and 2 and choose the state where the electronic
angular momentum for each electron is 𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0, 𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0 , and are coupled
to the final or total momenta state of 𝐽𝐽 = 0,𝑀𝑀 = 0 , where 𝐽𝐽 is the coupling between the
angular momentum and the spin momentum. For simplicity, we assume that this system
is not entangled.

We will denote the wave function with the PEP operation (𝑌̂𝑌) as:

𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)

where the spatial function is symmetric, and the spin function is antisymmetric:

𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) = 𝐶𝐶𝐶𝐶1 × |𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0⟩|𝑠𝑠12 = 0, 𝑠𝑠𝑙𝑙12 = 0⟩

with 𝐶𝐶𝐶𝐶1 , the CG coefficient, equal to:

Recall that we derived the antisymmetric spin state |𝑠𝑠12 = 0, 𝑠𝑠𝑙𝑙12 = 0⟩ in Section 2.1.2,
Fermionic spin pairing to symmetric state (1,2 = 0, 1,2 = 0), therefore we won't redo
this calculation; we will simply reuse the result:

𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) = (√2 2⁄) |𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0⟩{↑↓ −↓↑}

Next, we illustrate the coupling of the angular momentum spatial function for the
symmetric spatial state |𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0⟩ :

|𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0⟩ = 𝐶𝐶𝐶𝐶2 ×|𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0⟩|𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0⟩

with the CG coefficient 𝐶𝐶𝐶𝐶2 equal to:

𝐶𝐶𝐶𝐶2 = ⟨𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0, 𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0; 𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0|𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0, 𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0⟩ = 1

Now we plug this into the wave function:

𝐶𝐶𝐶𝐶1 = ⟨𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0, 𝑠𝑠12 = 0,𝑚𝑚𝑠𝑠12 = 0; 𝑗𝑗 = 0,𝑚𝑚𝑗𝑗 = 0|𝑙𝑙12 = 0,𝑚𝑚𝑙𝑙12 = 0, 𝑠𝑠12 = 0,𝑚𝑚𝑠𝑠12 = 0⟩ = 1

𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) =

(√2 2⁄) |𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0⟩|𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0⟩ × {↑↓ −↓↑}

2.2. Postulate 2 – Probability amplitude 61

Next, we will be using the following spherical harmonic functions:

And the radial wave function for each electron with the nuclear charge for the proton of
𝑍𝑍 = 1 , as determined in Section 2.2.1, Computing the radial wave functions:

𝑅𝑅(𝑛𝑛2 = 1, 𝑙𝑙2 = 0) = 2𝑒𝑒−𝑟𝑟2

The wave function for the ground state of hydride is:

The probability amplitude is calculated by determining the square of the wave function:

The integral over spin is equal to 1 due to the fact that the spin functions are normalized,
resulting in:

|𝑙𝑙1 = 0,𝑚𝑚𝑙𝑙1 = 0⟩ = 𝑌𝑌00(𝜃𝜃1,𝜑𝜑1) =
1
2
√1
𝜋𝜋

|𝑙𝑙2 = 0,𝑚𝑚𝑙𝑙2 = 0⟩ = 𝑌𝑌00(𝜃𝜃2,𝜑𝜑2) =
1
2
√1
𝜋𝜋

𝑅𝑅(𝑛𝑛1 = 1, 𝑙𝑙1 = 0) = 2𝑒𝑒−𝑟𝑟1

𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) = (√22𝜋𝜋)𝑒𝑒
−𝑟𝑟1𝑒𝑒−𝑟𝑟2{↑↓ −↓↑}

⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)|𝑌̂𝑌†𝑌̂𝑌|𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)⟩ =

(1
2𝜋𝜋2)∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1

+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin 𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

×∫{↑↓ −↓↑}2𝑑𝑑𝒔𝒔𝟏𝟏𝑑𝑑𝒔𝒔𝟐𝟐

⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)|𝑌̂𝑌†𝑌̂𝑌|𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)⟩ =

(1
2𝜋𝜋2)∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1

+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin 𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

62 Postulates of Quantum Mechanics

Next, we include the PEP, where we calculate 𝑌̂𝑌†𝑌̂𝑌 = 𝐴̂𝐴†𝑆̂𝑆𝐴̂𝐴 . Recall that we derived 𝑌̂𝑌 for
two fermions in an antisymmetric spin state as |𝑠𝑠12 = 0, 𝑠𝑠𝑙𝑙12 = 0⟩ , as shown in Figure
2.13. The operation results in a factor of 2 :

⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)|[𝟙𝟙 + 𝑃̂𝑃12]|𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0)⟩ =

The integral over 𝑟𝑟1 and 𝑟𝑟2 is equal to 1 4⁄ , illustrated with the following SymPy code:

from sympy import symbols, integrate, exp, oo

x = symbols('x')

integrate(x**2 *exp(-2*x),(x,0,oo))

Here is the result:

1
4

The integrals over 𝜃𝜃1 and 𝜃𝜃2 are equal to 2 , illustrated with the following SymPy code:

from sympy import symbols, sin, pi

x = symbols('x')

integrate(sin(x),(x,0,pi))

Here is the result:

The integrals over 𝜑𝜑1 and 𝜑𝜑2 are equal to 2𝜋𝜋 , illustrated with the following SymPy code:

integrate(1,(x,0,2*pi))

Here is the result:

2𝜋𝜋
Combining all the results, the probability amplitude is equal to 1:

(1𝜋𝜋2)∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1
+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin 𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin 𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

2

⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)|𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)⟩ = 1

2.3. Postulate 3 – Measurable quantities and operators 63

Now we can move on to the rest of the postulates. Examples of these postulates will be
illustrated in the following chapters of the book. As a result, we have not included code
for these postulates in this chapter. We revisit this topic expectation value in Section 3.1.9,
Pauli matrices.

2.3. Postulate 3 – Measurable quantities
and operators
A physically observable quantity of a quantum system is represented by a linear Hermitian
operator, which implies that a measurement outcome is always a real value, not a complex
number. The real values of the measurement are the eigenvalues of the Hermitian operator
that describes it. The eigenvalue is the constant factor that is produced by an operation.

For a spectrum of an observable, if it's discrete, the possible results are quantized. We
determine the measurable quantity by calculating the expectation value of the observable
𝑂̂𝑂 in a state |𝜓𝜓⟩ as follows:

〈𝑂̂𝑂〉𝜓𝜓 = ⟨𝜓𝜓|𝑂̂𝑂|𝜓𝜓⟩ = ∫ 𝜓𝜓∗(𝑥𝑥)𝑂̂𝑂
∞

−∞
𝜓𝜓(𝑥𝑥)𝑑𝑑𝑑𝑑

It is the sum of all the possible outcomes of a measurement of a state |𝜓𝜓⟩ weighted by their
probabilities. Furthermore, the state of a quantum mechanical system can be represented
by the inner product of a given distance called a Hilbert space. A definition of a Hilbert
space is given in Appendix A – Readying Mathematical Concepts. This definition of a
state space implies the superposition principle of quantum mechanics, which is a linear
combination of all real or complex basis functions (|𝜓𝜓⟩𝑘𝑘) :

where 𝑘𝑘 is the index of summation, 𝐾𝐾 is the total number of basis functions to obtain
convergence and completeness of the wave function, and 𝑐𝑐𝑘𝑘 is the linear expansion
coefficient, which can be real or complex numbers. Plugging the superposition principle
into the definition of the expectation value, we obtain the following equation:

|𝜓𝜓⟩ =∑𝑐𝑐𝑘𝑘
𝐾𝐾

𝑘𝑘=1
|𝜓𝜓⟩𝑘𝑘

〈𝑂̂𝑂〉𝜓𝜓 = ⟨𝜓𝜓|𝑂̂𝑂|𝜓𝜓⟩ = ∑ ∑ 𝑐𝑐𝑘𝑘†𝑐𝑐𝑘𝑘′ ∫ 𝜓𝜓𝑘𝑘†
∞

−∞
𝑌̂𝑌†𝑂̂𝑂𝑌̂𝑌𝜓𝜓𝑘𝑘′

𝐾𝐾

𝑘𝑘′=1

𝐾𝐾

𝑘𝑘=1
𝑑𝑑𝑑𝑑

64 Postulates of Quantum Mechanics

where we have also included the PEP. We will use the superposition principle in
subsequent chapters. In this section, we present common operators and calculate the
expectation value for a given system:

•	 Section 2.3.1, Hermitian operator

•	 Section 2.3.2, Unitary operator

•	 Section 2.3.3, Density matrix and mixed quantum states

•	 Section 2.3.4, Position operation with the position operators

•	 Section 2.3.5, Momentum operation with the momentum operators(̂ , ̂ , ̂)

•	 Section 2.3.6, Kinetic energy operation with the kinetic energy operators

•	 Section 2.3.7, Potential energy operation with the potential energy operators

•	 Section 2.3.8, Total energy operation with total energy operators

The measurable quantum quantities are derived from the classical counterparts.

2.3.1. Hermitian operator
The complex conjugate transpose of some vector 𝑎𝑎 or matrix 𝐴𝐴 often is denoted as 𝑎𝑎† and
𝐴𝐴† in quantum mechanics. The symbol † is called the dagger. 𝐴𝐴† is called the adjoint or
Hermitian conjugate of 𝐴𝐴 .

A linear operator 𝑈𝑈 is called Hermitian or self-adjoint if it is its own adjoint: 𝑈𝑈† = 𝑈𝑈 .

The spectral theorem says that if 𝑈𝑈 is Hermitian then it must have a set of orthonormal
eigenvectors:

where 𝛿𝛿𝑗𝑗𝑗𝑗 = {0, 𝑖𝑖 ≠ 𝑗𝑗
1, 𝑖𝑖 = 𝑗𝑗 with real eigenvalues 𝜆𝜆𝑖𝑖 , 𝑈𝑈|𝑒𝑒𝑖𝑖⟩ = 𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩ , and 𝑁𝑁 is the number

of eigenvectors, and also is the dimension of the Hilbert space. Hermitian operators
have a unique spectral representation in terms of the set of eigenvalues {𝜆𝜆𝑖𝑖} and the
corresponding eigenvectors |𝑒𝑒𝑖𝑖⟩ :

We revisit this topic in Section 2.3.3, Density matrix and mixed quantum states.

{|𝑒𝑒𝑖𝑖⟩ ; 𝑖𝑖 ∈ [1,𝑁𝑁], ⟨𝑒𝑒𝑖𝑖|𝑒𝑒𝑗𝑗⟩ = 𝛿𝛿𝑗𝑗𝑗𝑗}

𝑈𝑈 =∑𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩⟨𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

2.3. Postulate 3 – Measurable quantities and operators 65

Writing matrices as a sum of outer products
The outer product of a ket |𝑥𝑥⟩ and a bra ⟨𝑦𝑦| is the rank-one operator |𝑥𝑥⟩⟨𝑦𝑦| with the rule:

(|𝑥𝑥⟩⟨𝑦𝑦|)(𝑧𝑧) = ⟨𝑦𝑦|𝑧𝑧⟩|𝑥𝑥⟩

The outer product of a ket |𝑥𝑥⟩ and a bra ⟨𝑦𝑦| is a simple matrix multiplication:

Any matrix can be written in terms of outer products. For instance, for a 2 x 2 matrix:

|0⟩⟨0| = (1
0) (1 0) = (1 0

0 0)

|1⟩⟨1| = (0
1) (0 1) = (0 0

0 1)

|0⟩⟨1| = (1
0) (0 1) = (0 1

0 0)

|1⟩⟨0| = (0
1) (1 0) = (0 0

1 0)

We will be using these matrices in Chapter 3, Quantum Circuit Model of Computation,
Section 3.1.6, Pauli matrices.

2.3.2. Unitary operator
A linear operator 𝑈𝑈 is called unitary if its adjoint exists and satisfies 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙 ,
where 𝟙𝟙 is the identity matrix, which by definition leaves any vector it is multiplied by
unchanged.

Unitary operators preserve inner products:

Hence unitary operators also preserve the norm commonly known as the length of
quantum states:

For any unitary matrix 𝑈𝑈 , any eigenvectors |𝑥𝑥⟩ and |𝑦𝑦⟩ and their eigenvalues 𝜆𝜆𝑥𝑥 and 𝜆𝜆𝑦𝑦 ,
𝑈𝑈|𝑥𝑥⟩ = 𝜆𝜆𝑥𝑥|𝑥𝑥⟩ and 𝑈𝑈|𝑦𝑦⟩ = 𝜆𝜆𝑦𝑦|𝑦𝑦⟩ , the eigenvalues 𝜆𝜆𝑥𝑥 and 𝜆𝜆𝑦𝑦 have the form 𝑒𝑒𝑖𝑖𝑖𝑖 and if
𝜆𝜆𝑥𝑥 ≠ 𝜆𝜆𝑦𝑦 then the eigenvectors |𝑥𝑥⟩ and |𝑦𝑦⟩ are orthogonal: ⟨𝑥𝑥|𝑦𝑦⟩ = 0 .

|𝑥𝑥⟩⟨𝑦𝑦| ≝ (
𝑥𝑥1
𝑥𝑥2
…
𝑥𝑥𝑛𝑛

) (𝑦𝑦1
∗, 𝑦𝑦2

∗, … 𝑦𝑦𝑛𝑛
∗) = (

𝑥𝑥1𝑦𝑦1
∗ 𝑥𝑥1𝑦𝑦2

∗ … 𝑥𝑥1𝑦𝑦𝑛𝑛
∗

𝑥𝑥2𝑦𝑦1
∗ 𝑥𝑥2𝑦𝑦2

∗ … 𝑥𝑥2𝑦𝑦𝑛𝑛
∗

… … … …
𝑥𝑥𝑛𝑛𝑦𝑦1

∗ 𝑥𝑥𝑛𝑛𝑦𝑦2
∗ … 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛

∗
)

𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) = 𝑚𝑚0,0|0⟩⟨0| + 𝑚𝑚0,1|0⟩⟨1| +𝑚𝑚1,0|1⟩⟨0| + 𝑚𝑚1,1|1⟩⟨1|

⟨𝑈𝑈𝑈𝑈|𝑈𝑈𝑈𝑈⟩ = ⟨𝑥𝑥|𝑈𝑈†𝑈𝑈|𝑦𝑦⟩ = ⟨𝑥𝑥|𝟙𝟙|𝑦𝑦⟩ = ⟨𝑥𝑥|𝑦𝑦⟩

‖𝑈𝑈𝑈𝑈‖ = ⟨𝑈𝑈𝑈𝑈|𝑈𝑈𝑈𝑈⟩
1
2 = ⟨𝑥𝑥|𝑥𝑥⟩

1
2 = ‖𝑥𝑥‖

66 Postulates of Quantum Mechanics

 It is useful to note that since for any 𝜃𝜃 , |𝑒𝑒𝑖𝑖𝑖𝑖| = 1 :

|𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖| = |𝑒𝑒

𝑖𝑖(𝑎𝑎+𝑏𝑏)
2 (𝑒𝑒

𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)

2)| = |𝑒𝑒
𝑖𝑖(𝑎𝑎+𝑏𝑏)

2 | |𝑒𝑒
𝑖𝑖(𝑎𝑎−𝑏𝑏)

2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 | = |𝑒𝑒

𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)

2 |

We will revisit this in Chapter 3, Quantum Circuit Model of Computation.

2.3.3. Density matrix and mixed quantum states
Any quantum state, either mixed or pure, can be described by a density matrix
(𝜌𝜌), which is a normalized positive Hermitian operator where 𝜌𝜌 = 𝜌𝜌† . According to the
spectral theorem, there exists an orthonormal basis, defined in Section 2.3.1, Hermitian
operator, such that the density is the sum of all eigenvalues (𝑁𝑁):

where 𝑖𝑖 ranges from 1 to 𝑁𝑁 , 𝜆𝜆𝑖𝑖 are positive or null eigenvalues (𝜆𝜆𝑖𝑖 ≥ 0), and the sum of
eigenvalues is the trace operation (𝑡𝑡𝑡𝑡) of the density matrix and is equal to 1:

For example, when the density is 𝜌𝜌 = (
𝜌𝜌0,0 𝜌𝜌0,1
𝜌𝜌1,0 𝜌𝜌1,1) , with 𝜌𝜌 = 𝜌𝜌† , the trace of the

density is:

Here are some examples of the density matrices of pure quantum states:

𝜌𝜌 =∑𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩⟨𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

𝑡𝑡𝑡𝑡(𝜌𝜌) =∑𝜆𝜆𝑖𝑖
𝑁𝑁

𝑖𝑖=1
= 1

𝑡𝑡𝑡𝑡(𝜌𝜌) = 𝜌𝜌0,0 + 𝜌𝜌1,1 = 1

(1 0
0 0) = (1

0) (1 0) = |0⟩⟨0|

(0 0
0 1) = (0

1) (0 1) = |1⟩⟨1|
1
2 (1 −1

−1 1) = 1
2 (|0⟩ − |1⟩)(|0⟩ − |1⟩)

2.3. Postulate 3 – Measurable quantities and operators 67

The density matrix of a mixed quantum state consisting of a statistical ensemble of 𝑛𝑛 pure
quantum states {|𝑥𝑥𝑖𝑖⟩ ; 𝑖𝑖 ∈ [1, 𝑛𝑛]} , each with a classical probability of occurrence 𝑝𝑝𝑖𝑖 , is
defined as:

where every 𝑝𝑝𝑖𝑖 is positive or null and their sum is equal to one:

We summarize the difference between pure states and mixed states in Figure 2.20.

Figure 2.20 – Density matrix of pure and mixed quantum states

2.3.4. Position operation
The position observable of particle (𝑗𝑗) has the following operators for all directions in
Cartesian coordinates:

𝜌𝜌 =∑𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖⟩⟨𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

𝑡𝑡𝑡𝑡(𝜌𝜌) =∑𝑝𝑝𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

𝒓̂𝒓𝑗𝑗𝑥𝑥 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = x𝑗𝑗, 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)
𝒓̂𝒓𝑗𝑗𝑦𝑦 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = y𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)
𝒓̂𝒓𝑗𝑗𝑧𝑧 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = z𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)

68 Postulates of Quantum Mechanics

In spherical coordinates the operations become:

We can calculate the expectation value of the position for a given particle (𝑗𝑗) in a chosen
direction with the following equation:

⟨ 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)|𝒓̂𝒓𝑗𝑗| 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)⟩ = ∫ 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)† 𝒓̂𝒓𝑗𝑗𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1𝑑𝑑𝑧𝑧1 … 𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑦𝑦𝑁𝑁𝑑𝑑𝑧𝑧𝑁𝑁

For example, using the same system as presented in Section 2.2.2, Probability amplitude
for a hydrogen anion (H−) , the expectation value of the 𝑧𝑧 -position of electron 1 is
determined by:

Please note that the integration over 𝑟𝑟1 is a cubic function as opposed to a quadratic
function, the integration over 𝜃𝜃1 has an additional sin 1 , and the integration over 𝜑𝜑1
has a cos𝜑𝜑1 as compared to what is seen in the Section 2.2.2, Probability amplitude for a
hydrogen anion (H−) example. In this calculation, the integration over 𝜑𝜑1 is equal to 0,
which means that the entire integration is:

⟨ 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)|𝒓̂𝒓1𝑥𝑥| 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)⟩ = 0

This means that electron 1 is most likely to be found at the nucleus (or the origin of the
coordinate system). The same holds true for 𝒓̂𝒓1𝑦𝑦 , 𝒓̂𝒓1𝑧𝑧, 𝒓̂𝒓2𝑥𝑥, 𝒓̂𝒓2𝑦𝑦, and 𝒓̂𝒓2𝑧𝑧 operations.

𝒓̂𝒓𝑗𝑗𝑥𝑥 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = r𝑗𝑗 sin 𝜃𝜃𝑗𝑗 cos 𝜑𝜑𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)

𝒓̂𝒓𝑗𝑗𝑦𝑦 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = r𝑗𝑗 sin 𝜃𝜃𝑗𝑗 sin 𝜑𝜑𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)

𝒓̂𝒓𝑗𝑗𝑧𝑧 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = r𝑗𝑗 cos 𝜃𝜃𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)

⟨ 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)|𝒓̂𝒓1𝑥𝑥| 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)⟩ =

(1𝜋𝜋2)∫ 𝑟𝑟13𝑒𝑒−2𝑟𝑟1
+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin2 𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ cos𝜑𝜑1 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

2.3. Postulate 3 – Measurable quantities and operators 69

2.3.5. Momentum operation
The component of momentum operator for particle (𝑗𝑗) is 𝑝̂𝑝𝑗𝑗𝑥𝑥 along the 𝑥𝑥 -dimension (and
similarly, for the 𝑦𝑦 - and 𝑧𝑧 -dimensions) and is defined as follows in Cartesian coordinates:

We can also write these operators in terms of the spherical derivatives [ucsd]:

We can calculate the expectation value of the momentum for a given particle (𝑗𝑗) with the
following equation:

⟨𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)|𝑝̂𝑝𝑗𝑗𝑤𝑤|𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)⟩ = ∫ 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)† 𝑝̂𝑝𝑗𝑗𝑤𝑤 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1𝑑𝑑𝑧𝑧1 … 𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑦𝑦𝑁𝑁𝑑𝑑𝑧𝑧𝑁𝑁

where we use 𝑤𝑤 as a generic dimension.

For example, using the same system as presented in Section 2.2.2, Probability amplitude for
a hydrogen anion (H−) , the derivative for the 𝑧𝑧 -momentum operator of electron 1 is:

𝑝̂𝑝1𝑧𝑧𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐿𝐿 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) = −𝑖𝑖ℏ(√22𝜋𝜋)cos𝜃𝜃1 (
𝜕𝜕
𝜕𝜕𝑟𝑟1

𝑒𝑒−𝑟𝑟1) 𝑒𝑒−𝑟𝑟2{↑↓ −↓↑}

where the derivative is:
𝜕𝜕
𝜕𝜕𝑟𝑟1

𝑒𝑒−𝑟𝑟1 = −𝑒𝑒−𝑟𝑟1

𝑝̂𝑝𝑗𝑗𝑥𝑥 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑝̂𝑝𝑗𝑗𝑦𝑦 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

𝑝̂𝑝𝑗𝑗𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗

𝑝̂𝑝𝑗𝑗𝑥𝑥 = −𝑖𝑖ℏ(sin𝜃𝜃𝑗𝑗 cos𝜑𝜑𝑗𝑗
𝜕𝜕
𝜕𝜕𝑟𝑟𝑗𝑗

+ 1
𝑟𝑟𝑗𝑗
cos𝜃𝜃𝑗𝑗 cos𝜑𝜑𝑗𝑗

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

− 1
𝑟𝑟𝑗𝑗
sin𝜑𝜑𝑗𝑗
sin 𝜃𝜃𝑗𝑗

𝜕𝜕
𝜕𝜕𝜑𝜑𝑗𝑗

)

𝑝̂𝑝𝑗𝑗𝑦𝑦 = −𝑖𝑖ℏ(sin𝜃𝜃𝑗𝑗 sin𝜑𝜑𝑗𝑗
𝜕𝜕
𝜕𝜕𝑟𝑟𝑗𝑗

+ 1
𝑟𝑟𝑗𝑗
cos 𝜃𝜃𝑗𝑗 sin𝜑𝜑𝑗𝑗

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

− 1
𝑟𝑟𝑗𝑗
cos𝜑𝜑𝑗𝑗
sin 𝜃𝜃𝑗𝑗

𝜕𝜕
𝜕𝜕𝜑𝜑𝑗𝑗

)

𝑝̂𝑝𝑗𝑗𝑧𝑧 = −𝑖𝑖ℏ(cos𝜃𝜃𝑗𝑗
𝜕𝜕
𝜕𝜕𝑟𝑟𝑗𝑗

− 1
𝑟𝑟𝑗𝑗
sin 𝜃𝜃𝑗𝑗

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

)

70 Postulates of Quantum Mechanics

Therefore, the expectation value of the 𝑧𝑧 -momentum for electron 1 is:

⟨ 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)|𝑝̂𝑝1𝑧𝑧| 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)⟩ =

𝑖𝑖ℏ (1𝜋𝜋2)∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1
+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ cos𝜃𝜃1 sin 𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0
= 0

which, due to the integration over 𝜃𝜃1 , becomes equal to 0, as illustrated by the following
SymPy code:

from sympy import symbols, sin, cos

x = symbols('x')

integrate(cos(x)*sin(x),(x,0,pi))

Here is the result:

0
This result is intuitive because we are in a 𝐽𝐽 = 0,𝑀𝑀 = 0 system, which does not have
momentum.

2.3.6. Kinetic energy operation
The kinetic energy operators for a single particle in a given direction (𝑇̂𝑇𝑗𝑗𝑥𝑥, 𝑇̂𝑇𝑗𝑗𝑦𝑦, 𝑇̂𝑇𝑗𝑗𝑧𝑧) in
Cartesian coordinates are:

In general, kinetic energy is determined by the following in Cartesian coordinates:

𝑇̂𝑇𝑗𝑗𝑥𝑥 = −(ℏ
2

2𝑚𝑚𝑗𝑗
) 𝜕𝜕2
𝜕𝜕𝑥𝑥𝑗𝑗2

𝑇̂𝑇𝑗𝑗𝑦𝑦 = −(ℏ
2

2𝑚𝑚𝑗𝑗
) 𝜕𝜕2
𝜕𝜕𝑦𝑦𝑗𝑗2

𝑇̂𝑇𝑗𝑗𝑧𝑧 = −(ℏ
2

2𝑚𝑚𝑗𝑗
) 𝜕𝜕2
𝜕𝜕𝑧𝑧𝑗𝑗2

∇𝑗𝑗2=
𝜕𝜕2
𝜕𝜕𝑥𝑥𝑗𝑗2

+ 𝜕𝜕2
𝜕𝜕𝑦𝑦𝑗𝑗2

+ 𝜕𝜕2
𝜕𝜕𝑧𝑧𝑗𝑗2

2.3. Postulate 3 – Measurable quantities and operators 71

and in spherical coordinates is:

We can calculate the expectation value of the kinetic energy for all the particles with the
following equation:

Using the same system as presented in Section 2.2.2, Probability amplitude for a hydrogen
anion (H−) , the second derivative operation for the kinetic energy of electron 1 is:

∇12𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2, 𝑡𝑡 = 𝑡𝑡0; 𝐿𝐿 = 0,𝑀𝑀 = 0, 𝑌̂𝑌) = (√22𝜋𝜋)𝑒𝑒
−𝑟𝑟2{↑↓ −↓↑} 1𝑟𝑟12

𝜕𝜕
𝜕𝜕𝑟𝑟1

(𝑟𝑟12
𝜕𝜕
𝜕𝜕𝑟𝑟1

) (𝑒𝑒−𝑟𝑟1)

The expectation value of the kinetic energy for electron 1 is then calculated by:

− (ℏ2

2𝑚𝑚1
) ⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)|∇1

2| 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)⟩ =

∇𝑗𝑗2=
1
𝑟𝑟𝑗𝑗2

𝜕𝜕
𝜕𝜕𝑟𝑟𝑗𝑗

(𝑟𝑟𝑗𝑗2
𝜕𝜕
𝜕𝜕𝑟𝑟𝑗𝑗

) + 1
𝑟𝑟𝑗𝑗2 sin 𝜃𝜃𝑗𝑗

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

(sin 𝜃𝜃𝑗𝑗
𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

) + 1
𝑟𝑟𝑗𝑗2 sin2 𝜃𝜃𝑗𝑗

𝜕𝜕2
𝜕𝜕𝜑𝜑𝑗𝑗2

〈𝑇̂𝑇〉 = −ℏ
2

2 ∑ 1
𝑚𝑚𝑗𝑗

⟨𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)|∇𝑗𝑗2|𝜓𝜓(𝒓𝒓1,… , 𝒓𝒓𝑁𝑁)⟩
𝑁𝑁

𝑗𝑗=1

= − ℏ2

2 ∑ 1
𝑚𝑚𝑗𝑗

∫ 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)† ∇𝑗𝑗
2𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)𝑑𝑑𝑥𝑥1𝑑𝑑𝑦𝑦1𝑑𝑑𝑧𝑧1 … 𝑑𝑑𝑥𝑥𝑁𝑁𝑑𝑑𝑦𝑦𝑁𝑁𝑑𝑑𝑧𝑧𝑁𝑁

𝑁𝑁

𝑗𝑗=1

= −(√22𝜋𝜋)𝑒𝑒
−𝑟𝑟2{↑↓ −↓↑} 1𝑟𝑟12

𝜕𝜕
𝜕𝜕𝑟𝑟1

(𝑟𝑟12𝑒𝑒−𝑟𝑟1)

= (√22𝜋𝜋)𝑒𝑒
−𝑟𝑟2{↑↓ −↓↑} 1𝑟𝑟12

(𝑟𝑟12 − 2𝑟𝑟1)𝑒𝑒−𝑟𝑟1

= (√22𝜋𝜋)(1 −
2
𝑟𝑟1
) 𝑒𝑒−𝑟𝑟1𝑒𝑒−𝑟𝑟2{↑↓ −↓↑}

−(ℏ
2

𝑚𝑚1
)(1𝜋𝜋2)∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1

+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

+2(ℏ
2

𝑚𝑚1
)(1𝜋𝜋2)∫ 𝑟𝑟1𝑒𝑒−2𝑟𝑟1

+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

= (ℏ
2

𝑚𝑚1
) {−1 + 2} = ℏ2

72 Postulates of Quantum Mechanics

where the electron mass is set to equal 1 (𝑚𝑚1 = 1). The kinetic energy for electron 2 is
determined with the same integrals and is equal to:

The total kinetic energy for the electrons in hydride is then the sum of the
two kinetic terms:

Setting ℏ = 1 as a standard scaling, we have:

2.3.7. Potential energy operation
The potential energy, also known as Coulomb energy, relates the charge
(𝑄𝑄𝑖𝑖, 𝑄𝑄𝑗𝑗) of particles 𝑖𝑖 and 𝑗𝑗 and depends on the distance 𝑟𝑟𝑖𝑖𝑖𝑖 between two, where
𝑟𝑟𝑖𝑖𝑖𝑖 = |𝒓𝒓𝑗𝑗 − 𝒓𝒓𝑖𝑖| = √(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)

2 + (𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)
2 + (𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖)

2 . It is proportional to the inverse of the
distance (1 𝑟𝑟𝑖𝑖𝑖𝑖⁄) and is calculated as a sum over all pairs of particles in the systems:

We can calculate the expectation value of the potential energy for all the particles with the
following equation:

− (ℏ2

2𝑚𝑚2
) ⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)|∇2

2| 𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0, 𝑀𝑀 = 0, 𝑌̂𝑌)⟩ = ℏ2

〈𝑇̂𝑇〉 = 〈𝑇̂𝑇1 + 𝑇̂𝑇2〉 = 2ℏ2

〈𝑇̂𝑇〉 = 2

𝑉̂𝑉(𝑟𝑟1, 𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗, … 𝑟𝑟𝑁𝑁) = ∑
𝑄𝑄𝑖𝑖𝑄𝑄𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1<𝑗𝑗

〈𝑉̂𝑉〉 = ∑ 𝑄𝑄𝑖𝑖𝑄𝑄𝑗𝑗 ⟨𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)| 1
𝑟𝑟𝑖𝑖𝑖𝑖

|𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)⟩
𝑁𝑁−1, 𝑁𝑁

𝑖𝑖=1, 𝑗𝑗=𝑖𝑖+1

2.3. Postulate 3 – Measurable quantities and operators 73

Using the same system as presented in Section 2.2.2, Probability amplitude for a hydrogen
anion (H−) , the expectation value of the potential (Coulomb) energy calculated between
the two electrons is:

Now we use the Dirac delta function 𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2) to approximate the inverse of 𝑟𝑟12 :

〈𝑉̂𝑉12〉 = 16∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1𝑟𝑟22𝑒𝑒−2𝑟𝑟2𝛿𝛿(𝑟𝑟1 − 𝑟𝑟2)
+∞

0
𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2

We compute this integral with the following block of code:

from sympy import symbols, integrate, exp, DiracDelta, oo

x, y = symbols('x y')

integrate(x**2 * exp(-2*x) * integrate(y**2 * exp(-
2*y)*DiracDelta(x - y),(y,0,oo)),(x,0,oo))

The result is:
3
128

Therefore, the expectation value of electron repulsion is:

〈𝑉̂𝑉12〉 = 16 × 3
128 =

3
8

〈𝑉̂𝑉12〉 = 𝑄𝑄1𝑄𝑄2 ⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)| [𝟙𝟙 + 𝑃̂𝑃12]
𝑟𝑟12 |𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)⟩

= (1𝜋𝜋2)∫
𝑟𝑟12𝑒𝑒−2𝑟𝑟1𝑟𝑟22𝑒𝑒−2𝑟𝑟2

|𝑟𝑟1 − 𝑟𝑟2|
+∞

0
𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2 ∫ sin 𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0

= 16∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1𝑟𝑟22𝑒𝑒−2𝑟𝑟2
|𝑟𝑟1 − 𝑟𝑟2|

+∞

0
𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2

74 Postulates of Quantum Mechanics

The expectation value of the potential (Coulomb) energy calculated between electron 1
and the nucleus (particle 3) is:

Now we use the Dirac delta function 𝛿𝛿(𝑟𝑟1 − 𝑟𝑟3) to approximate the inverse of 𝑟𝑟13 :

∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1
+∞

0
𝛿𝛿(𝑟𝑟1 − 𝑟𝑟3)𝑑𝑑𝑟𝑟1

We compute this integral with the following block of code:

from sympy import symbols, integrate, exp, DiracDelta, oo

x, y = symbols('x y')

integrate(x**2 * exp(-2*x) * integrate(DiracDelta(x -
y),(y,0,oo)),(x,0,oo))

Here is the result:

1
4

Therefore, the expectation value of electron-nuclear attraction is:

〈𝑉̂𝑉13〉 = −4 × 14 = −1 = 〈𝑉̂𝑉23〉

The total potential energy is:

〈𝑉̂𝑉〉 = 〈𝑉̂𝑉12〉 + 〈𝑉̂𝑉13〉 + 〈𝑉̂𝑉23〉 =
3
8 − 1 − 1 = −138

〈𝑉̂𝑉13〉 = 𝑄𝑄1𝑄𝑄3 ⟨𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)| [𝟙𝟙 + 𝑃̂𝑃12]
𝑟𝑟13 |𝜓𝜓(𝒓𝒓1, 𝒓𝒓2, 𝒔𝒔1, 𝒔𝒔2; 𝐽𝐽 = 0,𝑀𝑀 = 0, 𝑌̂𝑌)⟩ =

−(1𝜋𝜋2)∫
𝑟𝑟12𝑒𝑒−2𝑟𝑟1
|𝑟𝑟1 − 𝑟𝑟3|

+∞

0
𝑑𝑑𝑟𝑟1 ∫ 𝑟𝑟22𝑒𝑒−2𝑟𝑟2

+∞

0
𝑑𝑑𝑟𝑟2 ∫ sin𝜃𝜃1 𝑑𝑑𝜃𝜃1

𝜋𝜋

0
∫ sin 𝜃𝜃2 𝑑𝑑𝜃𝜃2
𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑1
2𝜋𝜋

0
∫ 𝑑𝑑𝜑𝜑2
2𝜋𝜋

0
=

−4∫ 𝑟𝑟12𝑒𝑒−2𝑟𝑟1
|𝑟𝑟1 − 𝑟𝑟3|

+∞

0
𝑑𝑑𝑟𝑟1

2.4. Postulate 4 – Time-independent stationary states 75

2.3.8. Total energy operation
The total energy operator (𝐻̂𝐻) is the sum of the kinetic energy and the potential
energy operations:

where 𝐸𝐸 is the total energy. The expectation value for the energy is then:

Using the same system as presented in Section 2.2.2, Probability amplitude for a hydrogen
anion (H−) , the expectation value of the total energy is:

〈𝐻̂𝐻〉 = 2 − 13
8 = 3

8

Notice that the expectation value for hydride is dominated by the potential energy, which
makes the system very reactive.

2.4. Postulate 4 – Time-independent
stationary states
A quantum state is a time-independent stationary state if all its observables are
independent of time. These states are very important in quantum chemistry. The atomic
orbital of an electron and the molecular orbital of an electron in a molecule are time-
independent stationary states.

The time-independent Schrödinger equation can be written as follows, that is, static:
𝐻̂𝐻|𝜓𝜓⟩ = 𝐸𝐸|𝜓𝜓⟩ where 𝐸𝐸 is the energy eigenvalue, and |𝜓𝜓⟩ is the state vector of the quantum
system not as a function of time.

This postulate implies that the wave function must be an eigenfunction for all
measurements and corresponding operations that represent the energy. An eigenfunction
is a function that remains unchanged when acted upon it by an operator or when a
measurement is made.

We use this concept more in Chapter 4, Molecular Hamiltonians.

𝐻̂𝐻|𝜓𝜓⟩ = −(ℏ
2

2)∑
1

𝑚𝑚𝑗𝑗𝑟𝑟𝑗𝑗2
𝑁𝑁

𝑗𝑗=1
[𝜕𝜕𝜕𝜕𝑟𝑟𝑗𝑗

(𝑟𝑟𝑗𝑗2
𝜕𝜕|𝜓𝜓⟩
𝜕𝜕𝑟𝑟𝑗𝑗

) + 1
sin 𝜃𝜃𝑗𝑗

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

(sin𝜃𝜃𝑗𝑗
𝜕𝜕|𝜓𝜓⟩
𝜕𝜕𝜃𝜃𝑗𝑗

) + 1
sin2 𝜃𝜃𝑗𝑗

𝜕𝜕2|𝜓𝜓⟩
𝜕𝜕𝜑𝜑𝑗𝑗2

]

+ 𝑉̂𝑉(𝑟𝑟1, 𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗, … 𝑟𝑟𝑁𝑁)|𝜓𝜓⟩ = 𝐸𝐸|𝜓𝜓⟩

〈𝐻̂𝐻〉 = 〈𝑇̂𝑇〉 + 〈𝑉̂𝑉〉

76 Postulates of Quantum Mechanics

2.5. Postulate 5 – Time evolution dynamics
The time evolution dynamics of a quantum system is described by Schrödinger's equation:

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 |𝜓𝜓⟩ = 𝐻̂𝐻|𝜓𝜓⟩

We will be showing an example of this in Chapter 5, Variational Quantum Eigensolver
(VQE) Algorithm.

Questions
Please test your understanding of the concepts presented in this chapter with the
corresponding Google Colab notebook.

1.	 What quantum numbers do the total wave function depend on?
2.	 What is the CG coefficient if we couple together 𝑙𝑙1 = 0 and 𝑚𝑚1 = 0 and 𝑙𝑙2 = 1 ,

𝑚𝑚2 = 0 to 𝐿𝐿 = 1 , 𝑀𝑀 = 0 ?
3.	 What happens to the total wave function upon the application of an antisymmetric

operation?
4.	 For a pure fermionic state, is the Young frame horizontal or vertical?
5.	 What is the position operator for the 𝑧𝑧 -direction?
6.	 What is the sum of potential and kinetic energy?

Answers
1.	 𝑛𝑛, 𝑙𝑙,𝑚𝑚𝑙𝑙 and 𝑠𝑠,𝑚𝑚𝑠𝑠

2.	 1
3.	 It is multiplied by −1
4.	 Vertical

5.	 𝒓̂𝒓𝑗𝑗𝑧𝑧 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁) = z𝑗𝑗 𝜓𝜓(𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)

6.	 Total energy

References 77

References
[Bubin] Bubin, S., Cafiero, M., & Adamowicz, L., Non-Born-Oppenheimer
variational calculations of atoms and molecules with explicitly correlated Gaussian
basis functions, Advances in Chemical Physics, 131, 377-475, https://doi.
org/10.1002/0471739464.ch6

[Cmap] Choosing Colormaps in Matplotlib, https://matplotlib.org/stable/
tutorials/colors/colormaps.html

[Lucr_1] Lucretius on the Nature of Things, Literally translated into English
prose by the Rev. John Selby Watson, M.A., London 1870, https://www.
google.fr/books/edition/Lucretius_On_the_Nature_of_
Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover

[Lucr_2] Thomas Nail, Lucretius: Our Contemporary, 15 Feb 2019, https://www.
youtube.com/watch?v=VMrTk1A2GX8

[Lucr_3] David Goodhew, Lucretius lecture, Life, love, death and atomic physics,
https://www.youtube.com/watch?v=mJZZd3f_-oE

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Phys5250] Addition of angular momentum, University of Colorado, PHYS5250,
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/
lecture/lec32-addition-angular-momentum/

[SciPy_sph] SciPy, API reference, Compute spherical harmonics, scipy.special.sph_harm,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
special.sph_harm.html

[Sharkey_0] Keeper L. Sharkey and Ludwik Adamowicz, An algorithm for nonrelativistic
quantum mechanical finite-nuclear-mass variational calculations of nitrogen atom in L =
0, M = 0 states using all-electrons explicitly correlated Gaussian basis functions, J. Chem.
Phys. 140, 174112 (2014), https://doi.org/10.1063/1.4873916

[SymPy_CG] SymPy, Clebsch-Gordan Coefficients, https://docs.sympy.org/
latest/modules/physics/quantum/cg.html

[SymPy_Rnl] Hydrogen Wavefunctions, https://docs.sympy.org/latest/
modules/physics/hydrogen.html

[SymPy] SymPy, A Python library for symbolic mathematics, https://www.sympy.
org/en/index.html

https://doi.org/10.1002/0471739464.ch6
https://doi.org/10.1002/0471739464.ch6
https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.youtube.com/watch?v=VMrTk1A2GX8
https://www.youtube.com/watch?v=VMrTk1A2GX8
https://www.youtube.com/watch?v=mJZZd3f_-oE
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/lecture/lec32-addition-angular-momentum/
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/lecture/lec32-addition-angular-momentum/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
https://doi.org/10.1063/1.4873916
https://docs.sympy.org/latest/modules/physics/quantum/cg.html
https://docs.sympy.org/latest/modules/physics/quantum/cg.html
https://docs.sympy.org/latest/modules/physics/hydrogen.html
https://docs.sympy.org/latest/modules/physics/hydrogen.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html

78 Postulates of Quantum Mechanics

[Sph_Real] Wikipedia, Spherical Harmonics, Real forms, https://en.wikipedia.
org/wiki/Spherical_harmonics#Real_forms

[Ucsd] University of Californian San Diego, Spherical Coordinates and the Angular
Momentum Operators, https://quantummechanics.ucsd.edu/ph130a/130_
notes/node216.html

[Wiki_1] Mathematical formulation of quantum mechanics, Wikipedia, https://
en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_
mechanics

https://en.wikipedia.org/wiki/Spherical_harmonics#Real_forms
https://en.wikipedia.org/wiki/Spherical_harmonics#Real_forms
https://quantummechanics.ucsd.edu/ph130a/130_notes/node216.html
https://quantummechanics.ucsd.edu/ph130a/130_notes/node216.html
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics

3
Quantum

Circuit Model of
Computation

"As we scale towards a million [qubits], I think we've got some fundamental
issues in error correction, control, and maybe quantum physics that can

rear their heads," he said, adding that even those problems are "solvable."

– Arvind Krishna, IBM chairman and CEO

Figure 3.1 – Scaling of the quantum computer [authors]

80 Quantum Circuit Model of Computation

There are fundamental differences between classical computing and quantum computing;
classical computing is deterministic with 1s and 0s, and quantum is probabilistic with
a twist. Quantum computers work with probability amplitudes, which is a postulate of
quantum mechanics (see Section 2.2, Postulate 2 – Probability amplitudes). The probabilistic
amplitudes of quantum computing behave differently from classical probabilities in that
these values can cancel each other out, which is known as destructive interference.

Destructive interference can be illustrated with noise-canceling headphones. Specifically,
it is when two or more waves come together, eliminating the waves altogether. In other
words, the waves that come together are opposite in phase and equal in amplitude.
Constructive interference is when two or more waves come together, and the amplitudes
add positively. These two properties are essential to enable the desired result to come out
of the computer with the highest probability.

So, interference is at the core of what quantum computing should be, and we also use the
concept of the wave function as introduced in Section 2.1, Postulate 1 – Wave function, and
it is used to define the idea of the qubit: the quantum bit of information. Typically, in the
quantum computing industry, state vector is used as the term for the wave function.

Another difference between the two methods of computing is that in quantum computing,
when we add one more unit of information, the size of the computational space is
doubled. In theory, this allows us to speed up exponentially.

Quantum computing also uses the superposition property to achieve parallelism up until
the moment a measurement is performed. Recall we discussed superposition in Section
2.3, Postulate 3 – Measurable quantities and operators. A quantum algorithm needs to be
repeated multiplied times to get the probability distribution of the measurement.

The scaling of quantum computers paves the way for simulating chemical systems that
could enable researchers to conduct virtual experiments and discover new molecules
much faster than by performing physical experiments in a lab. In parallel to building
a scalable quantum computer, research into optimal mappings of fermionic states and
operators to qubit states and quantum gates is essential to exploit the potential of near-term
quantum computers.

We give an illustration of a key component of such mappings, a quantum circuit that creates
permutation symmetric or permutation asymmetric states in a probabilistic manner.

In this chapter, we will cover the following topics:
•	 Section 3.1, Qubits, entanglement, Bloch sphere, Pauli matrices
•	 Section 3.2, Quantum gates
•	 Section 3.3, Computation-driven interference
•	 Section 3.4, Preparing a permutation symmetric or asymmetric state

Technical requirements 81

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information. The companion Jupyter notebook automatically installs the following
list of libraries:

•	 Numerical Python (NumPy) [NumPy], an open-source Python library that is used
in almost every field of science and engineering

•	 Qiskit [Qiskit], an open-source SDK for working with quantum computers at the
level of pulses, circuits, and application modules

•	 Qiskit visualization support to enable visualization and Jupyter notebooks

•	 Quantum Toolbox in Python (QuTiP) [QuTiP], which is designed to be a general
framework for solving quantum mechanics problems such as systems composed of
few-level quantum systems and harmonic oscillators

We recommend using the following online graphical tools:

•	 IBM Quantum Composer, which is a graphical quantum programming tool that
lets you drag and drop operations to build quantum circuits and run them on real
quantum hardware or simulators [IBM_comp1] [IBM_comp2]

•	 Grok the Bloch Sphere, a web-based application that displays the Bloch sphere and
shows the action of gates as rotations [Grok]

Installing NumPy, Qiskit, QuTiP, and importing various
modules
Install NumPy with the following command:

pip install numpy

Install Qiskit with the following command:

pip install qiskit

Install Qiskit visualization support with the following command:

pip install 'qiskit[visualization]'

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

82 Quantum Circuit Model of Computation

Install QuTiP with the following command:

pip install qutip

Import NumPy with the following command:

import numpy as np

Import the required functions and class methods. The array_to_latex function()
returns a LaTeX representation of a complex array with dimension 1 or 2:

from qiskit.visualization import array_to_latex, plot_bloch_
vector, plot_bloch_multivector, plot_state_qsphere, plot_state_
city

from qiskit import QuantumRegister, ClassicalRegister,
QuantumCircuit, transpile

from qiskit import execute, Aer

import qiskit.quantum_info as qi

from qiskit.extensions import Initialize

from qiskit.providers.
aer import extensions # import aer snapshot instructions

Import the math libraries with the following commands:

import cmath

import math

Import QuTiP with the following command:

import qutip

3.1. Qubits, entanglement, Bloch sphere,
Pauli matrices
The concepts presented in this section are a specific application of the five postulates of
quantum mechanics that were presented in Chapter 2, Postulates of Quantum Mechanics.

In this section, we describe the following in detail:

•	 Section 3.1.1, Qubits

•	 Section 3.1.2, Tensor ordering of qubits

3.1. Qubits, entanglement, Bloch sphere, Pauli matrices 83

•	 Section 3.1.3, Quantum entanglement

•	 Section 3.1.4, Bloch sphere

•	 Section 3.1.5, Displaying the Bloch vector corresponding to a state vector

•	 Section 3.1.6, Pauli matrices

3.1.1. Qubits
In this section, we describe the current setup for quantum computation and the definition
of a qubit. A qubit is a unit of information that represents a two-level quantum system and
lives in a two-dimensional Hilbert space ℂ2 . The basis vectors of the quantum space are
denoted as {|0⟩, |1⟩} , which are referred to as the computational basis states:

|0⟩ = (1
0) |1⟩ = (0

1)

A general single-qubit state is described by a superposition of the computational basis:

|𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ = (𝛼𝛼𝛽𝛽) ∈ ℂ2

where 𝛼𝛼 and 𝛽𝛽 are linear expansion coefficients that satisfy:

|𝛼𝛼|2 + |𝛽𝛽|2 = 1

Although the qubit is in a quantum superposition during the algorithm, when it is
measured in the computational basis, it will be found in state |0⟩ or state |1⟩ , not in a
superposition. These measurement outcomes occur with probability |𝛼𝛼|2 and |𝛽𝛽|2
respectively. If there are 𝑛𝑛 qubits in the system, the state is described by a vector in the 2𝑛𝑛
dimensional Hilbert space (ℂ2)⊗𝑛𝑛 formed by taking the tensor product of the Hilbert
spaces of the individual qubits. For 10 qubits, the state is described by a vector in a
1,024-dimensional Hilbert space.

3.1.2. Tensor ordering of qubits
The physics community typically orders a tensor product of 𝑛𝑛 qubits with the 0𝑡𝑡ℎ qubit on
the left-most side of the tensor product:

|𝑞𝑞⟩ = |𝑞𝑞0⟩|𝑞𝑞1⟩ … |𝑞𝑞𝑛𝑛−1⟩ = |𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛−1⟩ = ⊗ 𝑛𝑛 − 1
𝑖𝑖 = 0 |𝑞𝑞𝑖𝑖⟩

84 Quantum Circuit Model of Computation

where 𝑞𝑞𝑖𝑖 ∊ {0,1} . However, Qiskit uses an ordering in which the 𝑛𝑛𝑡𝑡ℎ qubit is first in the
order and the 0𝑡𝑡ℎ qubit is last:

|𝑞𝑞⟩ = |𝑞𝑞𝑛𝑛−1⟩ … |𝑞𝑞1⟩|𝑞𝑞0⟩ = |𝑞𝑞𝑛𝑛−1, … , 𝑞𝑞1, 𝑞𝑞0⟩ = ⊗ 0
𝑖𝑖 = 𝑛𝑛 − 1 |𝑞𝑞𝑖𝑖⟩

In other words, if qubit 0 is in state |0⟩ , qubit 1 is in state |0⟩ , and qubit 2 is in state |1⟩ ,
many physics textbooks would represent this as |001⟩ , whereas Qiskit would represent
this state as |100⟩ . This difference affects the way multi-qubit operations are represented as
matrices, so please be on the lookout as we are using Qiskit in the book.

3.1.3. Quantum entanglement
A quantum system is entangled when its quantum state cannot be factored as a tensor
product of states of its constituents. States can be classified as either a product of single
particle states or entangled:

•	 Product states can be decomposed into tensor products of fewer qubits, such as:
1
√2

(|00⟩ + |01⟩) = |0⟩⊗ 1
√2

(|0⟩ + |1⟩)

•	 Entangled states cannot be decomposed into tensor products of states. For example,

the Bell state
1
√2

(|00⟩ + |11⟩) is entangled and can only be measured either in the
state |00⟩ or in the state |11⟩ , each with a probability of 1/2.

3.1.4. Bloch sphere
The Bloch sphere describes a qubit in space and is a specific form of the coordinate system
(Figure 3.2) presented in Section 2.1, Postulate 1 – Wave functions. The 𝑟𝑟 vector, or the
length, of a qubit is always equal to 1, so the coordinates of the Bloch sphere are:

(
𝑥𝑥
𝑦𝑦
𝑧𝑧

) = (
sin 𝜃𝜃 cos 𝜑𝜑
 sin 𝜃𝜃 sin 𝜑𝜑

cos 𝜃𝜃
)

Let's focus on the general normalized pure state for a single qubit, as presented in Section
3.1.1, Qubits:

•	 When 𝛼𝛼 = 1 and 𝛽𝛽 = 0 , the |0⟩ state is "up" in the 𝑧𝑧 -direction.

•	 When 𝛼𝛼 = 0 and 𝛽𝛽 = 1 , the |1⟩ state is "down" in the 𝑧𝑧 -direction.

3.1. Qubits, entanglement, Bloch sphere, Pauli matrices 85

Figure 3.2 – Bloch sphere [authors]

We derived the generalized formula for a qubit in Section 2.1.2, Addition of momenta
using Clebsch-Gordan coefficients, example: Coupling spin and angular momentum
(1,2 =

1
2

, 1,2 =
1
2

):

|𝑗𝑗1,2 = 1
2 , 𝑗𝑗𝑠𝑠1,2 = 1

2⟩ = {cos 𝜃𝜃 ↑ +𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 ↓}

However, established by the quantum computing industry and set as a convention, we
have a change of variables for the angles 𝜃𝜃 and 𝜑𝜑 for a qubit defined on the Bloch sphere
where the following applies:

•	 𝜃𝜃 = 2arccos(|𝛼𝛼|) in [0, 𝜋𝜋] , which becomes
𝜃𝜃
2 = arccos(|𝛼𝛼|) in [0, 𝜋𝜋

2] (please note that
the arccosine of a positive number is a first quadrant angle)

•	 𝜑𝜑 is the relative phase in [0, 2𝜋𝜋) , neglecting the global phase 𝜑𝜑 = arg(𝛽𝛽) − arg(𝛼𝛼)

This change of variables results in the following form of the state vector (or wave function)
for a qubit on the Bloch sphere:

|𝜓𝜓⟩ = cos𝜃𝜃2 |0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃2 |1⟩

where we have replaced the spin-up and spin-down functions with the state vectors |0⟩
and |1⟩ , respectively. From a chemical perspective, please note that the qubit state |0⟩
indicates the angular momentum quantum numbers 𝑙𝑙 = 1,𝑚𝑚𝑙𝑙 = 0 with spin-up, and
therefore does not have any angular momentum projection on the 𝑧𝑧 -axis. Furthermore,
the qubit state |1⟩ indicates the angular momentum quantum numbers 𝑙𝑙 = 1,𝑚𝑚𝑙𝑙 = 1 with
spin-down and does have angular momentum projection on the 𝑧𝑧 -axis. This is important
to remember when we introduce the Pauli matrices in Section 3.1.6, Pauli matrices, as we
will see how the chemical information is modified when we apply operations.

86 Quantum Circuit Model of Computation

On the Bloch sphere, angles are twice as big as in Hilbert space. For instance, |0⟩ and |1⟩
are orthogonal in Hilbert space, and on the Bloch sphere their angle is 𝜋𝜋 . Further, we
would like to point out that

𝜃𝜃
2 determines the probability to measure the |0⟩ and |1⟩ states

with the following:

•	 |0⟩ such that 𝑃𝑃(0) = cos2 𝜃𝜃2

•	 |1⟩ such that 𝑃𝑃(1) = sin2 𝜃𝜃2

We show the Bloch vector for a qubit in different directions on the Bloch sphere, which we
call pole states, as shown in the table shown in Figure 3.3:

Figure 3.3 – Pole states in the computational basis and their representation on the Bloch sphere

3.1.5. Displaying the Bloch vector corresponding
to a state vector
In the following code, the check function performs sanity checks on a given complex
vector (𝛼𝛼, 𝛽𝛽) to ensure it is a state vector:

_EPS = 1e-
10 # Global variable used to chop small numbers to zero

3.1. Qubits, entanglement, Bloch sphere, Pauli matrices 87

def check(s):

 num_qubits = math.log2(len(s))

 # Check if param is a power of 2

 if num_qubits == 0 or not num_qubits.is_integer():

 raise Exception("Input complex vector length is not a
positive power of 2.")

 num_qubits = int(num_qubits)

 if num_qubits > 1:

 raise Exception("Only one complex vector is allowed as
input.")

 # Check if probabilities (amplitudes squared) sum to 1

 if not math.isclose(sum(np.absolute(s) ** 2), 1.0, abs_tol=_
EPS):

 raise Exception("Norm of complex vector does not equal
one.")

 return

Next, the ToBloch() function computes the Bloch vector of a given state vector
(complex vector) and displays the angles in LaTeX format and the vector on the Bloch
sphere. It has two input parameters:

•	 s: A state vector, a complex vector (𝛼𝛼, 𝛽𝛽) .
•	 show: Set to True to display the angles and the vector on the Bloch sphere.

It has three output parameters:

•	 theta: 𝜃𝜃 = 2arccos(|𝛼𝛼|) in [0, 𝜋𝜋] is the angle on the Bloch sphere.

•	 phi: 𝜑𝜑 = arg(𝛽𝛽) − arg(𝛼𝛼) in [0, 2𝜋𝜋] is the relative phase, neglecting the
global phase.

•	 r: This is the vector on the Bloch sphere.

def ToBloch(s, show=True):

 check(s)

 phi = cmath.phase(s[1]) - cmath.phase(s[0])

 theta = 2*math.acos(abs(s[0]))

 r1 = math.sin(theta)*math.cos(phi)

 r2 = math.sin(theta)*math.sin(phi)

 r3 = math.cos(theta)

 r = (r1,r2,r3)

88 Quantum Circuit Model of Computation

 if show:

 display(array_to_latex(s, prefix="\\
text{s} = ", precision = 2))

 display(array_to_latex([theta, phi], prefix="\\
text{theta, phi} = ", precision = 2))

 display(array_to_latex(r, prefix="\\
text{r} = ", precision = 2))

 b = qutip.Bloch()

 b.add_vectors(r)

 display(b.render())

 return theta, phi, r

The following code displays the Bloch vector corresponding to the state vector

𝑠𝑠 = [1
√2

 , 1
2 (1 + 𝑖𝑖)] :

s = [1/math.sqrt(2),complex(0.5, 0.5)]

(theta, phi, r) = ToBloch(s)

Here is the result with the Bloch sphere displayed using the QuTiP Bloch() function:

Figure 3.4 – Displaying a vector on the Bloch sphere

Finally, the ToS function computes a state vector of a Bloch vector. It has three
input parameters:

•	 theta: 𝜃𝜃 = 2arccos(|𝛼𝛼|) in [0, 𝜋𝜋] is the angle on the Bloch sphere.

•	 phi: 𝜑𝜑 = arg(𝛽𝛽) − arg(𝛼𝛼) in [0, 2𝜋𝜋] is the relative phase, neglecting the
global phase.

•	 show: This is set to True to display the input angles and the state vector.

3.1. Qubits, entanglement, Bloch sphere, Pauli matrices 89

It has one output parameter:

•	 s: a state vector, a complex vector (cos
𝜃𝜃
2 , 𝑒𝑒

𝑖𝑖𝑖𝑖 sin 𝜃𝜃2)

def ToS(theta, phi, show=True):

 s = [math.cos(theta/2), complex(math.cos(phi) * math.
sin(theta/2), math.sin(phi) * math.sin(theta/2))]

 if show:

 display(array_to_latex([theta, phi], prefix="\\
text{theta, phi} = ", precision = 2))

 display(array_to_latex(s, prefix="\\
text{s} = ", precision = 1))

 return s

Here, we compute the complex amplitudes of a Bloch vector with 𝜃𝜃 = 𝜋𝜋/2 and 𝜑𝜑 = 𝜋𝜋/4 :

s = ToS(np.pi/2, np.pi/4)

Here is the result:

theta, phi = [1,57 0.79]

3.1.6. Pauli matrices
There are three Pauli matrices, 𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦 , and 𝜎𝜎𝑧𝑧 :

𝜎𝜎𝑥𝑥 = (0 1
1 0)

,
𝜎𝜎𝑦𝑦 = (0 −𝑖𝑖

𝑖𝑖 0)
,
𝜎𝜎𝑧𝑧 = (1 0

0 −1)

which are Hermitian and unitary, making the square of each equal to the (2 × 2)
identity matrix:

𝜎𝜎𝑥𝑥
2 = 𝜎𝜎𝑦𝑦

2 = 𝜎𝜎𝑧𝑧
2 = (1 0

0 1)

Each of the Pauli matrices is equal to its inverse:

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑥𝑥−1
𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦−1
𝜎𝜎𝑧𝑧 = 𝜎𝜎𝑧𝑧−1

𝑠𝑠 = [1
√2

 12 (1 + 𝑖𝑖)]

90 Quantum Circuit Model of Computation

We summarize the Pauli matrices and the operations on a qubit that yields the associated
eigenvectors in Figure 3.5:

Figure 3.5 – Pauli matrices and the associated eigenvectors

In Figure 3.6, we display on the far-left side the |0⟩ qubit state, which has zero angular
momentum projection on the 𝑧𝑧 -axis, as indicated by the dark circle under the Bloch
sphere. In the middle, we display the |1⟩ qubit state, which has an angular momentum
projection on the 𝑧𝑧 -axis indicated by a light grey circle under the Bloch sphere. Recall we
discussed the angular momentum projection for the |0⟩ and |1⟩ qubit states in Section
3.1.4, Bloch sphere. On the far-right side, we indicate the 𝜎𝜎𝑧𝑧 operation on the |1⟩ qubit
state, which modifies the angular momentum projection by 𝜋𝜋 .

Figure 3.6 – Pauli Z operation on basis states |0⟩ and |1⟩ illustrated with Grok the Bloch sphere

The 𝜎𝜎𝑥𝑥 operation does not have an effect on the angular momentum projection, while the
𝜎𝜎𝑦𝑦 operation modifies the angular momentum projection by 𝜋𝜋 2⁄ .

3.1. Qubits, entanglement, Bloch sphere, Pauli matrices 91

Measurement in the sign basis {|+⟩, |−⟩}
Let us measure a state |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ in the sign basis {|+⟩, |−⟩} which is also known as
a measurement according to the Pauli matrix 𝜎𝜎𝑥𝑥 . To make this measurement, we perform a
change of basis from the sign basis {|+⟩, |−⟩} to the standard basis {|0⟩, |1⟩} where:

which allows us to rewrite the state:

|𝜓𝜓⟩ = 𝛼𝛼 + 𝛽𝛽
√2

 |+⟩ + 𝛼𝛼 − 𝛽𝛽
√2

|−⟩

The possible outcomes of a measurement with their corresponding probabilities and new
state are listed in Figure 3.7:

Figure 3.7 – Measurement in the sign basis {|+⟩, |−⟩}

The expectation value of the measurement of a state |𝜓𝜓⟩ according to the Pauli 𝜎𝜎𝑥𝑥
operation is:

〈𝜎𝜎𝑥𝑥〉𝜓𝜓 = ⟨𝜓𝜓|𝜎𝜎𝑥𝑥|𝜓𝜓⟩

which means we need to calculate the bra in the sign basis by taking the complex
conjugate transpose:

⟨𝜓𝜓| = (|𝜓𝜓⟩∗)𝑇𝑇 = 𝛼𝛼∗ + 𝛽𝛽∗

√2
⟨+| + 𝛼𝛼

∗ − 𝛽𝛽∗

√2
⟨−|

We also need to transform the Pauli operation from the standard basis to the sign basis:

𝜎𝜎𝑥𝑥 = 1 |+⟩⟨+| + (−1) |−⟩⟨−| = (1 0
0 −1)

|0⟩ = √2
2 (|+⟩ + |−⟩)

|1⟩ = √2
2 (|+⟩ − |−⟩)

92 Quantum Circuit Model of Computation

Recall that a ket times a bra, as seen previously (|+⟩⟨+| and |−⟩⟨−|), is an outer product
that yields a matrix, whereas a bra times a ket is a scalar. With this, we have the
expectation value calculated as:

Please remember that in general, 𝛼𝛼 and 𝛽𝛽 are complex numbers, and the imaginary part
can be zero. The expectation value is the sum of all the possible outcomes (1 and -1) of a
measurement of a state |𝜓𝜓⟩ in the sign basis weighted by their probabilities.

Decomposing a matrix into the weighted sum of the tensor product
of Pauli matrices
It can be shown that any matrix can be decomposed into the weighted sum of the tensor
product of the identity matrix and the Pauli matrices 𝑃𝑃𝑖𝑖 = ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑖𝑖,𝑗𝑗 , where
𝜎𝜎𝑖𝑖,𝑗𝑗 ∈ {𝟙𝟙, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑧𝑧} with weights ℎ𝑖𝑖 and 𝑁𝑁 qubits:

For Hermitian matrices, all weights ℎ𝑖𝑖 are real.

We provide a proof for any 2x2 matrix, 𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) :

〈𝜎𝜎𝑥𝑥〉𝜓𝜓 = ⟨𝜓𝜓|𝜎𝜎𝑥𝑥|𝜓𝜓⟩ =
1
2 (𝛼𝛼

∗ + 𝛽𝛽∗, 𝛼𝛼∗ − 𝛽𝛽∗) (1 0
0 −1)(

𝛼𝛼 + 𝛽𝛽
𝛼𝛼 − 𝛽𝛽)

= 1
2 (𝛼𝛼∗ + 𝛽𝛽∗ , (−1)(𝛼𝛼∗ − 𝛽𝛽∗)) (𝛼𝛼 + 𝛽𝛽

𝛼𝛼 − 𝛽𝛽)

〈𝜎𝜎𝑥𝑥〉𝜓𝜓 =
1
2 (|𝛼𝛼 + 𝛽𝛽|2 − |𝛼𝛼 − 𝛽𝛽|2)

𝑀𝑀 =∑ℎ𝑖𝑖 ⊗𝑗𝑗
𝑁𝑁 𝜎𝜎𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑖𝑖=1

𝜎𝜎𝑧𝑧 𝜎𝜎𝑥𝑥 = (1 0
0 −1) (0 1

1 0) = (0 1
−1 0) = 𝑖𝑖𝜎𝜎𝑦𝑦

𝜎𝜎𝑥𝑥𝜎𝜎𝑧𝑧 = (0 1
1 0) (1 0

0 −1) = (0 −1
1 0) = −𝑖𝑖𝜎𝜎𝑦𝑦

𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 = 1

2 ((1 0
0 1) + (1 0

0 −1)) = (1 0
0 0) = |0⟩⟨0|

𝟙𝟙 − 𝜎𝜎𝑧𝑧
2 = 1

2 ((1 0
0 1) − (1 0

0 −1)) = (0 0
0 1) = |1⟩⟨1|

3.2. Quantum gates 93

Since 𝜎𝜎𝑥𝑥|0⟩ = |1⟩ , hence ⟨1| = ⟨0|𝜎𝜎𝑥𝑥 , we have:

Starting from the decomposition of a 2x2 matrix as a sum of outer products:

𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) = 𝑚𝑚0,0|0⟩⟨0| + 𝑚𝑚0,1|0⟩⟨1| + 𝑚𝑚1,0|1⟩⟨0| + 𝑚𝑚1,1|1⟩⟨1|

we can then write:

𝑀𝑀 = 𝑚𝑚0,0
𝟙𝟙 + 𝜎𝜎𝑧𝑧

2 + 𝑚𝑚0,1
𝜎𝜎𝑥𝑥 + 𝑖𝑖𝜎𝜎𝑦𝑦

2 + 𝑚𝑚1,0
𝜎𝜎𝑥𝑥 − 𝑖𝑖𝜎𝜎𝑦𝑦

2 + 𝑚𝑚1,1
𝟙𝟙 − 𝜎𝜎𝑧𝑧

2

3.2. Quantum gates
Quantum gates are unitary operators (𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙) working on one, two, or three
qubits. The norm is preserved when applied to a quantum state. The action of a quantum
gate on a quantum state corresponds to the multiplication of the matrix representing the
gate by the vector representing the quantum state: 𝑈𝑈|𝑞𝑞⟩ .
In this section, a tensor product of 𝑛𝑛 qubits is represented with the first qubit on the

left-most side of the tensor product: |𝑞𝑞⟩ = |𝑞𝑞0⟩|𝑞𝑞1⟩ … |𝑞𝑞𝑛𝑛−1⟩ = |𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛−1⟩ = ⊗ 𝑛𝑛 − 1
𝑖𝑖 = 0 |𝑞𝑞𝑖𝑖⟩

where 𝑞𝑞𝑖𝑖 ∊ {0,1} . Please note that we are not using the Qiskit tensor ordering of qubits
unless specifically specified.

In this section, we cover the following:

•	 Section 3.2.1, Single-qubit quantum gates

•	 Section 3.2.2, Two-qubit quantum gates

•	 Section 3.2.3, Three-qubit quantum gates

•	 Section 3.2.4, Serial wired gates and parallel quantum gates

•	 Section 3.2.5, Creation of a Bell state

•	 Section 3.2.6, Parallel Hadamard gates

|0⟩⟨1| = |0⟩⟨0|𝜎𝜎𝑥𝑥 = 𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 𝜎𝜎𝑥𝑥 =

𝜎𝜎𝑥𝑥 + 𝑖𝑖𝜎𝜎𝑦𝑦
2

|1⟩⟨0| = 𝜎𝜎𝑥𝑥|0⟩⟨0| = 𝜎𝜎𝑥𝑥
𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 =

𝜎𝜎𝑥𝑥 − 𝑖𝑖𝜎𝜎𝑦𝑦
2

𝑀𝑀 = 𝑚𝑚0,0 + 𝑚𝑚1,1
2 𝟙𝟙 + 𝑚𝑚0,1 + 𝑚𝑚1,0

2 𝜎𝜎𝑥𝑥 + 𝑖𝑖𝑚𝑚0,1 − 𝑚𝑚1,0
2 𝜎𝜎𝑦𝑦 +

𝑚𝑚0,0 − 𝑚𝑚1,1
2 𝜎𝜎𝑧𝑧

94 Quantum Circuit Model of Computation

3.2.1. Single-qubit quantum gates
A single-qubit gate 𝑈𝑈 has a (2 × 2) unitary matrix form: 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙 .

In this section, we describe in detail the following:

•	 𝑋𝑋 gate

•	 Hadamard (𝐻𝐻) gate

•	 Generalized single-qubit quantum gate

We summarize commonly used quantum gates as well as provide some useful
relationships.

𝑿𝑿 gate
An 𝑋𝑋 gate maps |0⟩ to |1⟩ and |1⟩ to |0⟩ . It is the quantum equivalent of the NOT gate for
classical computers and is sometimes called a bit-flip. For classical computing, the NOT
gate changes a 0 to a 1 and a 1 to a 0. The 𝑋𝑋 gate equates to a rotation by π radians around
the X-axis of the Bloch sphere.

𝑋𝑋 = (0 1
1 0)

Hadamard (𝑯𝑯) gate

A Hadamard gate maps the basis state |0⟩ to
1
√2

(|0⟩ + |1⟩) , which is also written as |+⟩ ,
and |1⟩ to

1
√2

(|0⟩ − |1⟩) , which is also written as |−⟩ . It represents a rotation of π about
the axis that is in the middle (45° angle) of the 𝑥𝑥 - and 𝑧𝑧 -axis. A measurement of the
state |+⟩ or of the state |−⟩ will have equal probabilities of being 0 or 1, creating a
superposition of states.

𝐻𝐻 = 1
√2

(1 1
1 −1)

It is convenient to write the Hadamard gate applied to the 0th qubit (𝑥𝑥0) in the register
as follows: 𝐻𝐻|𝑥𝑥0⟩ = 1

√2 (|0⟩ + (−1)𝑥𝑥0|1⟩) where 𝑥𝑥0 ∊ {0, 1} . Please note that the Hadamard
gate (𝐻𝐻) has similar notation to the Hamiltonian operator (𝐻̂𝐻) ; the difference is the hat
(̂) symbol.

3.2. Quantum gates 95

General single-qubit quantum gate
All single-qubit gates can be obtained from the following matrix 𝑢𝑢(𝜃𝜃,𝜑𝜑, λ) , which
describes all unitary matrices up to a global phase factor by an appropriate choice of
parameters 𝜃𝜃,𝜑𝜑, λ with 𝜃𝜃 ∈ [0, 𝜋𝜋] , 𝜑𝜑 ∈ [0, 2𝜋𝜋] , λ ∈ [0, 2𝜋𝜋] [Qiskit_Op]:

The gate 𝑢𝑢 (
𝜋𝜋
2 , 𝜑𝜑, λ) has the matrix form:

The gate 𝑝𝑝(λ) = 𝑢𝑢(0,0, λ) and has the matrix form:

𝑝𝑝(λ) = (1 0
0 e𝑖𝑖λ)

Summary of single-qubit quantum gates and useful relationships
Figure 3.8 presents the main list of single-qubit quantum gates:

Figure 3.8 – Single-qubit quantum gates

𝑢𝑢(𝜃𝜃, 𝜑𝜑, λ) = (
cos𝜃𝜃2 −e𝑖𝑖λ sin 𝜃𝜃2

e𝑖𝑖𝜑𝜑 sin 𝜃𝜃2 e𝑖𝑖(𝜑𝜑+λ) cos 𝜃𝜃2

)

𝑢𝑢 (𝜋𝜋2 , 𝜑𝜑, λ) =
1
√2

(1 −e𝑖𝑖λ
e𝑖𝑖𝜑𝜑 e𝑖𝑖(𝜑𝜑+λ))

96 Quantum Circuit Model of Computation

The rotation operator gates 𝑅𝑅𝑅𝑅 , 𝑅𝑅𝑅𝑅 , and 𝑅𝑅𝑅𝑅 perform rotations about the 𝑋𝑋 , 𝑌𝑌 , and 𝑍𝑍 axes
respectively of the Bloch sphere:

We would like to point out that the 𝑋𝑋 gate can be obtained by using a combination of the
Hadamard gate and the 𝑍𝑍 gate: 𝑋𝑋 = 𝐻𝐻𝐻𝐻𝐻𝐻 . The converse is also true: 𝑍𝑍 = 𝐻𝐻𝐻𝐻𝐻𝐻 . It means
we can project a state onto the 𝑋𝑋 -axis of the Bloch sphere when applying a 𝐻𝐻 gate before
measuring. Same with the 𝑌𝑌 -axis when applying first an 𝑆𝑆† gate, then an 𝐻𝐻 gate. This way
we can perform qubit tomography (that is, reconstructing the Bloch vector through 𝑋𝑋 , 𝑌𝑌 ,
and 𝑍𝑍 measurements). These gate operations are summarized in Figure 3.9:

Figure 3.9 – Relations = , =

3.2.2. Two-qubit quantum gates
A two-qubit gate 𝑈𝑈 is a (4 × 4) unitary matrix, 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙 that acts on two qubits.

𝑅𝑅𝑅𝑅(𝜃𝜃) = exp(−𝑖𝑖 𝜃𝜃2𝑋𝑋) = (
cos 𝜃𝜃2 −𝑖𝑖 sin 𝜃𝜃2
−𝑖𝑖 sin 𝜃𝜃2 cos 𝜃𝜃2

)

𝑅𝑅𝑅𝑅(𝜃𝜃) = exp (−𝑖𝑖 𝜃𝜃2 𝑌𝑌) = (
cos𝜃𝜃2 −sin 𝜃𝜃2
sin 𝜃𝜃2 cos 𝜃𝜃2

)

𝑅𝑅𝑅𝑅(λ) = exp(−𝑖𝑖 λ2𝑍𝑍) = (−e
𝑖𝑖λ2 0
0 e𝑖𝑖

λ
2
)

3.2. Quantum gates 97

We summarize commonly used two-qubit quantum gates in Figure 3.10.

Figure 3.10 – Two-qubit quantum gates

3.2.3. Three-qubit quantum gates
A three-qubit gate U is an (8 × 8) unitary matrix 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙 that acts on three
qubits. We summarize commonly used three-qubit quantum gates in Figure 3.11:

Figure 3.11 – Three-qubit quantum gates

98 Quantum Circuit Model of Computation

3.2.4. Serially wired gates and parallel quantum gates
Operations on quantum gates are applied sequentially from left to right, and there are no
loops. Two gates 𝑈𝑈 and 𝑉𝑉 in series are equivalent to the matrix product of the two gates, as
shown in Figure 3.12:

Figure 3.12 – Serially wired quantum gates

Two gates 𝑈𝑈 and 𝑉𝑉 in parallel are equivalent to the tensor product of the two gates 𝑈𝑈⊗𝑉𝑉 ,
as shown in Figure 3.13:

Figure 3.13 – Parallel quantum gates

3.2.5. Creation of a Bell state
Bell states are maximally entangled pure quantum states, and there are only four:

|𝛷𝛷+⟩ =
1
√2

(|00⟩ + |11⟩)

|𝛷𝛷−⟩ =
1
√2

(|00⟩ − |11⟩)

|𝛹𝛹+⟩ =
1
√2

(|01⟩ + |10⟩)

|𝛹𝛹−⟩ =
1
√2

(|01⟩ − |10⟩)

3.2. Quantum gates 99

A quantum circuit is an ordered sequence of instructions, quantum gates, measurements,
and resets that is applied to registers of qubits and may be conditioned on real-time
classical computation. Several quantum hardware platforms now support dynamic
quantum circuits, which allow concurrent classical processing of mid-circuit
measurement results [Corcoles] [IBM_mid]. In Section 3.4, Preparing a permutation
symmetric or antisymmetric state, we demonstrate a classical program that aims to obtain
the desired quantum state by post selecting the result of a measurement of a control qubit.
There is no loop in a quantum circuit, but we can have a classical loop that appends a
quantum sub-circuit. In Qiskit, we use the QuantumRegister class to create a register
of qubits and the QuantumCircuit class to create a quantum circuit.

Let's build a quantum circuit that creates the first Bell state |𝛷𝛷+⟩ with Qiskit:

q = QuantumRegister(2)

qc = QuantumCircuit(q)

qc.h(q[0])

qc.cx(q[0], q[1])

qc.draw(output='mpl')

Figure 3.14 shows the result:

Figure 3.14 – Qiskit quantum circuit that creates a Bell state

We use the Statevector.from_instruction() class method from the
quantum_info module to get the final state vector |𝑠𝑠⟩ :

s = qi.Statevector.from_instruction(qc)

s.draw('latex', prefix='|s \\rangle = ')

Figure 3.15 shows the result:

Figure 3.15 – Final state vector – Bell state

100 Quantum Circuit Model of Computation

The final state vector can only be measured in either the state |00⟩ or |11⟩ , each with a
probability of 1/2.

We use the DensityMatrix.from_instruction() class method to obtain the
density matrix representation of the final state vector:

rho = qi.DensityMatrix.from_instruction(qc)

rho.draw('latex', prefix='\\rho = ')

Figure 3.16 shows the result:

Figure 3.16 – Density matrix – Bell state

We can visualize the density matrix using a cityscape plot of the state:

from qiskit.visualization import plot_state_city

plot_state_city(rho.data, title='Density Matrix')

Figure 3.17 shows the result:

Figure 3.17 – Cityscape plot – Bell state

3.2. Quantum gates 101

3.2.6. Parallel Hadamard gates
It can be shown that applying parallel Hadamard gates to a register of qubits initialized
in the zero state puts it in a uniform superposition of all possible states. Let's experiment
with the effect of applying one, two, and three Hadamard gates. In this section, we'll build
the following:

•	 One Hadamard gate

•	 Two parallel Hadamard gates

•	 Three parallel Hadamard gates

The create_parallel_H() function creates a quantum circuit with n parallel
Hadamard gates:

def create_parallel_H(n):

 q = QuantumRegister(n, 'q')

 qc = QuantumCircuit(q)

 for k in range(n):

 qc.h(k)

 return qc

The function run_parallel_H() creates and executes a quantum circuit with n
parallel Hadamard gates and displays a diagram of the final state vector:

def run_parallel_H(n):

 qc = create_parallel_H(n)

 s = qi.Statevector.from_instruction(qc)

 display(s.draw('latex'))

 display(qc.draw(output='mpl'))

 return

Let's create a quantum circuit with just one Hadamard gate:

run_parallel_H(1)

102 Quantum Circuit Model of Computation

Figure 3.18 shows the result:

Figure 3.18 – One Hadamard gate

Next, we build a quantum circuit with two parallel Hadamard gates:

run_parallel_H(2)

Figure 3.19 shows the result:

Figure 3.19 – Two parallel Hadamard gates

Last, let's build a circuit with three parallel Hadamard gates:

run_parallel_H(3)

Figure 3.20 shows the result:

Figure 3.20 – Three parallel Hadamard gates

3.3. Computation-driven interference 103

3.3. Computation-driven interference
In this section, we introduce the process of a generic quantum computation in
Section 3.3.1, Quantum computation process. Then we give an example of a simulation
inspired by a chemical experiment in Section 3.3.2, Simulating interferometric sensing
of a quantum superposition of left- and right-handed enantiomer states. In chemistry,
molecules or ions that are mirror images of each other are called enantiomers or optical
isomers. If these images are non-superimposable, they are called chiral molecules
[ChemChiral] and they differ in their ability to rotate plane polarized light either to the
left or to the right [Wonders]. Researchers have proposed an experiment to prepare a
quantum superposition of left- and right-handed states of enantiomers and to perform
interferometric sensing of chirality-dependent forces [Stickler].

3.3.1. Quantum computation process
Quantum computing uses interference and the quantum physical phenomena of
superposition and entanglement. A typical quantum computation comprises the
following steps:

1.	 Prepare a uniform superposition of all possible basis states. A register of qubits
initialized in the zero state is put in a uniform superposition of all possible basis
states simply by applying parallel Hadamard gates, as we illustrated previously.

2.	 Orchestrate quantum interference and entanglement. A quantum algorithm ought
to be designed such that at the end of a computation, only the relative amplitudes
and the phases of those quantum states that are of interest will remain.

3.	 Repeat the measurements multiple times. Measurements are repeated hundreds or
thousands of times in order to obtain a distribution over the possible measurement
outcomes. This is the key difference between quantum and classical computing.

104 Quantum Circuit Model of Computation

3.3.2. Simulating interferometric sensing of a
quantum superposition of left- and right-handed
enantiomer states
Let's design, with Qiskit, a quantum circuit inspired by the interferometer involving
enantiomers. We represent a single enantiomer with two qubits. We encode in the
direction of propagation qubit |𝑞𝑞1⟩ the horizontal propagation as the state |0⟩ and the
vertical propagation as the state |1⟩ . We simulate a mirror by the Pauli 𝜎𝜎𝑥𝑥 matrix and a
beam splitter (𝐵𝐵𝐵𝐵) by the matrix 1

√2 (𝟙𝟙 + 𝑖𝑖𝜎𝜎𝑥𝑥) :

By convention, a phase shift of
 𝜋𝜋
2 is assigned to reflection. From the preceding unitary

matrix, we create a beam splitter gate named BS with the following Qiskit code:

from qiskit.extensions import UnitaryGate

i = complex(0.0, 1.0)

BS = 1/np.sqrt(2) * np.array([[1,i],[i,1]])

BS = UnitaryGate(BS,'Beam Splitter')

We encode the following in the handedness qubit |𝑞𝑞0⟩ :

•	 A left-handed state as the |0⟩ state

•	 A right-handed state as the |1⟩ state

•	 A superposition of left- and right-handed states as
1

√2 (|0⟩ + |1⟩) obtained by
applying a Hadamard gate

We simulate a polarizing beam splitter (𝑃𝑃𝑃𝑃𝑃𝑃):

which transmits left-handed and reflects right-handed states with the matrix PBS [Rioux].
Unlike the beam splitter, there is no phase change on reflection. From the preceding
unitary matrix, we create a polarizing beam splitter gate named PBS with the following
Qiskit code:

PBS = np.array([[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]])

PBS = UnitaryGate(PBS,'PBS')

𝐵𝐵𝐵𝐵 = 1
√2

(𝟙𝟙 + 𝑖𝑖𝜎𝜎𝑥𝑥) =
1
√2

((1 0
0 1) + 𝑖𝑖 (0 1

1 0)) =
1
√2

(1 𝑖𝑖
𝑖𝑖 1)

𝑃𝑃𝑃𝑃𝑃𝑃 = (
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)

3.3. Computation-driven interference 105

We define the show() function, which displays the drawing of a quantum circuit and the
state of the state vector using LaTeX as follows:

def show(qc):

 display(qc.draw(output='mpl'))

 s = qi.Statevector.from_instruction(qc)

 display(array_to_latex(s, prefix="\\
text{state vector} = ", precision = 2))

 return

We simulate the action of a polarizing beam splitter on an enantiomer moving
horizontally and in the right-handed state with the following Qiskit code:

q = QuantumRegister(2, 'q') # register of 2 qubits

q[0] handedness qubit,|0⟩ left-handed,|1⟩ right-handed
q[1] direction of propagation qubit,|0⟩ horizontal,|1⟩
vertical

qc = QuantumCircuit(q)

qc.x([0]) # Right-handed

show(qc)

qc.append(PBS, q)

show(qc)

Figure 3.21 shows the result:

Figure 3.21 – Simulation of the interaction of a right-handed enantiomer with a polarizing beam splitter

106 Quantum Circuit Model of Computation

The enantiomer moving horizontally and in the right-handed state, represented by
|𝑞𝑞1𝑞𝑞0⟩ = |01⟩ , using Qiskit tensor ordering of qubits, has been reflected in the vertical
direction of propagation by the polarizing beam splitter, represented by |𝑞𝑞1𝑞𝑞0⟩ = |11⟩ .
We simulate the action of a polarizing beam splitter on an enantiomer moving
horizontally and in a superposition of left- and right-handed states with the following
Qiskit code:

q = QuantumRegister(2, 'q') # register of 2 qubits

q[0] handedness qubit,|0⟩ left-handed, |1⟩ right-handed
q[1] direction of propagation qubit, |0⟩ horizontal, |1⟩
vertical

qc = QuantumCircuit(q)

qc.h(q[0]) # Put enantiomer in a superposition of left- and
right-handed states

show(qc)

qc.append(PBS, q)

show(qc)

Figure 3.22 shows the result:

Figure 3.22 – Simulation of the interaction of a left- and right-handed enantiomer with a polarizing
beam splitter

3.4. Preparing a permutation symmetric or antisymmetric state 107

The enantiomer moving horizontally and in a superposition of the left- and right-handed

states, represented by |𝑞𝑞1𝑞𝑞0⟩ = |0⟩⊗ 1
√2

(|0⟩ + |1⟩) = 1
√2

(|00⟩ + |01⟩) , using Qiskit tensor
ordering of qubits, has been put by the polarizing beam splitter in the Bell state
|𝑞𝑞1𝑞𝑞0⟩ = |𝛷𝛷+⟩ =

1
√2

(|00⟩ + |11⟩) , a superposition of left-handed moving horizontally and
right-handed moving vertically, thereby achieving interferometric sensing.

Now we move on to preparing permutation symmetric and antisymmetic states.

3.4. Preparing a permutation symmetric or
antisymmetric state
Given two qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ , we want to build a symmetrized state that remains
invariant under a permutation of the qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ , or an antisymmetrized state that
is multiplied by −1 under a permutation of the qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ . In this section, we
show how to prepare such states in a probabilistic manner with a quantum circuit
prepared and simulated with Qiskit:

•	 Section 3.4.1, Creating random states

•	 Section 3.4.2, Creating a quantum circuit and initializing qubits

•	 Section 3.4.3, Creating a circuit that swaps two qubits with a controlled swap gate

•	 Section 3.4.4, Post selecting the control qubit until the desired state is obtained

•	 Section 3.4.5, Examples of final symmetrized and antisymmetrized states

3.4.1. Creating random states
We define a function called init_random() that creates random 1-qubit states s1 and
s2 that we will use later to run experiments with random states:

def init_random():

 # Create random 1-qubit state s1

 s1 = qi.random_statevector(2)

 display(array_to_latex(s1, prefix="\\
text{State 1} =", precision=2))

 # Create random 1-qubit state s2

 s2 = qi.random_statevector(2)

108 Quantum Circuit Model of Computation

 display(array_to_latex(s2, prefix="\\
text{State 2} =", precision =2))

 return s1, s2

3.4.2. Creating a quantum circuit and initializing qubits
We define the setup_qc() function, which sets up the initialization instruction to
create qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ from the state vectors s1 and s2 given as input and a quantum
circuit qc with a control qubit |𝑞𝑞0⟩ initialized in state |0⟩ , qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ , and a
classical register c for measuring |𝑞𝑞0⟩ :

def setup_qc(s1, s2, draw=False):

 init_q1 = Initialize(s1)

 init_q1.label = "init_q1"

 init_q2 = Initialize(s2)

 init_q2.label = "init_q2"

 q = QuantumRegister(3, 'q') # register of 3 qubits

 c = ClassicalRegister(1, name="c") # and 1 classical register

 qc = QuantumCircuit(q,c)

 qc.append(init_q1, [1])

 qc.append(init_q2, [2])

 qc.barrier()

 if draw:

 display(qc.draw(output='mpl'))

 return qc, q, c

3.4.3. Creating a circuit that swaps two qubits with a
controlled swap gate
We define the swapper() function, which creates a quantum circuit as follows [Spheres]:

•	 Applying a Hadamard gate to the control qubit |𝑞𝑞0⟩ which puts it in the state
1

√2 (|0⟩ + |1⟩)

3.4. Preparing a permutation symmetric or antisymmetric state 109

•	 Applying a controlled swap gate, which puts the two qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ in a
superposition of being swapped and not swapped

•	 Applying again a Hadamard gate to the control qubit |𝑞𝑞0⟩

Here is the implementation:

def swapper(draw=False):

 q = QuantumRegister(3, 'q') # register of 3 qubits

 qc = QuantumCircuit(q, name='Swapper')

 qc.h(q[0])

 qc.cswap(q[0], q[1], q[2])

 qc.h(q[0])

 if draw:

 print("Swapper circuit")

 display(qc.draw(output='mpl'))

 return qc

Let's get the unitary matrix corresponding to the swapper quantum circuit with the
unitary simulator:

q = QuantumRegister(3, 'q') # register of 3 qubits

qc = QuantumCircuit(q)

qc.append(swapper(draw=True), qargs=q)

Selecting the unitary_simulator

backend = Aer.get_backend('unitary_simulator')

Executing the job and getting the result as an object

job = execute(qc, backend)

result = job.result()

Getting the unitary matrix from the result object

U = result.get_unitary(qc, decimals=2)

array_to_latex(U, prefix="\\
text{swapper unitary} = ", precision = 2)

110 Quantum Circuit Model of Computation

Figure 3.23 shows the result:

Figure 3.23 – Unitary matrix of the swapper circuit

Computing the action of the swapper unitary
The initial state vector pertaining to the two qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ can be written as follows:

|𝑞𝑞2𝑞𝑞1⟩ = (
𝑥𝑥0
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
)

The swapper unitary acts on the initial state vector as follows, using Qiskit ordering of the
tensor product:

𝑈𝑈|𝑞𝑞2𝑞𝑞1⟩|𝑞𝑞0⟩ = 𝑈𝑈(
𝑥𝑥0
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
)⊗ (10) = 𝑈𝑈

(

𝑥𝑥0
0
𝑥𝑥1
0
𝑥𝑥2
0
𝑥𝑥3
0)

=

(

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
2

1
2 −12 0 0

0 0 1
2

1
2 −12

1
2 0 0

0 0 1
2 −12

1
2

1
2 0 0

0 0 −12
1
2

1
2

1
2 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1)

(

𝑥𝑥0
0
𝑥𝑥1
0
𝑥𝑥2
0
𝑥𝑥3
0)

=

(

𝑥𝑥0
0

1
2 𝑥𝑥1 +

1
2𝑥𝑥2

1
2 𝑥𝑥1 −

1
2𝑥𝑥2

1
2 𝑥𝑥1 +

1
2𝑥𝑥2

−12𝑥𝑥1 +
1
2𝑥𝑥2

𝑥𝑥3
0)

3.4. Preparing a permutation symmetric or antisymmetric state 111

Computing the final state when the control qubit |𝒒𝒒𝟎𝟎⟩ is measured
in state |𝟎𝟎⟩
If the control qubit |𝑞𝑞0⟩ is measured in state |0⟩ , then the final state is computed by
discarding all amplitudes that do not contribute to this outcome, |001⟩, |011⟩ , |101⟩, |111⟩,
and then renormalizing:

𝑃𝑃0

(

𝑥𝑥0
0

1
2𝑥𝑥1 +

1
2𝑥𝑥2

1
2 𝑥𝑥1 −

1
2𝑥𝑥2

1
2 𝑥𝑥1 +

1
2𝑥𝑥2

−12𝑥𝑥1 +
1
2𝑥𝑥2

𝑥𝑥3
0)

=

(

𝑥𝑥0
0

1
2𝑥𝑥1 +

1
2𝑥𝑥2

0
1
2 𝑥𝑥1 +

1
2𝑥𝑥2

0
𝑥𝑥3
0)

/√|𝑥𝑥0|2 +
1
2 |𝑥𝑥1 + 𝑥𝑥2|

2 + |𝑥𝑥3|2

Recall that |𝛷𝛷+⟩ , |𝛷𝛷−⟩ , |𝛹𝛹+⟩ and |𝛹𝛹−⟩ are the Bell states we introduced in Section 3.2.5,
Creation of a Bell state. The amplitudes 𝑥𝑥0 of |00⟩ and 𝑥𝑥3 of |11⟩ are left unchanged up to
a renormalization factor in the final state. The symmetrized Bell state |𝛷𝛷+⟩ =

1
√2

(|00⟩ + |11⟩)
is left unchanged. The amplitudes 𝑥𝑥1 of |01⟩ and 𝑥𝑥2 of |10⟩ are mixed in the Bell state
|𝛹𝛹+⟩ =

1
√2

(|01⟩ + |10⟩) , which is symmetrized.

Computing the final state when the control qubit |𝒒𝒒𝟎𝟎⟩ is measured in
state |𝟏𝟏⟩
If the control qubit |𝑞𝑞0⟩ is measured in state |1⟩ , then the final state is computed by
discarding all amplitudes that do not contribute to this outcome, |000⟩, |010⟩ , |100⟩, and
|110⟩ , and then renormalizing:

𝑃𝑃1

(

𝑥𝑥0
0

1
2𝑥𝑥1 +

1
2𝑥𝑥2

1
2 𝑥𝑥1 −

1
2𝑥𝑥2

1
2 𝑥𝑥1 +

1
2𝑥𝑥2

−12𝑥𝑥1 +
1
2𝑥𝑥2

𝑥𝑥3
0)

=

(

0
0
0

1
2𝑥𝑥1 −

1
2𝑥𝑥2

0
−12𝑥𝑥1 +

1
2𝑥𝑥2

0
0)

/√12 |𝑥𝑥1 − 𝑥𝑥2|
2

112 Quantum Circuit Model of Computation

The only non-null amplitudes of the final state are those in the |01⟩ and |10⟩ subspace,
which are mixed in the Bell state |𝛹𝛹−⟩ =

1
√2

(|01⟩ − |10⟩) , which is antisymmetrized.
These properties of symmetry and antisymmetry are key to efficient implementations of
the Variational Quantum Eigensolver (VQE) algorithms [Gard] that we will cover in
Chapter 6, Variational Quantum Eigensolver Algorithm.

3.4.4. Post selecting the control qubit until the desired
state is obtained
We define the post_select() function, which performs a loop that executes the
swapper circuit and measures the state of the control qubit |𝑞𝑞0⟩ until the desired
symmetrized or antisymmetrized state is obtained, or until the maximum number of
iterations is reached:

•	 Append a circuit created by the swapper() function.

•	 Measure the control qubit |𝑞𝑞0⟩ . If we get 0, then qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ are
in a symmetrized state and if we get 1, then qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ are in an
antisymmetrized state.

Then, post_select() calls the proc_result() function to process the results.

The post_select() function has the following input parameters:

•	 simulator, by default statevector_simulator, which simulates
perfect qubits.

•	 symm: set to True to get a symmetrized state and False to get an
antisymmetrized state.

•	 shots is the number of shots, and by default is set to 1.

•	 max_iter is the maximum number of iterations, and by default is set to 20.

•	 swap_test is set to True to perform a swap test to determine whether the final
state is permutation symmetric or permutation asymmetric, and by default is set
to False.

Here is the code:

def post_select(qc, q, c, symm=True, simulator='statevector_
simulator', shots=1, max_iter=20, swap_test=False):

 backend = Aer.get_backend(simulator)

 s = qi.Statevector.from_instruction(qc)

3.4. Preparing a permutation symmetric or antisymmetric state 113

 display(array_to_latex(s, prefix="\\
text{Initial state} = ", precision = 2))

 done = False

 iter = 0

 while not done and iter < max_iter:

 qc.append(swapper(draw=(iter==0)), qargs=q)

 qc.measure(q[0], c[0]) # Measure control qubit q[0]

 qc.save_statevector(label=str(iter)) # Save the current
simulator state vector

 job = execute(qc, backend, shots=shots) # Execute the
Simulator

 result = job.result()

 counts = result.get_counts(qc)

 for k, v in counts.items():

 if symm and k == '0' and v > shots/2:

 done = True

 elif not symm and k == '1' and v > shots/2:

 done = True

 if not done:

 qc.reset(q[0])

 iter += 1

 success = proc_result(result, iter, counts, max_iter=max_
iter, symm=symm, simulator=simulator, swap_test=swap_test)

 return result, success

The proc_result() function processes the results, displays the saved state vector,
and calls the factor() function. If the input parameter swap_test is set to True,
it calls the swap_check() function, which tests whether the final state is permutation
symmetric or permutation asymmetric.

It returns Success, a Boolean; True if the desired state has been obtained,
False otherwise:

def proc_result(result, iter, counts, max_
iter=20, symm=True, simulator='statevector_simulator', swap_
test=False):

 if symm:

 print("Preparing a permutation symmetric state")

 else:

114 Quantum Circuit Model of Computation

 print("Preparing a permutation antisymmetric state")

 print("simulator:", simulator)

 print("counts: ", counts)

 if iter >= max_iter:

 print("Post selection unsuccessful iteration {}".
format(iter))

 success = False

 else:

 print("Post selection successful iteration {}".
format(iter))

 success = True

 s = result.data()[str(iter)]

 factor(s, symm) # Call factor()

 if swap_test:

 swap_check(qc, q, iter, symm, s, simulator=simulator)

 print(" ") # Display Density matrix of the final state

 display(array_to_latex(qi.DensityMatrix(s), prefix="\\
text{Density matrix of the final state: }", precision = 2))

 display(plot_state_city(s, title='Cityscape plot of the
final state')) # Display Cityscape plot of the final state

 return success

The sym_test() function determines whether two amplitudes of a state vector are equal
or opposite to one another and the sum of their modulus squared is equal to 1:

def sym_test(s, symm, i0, i1):

 if symm:

 b = np.isclose(np.abs(s[i0]-s[i1]), 0, rtol=_EPS) and np.
isclose(np.abs(s[i0]**2 + s[i1]**2), 1, rtol=1e-4)

 else:

 b = np.isclose(np.abs(s[i0]+s[i1]), 0, rtol=_EPS) and np.
isclose(np.abs(s[i0]**2 + s[i1]**2), 1, rtol=1e-4)

 return b

3.4. Preparing a permutation symmetric or antisymmetric state 115

The factor() function attempts to factor the final state into a tensor product of the
control qubit |𝑞𝑞0⟩ and the permutation symmetric Bell states |𝛹𝛹+⟩ =

1
√2

(|01⟩ + |10⟩) or
|𝛷𝛷+⟩ =

1
√2

(|00⟩ + |11⟩) , or the permutation antisymmetric Bell states |𝛹𝛹−⟩ =
1
√2

(|01⟩ − |10⟩)

or |𝛷𝛷−⟩ =
1
√2

(|00⟩ − |11⟩) , which were introduced in Section 3.2.5, Creation of a Bell state:

def factor(s, symm):

 b0 = np.allclose(s, [1, 0, 0, 0, 0, 0, 0, 0], rtol=_EPS)

 b1 = np.allclose(s, [0, 0, 0, 0, 0, 0, 1, 0], rtol=_EPS)

 b2 = sym_test(s, symm, 2, 4)

 b3 = sym_test(s, symm, 3, 5)

 b4 = sym_test(s, symm, 0, 6)

 b5 = sym_test(s, symm, 1, 7)

 df = {b0: "|00", b1: "|11", b2: "|\\Psi_+", b3: "|\\Psi_-
", b4: "|\\Phi_+", b5: "|\\Phi_-"}

 found = False

 for k, v in df.items():

 if not found and symm and k:

 display(array_to_latex([s], prefix = "\\
text{Symmetrized state: }" + v + "\\rangle, \\
text{ Final state: }" + v + " \\rangle |0 \\
rangle =", precision = 2))

 found = True

 elif not found and not symm and k:

 display(array_to_latex([s], prefix = "\\
text{Antisymmetrized state: }" + v + "\\rangle, \\
text{ Final state: }" + v + " \\rangle |1 \\
rangle =", precision = 2))

 found = True

 if not found:

 display(array_to_latex(s, prefix="\\
text{Final state} = ", precision = 2))

 return

The swap_check() function tests whether the final state is permutation symmetric
or permutation asymmetric. It calls the swap() function and then compares the states
before and after the swap:

def swap_check(qc, q, iter, symm, s, simulator='statevector_
simulator'):

116 Quantum Circuit Model of Computation

 s21 = swap(qc, q, iter, simulator=simulator)

 if symm:

 if np.allclose(s-s21, 0, rtol=_EPS):

 print("Swap test confirms that final state is permutation
symmetric")

 else:

 if np.allclose(s+s21, 0, rtol=_EPS):

 print("Swap test confirms that final state is permutation
asymmetric")

 return

The swap() function performs a swap of qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ , measures the control qubit,
and returns the final state vector for comparison purposes:

def swap(qc, q, iter, simulator='statevector_simulator'):

 backend = Aer.get_backend(simulator)

 qc.swap(q[1], q[2])

 qc.measure(q[0], c[0]) # Measure control qubit q[0]

 qc.save_statevector(label=str(iter+1)) # Save the current
simulator state vector

 job = execute(qc, backend, shots=1) # Execute the Simulator

 result = job.result()

 s21 = result.data()[str(iter+1)]

 return s21

3.4.5. Examples of final symmetrized and
antisymmetrized states
We now implement five experiments creating:

•	 A symmetrized state from state |10⟩
•	 An antisymmetrized state from state |10⟩
•	 A symmetrized state from qubits initialized with random states

•	 An antisymmetrized state from qubits initialized with random states

•	 A symmetrized state from the Bell state |𝛷𝛷+⟩

3.4. Preparing a permutation symmetric or antisymmetric state 117

Experiment creating a symmetrized state from state |𝟏𝟏𝟏𝟏⟩
We create two state vectors in states |1⟩ and |0⟩ , we give them as input to the setup_qc()
function, and then we call the post_select() function with symm set to True:

s1 = qi.Statevector([0, 1])

s2 = qi.Statevector([1, 0])

qc, q, c = setup_qc(s1, s2)

result, success = post_select(qc, q, c, symm=True)

We have obtained the symmetrized state |𝛹𝛹+⟩ =
1
√2

(|01⟩ + |10⟩) , as shown in Figure 3.24:

Figure 3.24 – Symmetrized state obtained from state |10⟩

We show the density matrix using a cityscape plot of the final state in Figure 3.25:

Figure 3.25 – Cityscape plot of the symmetrized state obtained from state |𝟏𝟏𝟏𝟏⟩

118 Quantum Circuit Model of Computation

We display the quantum circuit with the draw() method of the quantum circuit class:

qc.draw(output='mpl', plot_barriers=False)

After one iteration, the quantum circuit looks like Figure 3.26:

Figure 3.26 – Quantum circuit after one iteration

Experiment creating an antisymmetrized state from state |𝟏𝟏𝟏𝟏⟩
We create two state vectors in states |1⟩ and |0⟩ , we give them as input to the setup_qc()
function, and then we call the post_select() function with symm set to False:

s1 = qi.Statevector([0, 1])

s2 = qi.Statevector([1, 0])

qc, q, c = setup_qc(s1, s2)

result, success = post_select(qc, q, c, symm=False)

We have obtained the antisymmetrized state |𝛹𝛹−⟩ =
1
√2

(|01⟩ − |10⟩) , as shown in Figure 3.27:

Figure 3.27 – Antisymmetrized state obtained from state |10⟩

3.4. Preparing a permutation symmetric or antisymmetric state 119

We show the density matrix using a cityscape plot of the final state in Figure 3.28:

Figure 3.28 – Cityscape plot of the antisymmetrized state obtained from state |10⟩

Experiment creating a symmetrized state from qubits initialized
with random states
We create two state vectors in random states with init_random(), we give them as
input to the setup_qc() function, and then we call the post_select() function with
symm set to True and swap_test set to True to confirm that the final state is indeed
permutation symmetric. We expect the final state to have four non-null amplitudes, based
on the computation made in Section 3.4.3, Creating a circuit that swaps two qubits with a
controlled swap gate, Computing the final state when the control qubit | 0⟩ is measured in
state |0⟩ :

s1, s2 = init_random()

qc, q, c = setup_qc(s1, s2)

result, success = post_select(qc, q, c, symm=True, swap_
test=True)

120 Quantum Circuit Model of Computation

In Figure 3.29, we show a result where the final state has four non-null amplitudes, as
expected, and the swap test has confirmed that the final state is permutation symmetric:

Figure 3.29 – Symmetrized state obtained from qubits initialized in random states

In the cityscape plot of the final state shown in Figure 3.30, we see that the state |000⟩ has
the largest probability to come out after measuring the final state:

Figure 3.30 – Cityscape plot of symmetrized state obtained from qubits initialized in random states

Experiment creating an antisymmetrized state from qubits
initialized with random states
We create two state vectors in random states with init_random(), we give them as
input to the setup_qc() function, and then we call the post_select() function
with symm set to False:

s1, s2 = init_random()

qc, q, c = setup_qc(s1, s2)

result, success = post_select(qc, q, c, symm=False)

3.4. Preparing a permutation symmetric or antisymmetric state 121

We have obtained the antisymmetrized state |𝛹𝛹−⟩ =
1
√2

(|01⟩ − |10⟩) up to a global phase, as
shown in Figure 3.31:

Figure 3.31 – Antisymmetrized state obtained from qubits initialized in random states

We show the density matrix using a cityscape plot of the final state in Figure 3.32:

Figure 3.32 – Cityscape plot of the antisymmetrized state obtained from qubits initialized
in random states

Experiment creating a symmetrized state from the Bell state |𝜱𝜱+⟩
We define a function called setup1_qc(), which sets up a quantum circuit that puts
qubits |𝑞𝑞1⟩ and |𝑞𝑞2⟩ into the Bell state |𝛷𝛷+⟩ =

1
√2

(|00⟩ + |11⟩) , as follows:

def setup1_qc(draw=False):

 q = QuantumRegister(3, 'q') # register of 3 qubits

 c = ClassicalRegister(1, name="c") # and 1 classical register

 qc = QuantumCircuit(q,c)

 qc.h(q[1])

 qc.cx(q[1], q[2])

122 Quantum Circuit Model of Computation

 qc.barrier()

 if draw:

 display(qc.draw(output='mpl'))

 return qc, q, c

We execute the following code, which calls setup1_qc() to create a Bell state |𝛷𝛷+⟩ and
then calls the post_select() function with symm set to True:

qc, q, c = setup1_qc()

result, success = post_select(qc, q, c, symm=True)

As expected in Section 3.4.3, Creating a circuit that swaps two qubits with a controlled swap
gate, the swapper circuit followed by a measurement of the qubit |𝑞𝑞0⟩ in state 0 leaves the
symmetrized Bell state |𝛷𝛷+⟩ =

1
√2

(|00⟩ + |11⟩) unchanged, as shown in Figure 3.33:

Figure 3.33 – Symmetrized state obtained from the Bell state | +⟩

We show the density matrix using a cityscape plot of the final state in Figure 3.34:

Figure 3.34 – Cityscape plot of the final state obtained from the Bell state | +⟩

References 123

References
[ChemChiral] 5.1 Chiral Molecules, Chemistry LibreTexts, 5 Jul 2015, https://chem.
libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_
Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_
Chiral__Molecules

[Corcoles] A. D. Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K. Minev,
Jerry M. Chow, and Jay M. Gambetta, Exploiting Dynamic Quantum Circuits in a
Quantum Algorithm with Superconducting Qubits, Phys. Rev. Lett. 127, 100501,
31 August 2021, https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.127.100501

[Crockett] Christopher Crockett, Superpositions of Chiral Molecules, September 14, 2021,
Physics 14, s108, https://physics.aps.org/articles/v14/s108

[Gard] Gard, B.T., Zhu, L., Barron, G.S. et al., Efficient symmetry-preserving state
preparation circuits for the variational quantum eigensolver algorithm, npj Quantum Inf
6, 10 (2020), https://doi.org/10.1038/s41534-019-0240-1

[Grok] Grok the Bloch Sphere, https://javafxpert.github.io/grok-bloch/

[IBM_CEO] IBM CEO: Quantum computing will take off 'like a rocket ship' this decade,
Fast Company, Sept 28, 2021., https://www.fastcompany.com/90680174/
ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-
this-decade

[IBM_comp1] Welcome to IBM Quantum Composer, https://quantum-
computing.ibm.com/composer/docs/iqx/

[IBM_comp2] IBM Quantum Composer, https://quantum-computing.ibm.
com/composer/files/new

[IBM_mid] Mid-Circuit Measurements Tutorial, IBM Quantum systems, https://
quantum-computing.ibm.com/lab/docs/iql/manage/systems/
midcircuit-measurement/

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Qiskit] Qiskit, https://qiskit.org/

[QuTiP] QuTiP, Plotting on the Bloch Sphere, https://qutip.org/docs/latest/
guide/guide-bloch.html

[Rioux] Mach-Zehnder Polarizing Interferometer Analyzed Using Tensor Algebra,
https://faculty.csbsju.edu/frioux/photon/MZ-Polarization.pdf

https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501
https://physics.aps.org/articles/v14/s108
https://doi.org/10.1038/s41534-019-0240-1
https://javafxpert.github.io/grok-bloch/
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://qiskit.org/
https://qutip.org/docs/latest/guide/guide-bloch.html
https://qutip.org/docs/latest/guide/guide-bloch.html
https://faculty.csbsju.edu/frioux/photon/MZ-Polarization.pdf

124 Quantum Circuit Model of Computation

[Spheres] How to Prepare a Permutation Symmetric Multiqubit State on an Actual
Quantum Computer, https://spheres.readthedocs.io/en/stable/
notebooks/9_Symmetrized_Qubits.html

[Stickler] B. A. Stickler et al., Enantiomer superpositions from matter-wave interference
of chiral molecules, Phys. Rev. X 11, 031056 (2021), https://journals.aps.org/
prx/abstract/10.1103/PhysRevX.11.031056

[Wonders] Optical Isomers, Enantiomers and Chiral Molecules, WondersofChemistry,
https://www.youtube.com/watch?v=8TIZdWR4gIU

https://spheres.readthedocs.io/en/stable/notebooks/9_Symmetrized_Qubits.html
https://spheres.readthedocs.io/en/stable/notebooks/9_Symmetrized_Qubits.html
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031056
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031056
https://www.youtube.com/watch?v=8TIZdWR4gIU

4
Molecular

Hamiltonians
"The best that most of us can hope to achieve in physics is simply to

misunderstand at a deeper level."

– Wolfgang Pauli

Figure 4.1 – Wolfgang Pauli reaching for a deeper understanding of the antisymmetry related to
fermionic spin [authors]

126 Molecular Hamiltonians

At the end of Wolfgang Pauli's 1946 Nobel lecture [Pauli] he states:

"I may express my critical opinion, that a correct theory should neither lead to infinite
zero-point energies nor to infinite zero charges, that it should not use mathematical tricks
to subtract infinities or singularities, nor should it invent a hypothetical world which is only
a mathematical fiction before it is able to formulate the correct interpretation of the actual
world of physics."

The concepts in this chapter have a mathematical formulation and do not have a
physical or chemical reality. In other words, there are standard approximations used
that allow the determination of useful chemical quantities. The calculations that use the
approximations do not represent exact quantities; rather, they are approximate quantities.
Therefore, these approximations require a deeper understanding in order to obtain
refinement and better answers.

Furthermore, the approximations used in this chapter apply only to fermionic (electronic)
systems. The extension to bosonic systems is an area of research by the broader scientific
community. We will see the implementation and use of virtual orbitals and both occupied
and unoccupied orbitals in calculations of ground state energy.

We mention different levels of implementation of the Hartree-Fock (HF) theory:
Restricted Hartree-Fock (RHF), Restricted Open-shell Hartree-Fock (ROHF), and
Unrestricted Hartree-Fock (UHF); however, through Qiskit, we will only show RHF.
There are post-HF methodologies that one can use, such as Coupled-Cluster (CC), which
we will be using in Chapter 5, Variational Quantum Eigensolver.

In this chapter, we solve the fermionic Hamiltonian equation for a hydrogen molecule and
a lithium hydride molecule and will cover the following topics:

•	 Section 4.1, Born-Oppenheimer approximation

•	 Section 4.2, Fock space

•	 Section 4.3, Fermionic creation and annihilation operators

•	 Section 4.4, Molecular Hamiltonian in the Hartree-Fock orbitals basis

•	 Section 4.5, Basis sets

•	 Section 4.6, Constructing a fermionic Hamiltonian with Qiskit Nature

•	 Section 4.7, Fermion to qubit mappings

•	 Section 4.8, Constructing a qubit Hamiltonian operator with Qiskit Nature

Technical requirements 127

Technical requirements
We provide a link to a companion Jupyter notebook of this chapter, which has been
tested in the Google Colab environment, which is free and runs entirely in the cloud,
and in the IBM Quantum Lab environment. Please refer to Appendix B – Leveraging
Jupyter Notebooks in the Cloud, for more information. The companion Jupyter notebook
automatically installs the following list of libraries:

•	 NumPy [NumPy], an open source Python library that is used in almost every field
of science and engineering

•	 Qiskit [Qiskit], an open source SDK for working with quantum computers at the
level of pulses, circuits, and application modules

•	 Qiskit visualization support to enable the use of visualizations and Jupyter notebooks

•	 Qiskit Nature [Qiskit_Nature] [Qiskit_Nat_0], a unique platform that bridges the
gap between natural sciences and quantum simulations

•	 Python-based Simulations of Chemistry Framework (PySCF), [PySCF], an open
source collection of electronic structure modules powered by Python

Installing NumPy, Qiskit, and importing the
various modules
Install NumPy with the following command:

pip install numpy

Install Qiskit with the following command:

pip install qiskit

Install Qiskit visualization support with the following command:

pip install 'qiskit[visualization]'

Install Qiskit Nature with the following command:

pip install qiskit-nature

Install PySCF with the following command:

pip install pyscf

128 Molecular Hamiltonians

Import NumPy with the following command:

import numpy as np

Import Matplotlib, a comprehensive library for creating static, animated, and interactive
visualizations in Python with the following command:

import matplotlib.pyplot as plt

Import the required functions and class methods with the following commands. The
array_to_latex function() returns a LaTeX representation of a complex array
with dimension 1 or 2:

from qiskit.visualization import array_to_latex, plot_bloch_
vector, plot_bloch_multivector, plot_state_qsphere, plot_state_
city

from qiskit import QuantumRegister, ClassicalRegister,
QuantumCircuit, transpile

from qiskit import execute, Aer

import qiskit.quantum_info as qi

from qiskit.extensions import Initialize

from qiskit.providers.
aer import extensions # import aer snapshot instructions

Import Qiskit Nature libraries with the following commands:

from qiskit import Aer

from qiskit_nature.drivers import UnitsType, Molecule

from qiskit_nature.drivers.second_quantization import
ElectronicStructureDriverType,
 ElectronicStructureMoleculeDriver

from qiskit_nature.problems.second_quantization import
ElectronicStructureProblem

from qiskit_nature.mappers.second_
quantization import ParityMapper, JordanWignerMapper,
 BravyiKitaevMapper

from qiskit_nature.converters.second_quantization import
QubitConverter

from qiskit_nature.transformers.second_quantization.
electronic import ActiveSpaceTransformer, FreezeCoreTransformer

from qiskit_nature.operators.second_quantization import
FermionicOp

Technical requirements 129

Import the Qiskit Nature property framework with the following command:

from qiskit_nature.properties import Property, GroupedProperty

Import the ElectronicEnergy property with the following command:

https://qiskit.org/documentation/nature/tutorials/08_
property_framework.html

from qiskit_nature.properties.second_quantization.
electronic import (

 ElectronicEnergy,

 ElectronicDipoleMoment,

 ParticleNumber,

 AngularMomentum,

 Magnetization,

)

Import the ElectronicIntegrals property with the following command:

from qiskit_nature.properties.second_quantization.electronic.
integrals import (

 ElectronicIntegrals,

 OneBodyElectronicIntegrals,

 TwoBodyElectronicIntegrals,

 IntegralProperty,

)

from qiskit_nature.properties.second_quantization.electronic.
bases import ElectronicBasis

Import the math libraries with the following command:

import cmath

import math

130 Molecular Hamiltonians

4.1. Born-Oppenheimer approximation
Recall that the atomic orbital of an electron in an atom and the molecular orbital of
an electron in a molecule are time-independent stationary states. In Section 2.4,
Postulate 4 – Time-independent stationary states, we introduced the time-independent
Schrödinger equation:

𝐻̂𝐻|𝜓𝜓⟩ = 𝐸𝐸|𝜓𝜓⟩

where 𝐻̂𝐻 is the non-relative Hamiltonian operator obtained by quantizing the classical
energy in Hamilton form (first quantization), and it represents the total energy (𝐸𝐸) of all
its particles; 𝑁𝑁 electrons and 𝑀𝑀 nuclei. For a molecular system, the electric charge of two
nuclei 𝐴𝐴 and 𝐵𝐵 are Z𝐴𝐴 and Z𝐵𝐵 with masses M𝐴𝐴 and M𝐵𝐵 . The position of the particles in the
molecule is determined by using a laboratory (LAB) frame coordinate system, as shown
in Figure 4.2, where the origin of the coordinate system is outside the molecule. The origin
of the coordinate system can be placed anywhere in free space.

Figure 4.2 – LAB frame coordinates

The Hamiltonian in the LAB frame coordinates 𝐻̂𝐻𝐿𝐿𝐿𝐿𝐿𝐿 is:

𝐻̂𝐻𝐿𝐿𝐿𝐿𝐿𝐿 = −12∑∇𝒓𝒓𝑝𝑝2
𝑁𝑁

𝑝𝑝=1
−∑ 1

2M𝐴𝐴

𝑀𝑀

𝐴𝐴=1
∇𝑹𝑹𝐴𝐴2 −∑∑ Z𝐴𝐴

𝑟𝑟𝑝𝑝𝑝𝑝

𝑀𝑀

𝐴𝐴=1

𝑁𝑁

𝑝𝑝=1
+ ∑ 1

𝑟𝑟𝑝𝑝𝑝𝑝

𝑁𝑁

𝑞𝑞>𝑝𝑝=1
+ ∑ Z𝐴𝐴Z𝐵𝐵

𝑅𝑅𝐴𝐴𝐴𝐴

𝑀𝑀

𝐵𝐵>𝐴𝐴=1

4.1. Born-Oppenheimer approximation 131

where in atomic units, the mass of the electron, the reduced Planck constant (ℏ), and the
electric charge (𝑒𝑒) are set to the value 1. The LAB Hamiltonian comprises the sum of the
kinetic energy of all particles and the potential energy between all particles with the
following definitions:

•	 ∇𝒓𝒓𝑝𝑝2 and ∇𝑹𝑹𝐴𝐴2 are the second derivative operator with respect to the position
coordinates for electrons and nuclei, that is, ∇𝑅𝑅𝐴𝐴2 = 𝜕𝜕2

𝜕𝜕𝑥𝑥𝐴𝐴2
+ 𝜕𝜕2
𝜕𝜕𝑦𝑦𝐴𝐴2

+ 𝜕𝜕2
𝜕𝜕𝑧𝑧𝐴𝐴2

 , and likewise for
the 𝑝𝑝𝑡𝑡ℎ electron.

•	 𝑟𝑟𝑝𝑝𝑝𝑝 = |𝒓𝒓𝑝𝑝 − 𝒓𝒓𝑞𝑞| , 𝑟𝑟𝑝𝑝𝑝𝑝 = |𝒓𝒓𝑝𝑝 − 𝑹𝑹𝐴𝐴| , and 𝑅𝑅𝐴𝐴𝐴𝐴 = |𝑹𝑹𝐴𝐴 − 𝑹𝑹𝐵𝐵| are the distances between
electrons 𝑝𝑝 and 𝑞𝑞 , electron 𝑝𝑝 and nucleus 𝐴𝐴 , and nuclei 𝐴𝐴 and 𝐵𝐵 determined by the
Euclidean norm.

For clarity, we list the operators of the LAB Hamiltonian in Figure 4.3:

Figure 4.3 – Terms of the Hamiltonian operator for a molecule

In the LAB Hamiltonian, the energy of the molecular system is continuous, not discrete.
The center-of-mass (COM) motion does not yield any change to the energy of the
internal states of the system and can be factored out. The internal states are quantized
and invariant to translations. These states are not affected by translational and rotational
motions in free space. The nuclei can still move around the COM through vibrations and
internal rotations.

132 Molecular Hamiltonians

In the Born-Oppenheimer (BO) approximation, we assume that the motions of the nuclei
are uncoupled from the motions of the electrons, that is, a product of nuclear equations
(rotational and vibrational) and electronic equations:

where 𝑹𝑹 = {𝑹𝑹𝐴𝐴,𝑹𝑹𝐵𝐵,… , 𝑹𝑹𝑀𝑀} are the nuclear coordinates, 𝒓𝒓 = {𝒓𝒓𝑝𝑝, 𝒓𝒓𝑖𝑖, 𝒓𝒓𝑗𝑗, … , 𝒓𝒓𝑁𝑁} are the
electron coordinates, 𝒔𝒔 = {𝒔𝒔𝑝𝑝, 𝒔𝒔𝑖𝑖, 𝒔𝒔𝑗𝑗, … , 𝒔𝒔𝑁𝑁} are the spin coordinates, and the electronic
wave function (𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔;𝑹𝑹)) is the condition on the nuclear coordinates (𝑹𝑹).

In the BO approximation, solving for only the electronic equation with the fixed position
of the nuclei can be iterated to account for the vibrations and internal rotations of the
nuclei. For each iteration, the nuclei of the atoms are fixed in space and can be thought
of as a violation of the Heisenberg uncertainty principle introduced in Section 1.4., Light
and energy. The more you know exactly where a particle is, the less you know about its
momentum. In general, the internal coordinate system can be placed at the heaviest atom
in the molecule or at the COM.

We are only dealing with electrons moving around stationary nuclei. Hence, if we ignore
the kinetic energy coupling terms of the nuclei and the nuclei with electrons, the general
electronic molecular Hamiltonian is a sum of four operators, as shown:

The last term, the potential nuclear repulsion energy, is not computed and is approximated
with pseudopotentials and experimental data, and we will show this in Figure 4.4.
This approximation has limitations that we cover further in Chapter 6, Beyond Born-
Oppenheimer, specifically through determining potential energy surfaces.

4.2. Fock space
The electronic wave function 𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔;𝑹𝑹) includes the spatial position for each electron
(𝒓𝒓𝑝𝑝 = {𝑥𝑥𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝}) conditioned on the nuclear positions (𝑹𝑹𝐴𝐴 = {𝑋𝑋𝐴𝐴, 𝑌𝑌𝐴𝐴, 𝑍𝑍𝐴𝐴}) and the
spin directional coordinates for each electron (𝒔𝒔𝑝𝑝 = {𝑠𝑠𝑥𝑥𝑝𝑝, 𝑠𝑠𝑦𝑦𝑝𝑝, 𝑠𝑠𝑧𝑧𝑝𝑝}). The electronic wave
function must be antisymmetric with respect to the exchange of pair particle labels
because these particles are fermions. Please recall that this is the Pauli exclusion principle
introduced in Section 2.1.3, General formulation of the Pauli exclusion principle.

|𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹)⟩ = 𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑹𝑹)𝛹𝛹𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑹𝑹)𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔; 𝑹𝑹)

𝐻̂𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = −12∑∇𝒓𝒓𝑝𝑝2
𝑁𝑁

𝑝𝑝=1
−∑∑ Z𝐴𝐴

𝑟𝑟𝑝𝑝𝑝𝑝

𝑀𝑀

𝐴𝐴=1

𝑁𝑁

𝑝𝑝=1
+ ∑ 1

𝑟𝑟𝑝𝑝𝑝𝑝

𝑁𝑁

𝑞𝑞>𝑝𝑝=1
+ ∑ Z𝐴𝐴Z𝐵𝐵

𝑅𝑅𝐴𝐴𝐴𝐴

𝑀𝑀

𝐵𝐵>𝐴𝐴=1

4.2. Fock space 133

Now, let's consider two electrons 𝑖𝑖 and 𝑗𝑗 in states |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ and |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ where the
corresponding electronic wave function (𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖, 𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗; 𝑹𝑹)) representing the states of
the two-electron system is antisymmetric (−) with respect to the exchange of identical
pair particles (𝐴̂𝐴𝑖𝑖𝑖𝑖) :

Since a one-body electronic wave function as presented in Section 2.1, Postulate 1 – Wave
functions, is a product of spatial (𝜓𝜓(𝒓𝒓1)) and spin components (𝜒𝜒(𝒔𝒔1)), there are two
scenarios where antisymmetry can be achieved:

•	 The spin function must be antisymmetric while the spatial is symmetric.

•	 The spatial function must be antisymmetric while the spin function is symmetric.

This means that when two particles are swapped, the total molecular wave function
(𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹)) describing the system also changes sign:

For 𝑁𝑁 electrons in the field of nuclei, the total wave function 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹) can be written
as a product of atomic one-body spin orbitals:

and is made to be anti-symmetric through an antisymmetric tensor product (∧)
[Toulouse] and through the superposition of states using the Slater determinant first
introduced by Dirac [Kaplan]:

The Slater determinant wave function is antisymmetric with respect to the exchange
of two electrons (permutation of two rows) or with respect to the exchange of two spin
orbitals (permutation of two columns).

𝐴̂𝐴𝑖𝑖𝑖𝑖𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖, 𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗; 𝑹𝑹) = −𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖, 𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗; 𝑹𝑹)

𝐴̂𝐴𝑖𝑖𝑖𝑖𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖, 𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗; 𝑹𝑹) = 𝐴̂𝐴𝑖𝑖𝑖𝑖
1
√2

(|𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ ⊗ |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ − |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ ⊗ |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩)

= 1
√2

(|𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ ⊗ |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ − |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ ⊗ |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩)

= − 1
√2

(|𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ ⊗ |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ − |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ ⊗ |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩) = −𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖, 𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗; 𝑹𝑹)

𝐴̂𝐴𝑖𝑖𝑖𝑖𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹) = −𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹)

𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔;𝑹𝑹) = 𝛹𝛹1(𝒓𝒓, 𝒔𝒔; 𝑹𝑹) ∧ 𝛹𝛹2(𝒓𝒓, 𝒔𝒔;𝑹𝑹) ∧ …∧ 𝛹𝛹𝑁𝑁(𝒓𝒓, 𝒔𝒔; 𝑹𝑹)

𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔;𝑹𝑹) =
1
√𝑁𝑁!

|
𝛹𝛹1(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹1(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹) … 𝛹𝛹1(𝒓𝒓𝑁𝑁, 𝒔𝒔𝑁𝑁;𝑹𝑹)
𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹) … 𝛹𝛹2(𝒓𝒓𝑁𝑁, 𝒔𝒔𝑁𝑁;𝑹𝑹)

… … … …
𝛹𝛹𝑁𝑁(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹𝑁𝑁(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹) … 𝛹𝛹𝑁𝑁(𝒓𝒓𝑁𝑁, 𝒔𝒔𝑁𝑁;𝑹𝑹)

|

134 Molecular Hamiltonians

For two electrons (𝑁𝑁 = 2), the Slater determinant has the form:

For three electrons (𝑁𝑁 = 3), the Slater determinant has the form:

The Fock space [Fock] is the Hilbert space in which the Slater determinant wave functions
belong. By definition, a Fock space is the sum of a set of Hilbert spaces representing at
least three important configurations:

•	 The zero-particle state also called the vacuum state is interpreted as the absence of
an electron in an orbital: |vac⟩ or |0⟩ .

•	 One-particle states: |𝒓𝒓p, 𝒔𝒔p⟩ or |1⟩ .

•	 Two-particle states: |𝒓𝒓i, 𝒔𝒔i, 𝒓𝒓j, 𝒔𝒔j⟩ =
1
√2

(|𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩ ⊗ |𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ − ν|𝒓𝒓𝑖𝑖, 𝒔𝒔𝑖𝑖⟩ ⊗ |𝒓𝒓𝑗𝑗, 𝒔𝒔𝑗𝑗⟩) or |11⟩ .

The number of states of an 𝑛𝑛 -particle subspace of the Fock space of 𝑁𝑁 electrons is:

where (𝑁𝑁𝑛𝑛) denotes the number of 𝑛𝑛 -combinations from a set of 𝑁𝑁 elements.

If we have 5 electrons with a 3-particle subspace:

The total number of states in a Fock space of 𝑁𝑁 electrons is [Wiki-Comb]:

𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓1, 𝒓𝒓2;𝑹𝑹) =
1
√2

|𝛹𝛹1(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹) 𝛹𝛹1(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹)
𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹) 𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹)

|

= 1
√2

(𝛹𝛹1(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹)⊗𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹) −𝛹𝛹1(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹)⊗𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹))

𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓1, 𝒓𝒓2, 𝒓𝒓3, 𝒔𝒔1, 𝒔𝒔2, 𝒔𝒔3; 𝑹𝑹) =
1
√6

|
𝛹𝛹1(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹1(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹) 𝛹𝛹1(𝒓𝒓3, 𝒔𝒔3; 𝑹𝑹)
𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹) 𝛹𝛹2(𝒓𝒓3, 𝒔𝒔3; 𝑹𝑹)
𝛹𝛹3(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹) 𝛹𝛹3(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹) 𝛹𝛹3(𝒓𝒓3, 𝒔𝒔3; 𝑹𝑹)

|

= 1
√6

{𝛹𝛹1(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹)⊗ (𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2; 𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓3, 𝒔𝒔3; 𝑹𝑹) − 𝛹𝛹2(𝒓𝒓3, 𝒔𝒔3; 𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹))

−𝛹𝛹1(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹)⊗ (𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓3, 𝒔𝒔3;𝑹𝑹) −𝛹𝛹2(𝒓𝒓3, 𝒔𝒔3;𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹))
+𝛹𝛹1(𝒓𝒓3, 𝒔𝒔3;𝑹𝑹)⊗ (𝛹𝛹2(𝒓𝒓1, 𝒔𝒔1;𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹) −𝛹𝛹2(𝒓𝒓2, 𝒔𝒔2;𝑹𝑹)⊗𝛹𝛹3(𝒓𝒓1, 𝒔𝒔1; 𝑹𝑹))}

(𝑁𝑁𝑛𝑛) =
𝑁𝑁!

𝑛𝑛! (𝑁𝑁 − 𝑛𝑛)

(53) =
5!

3! (5 − 3) =
5 × 4 × 3 × 2 × 1
3 × 2 × 1 × 2 = 10

∑(𝑁𝑁𝑛𝑛)
𝑁𝑁

𝑛𝑛=0
= ∑ 𝑁𝑁!

𝑛𝑛! (𝑁𝑁 − 𝑛𝑛)

𝑁𝑁

𝑛𝑛=0
= 2𝑁𝑁

4.3. Fermionic creation and annihilation operators 135

What we present here in this section is only a mathematical construction and does not
represent a physical reality nor a chemical actuality. Therefore, in some ways, it is difficult
to relate to the ideas and terms we use to actual chemistry taking place. However, the Fock
space is exploited in quantum computing because there is a one-to-one mapping between
the electron space of a molecule and the qubit space; but it is not a necessary mapping.
There are other mappings that are more computationally advantageous, such as the one
presented in Section 4.7.4, Bravyi-Kitaev transformation.

4.3. Fermionic creation and annihilation
operators
In the previous section, we mentioned that the Fock space is a mathematical construction
and does not represent a physical reality nor a chemical actuality. However, please keep
in mind that in a molecule, each electron can occupy only one spin-orbit at a time and no
two electrons can occupy the same spin-orbit.

Now we further consider a subspace of the Fock space, which is spanned by the
occupation number of the spin-orbits, which is described by 2𝑁𝑁 electronic basis states
|𝑓𝑓0. . . 𝑓𝑓𝑁𝑁−1⟩ , where 𝑓𝑓𝑗𝑗 ∈ {0,1} is the occupation number of orbital 𝑗𝑗 .
The spin-orbital state 𝑗𝑗 not occupied by an electron is represented by |𝑓𝑓0 … 0𝑗𝑗 … 𝑓𝑓𝑁𝑁−1⟩ .

We define a set of fermionic annihilation operators {𝑎̂𝑎𝑖𝑖}𝑖𝑖=0𝑁𝑁−1 and creation operators
{𝑎̂𝑎𝑗𝑗†}𝑗𝑗=0

𝑁𝑁−1
 , which act on local electron modes, and which satisfy the following

anti-commutation relations:

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Dirac delta function. The operators {𝑎̂𝑎𝑗𝑗†𝑎̂𝑎𝑗𝑗}𝑗𝑗=0
𝑛𝑛−1

 are called the occupation
number operators and commute with one another.

A fermionic operator is a linear combination of products of creation and annihilation
operators, which we discuss next.

{𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗†} = 𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 + 𝑎̂𝑎𝑗𝑗𝑎̂𝑎𝑖𝑖† = 𝛿𝛿𝑖𝑖𝑖𝑖 = {0, 𝑖𝑖 ≠ 𝑗𝑗
1, 𝑖𝑖 = 𝑗𝑗

{𝑎𝑎𝑖𝑖†, 𝑎𝑎𝑗𝑗†} = {𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗} = 0

136 Molecular Hamiltonians

4.3.1. Fermion creation operator
The fermionic creation operator 𝑎̂𝑎𝑖𝑖† raises by one unit the number of particles sitting in the
𝑖𝑖𝑡𝑡ℎ fermionic orbital:

𝑎̂𝑎𝑖𝑖
†|… 𝑚𝑚𝑖𝑖 …⟩ = (1 − 𝑚𝑚𝑖𝑖) (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 |… (𝑚𝑚 + 1)𝑖𝑖 …⟩

where:

•	 𝑚𝑚𝑖𝑖 and (𝑚𝑚 + 1)𝑖𝑖 are the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital.

•	 (1 −𝑚𝑚𝑖𝑖) is a pre-factor that annihilates the state if we had an electron in the 𝑖𝑖𝑡𝑡ℎ
fermionic orbital, that is, if 𝑚𝑚𝑖𝑖 = 1 .

•	 The phase factor (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 keeps the anti-symmetric properties of the whole
superposition of states.

4.3.2. Fermion annihilation operator
The fermion annihilation operator 𝑎̂𝑎𝑖𝑖 lowers by one unit the number of particles sitting in
the 𝑖𝑖𝑡𝑡ℎ fermionic orbital:

where:

•	 𝑚𝑚𝑖𝑖 and (𝑚𝑚 − 1)𝑖𝑖 are the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital.

•	 𝑚𝑚𝑖𝑖 is a pre-factor that annihilates the state in the Slater determinant if there is no
electron in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital, that is, if 𝑚𝑚𝑖𝑖 = 0 .

•	 The phase factor (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 keeps the anti-symmetric properties of the whole
superposition of states.

We now see how to write the electronic molecular Hamiltonian as a linear combination of
products of creation and annihilation operators.

𝑎̂𝑎𝑖𝑖|… 𝑚𝑚𝑖𝑖 …⟩ = 𝑚𝑚𝑖𝑖 (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 |… (𝑚𝑚 − 1)𝑖𝑖 …⟩

4.4. Molecular Hamiltonian in the Hartree-Fock orbitals basis 137

4.4. Molecular Hamiltonian in the
Hartree-Fock orbitals basis
For mapping the original electronic structure Hamiltonian into the corresponding qubit
Hamiltonian, we work in the second quantization formalism of quantum mechanics. Recall
we introduced the first quantization in Section 4.1, Born-Oppenheimer approximation.

The Hartree-Fock (HF) method approximates an 𝑁𝑁 -body problem into 𝑁𝑁 one-body
problems where each electron evolves in the mean field of the other electrons.

We can rewrite the electronic molecular Hamiltonian (𝐻̂𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) as a linear combination of
products of creation and annihilation operators (summarized in Figure 4.4):

where 𝑎̂𝑎𝑗𝑗 removes an electron from spin-orbital 𝑗𝑗 , and 𝑎̂𝑎𝑖𝑖† creates an electron in spin-
orbital 𝑖𝑖 . The operation 𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 is the excitation operator, which excites an electron from the
occupied spin-orbital 𝜓𝜓𝑗𝑗(𝒓𝒓𝑝𝑝)𝜒𝜒𝑗𝑗(𝒔𝒔𝑝𝑝) into the unoccupied orbital 𝜓𝜓𝑖𝑖(𝒓𝒓𝑝𝑝)𝜒𝜒𝑖𝑖(𝒔𝒔𝑝𝑝) .
Constructing these were introduced in Section 2.1, Postulate 1 – Wave functions. The
nuclear-nuclear (NN) repulsion energy (𝐸𝐸NN) is approximated by pseudopotentials and
experimental data as mentioned in Section 4.1, Born-Oppenheimer approximation.

Figure 4.4 – Molecular Hamiltonian as a linear combination of products of creation
and annihilation operators

𝐻̂𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =∑ℎ𝑖𝑖,𝑗𝑗
𝑖𝑖,𝑗𝑗

𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 +
1
2 ∑ 𝑔𝑔𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗†𝑎̂𝑎𝑙𝑙𝑎̂𝑎𝑘𝑘 + 𝐸𝐸𝑁𝑁𝑁𝑁

138 Molecular Hamiltonians

The weights of operators are given by the one-electron integrals using the HF method:

ℎ𝑖𝑖,𝑗𝑗 = ⟨𝑖𝑖|ℎ̂|𝑗𝑗⟩ = ∫ 𝑑𝑑𝒓𝒓1𝑑𝑑𝒔𝒔1 𝜓𝜓𝑖𝑖∗(𝒓𝒓1)𝜒𝜒𝑖𝑖∗(𝒔𝒔1)(−
1
2∇𝒓𝒓1

2 −∑ 𝑍𝑍𝐼𝐼
|𝒓𝒓1 − 𝑹𝑹𝐼𝐼|𝐼𝐼

)𝜓𝜓𝑗𝑗(𝒓𝒓1)𝜒𝜒𝑗𝑗(𝒔𝒔1)

where 𝒓𝒓𝑖𝑖 are the coordinates of electron 𝑖𝑖 , 𝑹𝑹𝐼𝐼 are the coordinates of atom 𝐼𝐼 and 𝑍𝑍𝐼𝐼 is the
atomic number of atom 𝐼𝐼 , and the two-electron terms are given by:

𝑔𝑔𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙 = ⟨𝑖𝑖, 𝑗𝑗|𝑔̂𝑔|𝑘𝑘, 𝑙𝑙⟩ = ∫ 𝑑𝑑𝒓𝒓1 𝑑𝑑𝒓𝒓2𝑑𝑑𝒔𝒔1 𝑑𝑑𝒔𝒔2
𝜓𝜓𝑖𝑖

∗(𝒓𝒓1)𝜒𝜒𝑖𝑖
∗(𝒔𝒔1)𝜓𝜓𝑗𝑗

∗(𝒓𝒓2)𝜒𝜒𝑗𝑗
∗(𝒔𝒔2)𝜓𝜓𝑘𝑘(𝒓𝒓1)𝜒𝜒𝑘𝑘(𝒔𝒔1)𝜓𝜓𝑙𝑙(𝒓𝒓2)𝜒𝜒𝑙𝑙(𝒔𝒔2)
|𝒓𝒓1 − 𝒓𝒓2|

The molecular Hamiltonian can be expressed in the basis of the solutions of the HF
method {𝜓𝜓𝑖𝑖(𝒓𝒓)} , which are called Molecular Orbitals (MOs) [Panagiotis]:

We showed some example calculations of these integrals in Section 2.3.6, Kinetic energy
operation, and Section 2.3.7, Potential energy operation. In the next section, we will see
how to approximate the spatial wave functions in those integrals.

There are three commonly used HF methods:

•	 The restricted HF (RHF) method is used for closed-shell molecules. The spin-
orbitals are either alpha (spin-up) or beta (spin-down) and all orbitals are doubly
occupied by alpha and beta spin-orbitals.

•	 The restricted open-shell (ROHF) method is used for open-shell molecules
where the numbers of electrons of each spin are not equal. ROHF uses as many
doubly occupied molecular orbitals as possible and singly occupied orbitals for the
unpaired electrons.

•	 The unrestricted HF (UHF) method is used for open-shell molecules where the
numbers of electrons of each spin are not equal. UHF orbitals can have either alpha
or beta spin, but the alpha and beta orbitals may have different spatial components.

4.5. Basis sets
The spatial wave functions, 𝜓𝜓(𝑟𝑟) , in the integrals of Section 4.4, Molecular Hamiltonian
in the Hartree-Fock orbitals basis, are approximated by linear combinations of several
independent basis functions. The form of these functions is inspired by the atomic orbitals
of hydrogen-like systems that we introduced in Section 2.1.1, Spherical harmonic functions,
which have a radial part as shown in Section 2.2.1, Computing the radial wave functions.

4.5. Basis sets 139

Two classes of approximate basis orbitals that are commonly used are Slater-type
orbitals (STOs) based on the Slater determinant introduced in Section 4.2, Fock space,
and Cartesian Gaussian-type orbitals (GTOs). These two types of basis functions
can be combined as STO-nG, where n is the number of Gaussians used to make the
approximation. Ab Initio electronic structure computations are conducted numerically
using a basis set of orbitals.

We now detail the structure of these two classes and illustrate them with Python plots
of functions.

4.5.1. Slater-type orbitals
STOs have the same structure as the atomic orbitals of hydrogen-like systems and their
radial part have the following form [Wiki_GAU]:

𝑅𝑅𝑙𝑙(𝑟𝑟) = 𝐴𝐴(𝑙𝑙, 𝛼𝛼)𝑟𝑟𝑙𝑙𝑒𝑒−𝛼𝛼𝛼𝛼
where:

•	 𝑙𝑙 is the angular momentum quantum with values ranging from 0 to 𝑛𝑛 − 1 , where 𝑛𝑛

is the principal quantum number.

•	 𝑟𝑟 is the nuclear distance of the electron from the atomic nucleus.

•	 𝛼𝛼 is called the orbital exponent and controls how fast the density of the orbital
vanishes as a function of the nuclear distance.

𝐴𝐴(𝑙𝑙, 𝛼𝛼) is determined by the following normalization condition [Wiki-GAU]:

∫|𝑅𝑅𝑙𝑙(𝑟𝑟)|2
∞

0

𝑟𝑟2𝑑𝑑𝑑𝑑 = 1

𝐴𝐴(𝑙𝑙, 𝛼𝛼)2 ∫(𝑟𝑟𝑙𝑙𝑒𝑒−𝛼𝛼𝛼𝛼)2
∞

0

𝑟𝑟2𝑑𝑑𝑑𝑑 = 1

Noting that [Wiki-STO]:

∫ 𝑥𝑥𝑙𝑙
∞

0

𝑒𝑒−𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 = 𝑙𝑙!
𝛼𝛼𝑛𝑛+1

140 Molecular Hamiltonians

we have:

𝐴𝐴(𝑙𝑙, 𝛼𝛼) = (2𝛼𝛼)𝑙𝑙+1√ 2𝛼𝛼
(2𝑙𝑙 + 2)!

For the 1 𝑠𝑠 orbital, we have 𝑙𝑙 = 0 , hence 𝐴𝐴(𝑙𝑙, 𝛼𝛼) = 2𝛼𝛼
3
2 , and the radial part of the Slater

orbital is:

Let's plot this function with the following Python code:

x = np.linspace(-5,5,num=1000)

r = abs(x)

alpha = 1.0

R = 2*alpha**(1.5)*np.exp(-alpha*r)

plt.figure(figsize=(4,3))

plt.plot(x,R,label="STO 1s H")

plt.legend()

Figure 4.5 shows the result:

Figure 4.5 – Plot of the radial part of the Slater-type orbital for the 1s orbital of the hydrogen atom

𝑅𝑅(𝑟𝑟) = 2𝛼𝛼
3
2𝑒𝑒−𝛼𝛼𝛼𝛼

4.5. Basis sets 141

We plot the antisymmetric spatial wave function for the hydrogen molecule as a linear
combination of the preceding radial part of the slater orbital for a hydrogen atom as follows:

x = np.linspace(-7,7,num=1000)

r1 = abs(x+2.5)

r2 = abs(x-2.5)

alpha = 1.0

R = 2*alpha**(1.5)*np.exp(-alpha*r1)-2*alpha**(1.5)*np.exp(-
alpha*r2)

plt.figure(figsize=(4,3))

plt.plot(x,R,label="Antisymmetric STO H2")

plt.legend()

Figure 4.6 shows the result:

Figure 4.6 – Plot of the antisymmetric spatial wave function for the hydrogen molecule

4.5.2. Gaussian-type orbitals
GTOs have the same angular form as STOs, but their radial function adopts a Gaussian
form [Wiki_GAU]:

𝑅𝑅𝑙𝑙(𝑟𝑟) = 𝐵𝐵(𝑙𝑙, 𝛼𝛼)𝑟𝑟𝑙𝑙𝑒𝑒−𝛼𝛼𝑟𝑟2

142 Molecular Hamiltonians

where:

•	 𝑙𝑙 is the angular momentum quantum with values ranging from 0 to 𝑛𝑛 − 1 , where 𝑛𝑛

is the principal quantum number.

•	 𝑟𝑟 is the nuclear distance of the electron from the atomic nucleus.

•	 𝛼𝛼 is called the orbital exponent and controls how fast the density of the orbital
vanishes as a function of the nuclear distance.

𝐵𝐵(𝑙𝑙, 𝛼𝛼) is determined by the following normalization condition [Wiki-GAU]:

∫|𝑅𝑅𝑙𝑙(𝑟𝑟)|2
∞

0

𝑟𝑟2𝑑𝑑𝑑𝑑 = 1

In practice, we approximate the radial part of an STO with a linear combination of
primitive Gaussian functions, called a contracted Gaussian function. The STO-nG basis
sets include one contracted Gaussian function per atomic orbital [Skylaris]. We plot the
STO-3G function for the 1𝑠𝑠 orbital of the hydrogen atom. Here is the code:

x = np.linspace(-7,7,num=1000)

r = abs(x)

c = [0.444635,0.535328,0.154329]

alpha = [0.109818,0.405771,2.227660]

psi = 0

for k in range(3):

 psi += c[k]*(2*alpha[k]/np.pi)**0.75 * np.exp(-alpha[k]*r**2)

plt.figure(figsize=(5,3))

plt.plot(x,psi,label="STO-3G 1s H")

plt.legend()

4.5. Basis sets 143

Figure 4.7 shows the result:

Figure 4.7 – Plot of the STO-3G function for the 1 orbital of the hydrogen atom

We plot the antisymmetric spatial wave function for the hydrogen molecule as a linear
combination of the preceding radial part of the STO-3G function for the 1s orbital of a
hydrogen atom as follows:

x = np.linspace(-7,7,num=1000)

r1 = abs(x+2.5)

r2 = abs(x-2.5)

c = [0.444635,0.535328,0.154329]

alpha = [0.109818,0.405771,2.227660]

psi = 0

for k in range(3):

 psi += c[k]*(2*alpha[k]/np.pi)**0.75 * np.exp(-
alpha[k]*r1**2) \

 - c[k]*(2*alpha[k]/np.pi)**0.75 * np.exp(-alpha[k]*r2**2)

plt.figure(figsize=(5,3))

plt.plot(x,psi,label="Antisymmetric STO-3G H2")

plt.legend()

144 Molecular Hamiltonians

Figure 4.8 shows the result:

Figure 4.8 – Plot of the antisymmetric STO-3G function for the 1 orbital of the hydrogen molecule

4.6. Constructing a fermionic Hamiltonian
with Qiskit Nature
The Qiskit Nature platform works with spin orbitals [Qiskit_Nat_1]. Each molecular
orbital can have a spin-up or a spin-down electron, or spin-paired electrons. A spin orbital
is either of those cases. For each molecular orbital, we have two spin orbitals. Let's now
illustrate the construction of a fermionic Hamiltonian operator of the hydrogen molecule
with Qiskit Nature.

4.6.1. Constructing a fermionic Hamiltonian operator
of the hydrogen molecule
First, we define the molecular geometry of the hydrogen molecule with the Qiskit
Molecule class, which has the following input parameters:

•	 geometry, a list of atom names, such as H for hydrogen, followed by Cartesian
coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) of the atom's position in units of angstroms

•	 charge, an integer, the electric charge of the molecule

•	 multiplicity, an integer, the multiplicity 2𝑆𝑆 + 1 of the molecule, where 𝑆𝑆 is the
total spin angular momentum, which is determined by the number of unpaired
electrons in the molecule, that is, the number of electrons that occupy a molecular
orbital singly, not with another electron:

hydrogen_molecule = Molecule(geometry=[['H', [0., 0., 0.]],

 ['H', [0., 0., 0.735]]],

 charge=0, multiplicity=1)

4.6. Constructing a fermionic Hamiltonian with Qiskit Nature 145

We define the electronic structure molecule driver by selecting the PySCF driver type
and the basis set sto3g, which is the basis STO-3G we introduced in Section 4.5.2,
Gaussian-type orbitals, in which the molecular orbitals are to be expanded. STO-3G is
used by default in Qiskit Nature. RHF is used by default in Qiskit Nature's PySCF driver:

driver = ElectronicStructureMoleculeDriver(hydrogen_
molecule, basis='sto3g', driver_
type=ElectronicStructureDriverType.PYSCF)

We perform a HF calculation for the basis STO-3G. Here is the code:

qH2 = driver.run()

We create an ElectronicStructureProblem instance that produces the list of
fermionic operators:

H2_fermionic_hamiltonian = ElectronicStructureProblem(driver)

We use the second_q_ops() method [Qiskit_Nat_3], which returns a list of
second quantized operators: Hamiltonian operator, total particle number operator,
total angular momentum operator, total magnetization operator, and, if available, 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧
dipole operators:

H2_second_q_op = H2_fermionic_hamiltonian.second_q_ops()

Recall that in Section 1.3, Quantum numbers and quantization of matter, we introduced
the spin projection quantum number, 𝑚𝑚𝑠𝑠 , which gives the projection of the spin
momentum 𝑠𝑠 along the specified axis as either spin up (+½) or spin down (-½) in a
given spatial direction. HF theory similarly defines 𝛼𝛼 (up) and 𝛽𝛽 (down) spin orbitals
[Skylaris_1].

We define the get_particle_number() function, which gets the particle number
property of a given electronic structure problem. Here is the code:

def get_particle_number(problem, show=True):

 particle_number = problem.grouped_property_transformed.get_
property("ParticleNumber")

 num_particles = (particle_number.num_alpha, particle_number.
num_beta)

 num_spin_orbitals = particle_number.num_spin_orbitals

 if show:

 print("Number of alpha electrons: {}".format(particle_
number.num_alpha))

146 Molecular Hamiltonians

 print("Number of beta electrons: {}".format(particle_
number.num_beta))

 print("Number of spin orbitals: {}".format(num_spin_
orbitals))

 return particle_number

We call the get_particle_number() function to get and print the particle number
properties as follows:

print("Hydrogen molecule, basis: sto3g, Hartree-
Fock calculation")

H2_particle_number = get_particle_number(H2_fermionic_
hamiltonian)

Figure 4.9 shows the result where we see four spin orbitals, one 𝛼𝛼 electron, and
one 𝛽𝛽 electron:

Figure 4.9 – Hydrogen molecule, HF calculation for the basis STO-3G, particle numbers

We define the get_electronic_energy() function, which returns the electronic
energy property of a given electronic structure problem. Here is the code:

def get_electronic_energy(problem, show=True):

 electronic_energy = problem.grouped_property_transformed.get_
property("ElectronicEnergy")

 if show:

 print(electronic_energy)

 return electronic_energy

We call the get_electronic_energy() function to get and print the electronic
energy as follows:

H2_electronic_energy = get_electronic_energy(H2_fermionic_
hamiltonian)

Figure 4.10 shows the molecular orbital (MO) one-body terms, where we see two 𝛼𝛼 electron
terms and two 𝛽𝛽 electron terms:

4.6. Constructing a fermionic Hamiltonian with Qiskit Nature 147

Figure 4.10 – Hydrogen molecule, electronic energy, molecular orbital (MO), one-body terms

Figure 4.11 shows the molecular orbital (MO) two-body terms that contain all possible spin
combinations of molecular orbital (MO) two-body terms, 𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , 𝛽𝛽𝛽𝛽, 𝛼𝛼𝛼𝛼 :

Figure 4.11 – Hydrogen molecule, electronic energy, molecular orbital (MO), two-body terms

148 Molecular Hamiltonians

The FermionicOp class [Qiskit_Nat_2] in the sparse label mode displays each term of the
fermionic operator by a string of items separated by a space, starting with a label followed
by an underscore, _, and by a positive integer representing the index of the fermionic mode.
Figure 4.12 shows the list of labels, the corresponding symbols, and the fermionic operator:

Figure 4.12 – List of labels used by the Qiskit FermionicOp class

The Qiskit FermionicOp class truncates the display of the fermionic Hamiltonian
operator according to the maximum number of characters set by the set_
truncation() method with a default value of 200 [Qiskit_Nat_T]. If the truncation
value is set to 0, truncation is disabled. We set truncation to None with the set_
truncation(0) method and then we print all 14 terms of the fermionic Hamiltonian
operator of the hydrogen molecule:

Set truncation to None

H2_second_q_op[0].set_truncation(0)

Print the Fermionic operator

print("Hydrogen molecule")

print(H2_second_q_op[0])

Figure 4.13 shows the result:

Figure 4.13 – Fermionic Hamiltonian operator of the hydrogen molecule

4.6. Constructing a fermionic Hamiltonian with Qiskit Nature 149

We now print, with the FermionicOp.to_matrix method, a matrix representation of
the fermionic operator of the hydrogen molecule in the Fock basis where the basis states
are ordered in increasing bitstring order as 0000, 0001, …, 1111. Here is the code:

print(H2_second_q_op[0].to_matrix())

Figure 4.14 shows the result:

Figure 4.14 – Matrix representation of the fermionic Hamiltonian operator of the hydrogen
molecule in the Fock basis

The fermionic Hamiltonian operator of the hydrogen molecule contains four particle
number operators, which are shown in Figure 4.15:

Figure 4.15 – Particle number operators of the fermionic Hamiltonian of the hydrogen molecule

150 Molecular Hamiltonians

The fermionic Hamiltonian operator of the hydrogen molecule contains ten two-electron
exchange operators shown in Figure 4.16:

Figure 4.16 – Two-electron exchange operators of the fermionic Hamiltonian of the hydrogen molecule

Let's now illustrate the construction of a fermionic Hamiltonian operator of the lithium
hydride molecule with Qiskit Nature.

4.6.2. Constructing a fermionic Hamiltonian operator
of the lithium hydride molecule
We define the molecular geometry of the lithium hydride (LiH) molecule with the
Qiskit Molecule class as we have explained in Section 4.6.1, Constructing a fermionic
Hamiltonian operator of the hydrogen molecule:

LiH_molecule = Molecule(geometry=[['Li', [0., 0., 0.]],

 ['H', [0., 0., 1.5474]]],

 charge=0, multiplicity=1)

4.6. Constructing a fermionic Hamiltonian with Qiskit Nature 151

We define the electronic structure molecule driver by selecting the PySCF driver type
and the sto3g basis set in which the molecular orbitals are to be expanded:

driver = ElectronicStructureMoleculeDriver(LiH_
molecule, basis='sto3g', driver_
type=ElectronicStructureDriverType.PYSCF)

We create an ElectronicStructureProblem instance that produces the list of
fermionic operators with the freeze core=True and remove_orbitals=[4,3]
parameters, removing unoccupied orbitals:

LiH_fermionic_hamiltonian = ElectronicStructureProblem(driver,
 transformers=[FreezeCoreTransformer(freeze_core=True, remove_
orbitals=[4, 3])])

We use the second_q_ops() method to get a list of second quantized operators:

LiH_second_q_op = LiH_fermionic_hamiltonian.second_q_ops()

We call get_particle_number() to get and print the particle number property
as follows:

print("Lithium hydride molecule, basis: sto3g, Hartree-
Fock calculation")

print("Parameters freeze_core=True, remove_orbitals=[4, 3]")

LiH_particle_number = get_particle_number(LiH_fermionic_
hamiltonian)

Figure 4.17 shows the result where we see six spin orbitals, one 𝛼𝛼 electron, and
one 𝛽𝛽 electron:

Figure 4.17 – Lithium hydride molecule, HF calculation for the basis STO-3G, particle number

We call the get_electronic_energy() function to get and print the electronic
energy as follows:

LiH_electronic_energy = get_electronic_energy(LiH_fermionic_
hamiltonian)

152 Molecular Hamiltonians

Figure 4.18 shows the molecular orbital (MO) one-body terms where we see two 𝛼𝛼 electron
terms and two 𝛽𝛽 electron terms:

Figure 4.18 – LiH molecule, electronic energy, molecular orbital (MO), one
-body terms

Figure 4.19 shows the molecular orbital (MO) two-body terms, which contains all possible
spin combinations of molecular orbital two-body terms, 𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , 𝛽𝛽𝛽𝛽, 𝛼𝛼𝛼𝛼 :

Figure 4.19 – LiH molecule, electronic energy, molecular orbital (MO), two-body terms

4.6. Constructing a fermionic Hamiltonian with Qiskit Nature 153

The Qiskit FermionicOp class truncates the display of the fermionic Hamiltonian operator
according to the maximum number of characters set by the set_truncation() method
with a default value of 200 [Qiskit_Nat_T]. If the truncation value is set to 0, truncation is
disabled. We set truncation to 1000 with the set_truncation(1000) method and then
we print the first 20 terms of the more than a hundred terms of the fermionic operator of the
LiH molecule:

Set truncation to 1000

LiH_second_q_op[0].set_truncation(1000)

Print the Fermionic operator

print("Lithium hydride molecule")

print(LiH_second_q_op[0])

Figure 4.20 shows the result:

Figure 4.20 – First 20 terms of the fermionic Hamiltonian operator of the lithium hydride molecule

154 Molecular Hamiltonians

We now print a matrix representation of the fermionic operator of the lithium hydride
molecule in the Fock basis where the basis states are ordered in increasing bitstring order
as 0000, 0001, …, 1111. Here is the code:

print(LiH_second_q_op[0].to_matrix())

Figure 4.21 shows the result:

Figure 4.21 – Matrix representation of the fermionic Hamiltonian operator of the lithium hydride
molecule in the Fock basis

4.7. Fermion to qubit mappings 155

4.7. Fermion to qubit mappings
We consider a system of 𝑁𝑁 fermions, each labeled with an integer from 0 to 𝑁𝑁 − 1 . We
need a fermion to qubit mapping, a description of the correspondence between states of
fermions and states of qubits, or, equivalently, between fermionic operators and multi-
qubit operators. We need a mapping between the fermion creation and annihilation
operators and multi-qubit operators. The Jordan-Wigner and the Bravyi-Kitaev
transformations are widely used and simulate a system of electrons with the same number
of qubits as electrons.

4.7.1. Qubit creation and annihilation operators
We define qubit operators that act on local qubits [Yepez] [Chiew], as shown in
Figure 4.22:

Figure 4.22 – Qubit creation and annihilation operators

The qubit operators have the anti-commutation relation: {σ+, σ−} = σ+σ− + σ−σ+ = 𝟙𝟙 .

156 Molecular Hamiltonians

4.7.2. Jordan-Wigner transformation
The Jordan-Wigner (JW) transformation stores the occupation of each spin orbital in
each qubit. It maps the fermionic creation and annihilation operators to the tensor
product of Pauli operators, as shown in Figure 4.23 [Yepez] [Chiew] [Cao]. The operators
𝜎𝜎𝑘𝑘− and 𝜎𝜎𝑘𝑘+ change the occupation for the orbital level 𝑘𝑘 . The tensor products of 𝜎𝜎𝑧𝑧 Pauli
operators 𝜎𝜎𝑧𝑧⊗𝑘𝑘 enforce the fermionic anti-commutation relations by applying a phase
according to the even or odd parity of the occupations for orbital labels less than 𝑘𝑘 [Cao].

Figure 4.23 – JW transformation

For example, for an orbital 𝑘𝑘 = 2 , we have the following mapping:

𝑎̂𝑎2† → 𝟙𝟙𝑁𝑁−3 ⊗ σ− ⊗ 𝜎𝜎𝑧𝑧⊗2 = 1
2 𝟙𝟙

𝑁𝑁−3 ⊗ (𝑋𝑋 − 𝑖𝑖𝑖𝑖)⊗ 𝑍𝑍𝑍𝑍 = 1
2 𝟙𝟙

𝑁𝑁−3𝑋𝑋𝑋𝑋𝑋𝑋 − 𝑖𝑖
2𝑌𝑌𝑌𝑌𝑌𝑌

The number of single Pauli operators 𝜎𝜎𝑧𝑧 scales linearly with the size of the system. The
occupation number basis and the JW transformation allow the representation of a single
fermionic creation or annihilation operator by 𝑂𝑂(𝑁𝑁) qubit operations.

4.7. Fermion to qubit mappings 157

The Hamiltonian that results from the JW transformation commutes with the number
spin up and number spin down operators, which can be used to taper off two qubits
[de Keijzer].

We def﻿﻿ine the label_to_qubit() function to convert a term of a fermionic operator
represented as a sparse label to a qubit operator, which has the following input parameters:

•	 label, a sparse label as shown in Figure 4.12, used by the Qiskit FermionicOp class

•	 converter, either JordanWignerMapper(), ParityMapper() or
BravyiKitaevMapper()

Here is the code:

def label_to_qubit(label, converter):

 qubit_converter = QubitConverter(converter)

 f_op = FermionicOp(label)

 qubit_op = qubit_converter.convert(f_op)

 return qubit_op

Now we convert the fermionic operators "+_0", "+_1", "+_2", "+_3", and "+_4" into qubit
operators with the JW transformation with the following code:

for k in ("+_0", "+_1", "+_2", "+_3", "+_4"):

 qubit_op = label_to_qubit(k, JordanWignerMapper())

 print("{}:\n {}\n".format(k, qubit_op))

Figure 4.24 shows the result, which matches the expected outcome of the JW
transformation, with the Qiskit tensor ordering of qubits:

Figure 4.24 – JW transformation illustrated with "+_0", "+_1", "+_2", "+_3", and "+_4"

158 Molecular Hamiltonians

4.7.3. Parity transformation
The parity transformation is dual to the JW transformation: the parity operators are
low-weight, while the occupation operators become high-weight [Bravyi][Cao]. Figure
4.25 shows the mapping of the fermionic creation and annihilation operators to the tensor
product of Pauli operators:

Figure 4.25 – Parity transformation

Now we convert the fermionic operators "+_0", "+_1", "+_2", "+_3", and "+_4" into qubit
operators with the parity transformation with the following code:

for k in ("+_0", "+_1", "+_2", "+_3", "+_4"):

 qubit_op = label_to_qubit(k, ParityMapper())

 print("{}:\n {}\n".format(k, qubit_op))

Figure 4.26 shows the result, which matches the expected outcome of the parity
transformation, with the Qiskit tensor ordering of qubits:

Figure 4.26 – Parity transformation illustrated with "+_0", "+_1", "+_2", "+_3", and "+_4"

The parity transformation introduces known symmetries that can be exploited to reduce
the size of the problem by two qubits.

4.7. Fermion to qubit mappings 159

4.7.4. Bravyi-Kitaev transformation
The Bravyi-Kitaev (BK) transformation applies only for systems of 𝑁𝑁 fermions where 𝑁𝑁 is
equal to a power of two, 𝑁𝑁 = 2𝑚𝑚 . The BK basis and transformation require only 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁)
qubit operations to represent one fermionic operator. The BK transformation maps the
occupation number basis |𝑓𝑓0. . . 𝑓𝑓N−1⟩ introduced in Section 4.3, Fermionic creation and
annihilation operators, to the BK basis |𝑏𝑏0. . . 𝑏𝑏N−1⟩ with a matrix 𝐵𝐵𝑁𝑁 , which is defined
recursively [Cao][Seeley], where the sums are carried modulo 2:

𝐵𝐵1 = (1) , 𝐵𝐵2𝑚𝑚+1 = (
𝐵𝐵2𝑚𝑚 ⋯ 11…1
⋮ ⋱ ⋮
0 ⋯ 𝐵𝐵2𝑚𝑚

)

Hence:

𝐵𝐵2 = (1 1
0 1) , 𝐵𝐵4 = (

1 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

)

We define the BK(m) function, which returns a dictionary of matrices 𝐵𝐵𝑁𝑁 for 𝑁𝑁 = 1
to 𝑁𝑁 = 2𝑚𝑚 :

def BK(m):

 I = [[1, 0], [0, 1]]

 d = {}

 d[0] = [1]

 for k in range(0, m):

 B = np.kron(I,d[k])

 for l in range(2**k, 2**(k+1)):

 B[0,l] = 1

 d[k+1] = B

 return d

We compute the matrices 1 , 2 , 4 , and 8 by calling the BK(3) function:

d = BK(3)

for k, v in d.items():

 s = "B_{"+str(2**k)+"} = "

 display(array_to_latex(v, prefix=s, precision = 0))

 print(" ")

160 Molecular Hamiltonians

Figure 4.27 shows the result:

Figure 4.27 – BK matrices 1 , 2 , 4 , and 8

There are three sets to consider [Bravyi] [Mezzacapo] [Tranter]:

•	 The parity set 𝑃𝑃(𝑘𝑘) is the set of qubits that encodes the parity of the fermionic
modes with an index less than 𝑘𝑘 and that gives the global phase.

•	 The update set 𝑈𝑈(𝑘𝑘) is the set of qubits that must be flipped when the fermionic
mode 𝑘𝑘 changes occupation.

•	 The flip set 𝐹𝐹(𝑘𝑘) is the set of qubits that determines whether qubit 𝑘𝑘 has the
same or inverted parity with respect to the fermionic mode 𝑘𝑘 . It is needed for
odd 𝑘𝑘 [Ribeiro].

These three sets can be obtained from the recursive matrices that map fermionic
occupation to qubits. The remainder set 𝑅𝑅(𝑘𝑘) = 𝑃𝑃(𝑘𝑘)\𝐹𝐹(𝑘𝑘) is obtained from the set
difference of the parity and flip sets [Bravyi].

4.7. Fermion to qubit mappings 161

Figure 4.28 shows the mapping of fermionic creation and annihilation operators to the
tensor product of Pauli operators:

Figure 4.28 – BK transformation

Now we convert the fermionic operators "+_0", "+_1", "+_2", "+_3", and "+_4" into qubit
operators with the BK transformation with the following code:

for k in ("+_0", "+_1", "+_2", "+_3", "+_4"):

 qubit_op = label_to_qubit(k, BravyiKitaevMapper())

 print("{}:\n {}\n".format(k, qubit_op))

Figure 4.29 shows the result, which matches the expected outcome of the BK
transformation, with the Qiskit tensor ordering of qubits:

Figure 4.29 – BK transformation illustrated with "+_0", "+_1", "+_2", "+_3", and "+_4 "

162 Molecular Hamiltonians

4.8. Constructing a qubit Hamiltonian
operator with Qiskit Nature
This section shows how to construct a qubit Hamiltonian operator with Qiskit Nature for
the hydrogen molecule and the lithium hydride molecule.

We define the fermion_to_qubit() function to convert a fermionic operator to a
qubit operator, which has the following input parameters:

•	 f_op, a fermionic operator obtained as explained in Section 4.6, Constructing a
fermionic Hamiltonian with Qiskit Nature

•	 mapper, either "Jordan-Wigner" or "Parity" or "Bravyi-Kitaev"

•	 truncate, an integer to truncate the display of the Pauli list, which can be very
large; set to 20 items by default

•	 two_qubit_reduction, Boolean, by default False, that determines whether to
carry out two-qubit reduction when possible

•	 z2symmetry_reduction, by default None, that indicates whether a Z2
symmetry reduction should be applied to resulting qubit operators that are
computed based on mathematical symmetries that can be detected in the
operator [de Keijzer]

•	 show, set to True by default to display the name of the transformation and results

Here is the code:

def fermion_to_qubit(f_op, second_q_
op, mapper, truncate=20, two_qubit_reduction=False, z2symmetry_
reduction=None, show=True):

 if show:

 print("Qubit Hamiltonian operator")

 dmap = {"Jordan-
Wigner": JordanWignerMapper(), "Parity": ParityMapper(),
"Bravyi-Kitaev": BravyiKitaevMapper()}

 qubit_op = None

 qubit_converter = None

 for k, v in dmap.items():

 if k == mapper:

 if show:

4.8. Constructing a qubit Hamiltonian operator with Qiskit Nature 163

 print("{} transformation ". format(mapper))

 qubit_converter = QubitConverter(v, two_qubit_
reduction=two_qubit_reduction, z2symmetry_reduction=z2symmetry_
reduction)

 if two_qubit_reduction:

 qubit_op = qubit_converter.convert(second_q_op[0], num_
particles=f_op.num_particles)

 else:

 qubit_op = qubit_converter.convert(second_q_op[0])

 n_items = len(qubit_op)

 if show:

 print("Number of items in the Pauli list:", n_items)

 if n_items <= truncate:

 print(qubit_op)

 else:

 print(qubit_op[0:truncate])

 return qubit_op, qubit_converter

We now show how to construct a qubit Hamiltonian operator of the hydrogen molecule.

4.8.1. Constructing a qubit Hamiltonian operator of
the hydrogen molecule
First, we select the qubit mapper called JordanWignerMapper():

print("Hydrogen molecule")

H2_qubit_op, qubit_converter = fermion_to_qubit(H2_fermionic_
hamiltonian, H2_second_q_op, "Jordan-Wigner", two_qubit_
reduction=True)

164 Molecular Hamiltonians

Figure 4.30 shows the result:

Figure 4.30 – Qubit Hamiltonian operator of H2 with the JW transformation

Next, we use the qubit mapper called ParityMapper() with two_qubit_
reduction=True to eliminate two qubits in the qubit Hamiltonian operator [Qiskit_
Nat_4] [Qiskit_Nat_5]:

print("Hydrogen molecule")

H2_qubit_op, qubit_converter = fermion_to_qubit(H2_
fermionic_hamiltonian, H2_second_q_op, "Parity", two_qubit_
reduction=True)

Figure 4.31 shows the resulting qubit Hamiltonian operator works on two qubits. Recall
that there are four spin orbitals, as shown in Figure 4.9, and a register length of four, as
shown in Figure 4.13 in Section 4.6.1, Constructing a fermionic Hamiltonian operator of the
hydrogen molecule. A two-qubit reduction has been achieved:

4.8. Constructing a qubit Hamiltonian operator with Qiskit Nature 165

Figure 4.31 – Qubit Hamiltonian operator of H2 with parity transformation, two_qubit_reduction=True

Last, we select the qubit mapper called BravyiKitaevMapper():

print("Hydrogen molecule")

H2_qubit_op, qubit_converter = fermion_to_qubit(H2_fermionic_
hamiltonian, H2_second_q_op, "Bravyi-Kitaev", two_qubit_
reduction=True)

Figure 4.32 shows the result:

Figure 4.32 – Qubit Hamiltonian operator of H2 with the Bravyi-Kitaev transformation

166 Molecular Hamiltonians

4.8.2. Constructing a qubit Hamiltonian operator of
the lithium hydride molecule
We use the qubit mapper called ParityMapper() with two_qubit_
reduction=True to eliminate two qubits in the qubit Hamiltonian operator [Qiskit_
Nat_4] [Qiskit_Nat_5]. We set z2symmetry_reduction="auto". We print the first
20 items of the qubit Hamiltonian operator of the LiH molecule:

print("Lithium hydride molecule")

print("Using the ParityMapper with two_qubit_
reduction=True to eliminate two qubits")

print("Setting z2symmetry_reduction=\"auto\"")

LiH_qubit_op, qubit_converter = fermion_to_qubit(LiH_
fermionic_hamiltonian, LiH_second_q_op, "Parity", two_qubit_
reduction=True, z2symmetry_reduction="auto")

Figure 4.33 shows the resulting qubit Hamiltonian operator works on four qubits. Recall
that there are six spin orbitals, as shown in Figure 4.17, and a register length of six, as
shown in Figure 4.20 in Section 4.6.2, Constructing a fermionic Hamiltonian operator of the
lithium hydride molecule. A two-qubit reduction has been achieved:

Figure 4.33 – Qubit Hamiltonian operator of LiH with parity transformation,
two_qubit_reduction=True

Summary 167

Summary
In this chapter, we have shown how to formulate an electronic structure program and map
it into a qubit Hamiltonian, which is the input to a hybrid classical-quantum algorithm
that is used to find the lowest energy eigenvalue for a quantum system. This is the topic of
Chapter 5, Variational Quantum Eigensolver (VQE).

Questions
Please test your understanding of the concepts presented in this chapter with the
corresponding Google Colab notebook:

1.	 Which of the following terms is neglected in the BO approximation?

A.	 Electronic kinetic energy operator.
B.	 Nuclear kinetic energy operator.
C.	 Potential energy between the electrons and nuclei. It is the sum of all electron-

nucleus Coulomb interactions.
D.	 Potential energy operator arising from electron-electron Coulomb repulsions.
E.	 Potential nuclear-nuclear repulsion energy operator, the sum of all nucleus-

nucleus Coulomb repulsions.

2.	 The Slater determinant wave function is antisymmetric with respect to:

A.	 The exchange of two electrons (permutation of two rows)
B.	 The exchange of two spin orbitals (permutation of two columns)
C.	 Both of the above

3.	 Name three fermion to qubit transformations currently supported by Qiskit Nature.
4.	 Name two fermion to qubit transformations that simulate a system of electrons with

the same number of qubits as electrons.
5.	 For which transformation does the resulting Hamiltonian commute with the number

spin up and number spin down operators that can be used to taper off two qubits?

Answers

1.	 B
2.	 C
3.	 Jordan-Wigner, Parity, Bravyi-Kitaev

168 Molecular Hamiltonians

4.	 Jordan-Wigner, Parity
5.	 Jordan-Wigner

References
[Bravyi] Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, Kristan Temme, Tapering
off qubits to simulate fermionic Hamiltonians, arXiv:1701.08213v1, January 27, 2017,
https://arxiv.org/pdf/1701.08213.pdf

[Cao] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D.
Sawaya, Sukin Sim, Libor Veis, Alán Aspuru-Guzik, Quantum Chemistry in the Age
of Quantum Computing, Chem. Rev. 2019, 119, 19, 10856–10915, August 30, 2019,
https://doi.org/10.1021/acs.chemrev.8b00803

[Chiew] Mitchell Chiew and Sergii Strelchuk, Optimal fermion-qubit mappings,
arXiv:2110.12792v1 [quant-ph], October 25, 2021, https://arxiv.org/
pdf/2110.12792.pdf

[De Keijzer] de Keijzer, R. J. P. T., Colussi, V. E., Škorić, B., and Kokkelmans, S. J. J. M. F.
(2021), Optimization of the Variational Quantum Eigensolver for Quantum Chemistry
Applications, arXiv, 2021, [2102.01781], https://arxiv.org/abs/2102.01781

[Grok] Grok the Bloch Sphere, https://javafxpert.github.io/grok-bloch/

[IBM_CEO] IBM CEO: Quantum computing will take off 'like a rocket ship' this decade,
Fast Company, September 28, 2021, https://www.fastcompany.com/90680174/
ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-
this-decade

[IBM_comp1] Welcome to IBM Quantum Composer, https://quantum-
computing.ibm.com/composer/docs/iqx/

[IBM_comp2] IBM Quantum Composer, https://quantum-computing.ibm.
com/composer/files/new

[Kaplan] Ilya G. Kaplan, Modern State of the Pauli Exclusion Principle and the
Problems of Its Theoretical Foundation, Symmetry 2021, 13(1), 21, https://doi.
org/10.3390/sym13010021

https://arxiv.org/pdf/1701.08213.pdf
https://doi.org/10.1021/acs.chemrev.8b00803
https://arxiv.org/pdf/2110.12792.pdf
https://arxiv.org/pdf/2110.12792.pdf
https://arxiv.org/abs/2102.01781
https://javafxpert.github.io/grok-bloch/
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new
https://doi.org/10.3390/sym13010021
https://doi.org/10.3390/sym13010021

References 169

[Mezzacapo] Antonio Mezzacapo, Simulating Chemistry on a QuantumComputer,
Part I, Qiskit Global Summer School 2020, IBM Quantum, Qiskit, Introduction to
Quantum Computing and Quantum Hardware, https://qiskit.org/learn/
intro-qc-qh/, Lecture Notes 8, https://github.com/qiskit-community/
intro-to-quantum-computing-and-quantum-hardware/blob/master/
lectures/introqcqh-lecture-notes-8.pdf?raw=true

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Panagiotis] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll,
Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio
Mezzacapo, Stefan Filipp, Ivano Tavernelli, Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function expansions, Phys.
Rev. A 98, 022322 – Published August 20, 2018, DOI: 10.1103/PhysRevA.98.022322,
https://link.aps.org/doi/10.1103/PhysRevA.98.022322

[Qiskit] Qiskit, https://qiskit.org/

[Qiskit_Nat_0] Qiskit_Nature, https://github.com/Qiskit/qiskit-nature/
blob/main/README.md

[Qiskit_Nat_1] Qiskit Nature and Finance Demo Session, with Max Rossmannek
and Julien Gacon, October 15, 2021, https://www.youtube.com/
watch?v=UtMVoGXlz04

[Qiskit_Nat_2] FermionicOp, https://qiskit.org/documentation/nature/
stubs/qiskit_nature.operators.second_quantization.FermionicOp.
html

[Qiskit_Nat_3] ElectronicStructureProblem.second_q_ops, https://qiskit.org/
documentation/nature/stubs/qiskit_nature.problems.second_
quantization.ElectronicStructureProblem.second_q_ops.html

[Qiskit_Nat_4] QubitConverter, https://qiskit.org/documentation/
nature/stubs/qiskit_nature.converters.second_quantization.
QubitConverter.html

[Qiskit_Nat_5] Qiskit Nature Tutorials, Electronic structure, https://qiskit.org/
documentation/nature/tutorials/01_electronic_structure.html

[Qiskit_Nat_T] Second-Quantization Operators (qiskit_nature.operators.second_
quantization) > FermionicOp > FermionicOp.set_truncation, https://qiskit.
org/documentation/nature/stubs/qiskit_nature.operators.second_
quantization.FermionicOp.set_truncation.html

https://qiskit.org/learn/intro-qc-qh/
https://qiskit.org/learn/intro-qc-qh/
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://link.aps.org/doi/10.1103/PhysRevA.98.022322
https://qiskit.org/
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://www.youtube.com/watch?v=UtMVoGXlz04
https://www.youtube.com/watch?v=UtMVoGXlz04
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html

170 Molecular Hamiltonians

[Qiskit_Nature] Introducing Qiskit Nature, Qiskit, Medium, April 6, 2021, https://
medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004

[Ribeiro] Sofia Leitão, Diogo Cruz, João Seixas, Yasser Omar, José Emilio Ribeiro,
J.E.F.T. Ribeiro, Quantum Simulation of Fermionic Systems, CERN, https://
indico.cern.ch/event/772852/contributions/3505906/
attachments/1905096/3146117/Quantum_Simulation_of_Fermion_
Systems.pdf

[Seeley] Jacob T. Seeley, Martin J. Richard, Peter J. Love, The Bravyi-Kitaev transformation
for quantum computation of electronic structure, August 29, 2012, arXiv:1208.5986
[quant-ph], https://arxiv.org/abs/1208.5986v1

[Skylaris] CHEM6085: Density Functional Theory, Lecture 8, Gaussian basis
sets, https://www.southampton.ac.uk/assets/centresresearch/
documents/compchem/DFT_L8.pdf

[Skylaris_1] C.-K. Skylaris, CHEM3023: Spins, Atoms, and Molecules, Lecture 8,
Experimental observables / Unpaired electrons, https://www.southampton.ac.uk/
assets/centresresearch/documents/compchem/chem3023_L8.pdf

[Toulouse] Julien Toulouse, Introduction to quantum chemistry, January 20, 2021,
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/
introduction_qc.pdf

[Tranter] Andrew Tranter, Peter J. Love, Florian Mintert, Peter V. Coveney, A comparison
of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of
quantum chemistry, December 5, 2018, J. Chem. Theory Comput. 2018, 14, 11, 5617–
5630, https://doi.org/10.1021/acs.jctc.8b00450

[Wiki-Comb] Number of k-combinations for all k, Wikipedia, https://
en.wikipedia.org/wiki/Combination#Number_of_k-combinations_
for_all_k

[Wiki-GAU] Gaussian orbital, Wikipedia, https://en.wikipedia.org/wiki/
Gaussian_orbital

[Wiki-STO] Slater-type orbital, Wikipedia, https://en.wikipedia.org/wiki/
Slater-type_orbital

[Yepez] Jeffrey Yepez, Lecture notes: Quantum gates in matrix and ladder operator forms,
January 15, 2013, https://www.phys.hawaii.edu/~yepez/Spring2013/
lectures/Lecture2_Quantum_Gates_Notes.pdf

https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://arxiv.org/abs/1208.5986v1
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/chem3023_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/chem3023_L8.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://doi.org/10.1021/acs.jctc.8b00450
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Gaussian_orbital
https://en.wikipedia.org/wiki/Gaussian_orbital
https://en.wikipedia.org/wiki/Slater-type_orbital
https://en.wikipedia.org/wiki/Slater-type_orbital
https://www.phys.hawaii.edu/~yepez/Spring2013/lectures/Lecture2_Quantum_Gates_Notes.pdf
https://www.phys.hawaii.edu/~yepez/Spring2013/lectures/Lecture2_Quantum_Gates_Notes.pdf

5
Variational

Quantum
Eigensolver (VQE)

Algorithm
“Not only is the Universe stranger than we think, it is stranger than

we can think.”
– Werner Heisenberg

Figure 5.1 – Steepest descent line on a potential energy surface (PES) [authors]

172 Variational Quantum Eigensolver (VQE) Algorithm

We introduced the history behind the use of the variational method in Section 1.1,
Understanding the history of quantum chemistry and mechanics. It is a mathematical
construct that can be used computationally. Within the context of quantum chemistry, the
variational method is used to determine the lowest energy associated with an eigenvalue,
either the ground state or excited states.

The Variational Quantum Eigensolver (VQE) algorithm was introduced in 2014
[VQE_1] and is defined using quantum-based hardware. It is the first of several
Variational Quantum Algorithms (VQAs) that are currently being explored by the
scientific industry.

We use Unitary Coupled Cluster Singles and Doubles (UCCSD) as a starting point to
determine a trial wave function for the variational method as it is essential that the VQE
ansatz is close to the true ground state to make the VQE computations successful. To get
an accurate energy estimate of 1 milli-Hartree (mHA), the ansatz for the VQE must be
close to the true ground state by less than one in a million [Troyer]. In this chapter, we
will focus on calculating only the ground state and Born-Oppenheimer potential energy
surface (BOPES) for the hydrogen (H2) and lithium hydride (LiH) molecules, and a macro
molecule. We introduced the BOPES in Section 4.1, Born-Oppenheimer approximation.
We will cover the following topics:

•	 Section 5.1, Variational method

•	 Section 5.2, Example chemical calculations

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information. The companion Jupyter notebook automatically installs the following
list of libraries:

•	 Numerical Python (NumPy) [NumPy], an open-source Python library that is used
in almost every field of science and engineering.

•	 Qiskit [Qiskit], an open-source SDK for working with quantum computers at the
level of pulses, circuits, and application modules.

•	 Qiskit visualization support to enable the use of visualizations and
Jupyter notebooks.

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

Technical requirements 173

•	 Qiskit Nature [Qiskit_Nature] [Qiskit_Nat_0], a unique platform to bridge the gap
between natural sciences and quantum simulations.

•	 Python-based Simulations of Chemistry Framework (PySCF) [PySCF], an open-
source collection of electronic structure modules powered by Python.

•	 Quantum Toolbox in Python (QuTiP) [QuTiP], a general framework for solving
quantum mechanics problems such as systems composed of few-level quantum
systems and harmonic oscillators.

•	 Atomic Simulation Environment (ASE) [ASE_0], a set of tools and Python
modules for setting up, manipulating, running, visualizing, and analyzing atomistic
simulations. The code is freely available under the GNU LGPL license.

•	 PyQMC [PyQMC], a Python module that implements real-space quantum Monte
Carlo techniques. It is primarily meant to interoperate with PySCF.

•	 h5py [h5py] package, a Pythonic interface to the HDF5 binary data format.

•	 SciPy [SciPy], a Python module that contains a large number of probability
distributions, summary and frequency statistics, correlation functions and statistical
tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality,
and more.

Installing NumPy, Qiskit, QuTiP, and importing
various modules
Install NumPy with the following command:

pip install numpy

Install Qiskit with the following command:

pip install qiskit

Install Qiskit visualization support with the following command:

pip install 'qiskit[visualization]'

Install Qiskit Nature with the following command:

pip install qiskit-nature

Install PySCF with the following command:

pip install pyscf

174 Variational Quantum Eigensolver (VQE) Algorithm

Install QuTiP with the following command:

pip install qutip

Install ASE with the following command:

pip install ase

Install PyQMC with the following command:

pip install pyqmc --upgrade

Install h5py with the following command:

pip install h5py

Install SciPy with the following command:

pip install scipy

Import NumPy with the following command:

import numpy as np

Import Matplotlib, a comprehensive library for creating static, animated, and interactive
visualizations in Python, with the following command:

import matplotlib.pyplot as plt

Import the required functions and class methods. The array_to_latex function()
returns a LaTeX representation of a complex array with dimension 1 or 2:

from qiskit.visualization import array_to_latex, plot_bloch_
vector, plot_bloch_multivector, plot_state_qsphere, plot_state_
city

from qiskit import QuantumRegister, ClassicalRegister,
QuantumCircuit, transpile

from qiskit import execute, Aer

import qiskit.quantum_info as qi

from qiskit.extensions import Initialize

from qiskit.providers.aer import extensions # import aer
snapshot instructions

Technical requirements 175

Import the Qiskit Nature libraries with the following commands:

from qiskit import Aer

from qiskit_nature.drivers import UnitsType, Molecule

from qiskit_nature.drivers.second_quantization
import ElectronicStructureDriverType,
ElectronicStructureMoleculeDriver

from qiskit_nature.problems.second_quantization import
ElectronicStructureProblem

from qiskit_nature.mappers.second_quantization import
ParityMapper, JordanWignerMapper, BravyiKitaevMapper

from qiskit_nature.converters.second_quantization import
QubitConverter

from qiskit_nature.transformers.second_quantization.electronic
import ActiveSpaceTransformer, FreezeCoreTransformer

from qiskit_nature.operators.second_quantization import
FermionicOp

from qiskit_nature.circuit.library.initial_states import
HartreeFock

from qiskit_nature.circuit.library.ansatzes import UCCSD

Import the Qiskit Nature property framework with the following command:

from qiskit_nature.properties import Property, GroupedProperty

Import the ElectronicEnergy property with the following command:

https://qiskit.org/documentation/nature/tutorials/08_
property_framework.html

from qiskit_nature.properties.second_quantization.electronic
import (

 ElectronicEnergy,

 ElectronicDipoleMoment,

 ParticleNumber,

 AngularMomentum,

 Magnetization,

)

176 Variational Quantum Eigensolver (VQE) Algorithm

Import the ElectronicIntegrals property with the following command:

from qiskit_nature.properties.second_quantization.electronic.
integrals import (

 ElectronicIntegrals,

 OneBodyElectronicIntegrals,

 TwoBodyElectronicIntegrals,

 IntegralProperty,

)

from qiskit_nature.properties.second_quantization.electronic.
bases import ElectronicBasis

Import the Qiskit Aer state vector simulator and various algorithms with the
following commands:

from qiskit.providers.aer import StatevectorSimulator

from qiskit import Aer

from qiskit.utils import QuantumInstance

from qiskit_nature.algorithms import VQEUCCFactory,
GroundStateEigensolver, NumPyMinimumEigensolverFactory,
BOPESSampler

from qiskit.algorithms import NumPyMinimumEigensolver, VQE,
HamiltonianPhaseEstimation

from qiskit.circuit.library import TwoLocal

from qiskit.algorithms.optimizers import QNSPSA

from qiskit.opflow import StateFn, PauliExpectation,
CircuitSampler, PauliTrotterEvolution

from functools import partial as apply_variation

Import the PySCF gto and scf libraries with the following command:

from pyscf import gto, scf

Import the PyQMC API library with the following command:

import pyqmc.api as pyq

Import h5py with the following command:

import h5py

5.1. Variational method 177

Import the ASE libraries, the Atoms object, molecular data, and visualizations with the
following commands:

from ase import Atoms

from ase.build import molecule

from ase.visualize import view

Import the math libraries with the following commands:

import cmath

import math

Import Python's statistical functions provided by the SciPy package with the
following command:

import scipy.stats as stats

Import QuTiP with the following command:

import qutip

Import time and datetime with the following command:

import time, datetime

Import pandas and os.path with the following commands:

import pandas as pd

import os.path

5.1. Variational method
We illustrate the variational method through both classical and hybrid-quantum methods.
We compare VQE to the variational Monte Carlo method. Further, we also compare the
results for VQE to the Quantum Phase Estimation (QPE) algorithm, which is not a
variational method.

In this section, we cover the following topics:

•	 Section 5.1.1, The Rayleigh-Ritz variational theorem

•	 Section 5.1.2, Variational Monte Carlo methods

178 Variational Quantum Eigensolver (VQE) Algorithm

•	 Section 5.1.3, Quantum Phase Estimation (QPE)

•	 Section 5.1.4, Description of the VQE algorithm

5.1.1. The Rayleigh-Ritz variational theorem
The Rayleigh-Ritz variational theorem states that the expectation value of the Hamiltonian
𝐻̂𝐻 of a system with respect to the state of an arbitrary wave function (𝛹𝛹) is always an
upper bound to the exact ground state energy 𝐸𝐸0 of the system it describes:

where 𝝉𝝉 generally represents time, spatial, and spin variables. This formula is not assuming
any particular chemical setup nor reference frame.

We now give a proof of this theorem for the general Hamiltonian, which is represented
by the discretized Hermitian operator 𝐻̂𝐻 [Toulouse]. Recall that, according to the
spectral theorem introduced in Section 2.3.1, Hermitian operator, 𝐻̂𝐻 must have a set of
orthonormal eigenvectors {| ⟩ ; ∈ [0,], ⟨ | ⟩ = } with real eigenvalues 𝐸𝐸𝑖𝑖 ,
 which form an orthonormal basis of the Hilbert space, and that 𝐻̂𝐻 has a
unique spectral representation in this basis:

We can index the orthonormal eigenvectors of 𝐻̂𝐻 in increasing order of energy,
𝐸𝐸0 ≤ 𝐸𝐸1 ≤ ⋯ ≤ 𝐸𝐸𝐾𝐾 and decompose any state |𝛹𝛹⟩ in this basis:

with coefficients 𝑐𝑐𝑘𝑘 = ⟨𝑒𝑒𝑘𝑘|𝛹𝛹⟩ and the normalization constraint:

𝐸𝐸𝛹𝛹 = ∫𝛹𝛹†𝐻̂𝐻𝛹𝛹𝛹𝛹𝝉𝝉
∫𝛹𝛹†𝛹𝛹𝛹𝛹𝝉𝝉 ≥ 𝐸𝐸0

𝐻̂𝐻 =∑𝐸𝐸𝑖𝑖|𝑒𝑒𝑖𝑖⟩⟨𝑒𝑒𝑖𝑖|
𝐾𝐾

𝑖𝑖=0

|𝛹𝛹⟩ = ∑𝑐𝑐𝑘𝑘|𝑒𝑒𝑘𝑘⟩
𝐾𝐾

𝑘𝑘=0

⟨𝛹𝛹|𝛹𝛹⟩ =∑|𝑐𝑐𝑘𝑘|2
𝐾𝐾

𝑘𝑘=0
= 1

5.1. Variational method 179

Noting that the complex conjugate transpose is:

We compute the expectation value:

The minimum of this expression 𝐸𝐸0 is reached for 𝑐𝑐0 = 1 and 𝑐𝑐𝑘𝑘 = 0 for all 𝑘𝑘 ≥ 1 that is
for |𝛹𝛹⟩ = |𝛹𝛹0⟩ . Hence:

To find the minimum, one can find the first and second derivative of the expression with
respect to the parameters of the wave function. This setup for the variational theorem
holds true for the electronic molecular Hamiltonian (𝐻̂𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒).

5.1.2. Variational Monte Carlo methods
The variational Monte Carlo (VMC) method is based on the Rayleigh-Ritz variational
theorem [Chen] [Gorelov] [Toulouse_1] [Cao] [Dagrada] and Monte Carlo integration
methods [Pease], noting that the expectation value can be rewritten in the form:

We separate the integral into a probability distribution:

and an observable:

⟨𝛹𝛹| = (|𝛹𝛹⟩∗)T = ∑((𝑐𝑐𝑘𝑘|𝑒𝑒𝑘𝑘⟩)∗)𝑇𝑇
𝐾𝐾

𝑘𝑘=0
= ∑𝑐𝑐𝑘𝑘∗⟨𝑒𝑒𝑘𝑘|

𝐾𝐾

𝑘𝑘=0

⟨𝛹𝛹|𝐻̂𝐻|𝛹𝛹⟩ =∑⟨𝑐𝑐𝑘𝑘∗𝑒𝑒𝑘𝑘|𝐻̂𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑐𝑐𝑘𝑘𝑒𝑒𝑘𝑘⟩
𝐾𝐾

𝑘𝑘=0
=∑𝑐𝑐𝑘𝑘∗𝑐𝑐𝑘𝑘𝐸𝐸𝑘𝑘⟨𝑒𝑒𝑘𝑘|𝑒𝑒𝑘𝑘⟩

𝐾𝐾

𝑘𝑘=0
= ∑𝐸𝐸𝑘𝑘|𝑐𝑐𝑘𝑘|2

𝐾𝐾

𝑘𝑘=0
≥ 𝐸𝐸0

𝐸𝐸𝛹𝛹 = ⟨𝛹𝛹|𝐻̂𝐻|𝛹𝛹⟩
⟨𝛹𝛹|𝛹𝛹⟩ ≥ ⟨𝛹𝛹0|𝐻̂𝐻|𝛹𝛹0⟩

⟨𝛹𝛹0|𝛹𝛹0⟩
= 𝐸𝐸0

𝐸𝐸𝛹𝛹 = 〈𝐻̂𝐻〉𝛹𝛹 = ∫|𝛹𝛹|2[𝛹𝛹−1𝐻̂𝐻𝛹𝛹]𝑑𝑑𝝉𝝉
∫|𝛹𝛹|2𝑑𝑑𝝉𝝉 ≥ 𝐸𝐸0

𝒫𝒫(𝝉𝝉) =
|𝛹𝛹|2

∫|𝛹𝛹|2𝑑𝑑𝝉𝝉

𝐸̂𝐸(𝝉𝝉) = 𝛹𝛹−1𝐻̂𝐻𝛹𝛹

180 Variational Quantum Eigensolver (VQE) Algorithm

which enables us to write the energy in the form of an average:

Now we apply an approximation to the 𝐸𝐸𝛹𝛹 formula, which is called the Metropolis-
Hastings (MH) algorithm [Chen] [Toulouse1]. To perform the approximation
mathematically, we sample a set of 𝑀𝑀 points {(𝝉𝝉)𝑘𝑘: 𝑘𝑘 ∈ [1,𝑀𝑀]} from the probability
distribution 𝒫𝒫(𝝉𝝉) and we evaluate the local energy at each point 𝐸𝐸(𝝉𝝉)𝑘𝑘 , hence:

In practice, we can use a flexible explicitly correlated wave function 𝛹𝛹.
We now give an illustration of the MH algorithm with Python code from Ref. [Stephens].
The MH algorithm is a Markov chain Monte Carlo (MCMC) method for producing
samples from a probability distribution that we will call the target probability distribution.
It works by simulating a Markov chain, whose stationary distribution is the target
probability distribution. Markov chain theory is used to describe polymerization type
reactions that are prominent in chemistry, chemical engineering, and in biology and
medicine, such as the polymerase chain reaction (PCR) [Tamir].

We want to sample from the following probability distribution:

We implement the MH algorithm with a “random walk” kernel, 𝑦𝑦 = 𝑥𝑥 + 𝑁𝑁(0,1) , where 𝑁𝑁
is the normal distribution, and the following acceptance probability:

Here is the code:

n = 10000 # Size of the Markov chain stationary distribution

Use np.linspace to create an array of n numbers between 0 and
n

index = np.linspace(0, n, num=n)

𝐸𝐸𝛹𝛹 = ∫𝒫𝒫(𝝉𝝉)𝐸𝐸(𝝉𝝉)𝑑𝑑𝝉𝝉

𝐸𝐸𝛹𝛹 ≈ 1
𝑀𝑀∑𝐸𝐸(𝝉𝝉)𝑘𝑘

𝑀𝑀

𝑘𝑘=1

𝑝𝑝(𝑥𝑥) = { 0, 𝑥𝑥 < 0
𝑒𝑒−𝑥𝑥, 𝑥𝑥 ≥ 0

𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚 (1, 𝑝𝑝(𝑦𝑦)𝑝𝑝(𝑥𝑥𝑡𝑡)
)

5.1. Variational method 181

x = np.linspace(0, n, num=n)

x[0] = 3 # Initialize to 3

for i in range(1, n):

 current_x = x[i-1]

 # We add a N(0,1) random number to x

 proposed_x = current_x + stats.norm.rvs(loc=0, scale=1,
size=1, random_state=None)

 A = min(1, p(proposed_x)/p(current_x))

 r = np.random.uniform(0,1) # Generate a uniform random number
in [0, 1]

 if r < A:

 x[i] = proposed_x # Accept move with probabilty
min(1,A)

 else:

 x[i] = current_x # Otherwise “reject” move, and stay
where we are

We plot the locations visited by the Markov chain 𝑥𝑥 :

plt.plot(index, x, label=”Trace plot”)

plt.xlabel('Index')

plt.ylabel('MH value')

plt.legend()

plt.show()

182 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.2 shows the result:

Figure 5.2 – Plot of the locations visited by the Markov chain

We use the Freedman–Diaconis rule to select the “right” bin width to be used in a
histogram [Bushmanov] [Freeman]:

q25, q75 = np.percentile(x, [25, 75])

bin_width = 2 * (q75 - q25) * len(x) ** (-1/3)

bins = round((x.max() - x.min()) / bin_width)

print(“Freedman–Diaconis number of bins:”, bins)

Here is the result:

Freedman–Diaconis number of bins: 109

We plot the histogram of the Markov chain 𝑥𝑥 :

plt.hist(x, density=True, bins=bins)

plt.ylabel('Density')

plt.xlabel('x');

5.1. Variational method 183

Figure 5.3 shows the result:

Figure 5.3 – Histogram of the Markov chain

We see that the histogram of values of the Markov chain 𝑥𝑥 is a good approximation to the
distribution 𝑝𝑝(𝑥𝑥) defined previously.

We now define the run_PySCF() function, which computes the energy of the ground
state with the PySCF RHF method and with the OPTIMIZE function in the PyQMC
Python module that implements real-space variational Monte Carlo techniques [PyQMC].
It has the following parameters:

•	 molecule, the geometry of the molecule, defined with the Qiskit Molecule class

•	 pyqmc, set to True by default to run the PyQMC Python module

•	 show, set to True by default to display intermediate results

•	 Here is the definition of the run_PySCF() function:

def run_PySCF(molecule, pyqmc=True, show=True):

184 Variational Quantum Eigensolver (VQE) Algorithm

We now present the code that is contained in this run_PySCF() function. First, we reset
the files:

 # Reset the files

 for fname in ['mf.hdf5','optimized_wf.hdf5']:

 if os.path.isfile(fname):

 os.remove(fname)

•	 Then we construct a PySCF molecular geometry from the molecule passed as an
input parameter:

 mol_PySCF = gto.M(atom = [“ “.join(map(str, (name, *coord)))
for (name, coord) in molecule.geometry])

•	 We run the PySCF RHF method:

 mf = scf.RHF(mol_PySCF)

 mf.chkfile = “mf.hdf5”

 conv, e, mo_e, mo, mo_occ = scf.hf.kernel(mf)

 if show:

 if conv:

 print(“PySCF restricted HF (RHF) converged ground-state
energy: {:.12f}”.format(e))

 else:

 print(“PySCF restricted HF (RHF) ground-state computation
failed to converge”)

•	 Next, we run the OPTIMIZE function in the PyQMC Python module:

 if pyqmc:

 pyq.OPTIMIZE(“mf.hdf5”,# Construct a Slater-Jastrow wave
function from the pyscf output

 “optimized_wf.hdf5”, # Store optimized parameters in this
file.

 nconfig=100, # Optimize using this many Monte
Carlo samples/configurations

 max_iterations=4, # 4 optimization steps

 verbose=False)

5.1. Variational method 185

•	 We read the content of the HDF5 file, which contains the optimized parameters,
and if the PyQMC variational Monte Carlo computation converged, then we print
the energy for each iteration:

 with h5py.File(“optimized_wf.hdf5”) as f:

 iter = f['iteration']

 energy = f['energy']

 error = f['energy_error']

 l = energy.shape[0]

 e = energy[l-1]

 err = error[l-1]

 if show:

 if err < 0.1:

 print(“Iteration, Energy, Error”)

 for k in iter:

 print(“{}: {:.4f} {:.4f}”.format(k,
energy[k], error[k]))

 print(“PyQMC Monte Carlo converged ground-state
energy: {:.12f}, error: {:.4f}”.format(e, err))

 else:

 print(“PyQMC Monte Carlo failed to converge”)

Finally, we let the run_PySCF() function return the following parameters to the caller:

•	 conv, Boolean, set to True if the PySCF RHF method converged

•	 e, the energy of the ground state

•	 Here is the return statement:

return conv, e

186 Variational Quantum Eigensolver (VQE) Algorithm

5.1.3. Quantum Phase Estimation (QPE)
In quantum chemistry, we need very accurate calculations of the total electronic energy
of each molecule species involved in a chemical reaction [Burg]. The Quantum Phase
Estimation (QPE) algorithm has a unique feature that it allows a bounded-error
simulation of quantum systems, which makes it one of the most promising applications of
future fault-tolerant quantum computing. Given a unitary operator 𝑈𝑈 , its eigenstate and
eigenvalues, 𝑈𝑈|𝜓𝜓⟩ = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋|𝜓𝜓⟩ , the ability to prepare a state |𝜓𝜓⟩ , and the ability to apply 𝑈𝑈
itself, the QPE algorithm calculates 2𝑛𝑛𝜃𝜃 , where 𝑛𝑛 is the number of qubits used to estimate
𝜃𝜃 thereby allowing measurement of 𝜃𝜃 as precisely as we want.

Recall that in Section 2.5, Postulate 5 – Time evolution dynamics, we saw that time
evolution dynamics of a quantum system is described by Schrödinger's equation:

For a time-independent Hamiltonian 𝐻̂𝐻 with initial condition |𝜓𝜓(𝑡𝑡0)⟩ , the solution is:

where 𝑈𝑈(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑖𝑖 𝑡𝑡ℏ 𝐻̂𝐻) is the unitary time-evolution operator. Further recall that
any unitary matrix has eigenvalues of the form 𝑒𝑒𝑖𝑖𝑖𝑖 . An eigenvalue of 𝑈𝑈(𝑡𝑡) is also an
eigenvalue of 𝐻̂𝐻 .

We now illustrate the use of the Qiskit PhaseEstimation class. First, we define a
function 𝑈𝑈(𝜃𝜃) , which creates a quantum circuit with a single qubit |𝑞𝑞0⟩ and applies the
following unitary:

where 𝑝𝑝(λ) is the gate we introduced in Section 3.2.1, Single qubit quantum gates, which
has the matrix form:

Here is the code:

def U(theta):

 unitary = QuantumCircuit(1)

 unitary.p(np.pi*2*theta, 0)

 return unitary

𝑖𝑖ℏ 𝑑𝑑𝑑𝑑𝑑𝑑 |𝜓𝜓⟩ = 𝐻̂𝐻|𝜓𝜓⟩

|𝜓𝜓(𝑡𝑡)⟩ = 𝑈𝑈(𝑡𝑡)|𝜓𝜓(𝑡𝑡0)⟩

𝑈𝑈(𝜃𝜃)|𝑞𝑞0⟩ = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋|𝑞𝑞0⟩ = 𝑝𝑝(2𝜋𝜋𝜋𝜋)|𝑞𝑞0⟩

𝑝𝑝(λ) = (1 0
0 e𝑖𝑖λ)

5.1. Variational method 187

We define the do_qpe() function, which illustrates the use of the Qiskit Nature
PhaseEstimation class, and which has three parameters:

•	 unitary, a function that implements a unitary

•	 nqubits, the number of qubits, by default 3

•	 show, set to True by default to display the phase returned by
PhaseEstimation class

Here is the code:

def do_qpe(unitary, nqubits=3, show=True):

 state_in = QuantumCircuit(1)

 state_in.x(0)

 pe = PhaseEstimation(num_evaluation_qubits=nqubits, quantum_
instance=quantum_instance)

 result = pe.estimate(unitary, state_in)

 phase_out = result.phase

 if show:

 print(“Number of qubits: {}, QPE phase estimate: {}”.
format(nqubits, phase_out))

 return(phase_out)

First, we run a test of accuracy with three qubits:

quantum_instance = QuantumInstance(backend = Aer.get_
backend('aer_simulator_statevector'))

theta = 1/2 + 1/4 + 1/8

print(“theta: {}”.format(theta))

unitary = U(theta)

result = do_qpe(unitary, nqubits=3)

Here is the result:

theta: 0.875

Number of qubits: 3, QPE phase estimate: 0.875

Next, we run a test of accuracy with eight qubits:

theta = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256

print(“theta: {}”.format(theta))

188 Variational Quantum Eigensolver (VQE) Algorithm

unitary = U(theta)

result = do_qpe(unitary, nqubits=8)

Here is the result:

theta: 0.99609375

Number of qubits: 8, QPE phase estimate: 0.99609375

We see that we can get an estimate of the phase with a bounded error from the true phase
by increasing the number of qubits that the PhaseEstimation class is allowed to use.

5.1.4. Description of the VQE algorithm
In a loop, a classical computer optimizes the parameters of a quantum circuit with respect
to an objective function, such as finding the ground state of a molecule, which is the state
with the lowest energy. The parameterized quantum circuit prepares a trial quantum
state as a trial solution (an ansatz). By repeatedly measuring qubits at the output of the
quantum circuit, we get the expectation value of the energy observable with respect to the
trial state.

The VQE algorithm provides an estimate of the ground state of a given quantum system
encoded as a Hamiltonian 𝐻̂𝐻 , the state of the system with the lowest energy 𝐸𝐸0 , for
instance, the ground state energy of a molecule. It involves an iterative minimization of
the expectation value 𝐸𝐸𝛹𝛹(𝜃𝜃) of the energy observable with respect to the parametrized (𝜃𝜃)
trial state |𝛹𝛹(𝜃𝜃)⟩ :

As shown in Section 3.1.6, Pauli matrices, we can decompose the Hamiltonian 𝐻̂𝐻 into
the weighted sum of 𝑀𝑀 tensor products 𝑃𝑃𝑘𝑘 = ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑖𝑖,𝑗𝑗 , where 𝜎𝜎𝑖𝑖,𝑗𝑗 ∈ {𝟙𝟙, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑧𝑧} with
weights 𝑐𝑐𝑘𝑘 and 𝑁𝑁 qubits:

Hence the expectation value of the energy observable 𝐸𝐸𝜓𝜓(𝜃𝜃) can be rewritten as follows:

𝐸𝐸0 ≤ 𝐸𝐸𝛹𝛹(𝜃𝜃) = ⟨𝛹𝛹(𝜃𝜃)|𝐻̂𝐻|𝛹𝛹(𝜃𝜃)⟩

𝐻̂𝐻 = ∑ 𝑐𝑐𝑘𝑘𝑃𝑃𝑘𝑘
𝑀𝑀−1

𝑘𝑘=0
= ∑ 𝑐𝑐𝑘𝑘 ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑘𝑘,𝑗𝑗
𝑀𝑀−1

𝑘𝑘=0

𝐸𝐸𝛹𝛹(𝜃𝜃) = ⟨𝛹𝛹(𝜃𝜃)|𝐻̂𝐻|𝛹𝛹(𝜃𝜃)⟩ = ∑ 𝑐𝑐𝑘𝑘⟨𝛹𝛹(𝜃𝜃)|𝑃𝑃𝑘𝑘|𝛹𝛹(𝜃𝜃)⟩
𝑀𝑀−1

𝑘𝑘=0
= ∑ 𝑐𝑐𝑘𝑘⟨𝛹𝛹(𝜃𝜃)| ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑘𝑘,𝑗𝑗|𝛹𝛹(𝜃𝜃)⟩
𝑀𝑀−1

𝑘𝑘=0

5.1. Variational method 189

We prepare a trial state |𝛹𝛹(𝜃𝜃)⟩ with the set of parameters 𝜃𝜃 = (𝜃𝜃0, 𝜃𝜃1,… , 𝜃𝜃𝑚𝑚) with a
quantum circuit initialized in the state |0⟩⊗𝑁𝑁 , and represented by 𝑈𝑈(𝜃𝜃) , which outputs
the state |𝛹𝛹(𝜃𝜃)⟩ = 𝑈𝑈(𝜃𝜃)|0⟩⊗𝑁𝑁 .

By transposing the complex conjugate, ⟨𝛹𝛹| = ⟨0|⊗𝑁𝑁𝑈𝑈(𝜃𝜃)† , we can rewrite the
expectation value of the energy observable 𝐸𝐸𝛹𝛹(𝜃𝜃) as follows:

and then by taking the sum out to the front:

For each 𝑃𝑃𝑘𝑘, we run the quantum circuit 𝑈𝑈(𝜃𝜃) followed by rotations
𝑅𝑅𝑘𝑘 ∈ {𝟙𝟙, 𝑅𝑅𝑋𝑋(−𝜋𝜋/2),𝑅𝑅𝑌𝑌(𝜋𝜋/2)} depending on 𝑃𝑃𝑘𝑘 before measuring the qubits in the
Z basis so that we effectively measure the output state in the basis of the eigenvectors
of 𝑃𝑃𝑘𝑘 to get the expectation value ⟨𝛹𝛹(𝜃𝜃)|𝑃𝑃𝑘𝑘|𝛹𝛹(𝜃𝜃)⟩ with respect to the output state
|𝛹𝛹(𝜃𝜃)⟩ = 𝑈𝑈(𝜃𝜃)|0⟩⊗𝑁𝑁 .

On a classical computer, we compute the weighted sum of the expectation values
⟨𝛹𝛹(𝜃𝜃)|𝑃𝑃𝑘𝑘|𝛹𝛹(𝜃𝜃)⟩ with weights 𝑐𝑐𝑘𝑘 to get the expectation value 𝐸𝐸𝛹𝛹(𝜃𝜃) with respect to the
output state |𝛹𝛹(𝜃𝜃)⟩ . We update the set of parameters 𝜃𝜃 using a classical optimization
routine, minimizing the expectation value 𝐸𝐸𝛹𝛹(𝜃𝜃) until convergence in the value of the
energy or the maximum allowable number of iterations is reached. The parameters 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚
at convergence define approximately the ground state |𝛹𝛹(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚)⟩ of the quantum system
encoded into a Hamiltonian Ĥ with the lowest energy 𝐸𝐸𝛹𝛹(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚) = ⟨𝛹𝛹(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚)|𝐻̂𝐻|𝛹𝛹(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚)⟩
. The algorithm is summarized in Figure 5.4.

Figure 5.4 – VQE algorithm

𝐸𝐸𝛹𝛹(𝜃𝜃) = ⟨𝛹𝛹(𝜃𝜃)|𝐻̂𝐻|𝛹𝛹(𝜃𝜃)⟩ = ⟨0|⊗𝑁𝑁𝑈𝑈(𝜃𝜃)†𝐻̂𝐻 𝑈𝑈(𝜃𝜃)|0⟩⊗𝑁𝑁

𝐸𝐸𝛹𝛹(𝜃𝜃) = ∑⟨𝛹𝛹(𝜃𝜃)|𝑃𝑃𝑘𝑘|𝛹𝛹(𝜃𝜃)⟩
𝑀𝑀−1

𝑘𝑘=0
= ∑ 𝑐𝑐𝑘𝑘⟨0|⊗𝑁𝑁𝑈𝑈(𝜃𝜃)† ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑘𝑘,𝑗𝑗𝑈𝑈(𝜃𝜃)|0⟩⊗𝑁𝑁
𝑀𝑀−1

𝑘𝑘=0

190 Variational Quantum Eigensolver (VQE) Algorithm

Trial wave functions
The Coupled-Cluster (CC) theory constructs a multi-electron wave function (𝛹𝛹) using
the exponential cluster operator 𝑇̂𝑇 = 𝑇̂𝑇1 + 𝑇̂𝑇2 + ⋯ 𝑇̂𝑇𝑛𝑛 , where 𝑇̂𝑇1 is the operator for all
single excitations, 𝑇̂𝑇2 is the operator for all double excitations, and so on. We start the
VQE with the following unitary Coupled-Cluster (UCC) ansatz of the quantum state
|𝛹𝛹(𝜃𝜃)⟩ with variational parameter 𝜃𝜃 [Panagiotis] [Lolur]:

where |𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟⟩ is the Hartree-Fock ground state. In the UCC method restricted to the
extension to single and double excitations (UCCSD), the operators 𝑇̂𝑇1 and 𝑇̂𝑇2 can be
expanded as follows:

where:

•	 𝑎̂𝑎𝑚𝑚† is the fermionic creation operator introduced in Section 4.3.1, Fermion
creation operator

•	 𝑎̂𝑎𝑖𝑖 is the fermionic annihilation operator introduced in Section 4.3.2, Fermion
annihilation operator

•	 𝜃𝜃 is the set of parameters for all expansion coefficients.

The UCCSD ansatz of the quantum state |𝛹𝛹(𝜃𝜃)⟩ is then mapped to qubit operators with
the Jordan-Wigner (JW), the Parity, or the Bravyi-Kitaev (BK) transformation introduced
in Section 4.7, Fermion to qubit mappings, resulting in an initial qubit state vector for the
VQE calculation.

Setting up the VQE solver
We set up a noise-free simulation with the Qiskit Aer state vector simulator backend:

quantum_instance = QuantumInstance(backend = Aer.get_
backend('aer_simulator_statevector'))

|𝛹𝛹(𝜃𝜃)⟩ = 𝑒𝑒𝑇̂𝑇(𝜃𝜃)−𝑇̂𝑇†(𝜃𝜃)|𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟⟩

1() = †

;

5.2. Example chemical calculations 191

Now we set up solving methods. To learn how to train circuit-based variational
models, check Ref. [Qiskit_2021_Lab4]. First, we set up the NumPy minimum
eigensolver as follows:

numpy_solver = NumPyMinimumEigensolver()

We set up the Two-Local circuit [Panagiotis] as follows:

tl_circuit = TwoLocal(rotation_blocks = ['h', 'rx'],
entanglement_blocks = 'cz',

 entanglement='full', reps=2, parameter_
prefix = 'y')

We set up the VQE using a heuristic ansatz, the Two-Local circuit with the default
Sequential Least Squares Programming (SLSQP) optimizer:

vqe_tl_solver = VQE(ansatz = tl_circuit,

 quantum_instance = QuantumInstance(Aer.
get_backend('aer_simulator_statevector')))

Then we set up a solver with the Unitary Coupled Cluster (UCC) factory. It allows a
fast initialization of a VQE initializing the qubits in the Hartree-Fock state and using the
quantum UCC with singles and doubles (q-UCCSD), a popular wave function ansatz
[VQE_2] [VQE_3]. Here is the code:

vqe_ucc_solver = VQEUCCFactory(quantum_instance, ansatz=tl_
circuit)

We set up a callback function, qnspsa_callback(), for the Quantum Natural SPSA
(QN-SPSA) optimizer, which appends results to the loss array qnspsa_loss:

qnspsa_loss = []

def qnspsa_callback(nfev, x, fx, stepsize, accepted):

 qnspsa_loss.append(fx)

Now we are ready to show some examples.

5.2. Example chemical calculations
As discussed in Chapter 4, Molecular Hamiltonians, approximating the PES of
nuclear motion occurs due to the use of the BO approximation. We can use a
semi-empirical method of approximating the PES through experimental data
and/or computer simulations.

192 Variational Quantum Eigensolver (VQE) Algorithm

The PES can be compared to a landscape with mountains and valleys. In practice, as
chemists, we want to find the global minimum (ocean floor) not local minima (mountain
meadows) of the PES, as seen in Figure 5.1. We use the variational method, both classical
and quantum, to find the global minimum. This can be compared to a ball rolling around
the landscape. If we give the ball a nudge in some direction, generally downward, the ball
will wind up in the minimum. We call this gradient descent. The gradient descent can
be supplied by numerically changing input values or by an analytic formula of the wave
function that describes the PES.

To state that calculation of determining the PES we guess a trial wave function, which can
be optimized in the calculation to enable us to find the global minimum of the energy. We
call this global minimum the lowest energy possible for a given eigenvalue.

We present several implementations of solving for the ground state and plotting the
BOPES of three molecules with the classical PySCF RHF, PyQMC variational Monte
Carlo, the QPE, and the VQE with Qiskit Nature using the STO-3G basis with the
PySCF driver.

In this section, we cover the following topics:

•	 Section 5.2.1, Hydrogen molecule

•	 Section 5.2.2, Lithium hydride molecule

•	 Section 5.2.3, Macro molecule

We use the get_particle_number() function defined in Section 4.6.1, Constructing
a fermionic Hamiltonian operator of the hydrogen molecule, which gets the particle number
property of a given electronic structure problem.

We use the fermion_to_qubit() function defined in Section 4.8, Constructing a qubit
Hamiltonian with Qiskit Nature, to convert a fermionic operator to a qubit operator. It has
the following input parameters:

•	 f_op, a fermionic operator obtained as explained in Section 4.6, Constructing a
fermionic Hamiltonian with Qiskit Nature

•	 mapper, either “Jordan-Wigner” or “Parity” or “Bravyi-Kitaev”

•	 truncate, an integer to truncate Pauli list by default set to 20 items

•	 two_qubit_reduction, a Boolean, by default False, that determines whether
to carry out two-qubit reduction when possible

5.2. Example chemical calculations 193

•	 z2symmetry_reduction, by default None, that indicates whether a Z2 symmetry
reduction should be applied to resulting qubit operators that are computed based on
mathematical symmetries that can be detected in the operator [de Keijzer]

•	 show, set to True by default to display the name of the transformation and results

Qiskit Nature provides a class called GroundStateEigensolver to calculate the
ground state of a molecule. We define the run_vqe() function, which has the following
input parameters:

•	 name, a string of characters to be printed, such as 'NumPy exact solver'

•	 f_op, a fermionic operator obtained as explained in Section 4, Constructing a
fermionic Hamiltonian with Qiskit Nature

•	 qubit_converter, either JordanWignerMapper(), ParityMapper(),
or BravyiKitaevMapper(), which is the output of the fermion_to_
qubit() function

•	 solver, either one of the solvers defined in Section 5.2.3, Setting up the VQE solver,
numpy_solver, vqe_ucc_solver, or vqe_tl_solver.

Here is the code:

def run_vqe(name, f_op, qubit_converter, solver, show=True):

 calc = GroundStateEigensolver(qubit_converter, solver)

 start = time.time()

 ground_state = calc.solve(f_op)

 elapsed = str(datetime.timedelta(seconds = time.time()-
start))

 if show:

 print(“Running the VQE using the {}”.format(name))

 print(“Elapsed time: {} \n”.format(elapsed))

 print(ground_state)

 return ground_state

194 Variational Quantum Eigensolver (VQE) Algorithm

We define the run_qpe() function to perform a quantum phase estimation and return
an eigenvalue of a Hamiltonian as an estimation of the electronic ground state energy. It
has the following input parameters:

•	 particle_number, the property returned by the get_particle_number()
function

•	 qubit_converter, either JordanWignerMapper(), ParityMapper(), or
BravyiKitaevMapper(), which is the output of the fermion_to_qubit()
function

•	 qubit_op, a qubit Hamiltonian operator returned the fermion_to_qubit()
function

•	 n_ancillae, an integer that defaults to 3, which is the number of ancillae qubits

•	 num_time_slices, an integer that defaults to 1, which is the number of
Trotterization repetitions to make to improve the approximation accuracy, and is
used by the Qiskit PauliTrotterEvolution class

•	 show, set to True by default to display intermediate results

Here is the code:

def run_qpe(particle_number, qubit_converter, qubit_op, n_
ancillae=3, num_time_slices = 1, show=True):

 initial_state = HartreeFock(particle_number.num_spin_
orbitals,

 (particle_number.num_alpha,

 particle_number.num_beta), qubit_
converter)

 state_preparation = StateFn(initial_state)

 evolution = PauliTrotterEvolution('trotter', reps=num_time_
slices)

 qpe = HamiltonianPhaseEstimation(n_ancillae, quantum_
instance=quantum_instance)

 result = qpe.estimate(qubit_op, state_preparation,
evolution=evolution)

5.2. Example chemical calculations 195

 if show:

 print(“\nQPE initial Hartree Fock state”)

 display(initial_state.draw(output='mpl'))

 eigv = result.most_likely_eigenvalue

 print(“QPE computed electronic ground state energy
(Hartree): {}”.format(eigv))

 return eigv

We define the plot_energy_landscape() function to plot the energy as a function
of atomic separation:

def plot_energy_landscape(energy_surface_result):

 if len(energy_surface_result.points) > 1:

 plt.plot(energy_surface_result.points, energy_surface_
result.energies, label=”VQE Energy”)

 plt.xlabel('Atomic distance Deviation(Angstrom)')

 plt.ylabel('Energy (hartree)')

 plt.legend()

 plt.show()

 else:

 print(“Total Energy is: “, energy_surface_result.
energies[0], “hartree”)

 print(“(No need to plot, only one configuration
calculated.)”)

 return

We define the plot_loss() function, which accepts the following input parameters:

•	 loss, an array of floats, optional, generated by the callback function

•	 label, a character string to be displayed by the plot_loss() function

•	 target, a float to be displayed by the plot_loss() function

Here is the code:

def plot_loss(loss, label, target):

 plt.figure(figsize=(12, 6))

 plt.plot(loss, 'tab:green', ls='--', label=label)

 plt.axhline(target, c='tab:red', ls='--', label='target')

196 Variational Quantum Eigensolver (VQE) Algorithm

 plt.ylabel('loss')

 plt.xlabel('iterations')

 plt.legend()

We now define the solve_ground_state() function, which solves for a ground state.
It accepts as input the following parameters, which define the geometry of the molecule:

•	 molecule, the geometry of the molecule, and the output of the Molecule
function.

•	 mapper, either “Jordan-Wigner” or “Parity” or “Bravyi-Kitaev”.

•	 num_electrons, an integer, optional, number of electrons for the
ActiveSpaceTransformer. Defaults to 2.

•	 num_molecular_orbitals, an integer, optional, number of electron orbitals for
ActiveSpaceTransformer. Defaults to 2.

The following list of input parameters control the whole process:

•	 transformers, an optional list of transformers. For
example, for lithium hydride, we will use the following:
transformers=[FreezeCoreTransformer(freeze_core=True,
remove_orbitals=[4, 3])].

•	 two_qubit_reduction, a Boolean, by default False. It determines whether to
carry out two-qubit reduction when possible.

•	 z2symmetry_reduction, by default None, this indicates whether a Z2
symmetry reduction should be applied to resulting qubit operators that are
computed based on mathematical symmetries that can be detected in the operator
[de Keijzer].

•	 name_solver, the name of the solver, which defaults to 'NumPy exact
solver'.

•	 solver, either one of the solvers defined in Section 5.2.3, Setting up the VQE
solver, numpy_solver, vqe_ucc_solver, or vqe_tl_solver. It defaults
to NumPyMinimumEigensolver().

•	 plot_bopes, a Boolean, set to True to compute and plot the BOPES of
the molecule.

•	 perturbation_steps, the points along the degrees of freedom to evaluate, in
this case a distance in angstroms. It defaults to np.linspace(-1, 1, 3).

•	 pyqmc, set to True by default to run the PyQMC Python module.

5.2. Example chemical calculations 197

•	 n_ancillae, an integer that defaults to 3 that represents the number of ancillae
qubits used by the run_qpe() function.

•	 num_time_slices, an integer that defaults to 1, which is number of
Trotterization repetitions to make to improve the approximation accuracy. It's used
by the Qiskit PauliTrotterEvolution class.

•	 loss, an optional array of floats that is generated by the callback function.

•	 label, a character string to be displayed by the plot_loss() function.

•	 target, a float to be displayed by the plot_loss() function.

•	 show, set to True by default to display intermediate results.

Here is the definition of the solve_ground_state() function:

def solve_ground_state(

 molecule,

 mapper =”Parity”,

 num_electrons=None,

 num_molecular_orbitals=None,

 transformers=None,

 two_qubit_reduction=False,

 z2symmetry_reduction = “Auto”,

 name_solver='NumPy exact solver',

 solver=NumPyMinimumEigensolver(),

 plot_bopes=False,

 perturbation_steps=np.linspace(-1, 1, 3),

 pyqmc=True,

 n_ancillae=3,

 num_time_slices=1,

 loss=[],

 label=None,

 target=None,

 show=True

):

We now present the code that is contained in the solve_ground_state() function.

198 Variational Quantum Eigensolver (VQE) Algorithm

We first define the electronic structure molecule driver by selecting the PySCF driver type
and the basis set sto3g in which the molecular orbitals are to be expanded into. Here is
the code:

 # Defining the electronic structure molecule driver

 driver = ElectronicStructureMoleculeDriver(molecule,
basis='sto3g', driver_type=ElectronicStructureDriverType.PYSCF)

Then, if both num_electrons and num_molecular_orbitals are specified, we call
the ActiveSpaceTransformer function to split the computation into a classical and a
quantum part:

Splitting into classical and quantum

 if num_electrons != None and num_molecular_orbitals !=
None:

 split = ActiveSpaceTransformer(num_electrons=num_
electrons, num_molecular_orbitals=num_molecular_orbitals)

 else:

 split = None

Next, we create an ElectronicStructureProblem that produces the list of
fermionic operators as follows:

Defining a fermionic Hamiltonian operator

 if split != None:

 fermionic_hamiltonian =
ElectronicStructureProblem(driver, [split])

 elif transformers != None:

 fermionic_hamiltonian =
ElectronicStructureProblem(driver, transformers=transformers)

 else:

 fermionic_hamiltonian =
ElectronicStructureProblem(driver)

We then use the second_q_ops() method [Qiskit_Nat_3], which returns a list of
second quantized operators: Hamiltonian operator, total particle number operator,
total angular momentum operator, total magnetization operator, and if available, 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧
dipole operators:

second_q_op = fermionic_hamiltonian.second_q_ops()

5.2. Example chemical calculations 199

We get the particle number property of the molecule by calling the particle_
number() function:

 # Get particle number

 particle_number = get_particle_number(fermionic_
hamiltonian, show=show)

If the input parameter show is set to True, we set truncation to 1000 with the set_
truncation(1000) method and then we print the fermionic Hamiltonian operator of
the molecule:

if show:

 # We set truncation to 1000 with the method set_
truncation(1000)

 second_q_op[0].set_truncation(1000)

 # then we print the first 20 terms of the fermionic
Hamiltonian operator of the molecule

 print(“Fermionic Hamiltonian operator”)

 print(second_q_op[0])

Next, we use the fermion_to_qubit() function defined in Section 4.8, Constructing a
qubit Hamiltonian with Qiskit Nature, to convert a fermionic operator to a qubit operator:

Use the function fermion_to_qubit() to convert a fermionic
operator to a qubit operator

 if show:

 print(“ “)

 qubit_op, qubit_converter = fermion_to_qubit(fermionic_
hamiltonian, second_q_op, mapper=mapper, two_qubit_
reduction=two_qubit_reduction, z2symmetry_reduction=z2symmetry_
reduction, show=show)

Then we call the run_PySCF() function that we defined earlier to run the PySCF
RHF method:

 # Run the the PySCF RHF method

 if show:

 print(“ “)

 conv, e = run_PySCF(molecule, pyqmc=pyqmc, show=show)

200 Variational Quantum Eigensolver (VQE) Algorithm

Then we call the run_qpe() function to perform a QPE and return the most likely
eigenvalue of a Hamiltonian as an estimation of the electronic ground state energy:

 # Run QPE

 eigv = run_qpe(particle_number, qubit_converter, qubit_
op, n_ancillae=n_ancillae, num_time_slices=num_time_slices,
show=True)

Next, we call the run_vqe() function defined earlier to solve for the ground state:

 # Run VQE

 if show:

 print(“ “)

 ground_state = run_vqe(name_solver, fermionic_hamiltonian,
qubit_converter, solver, show=show)

If the loss parameter is not an empty array, we call the plot_loss() function to plot
the evolution of the loss as a function of the number of iterations:

 # Plot loss function

 if loss != []:

 plot_loss(loss, label, target)

Next, if the plot_bopes parameter is set to True, we use the BOPESSampler Python
class [Qiskit_Nat_6], which manages the process of varying the geometry and repeatedly
calling the ground state solver, and then we get and plot the BOPES:

if plot_bopes:

 # Compute the potential energy surface as follows:

 energy_surface =
BOPESSampler(gss=GroundStateEigensolver(qubit_converter,
solver), bootstrap=False)

 # Set default to an empty dictionary instead of None:

 energy_surface._points_optparams = {}

 energy_surface_result = energy_surface.sample(fermionic_
hamiltonian, perturbation_steps)

 # Plot the energy as a function of atomic separation

 plot_energy_landscape(energy_surface_result)

5.2. Example chemical calculations 201

Finally, we let the solve_ground_state() function return the following parameters
to the caller:

•	 fermionic hamiltonian, the Fermionic Hamiltonian operator of the molecule

•	 particle number, the particle number property of the molecule

•	 qubit_op, the qubit Hamiltonian operator

•	 qubit_converter, either JordanWignerMapper(), ParityMapper(),
or BravyiKitaevMapper(), which is the output of the fermion_to_
qubit() function

•	 ground_state, the ground state of the molecule, if convergence has
been achieved

with the following return statement:

return fermionic_hamiltonian, particle_number, qubit_op, qubit_
converter, ground_state

We now illustrate how to use the solve_ground_state() function with different
molecules, different mappers, and different classical solvers.

5.2.1. Hydrogen molecule (H2)
We follow the process described in Section 4.6.1, Constructing a fermionic Hamiltonian
operator of the hydrogen molecule. First, we define the geometry of the hydrogen molecule
as follows:

hydrogen_molecule = Molecule(geometry=[['H', [0., 0., 0.]],

 ['H', [0., 0., 0.735]]],

 charge=0, multiplicity=1)

We showed the particle number property of the hydrogen molecule in Figure 4.9 in
Section 4.6.1, Constructing a fermionic Hamiltonian operator of the hydrogen molecule,
where we see four spin orbitals (SOs), one 𝛼𝛼 electron, and one 𝛽𝛽 electron.

We showed the fermionic Hamiltonian operator of the hydrogen molecule in Figure 4.13
in Section 4.6.1, Constructing a fermionic Hamiltonian operator of the hydrogen molecule.

202 Variational Quantum Eigensolver (VQE) Algorithm

Varying the hydrogen molecule
We specify the type of molecular variation, Molecule.absolute_stretching,
as follows:

molecular_variation = Molecule.absolute_stretching

We specify that the first atom of the specified atom pair is moved closer to the second
atom. The numbers refer to the index of the atom in the geometric definition list. Here is
the code:

specific_molecular_variation = apply_variation(molecular_
variation, atom_pair=(1, 0))

We alter the original molecular definition as follows:

hydrogen_molecule_stretchable = Molecule(geometry=

 [['H', [0., 0., 0.]],

 ['H', [0., 0., 0.735]]],

 charge=0, multiplicity=1,

 degrees_of_freedom=[specific_
molecular_variation])

Now we proceed with solving for the ground state.

Solving for the ground state
We now run VQE using the NumPy exact minimum eigensolver:

H2_fermionic_hamiltonian, H2_particle_number, H2_qubit_op, H2_
qubit_converter, H2_ground_state = \

 solve_ground_state(hydrogen_molecule, mapper
=”Parity”,

 two_qubit_reduction=True, z2symmetry_
reduction=None,

 name_solver = 'NumPy exact solver', solver =
numpy_solver)

5.2. Example chemical calculations 203

Figure 5.5 shows the results of the computation by the run_PySCF() and run_QPE()
functions:

Figure 5.5 – Ground-state of the H2 molecule with PySCF RHF, PyQMC Monte Carlo, and QPE

Figure 5.6 shows the result of the VQE computation:

Figure 5.6 – Ground-state of the H2 molecule with VQE using the NumPy minimum eigensolver

204 Variational Quantum Eigensolver (VQE) Algorithm

Next, we run the VQE using the UCC factory ansatz [VQE_2] [VQE_3]:

H2_fermionic_hamiltonian, H2_particle_number, H2_qubit_op, H2_
qubit_converter, H2_ground_state = \

 solve_ground_state(hydrogen_molecule, mapper
=”Parity”,

 two_qubit_reduction=True, z2symmetry_
reduction=None,

 name_solver = 'Unitary Coupled Cluster (UCC)
factory ansatz', solver = vqe_ucc_solver)

Figure 5.7 shows the result:

Figure 5.7 – Ground-state of the H2 molecule with VQE using the UCC factory ansatz

Now we run the VQE using a heuristic ansatz, the Two-Local circuit with the default
SLSQP optimizer [Panagiotis]:

H2_fermionic_hamiltonian, H2_particle_number, H2_qubit_op, H2_
qubit_converter, H2_ground_state = \

 solve_ground_state(hydrogen_molecule, mapper
=”Parity”,

 two_qubit_reduction=True, z2symmetry_
reduction=None,

 name_solver = 'Heuristic ansatz, the Two-
Local circuit with SLSQP',solver = vqe_tl_solver)

5.2. Example chemical calculations 205

Figure 5.8 shows the result:

Figure 5.8 – Ground-state of the H2 molecule with VQE using the Two-Local circuit and SLSQP

We define the qnspsa() function as follows:

qnspsa_loss = []

ansatz = tl_circuit

fidelity = QNSPSA.get_fidelity(ansatz, quantum_instance,
expectation=PauliExpectation())

qnspsa = QNSPSA(fidelity, maxiter=200, learning_rate=0.01,
perturbation=0.7, callback=qnspsa_callback)

Here is the code that sets up the VQE using a heuristic ansatz and the
QN-SPSA optimizer:

vqe_tl_QNSPSA_solver = VQE(ansatz=tl_circuit, optimizer=qnspsa,

 quantum_instance=quantum_instance)

Now we call solve_ground_state() with the heuristic ansatz and the
QN-SPSA optimizer:

H2_fermionic_hamiltonian, H2_particle_number, H2_qubit_op, H2_
qubit_converter, H2_ground_state = \

 solve_ground_state(hydrogen_molecule, mapper
=”Parity”,

206 Variational Quantum Eigensolver (VQE) Algorithm

 two_qubit_reduction=True, z2symmetry_
reduction=None, loss=qnspsa_loss, label='QN-SPSA',
target=-1.857274810366,

 name_solver='Two-Local circuit and the QN-
SPSA optimizer', solver=vqe_tl_QNSPSA_solver)

Figure 5.9 shows the result:

Figure 5.9 – Ground-state of the H2 molecule with VQE using the Two-Local circuit and QN-SPSA

5.2. Example chemical calculations 207

Figure 5.10 shows the plot of the loss function of the QN-SPSA optimizer:

Figure 5.10 – Plot of the loss function of the VQE using the Two-Local circuit and QN-SPSA
for the H2 molecule

The table shown in Figure 5.11 summarizes calculations obtained with the Python
packages PySCF RHF, PyQMC, and with the Qiskit Nature classes, VQE with NumPy
exact solver, SLSQP, QN-SPSA, and QPE.

Figure 5.11 – Table summarizing the calculations of the ground state energy obtained
with the H2 molecule

208 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.11 shows close agreement between the different calculations of the electronic
ground state and the total ground state energies with the same qubit mapper called the
ParityMapper() with two_qubit_reduction=True. The PyQMC method gives
the lowest total energy -1.162 Ha and is the most accurate. It is consistent with the result
-1.168 Ha shown in Ref. [Ebomwonyi].

Computing the BOPES
We now compute and plot the BOPES of the hydrogen molecule as follows:

perturbation_steps = np.linspace(-0.5, 2, 25) # 25 equally
spaced points from -0.5 to 2, inclusive.

H2_stretchable_fermionic_hamiltonian, H2_stretchable_particle_
number, H2_stretchable_qubit_op, H2_stretchable_qubit_
converter, H2_stretchable_ground_state = \

 solve_ground_state(hydrogen_molecule_
stretchable, mapper =”Parity”,

 two_qubit_reduction=True, z2symmetry_
reduction=None,

 name_solver = 'NumPy exact solver', solver =
numpy_solver,

 plot_bopes = True, perturbation_
steps=perturbation_steps)

Figure 5.12 shows the plot of the BOPES of the hydrogen molecule:

Figure 5.12 – Plot of the BOPES of the hydrogen molecule

5.2. Example chemical calculations 209

5.2.2. Lithium hydride molecule
We follow the process described in Section 4.6.2, Constructing a fermionic Hamiltonian
operator of the lithium hydride molecule. First, we define the geometry of the lithium
hydride (LiH) molecule as follows:

LiH_molecule = Molecule(geometry=[['Li', [0., 0., 0.]],

 ['H', [0., 0., 1.5474]]],

 charge=0, multiplicity=1)

We showed the particle number property in Figure 4.17 in Section 4.6.2, Constructing a
fermionic Hamiltonian operator of the lithium hydride molecule, where we see six SOs,
one 𝛼𝛼 electron, and one 𝛽𝛽 electron. We showed the fermionic Hamiltonian operator of
the lithium hydride molecule in Figure 4.20 in Section 4.6.2, Constructing a fermionic
Hamiltonian operator of the lithium hydride molecule.

Varying the lithium hydride molecule
We alter the original molecular definition as follows:

LiH_molecule_stretchable = Molecule(geometry=[['Li', [0., 0.,
0.]],

 ['H', [0., 0., 1.5474]]],

 charge=0, multiplicity=1,

 degrees_of_freedom=[specific_molecular_
variation])

reduction=True, z2symmetry_reduction=”auto”)

Solving for the ground state
We run VQE using the NumPy exact minimum eigensolver:

LiH_fermionic_hamiltonian, LiH_particle_number, LiH_qubit_op,
LiH_qubit_converter, LiH_ground_state = \

 solve_ground_state(LiH_molecule, mapper
=”Parity”,

 transformers=[FreezeCoreTransformer(freeze_
core=True, remove_orbitals=[4, 3])],

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”,

 name_solver = 'NumPy exact solver', solver =
numpy_solver)

210 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.13 shows the result of the computation by the run_PySCF() and run_QPE()
functions:

Figure 5.13 – Ground state of the LiH molecule with PySCF RHF, PyQMC Monte Carlo, and QPE

5.2. Example chemical calculations 211

Figure 5.14 shows the result of the VQE computation:

Figure 5.14 – Ground state of the LiH molecule with VQE using the NumPy minimum eigensolver

We run the VQE using the Two-Local circuit and SLSQP:

LiH_fermionic_hamiltonian, LiH_particle_number, LiH_qubit_op,
LiH_qubit_converter, LiH_ground_state = \

 solve_ground_state(LiH_molecule, mapper
=”Parity”,

 transformers=[FreezeCoreTransformer(freeze_
core=True, remove_orbitals=[4, 3])],

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”,

 name_solver = 'Heuristic ansatz, the Two-
Local circuit with SLSQP', solver = vqe_tl_solver)

212 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.15 shows the result:

Figure 5.15 – Ground state of the LiH molecule with VQE using the Two-Local circuit and SLSQP

We define the qnspsa() function as follows:

qnspsa_loss = []

ansatz = tl_circuit

fidelity = QNSPSA.get_fidelity(ansatz, quantum_instance,
expectation=PauliExpectation())

qnspsa = QNSPSA(fidelity, maxiter=500, learning_rate=0.01,
perturbation=0.7, callback=qnspsa_callback)

Here is the code that sets up the VQE using a heuristic ansatz and the
QN-SPSA optimizer:

vqe_tl_QNSPSA_solver = VQE(ansatz=tl_circuit, optimizer=qnspsa,

 quantum_instance=quantum_instance)

5.2. Example chemical calculations 213

Now we call solve_ground_state() with the heuristic ansatz and the
QN-SPSA optimizer:

LiH_fermionic_hamiltonian, LiH_particle_number, LiH_qubit_op,
LiH_qubit_converter, LiH_ground_state = \

 solve_ground_state(LiH_molecule,
mapper=”Parity”,

 transformers=[FreezeCoreTransformer(freeze_
core=True, remove_orbitals=[4, 3])],

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”, loss=qnspsa_loss, label='QN-SPSA',
target=-1.0703584,

 name_solver='Two-Local circuit and the QN-
SPSA optimizer', solver=vqe_tl_QNSPSA_solver)

Figure 5.16 shows the result:

Figure 5.16 – Ground state of the LiH molecule with VQE using the Two-Local circuit and QN-SPSA

214 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.17 shows the plot of the loss function of the QN-SPSA optimizer:

Figure 5.17 – Loss function of the VQE using the Two-Local circuit and QN-SPSA for the LiH molecule

The table shown in Figure 5.18 summarizes calculations obtained with the Python
packages PySCF RHF, PyQMC, and with the Qiskit Nature classes, VQE with the NumPy
exact solver, SLSQP, QN-SPSA, and QPE:

Figure 5.18 – Table summarizing the calculations of the ground state energy obtained
with the LiH molecule

Figure 5.18 shows close agreement between the different calculations of the electronic
ground state and the total ground state energies. The PyQMC method gives the lowest
total energy -8.102 Ha and is the most accurate. It is consistent with the result -8.07 Ha
shown in Ref. [Adamowicz_3].

5.2. Example chemical calculations 215

Computing the BOPES
We now compute and plot the BOPES of the lithium hydride molecule as follows:

perturbation_steps = np.linspace(-0.8, 0.8, 10) # 10 equally
spaced points from -0.8 to 0.8, inclusive.

LiH_stretchable_fermionic_hamiltonian, LiH_stretchable_
particle_number, LiH_stretchable_qubit_op, LiH_stretchable_
qubit_converter, LiH_stretchable_ground_state = \

 solve_ground_state(LiH_molecule_stretchable,
mapper =”Parity”,

 transformers=[FreezeCoreTransformer(freeze_
core=True, remove_orbitals=[4, 3])],

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”,

 name_solver='NumPy exact solver',
solver=numpy_solver,

 plot_bopes = True, perturbation_
steps=perturbation_steps)

Figure 5.19 shows the result:

Figure 5.19 – Plot of the BOPES of the LiH molecule

216 Variational Quantum Eigensolver (VQE) Algorithm

5.2.3. Macro molecule
We now explore the HIV use case of the IBM Quantum Challenge Africa 2021, Quantum
Chemistry for HIV [Africa21]. In their challenge they aimed to determine whether a toy
model of an anti-retroviral molecule can bind with a toy model of a protease molecule.
Since the anti-retroviral molecule has many atoms, it is approximated by using a single
carbon atom. The toy model of the protease molecule is represented by a component of
the formamide molecule (HCONH2); particularly it is the carbon-oxygen-nitrogen part of
the formamide molecule. In short, the experiment is to determine whether a single carbon
atom, can bind to the carbon-oxygen-nitrogen component of the formamide molecule.
We will get the answer to the question posed by IBM by plotting the BOPES of a macro
molecule, which is the formamide molecule plus the carbon atom.

First, we define the macro molecule with the ASE Atoms object [ASE_1]:

macro_ASE = Atoms('ONCHHHC', [(1.1280, 0.2091, 0.0000),

 (-1.1878, 0.1791, 0.0000),

 (0.0598, -0.3882, 0.0000),

 (-1.3085, 1.1864, 0.0001),

 (-2.0305, -0.3861, -0.0001),

 (-0.0014, -1.4883, -0.0001),

 (-0.1805, 1.3955, 0.0000)])

Then we display a 3D view of the molecule with the ASE viewer X3D for Jupyter
notebooks [ASE2]:

view(macro_ASE, viewer='x3d')

Figure 5.20 shows the result. The nitrogen atom is depicted on the left side in blue, the
oxygen atom on the right side in red, the carbon atoms in the middle in gray, and the
three hydrogen atoms are the smallest ones in light gray. The carbon atom on the top is
not bound to the other atoms.

Figure 5.20 – Macro molecule

5.2. Example chemical calculations 217

We specify the type of molecular variation, Molecule.absolute_stretching,
as follows:

molecular_variation = Molecule.absolute_stretching

We specify which atoms the variation applies to. The numbers refer to the index of the
atom in the geometric definition list. The single carbon atom is moved closer to the
nitrogen atom:

specific_molecular_variation = apply_variation(molecular_
variation, atom_pair=(6, 1))

We define the molecular geometry of the macro molecule with the Qiskit Molecule class
as follows:

macromolecule = Molecule(geometry=

 [['O', [1.1280, 0.2091, 0.0000]],

 ['N', [-1.1878, 0.1791, 0.0000]],

 ['C', [0.0598, -0.3882, 0.0000]],

 ['H', [-1.3085, 1.1864, 0.0001]],

 ['H', [-2.0305, -0.3861, -0.0001]],

 ['H', [-0.0014, -1.4883, -0.0001]],

 ['C', [-0.1805, 1.3955, 0.0000]]],

 charge=0, multiplicity=1,

 degrees_of_freedom=[specific_molecular_variation])

Now we can solve for the ground state.

218 Variational Quantum Eigensolver (VQE) Algorithm

Solving for the ground state
We reduce the quantum workload by specifying that certain electrons should be
treated with a quantum computing algorithm, while the remaining electrons should be
classically approximated with the Qiskit ActiveSpaceTransformer class, which
takes in two arguments:

•	 num_electrons, the number of electrons selected from the outermost electrons,
counting inwards, to be treated with a quantum computing algorithm.

•	 num_molecular_orbitals, the number of orbitals to allow those electrons
to roam over (around the so-called Fermi level). It determines how many qubits
are needed.

We print the selection of parameters of the VQE run:

print(“Macro molecule”)

print(“Using the ParityMapper with two_qubit_reduction=True to
eliminate two qubits”)

print(“Parameters ActiveSpaceTransformer(num_electrons=2, num_
molecular_orbitals=2)”)

print(“Setting z2symmetry_reduction=\”auto\””)

Here is the result:

Macro molecule

Using the ParityMapper with two_qubit_reduction=True to
eliminate two qubits

Parameters ActiveSpaceTransformer(num_electrons=2, num_
molecular_orbitals=2)

Setting z2symmetry_reduction=”auto”

We then run the VQE using the NumPy exact minimum eigensolver:

macro_fermionic_hamiltonian, macro_particle_number, macro_
qubit_op, macro_qubit_converter, macro_ground_state = \

 solve_ground_state(macromolecule,
mapper=”Parity”,

 num_electrons=2, num_molecular_orbitals=2,

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”,

 name_solver='NumPy exact solver',
solver=numpy_solver, pyqmc=False)

5.2. Example chemical calculations 219

Figure 5.21 shows the first 20 terms of the fermionic operator of the macro molecule:

Figure 5.21 – First 20 terms of the fermionic Hamiltonian operator of the macro molecule

220 Variational Quantum Eigensolver (VQE) Algorithm

Figure 5.22 shows the qubit Hamiltonian operator for the outermost two electrons of the
macro molecule obtained with the parity transformation. Only two qubits are needed
as expected for a parity mapping of the fermionic Hamiltonian operator to the qubit
Hamiltonian operator:

Figure 5.22 – Qubit Hamiltonian operator of the outermost two electrons of the macro molecule

Figure 5.23 shows the total ground state energy of the molecule computed by the PySCF
RHF Python package and an estimation of the electronic ground state energy of the
outermost two electrons of the molecule computed by the Qiskit Nature QPE class:

Figure 5.23 – Total and electronic ground state energy of the macro molecule by PySCF
and QPE respectively

5.2. Example chemical calculations 221

Figure 5.24 shows the result of VQE computation:

Figure 5.24 – Ground state of macro molecule using the NumPy exact minimum eigensolver

The electronic ground state energy of the outermost two electrons of the macromolecule
computed by the QPE, −0.824 (Hartree), and by the VQE, −0.885 , Qiskit Nature classes
are in good agreement.

The total ground state energy of the macro molecule computed by the PySCF RHF Python
package, −203.54386 (Hartree), and by the Qiskit Nature VQE class, −203.54505 , are
in good agreement.

Computing the BOPES
We now compute and plot the BOPES of the macro molecule as follows:

perturbation_steps = np.linspace(-0.5, 3, 10) # 10 equally
spaced points from -0.5 to 3, inclusive.

macro_fermionic_hamiltonian, macro_particle_number, macro_
qubit_op, macro_qubit_converter, macro_ground_state = \

 solve_ground_state(macromolecule, mapper
=”Parity”,

 num_electrons=2, num_molecular_orbitals=2,

222 Variational Quantum Eigensolver (VQE) Algorithm

 two_qubit_reduction=True, z2symmetry_
reduction=”auto”,

 name_solver='NumPy exact solver',
solver=numpy_solver, pyqmc=False,

 plot_bopes=True, perturbation_
steps=perturbation_steps)

Figure 5.25 shows the result:

Figure 5.25 – Plot of the BOPES of the macro molecule

The plot of the BOPES of the macro molecule shows no clear minimum for any
separation. We conclude that there is no binding of the single carbon atom to the toy
protease molecule of formamide.

Summary
In this chapter, we have introduced classical and hybrid classical-quantum variational
methods to find the lowest energy eigenvalue for a quantum system and their
implementation with a classical PyQMC variational Monte Carlo Python package, which
interoperates with the PySCF, and Qiskit Nature using the STO-3G basis with the Python-
based PySCF driver.

Questions 223

We have illustrated these methods, solving for the ground state and plotting the BOPES of
the hydrogen molecule, the lithium hydride molecule, and the macro molecule.

The results we obtained with Qiskit Nature VQE and QPE are in good agreement with
those obtained with the PyQMC and PySCF RHF packages for several combinations
of fermionic-to-qubit Hamiltonian mappers and classical gradient descent solvers and
by reducing the quantum workload to the outermost two electrons of the formamide
molecule. We hope these results will encourage the reader to replay these experiments
with different choices of solvers and with other molecules.

Questions
Please test your understanding of the concepts presented in this chapter with the
corresponding Google Colab notebook:

1.	 Does the variational theorem apply to excited states?
2.	 True or False: The Metropolis-Hastings method is a way to approximate integration

over spatial coordinates.
3.	 True or False: VQE is only a quantum computing algorithm and does not require

the use of classical computing.

Answers
1.	 Yes
2.	 True
3.	 False

References
[ASE_0] Atomic Simulation Environment (ASE), https://wiki.fysik.dtu.dk/
ase/index.html

[ASE_1] ASE, The Atoms object, https://wiki.fysik.dtu.dk/ase/ase/
atoms.html

[ASE_2] ASE Visualization, https://wiki.fysik.dtu.dk/ase/ase/
visualize/visualize.html#module-ase.visualize

https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/ase/atoms.html
https://wiki.fysik.dtu.dk/ase/ase/atoms.html
https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#module-ase.visualize
https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#module-ase.visualize

224 Variational Quantum Eigensolver (VQE) Algorithm

[Adamowicz_3] Tung WC, Pavanello M, Adamowicz L., Very accurate potential energy
curve of the LiH molecule. TABLE I. Comparison of the convergence of the BO energy,
in Eh, for the ground state of LiH molecule at R = 3.015 bohrs, J Chem Phys. 2011 Feb
14;134(6):064117. doi: 10.1063/1.3554211, https://doi.org/10.1063/1.3554211

[Africa21] IBM Quantum Challenge Africa 2021, https://github.com/qiskit-
community/ibm-quantum-challenge-africa-2021

[Burg] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus
Reiher, Martin Roetteler, Matthias Troyer, Quantum computing enhanced computational
catalysis, 3 Mar 2021, 10.1103/PhysRevResearch.3.033055, https://arxiv.org/
abs/2007.14460

[Bushmanov] Sergey Bushmanov, How to plot a histogram using Matplotlib in
Python with a list of data?, Stack Overflow, https://stackoverflow.com/
questions/33203645/how-to-plot-a-histogram-using-matplotlib-
in-python-with-a-list-of-data

[Cao] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D.
Sawaya, Sukin Sim, Libor Veis, Alán Aspuru-Guzik, Quantum Chemistry in the Age of
Quantum Computing, Chem. Rev. 2019, 119, 19, 10856–10915, Aug 30, 2019, https://
doi.org/10.1021/acs.chemrev.8b00803

[Chen] Sija Chen, Quantum Monte Carlo Methods, Maplesoft, https://
fr.maplesoft.com/Applications/Detail.aspx?id=154748

[Dagrada] Mario Dagrada, Improved quantum Monte Carlo simulations: from open to
extended systems, Materials Science [cond-mat.mtrl-sci]. Université Pierre et Marie Curie
- Paris VI; Universidad Nacional de San Martín, 2016. English. ⟨NNT: 2016PA066349⟩. ⟨tel-
01478313⟩, https://tel.archives-ouvertes.fr/tel-01478313/document

[Ebomwonyi] Ebomwonyi, Osarodion, A Quantum Monte Carlo Calculation of the
Ground State Energy for the Hydrogen Molecule Using the CASINO Code, 2013, Table
3.1: Comparative analysis of the ground state energies for the hydrogen molecule by
different researchers, https://www.semanticscholar.org/paper/A-Quantum-
Monte-Carlo-Calculation-of-the-Ground-for-Ebomwonyi/5316eb86f3
9cf4fa0a8fd06d136aac4db1105ad4

[Freeman] Freedman–Diaconis rule, Wikipedia, https://en.wikipedia.org/
wiki/Freedman%E2%80%93Diaconis_rule

https://doi.org/10.1063/1.3554211
https://github.com/qiskit-community/ibm-quantum-challenge-africa-2021
https://github.com/qiskit-community/ibm-quantum-challenge-africa-2021
https://arxiv.org/abs/2007.14460
https://arxiv.org/abs/2007.14460
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://fr.maplesoft.com/Applications/Detail.aspx?id=154748
https://fr.maplesoft.com/Applications/Detail.aspx?id=154748
https://tel.archives-ouvertes.fr/tel-01478313/document
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule

References 225

[Gorelov] Vitaly Gorelov, Quantum Monte Carlo methods for electronic structure
calculations: application to hydrogen at extreme conditions, 1.4.1 Variational Monte Carlo
(VMC), https://tel.archives-ouvertes.fr/tel-03045954/document

[Grok] Grok the Bloch Sphere, https://javafxpert.github.io/grok-bloch/

[H5py] Quick Start Guide, https://docs.h5py.org/en/stable/quick.html

[IBM_CEO] IBM CEO: Quantum computing will take off 'like a rocket ship' this decade,
Fast Company, Sept 28, 2021., https://www.fastcompany.com/90680174/
ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-
this-decade

[IBM_comp1] Welcome to IBM Quantum Composer, https://quantum-
computing.ibm.com/composer/docs/iqx/

[IBM_comp2] IBM Quantum Composer, https://quantum-computing.ibm.
com/composer/files/new

[Lolur] Lolur, Phalgun, Magnus Rahm, Marcus Skogh, Laura García-Álvarez and
Göran Wendin, Benchmarking the Variational Quantum Eigensolver through
Simulation of the Ground State Energy of Prebiotic Molecules on High-Performance
Computers, arXiv:2010.13578v2 [quant-ph], 5 Jan 2021, https://arxiv.org/
pdf/2010.13578.pdf

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Panagiotis] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll,
Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio
Mezzacapo, Stefan Filipp, Ivano Tavernelli, Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function expansions, Phys.
Rev. A 98, 022322 – Published 20 August 2018, DOI: 10.1103/PhysRevA.98.022322,
https://link.aps.org/doi/10.1103/PhysRevA.98.022322, https://arxiv.org/
abs/1805.04340

[Pease] Christopher Pease, An Overview of Monte Carlo Methods, Towards Data Science,
https://towardsdatascience.com/an-overview-of-monte-carlo-
methods-675384eb1694

[PyQMC] PyQMC, a python module that implements real-space quantum Monte Carlo
techniques, https://github.com/WagnerGroup/pyqmc

[PySCF] The Python-based Simulations of Chemistry Framework (PySCF), https://
pyscf.org/

https://tel.archives-ouvertes.fr/tel-03045954/document
https://javafxpert.github.io/grok-bloch/
https://docs.h5py.org/en/stable/quick.html
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new
https://arxiv.org/pdf/2010.13578.pdf
https://arxiv.org/pdf/2010.13578.pdf
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://arxiv.org/abs/1805.04340
https://arxiv.org/abs/1805.04340
https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694
https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694
https://github.com/WagnerGroup/pyqmc
https://pyscf.org/
https://pyscf.org/

226 Variational Quantum Eigensolver (VQE) Algorithm

[Qiskit] Qiskit, https://qiskit.org/

[Qiskit_2021_Lab4] Julien Gacon, Lab 4: Introduction to Training Quantum
Circuits, Qiskit Summer School 2021, https://learn.qiskit.org/summer-
school/2021/lab4-introduction-training-quantum-circuits

[Qiskit_Nat_0] Qiskit_Nature, https://github.com/Qiskit/qiskit-nature/
blob/main/README.md

[Qiskit_Nat_3] ElectronicStructureProblem.second_q_ops, https://qiskit.org/
documentation/nature/stubs/qiskit_nature.problems.second_
quantization.ElectronicStructureProblem.second_q_ops.html

[Qiskit_Nat_4] QubitConverter, https://qiskit.org/documentation/
nature/stubs/qiskit_nature.converters.second_quantization.
QubitConverter.html

[Qiskit_Nat_5] Qiskit Nature Tutorials, Electronic structure, https://qiskit.org/
documentation/nature/tutorials/01_electronic_structure.html

[Qiskit_Nat_6] Qiskit Nature Tutorials, Sampling the potential energy surface, https://
qiskit.org/documentation/nature/_modules/qiskit_nature/
algorithms/pes_samplers/bopes_sampler.html

[Qiskit_Nature] Introducing Qiskit Nature, Qiskit, Medium, April 6, 2021, https://
medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004

[QuTiP] QuTiP, Plotting on the Bloch Sphere, https://qutip.org/docs/latest/
guide/guide-bloch.html

[SciPy] Statistical functions (scipy.stats), https://docs.scipy.org/doc/scipy/
getting_started.html

[Stephens] Matthew Stephens, The Metropolis Hastings Algorithm, https://
stephens999.github.io/fiveMinuteStats/MH_intro.html

[Toulouse] Julien Toulouse, Introduction to quantum chemistry, Jan 20, 2021,
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/
introduction_qc.pdf

[Tamir] Abraham Tamir, Applications of Markov Chains in Chemical Engineering,
Elsevier, 1998, 9780080527390, 0080527396, https://www.google.fr/books/
edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC

https://qiskit.org/
https://learn.qiskit.org/summer-school/2021/lab4-introduction-training-quantum-circuits
https://learn.qiskit.org/summer-school/2021/lab4-introduction-training-quantum-circuits
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://qutip.org/docs/latest/guide/guide-bloch.html
https://qutip.org/docs/latest/guide/guide-bloch.html
https://docs.scipy.org/doc/scipy/getting_started.html
https://docs.scipy.org/doc/scipy/getting_started.html
https://stephens999.github.io/fiveMinuteStats/MH_intro.html
https://stephens999.github.io/fiveMinuteStats/MH_intro.html
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://www.google.fr/books/edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC
https://www.google.fr/books/edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC

References 227

[Toulouse_1] Julien Toulouse, Quantum Monte Carlo wave functions and their
optimization for quantum chemistry, CEA Saclay, SPhN Orme des Merisiers, April 2015,
https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/
presentation_saclay_15.pdf

[Troyer] Matthias Troyer, Matthias Troyer: Achieving Practical Quantum Advantage
in Chemistry Simulations, QuCQC 2021, https://www.youtube.com/
watch?v=2MsfbPlKgyI

[VQE_1] Peruzzo, A., McClean, J., Shadbolt, P. et al., A variational eigenvalue solver
on a photonic quantum processor, Nat Commun 5, 4213 (2014), https://doi.
org/10.1038/ncomms5213

[VQE_2] Qiskit Nature, Ground state solvers, https://qiskit.org/
documentation/nature/tutorials/03_ground_state_solvers.html

[VQE_3] Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets, Nature 549, 242–246 (2017), https://doi.org/10.1038/
nature23879

[VQE_4] Running VQE on a Statevector Simulator, https://qiskit.org/
textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-
Statevector-Simulator

https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_saclay_15.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_saclay_15.pdf
https://www.youtube.com/watch?v=2MsfbPlKgyI
https://www.youtube.com/watch?v=2MsfbPlKgyI
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator
https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator
https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator

6
Beyond Born-
Oppenheimer

“The first principle is that you must not fool yourself – and you are the
easiest person to fool.”

– Richard Feynman

“Scientific progress is measured in units of courage, not intelligence.”

– Paul Dirac

Figure 6.1 – Dr. Keeper Sharkey imagining molecular vibrations of a diatomic molecule [authors]

230 Beyond Born-Oppenheimer

Determining molecular structure and vibrational spectra computationally are two
essential goals of modern computational chemistry that have applications in many areas,
from astrochemistry to biochemistry and climate change mitigation. The computational
complexity grows exponentially when the number of atoms and/or identical particles
increases linearly. There is additional complexity associated when there are significant
couplings between rotational and vibrational degrees of freedom, and at high energy
states, including near the dissociation and ionization limit. Innovative computational
methods and new quantum computing technology are actively being developed to address
these hurdles [Sawaya].

Computational methods that can achieve next-generation accuracy will go beyond the
standard approximations present in this book. This chapter focuses on introducing
how non-Born-Oppenheimer (non-BO) calculations include the effects that are
needed to make better predictions of chemical states at above ground state vibrations
[Adamowicz_1][Adamowicz_2]. Other beyond BO-type approaches are being pursued to
overcome the limitations of the BO approximation, however are not fully non-BO, such as
pre-BO [Schiffer_1] [Schiffer_2][Mátyus][D4.1 VA Beta].

As an example of the benefits of utilizing vibrational states, we point to a team of
physicists at the Massachussets Institute of Technology's Research Laboratory of
Electronics that has demonstrated a new quantum register of fermion pairs where
information is stored in the vibrational motion of atom pairs held in a superposition of
two vibrational states [Hartke]. The common and relative motion of each atom pair is
protected by exchange symmetry, enabling long-lived and robust motional coherence.
They say “Thus fermion anti-symmetry and strong interactions, the core challenges for
classical computations of many-fermion behavior, may offer decisive solutions for protecting
and processing quantum information.” Their achievement paves the way to building
programmable quantum simulators of many-fermion behavior and digital computing
using fermion pairs.

In this chapter, we will cover the following topics:

•	 Section 6.1, Non-Born-Oppenheimer molecular Hamiltonian

•	 Section 6.2, Vibrational frequency analysis calculations

•	 Section 6.3, Vibrational spectra for ortho-para isomerization of hydrogen molecule

Technical requirements 231

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information. The companion Jupyter notebook automatically installs the following
list of libraries:

•	 NumPy [NumPy], an open-source Python library that is used in almost every field
of science and engineering

•	 SciPy [SciPy], a free and open-source Python library used for scientific computing
and technical computing

The companion Jupyter notebook does not include the installation of the Psi4 free and
open source software for high-throughput quantum chemistry [Psi4_0], which we used to
perform a simple calculation of the vibrational frequency analysis of the carbon dioxide
(CO2) molecule. We refer the reader interested in installing this package to the “Get
Started with Psi4” [Psi4_1] documentation and to the article Ref. [Psi4_3].

Installing NumPy, SimPy, and math modules
Install NumPy with the following command:

pip install numpy

Install SciPy with the following command:

pip install scipy

Import NumPy with the following command:

import numpy as np

Import Matplotlib, a comprehensive library for creating static, animated, and interactive
visualizations in Python with the following command:

import matplotlib.pyplot as plt

Import the SciPy special Hermite polynomials with the following command:

from scipy.special import hermite

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

232 Beyond Born-Oppenheimer

Import the math factorial function with the following command:

from math import factorial

6.1. Non-Born-Oppenheimer molecular
Hamiltonian
Recall from Section 4.1, Born-Oppenheimer approximation, the expression of the
Hamiltonian in the laboratory frame coordinates 𝐻̂𝐻𝐿𝐿𝐿𝐿𝐿𝐿 :

where in atomic units, the mass of the electron and the reduced Planck constant (ℏ) are
set to the value 1. The LAB Hamiltonian comprises the sum of the kinetic energy of all
particles and the potential energy between all particles with the following definitions:

•	 ∇𝒓𝒓𝑝𝑝2 and ∇𝑹𝑹𝐴𝐴2 are the second derivative operator with respect to the position

coordinates for electrons and nuclei, that is, ∇𝑅𝑅𝐴𝐴2 = 𝜕𝜕2
𝜕𝜕𝑥𝑥𝐴𝐴2

+ 𝜕𝜕2
𝜕𝜕𝑦𝑦𝐴𝐴2

+ 𝜕𝜕2
𝜕𝜕𝑧𝑧𝐴𝐴2

 and likewise for
the 𝑝𝑝𝑡𝑡ℎ electron.

•	 𝑟𝑟𝑝𝑝𝑝𝑝 = |𝒓𝒓𝑝𝑝 − 𝒓𝒓𝑞𝑞| , 𝑟𝑟𝑝𝑝𝑝𝑝 = |𝒓𝒓𝑝𝑝 − 𝑹𝑹𝐴𝐴| , and 𝑅𝑅𝐴𝐴𝐴𝐴 = |𝑹𝑹𝐴𝐴 − 𝑹𝑹𝐵𝐵| are the distances between
electrons 𝑝𝑝 and 𝑞𝑞 , electron 𝑝𝑝 and nucleus 𝐴𝐴 , and nuclei 𝐴𝐴 and 𝐵𝐵 determined by the
Euclidean norm.

The list of the operators of the LAB Hamiltonian has been presented in Figure 4.3.

In the LAB Hamiltonian, the energy of the molecular system is continuous, not discrete.
The center-of-mass (COM) motion does not yield any change to the energy of the
internal states of the system and can be factored out. The internal states are quantized
and invariant to translations. These states are not affected by translational and rotational
motions in free space. The nuclei can still move around the COM through vibrations and
internal rotations.

𝐻̂𝐻𝐿𝐿𝐿𝐿𝐿𝐿 = −12∑∇𝒓𝒓𝑝𝑝2
𝑁𝑁

𝑝𝑝=1
−∑ 1

2M𝐴𝐴

𝑀𝑀

𝐴𝐴=1
∇𝑹𝑹𝐴𝐴2 −∑∑ Z𝐴𝐴

𝑟𝑟𝑝𝑝𝑝𝑝

𝑀𝑀

𝐴𝐴=1

𝑁𝑁

𝑝𝑝=1
+ ∑ 1

𝑟𝑟𝑝𝑝𝑝𝑝

𝑁𝑁

𝑞𝑞>𝑝𝑝=1
+ ∑ Z𝐴𝐴Z𝐵𝐵

𝑅𝑅𝐴𝐴𝐴𝐴

𝑀𝑀

𝐵𝐵>𝐴𝐴=1

6.1. Non-Born-Oppenheimer molecular Hamiltonian 233

In the BO approximation, we assume that the motions of the nuclei are uncoupled from
the motions of the electrons, that is, a product of nuclear equations (rotational and
vibrational) and electronic equations:

|𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹)⟩ = 𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑹𝑹)𝛹𝛹𝑣𝑣𝑣𝑣𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑹𝑹)𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔; 𝑹𝑹)
where 𝑹𝑹 = {𝑹𝑹𝐴𝐴,𝑹𝑹𝐵𝐵,… , 𝑹𝑹𝑀𝑀} are the nuclear coordinates, 𝒓𝒓 = {𝒓𝒓𝑝𝑝, 𝒓𝒓𝑖𝑖, 𝒓𝒓𝑗𝑗, … , 𝒓𝒓𝑁𝑁} are the
electron coordinates, 𝒔𝒔 = {𝒔𝒔𝑝𝑝, 𝒔𝒔𝑖𝑖, 𝒔𝒔𝑗𝑗, … , 𝒔𝒔𝑁𝑁} are the spin coordinates, and the electronic
wave function (𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔;𝑹𝑹)) is conditioned on the nuclear coordinates (𝑹𝑹).

In the non-BO method, the total wave function is still separable in terms of rotations and
vibrations and electronic energy levels; however, all energy levels are dependent on the
variables for electrons and nuclei, spatial and spin.

|𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑹𝑹, 𝑺𝑺)⟩ = 𝛹𝛹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝒓𝒓, 𝒔𝒔, 𝑹𝑹, 𝑺𝑺)𝛹𝛹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝒓𝒓, 𝒔𝒔, 𝑹𝑹, 𝑺𝑺)𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝒔𝒔, 𝑹𝑹, 𝑺𝑺)
In the BO approximation, solving for only the electronic equation with fixed position of
the nuclei can be iterated to account for the vibrations and internal rotations of the nuclei.
For each iteration, the nuclei of the atoms are fixed in space and not moving and can be
thought of as a violation of the Heisenberg uncertainty principle, introduced in Section
1.4, Light and energy. The more you know exactly where a particle is, the less you know
about its momentum. In general, the internal coordinate system can be placed at the
heaviest atom in the molecule or at the COM. This approximation has limitations that we
will cover, specifically through vibrational spectra energy.

The non-BO method presented in this chapter exploits the effectiveness and predictive
power of all-particle explicit correlation utilizing explicitly correlated Gaussian basis
functions (ECGs) [Adamowicz_4] to describe atomic and molecular phenomena
[Sharkey]. This method can be used to model a small number of particles, that is,
three nuclei or no more than seven electrons, as well as determining highly accurate
ionization energies of atoms, Rydberg states, and rotational and vibrationally excited
states to an arbitrary level [Sharkey]. Furthermore, this method is very amenable to an
effective parallelization.

234 Beyond Born-Oppenheimer

Internal Hamiltonian operator
We consider a general non-relativistic atomic system consisting of 𝑁𝑁 particles, that is,

= − 1 electrons and a nucleus. Converting from the laboratory frame Hamiltonian
to the internal Hamiltonian involves rigorously separating the COM motion from the
laboratory frame. We define an internal Cartesian coordinate frame (CCF) where all
particles are treated on equal footing and all particles are allowed to roam space freely
without any constraints. The change of coordinates from laboratory CCF to internal CCF
is illustrated in Figure 6.2.

Figure 6.2 – Internal CCF and laboratory CCF

The resulting internal Hamiltonian is used to calculate bound states of the system:

𝐻̂𝐻𝐼𝐼𝐼𝐼𝐼𝐼 = −12(∑
1
μ𝑖𝑖

𝑛𝑛

𝑖𝑖=1
∇𝒓𝒓𝑖𝑖2 +∑ 1

𝑚𝑚0

𝑛𝑛

𝑖𝑖≠𝑗𝑗
∇𝒓𝒓𝑖𝑖′ ∇𝒓𝒓𝑗𝑗) +∑𝑞𝑞0𝑞𝑞𝑖𝑖

𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ ∑

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖>𝑗𝑗=1

6.1. Non-Born-Oppenheimer molecular Hamiltonian 235

For clarity, we list the terms of the internal Hamiltonian in Figure 6.3.

Figure 6.3 – Terms of the internal Hamiltonian operator for a molecule

We now present the all-particle explicit correlation approach.

236 Beyond Born-Oppenheimer

Explicitly correlated all-particle Gaussian functions
The ECGs that are used in the non-BO method are shown in Figure 6.4.

Figure 6.4 – ECGs

The non-BO method uses the variational principle that was introduced in Chapter 5,
Variational Quantum Eigensolver (VQE) Algorithm, and specifically includes an energy
minimization procedure.

Energy minimization
To obtain the eigenvalues of the LAB Hamiltonian 𝐻̂𝐻𝐿𝐿𝐿𝐿𝐿𝐿 , we use the Rayleigh-Ritz
variational scheme based on the minimization of the Rayleigh quotient:

ε(𝑎𝑎, 𝑐𝑐) = min
(𝑎𝑎,𝑐𝑐)

𝑐𝑐′𝐻𝐻(𝑎𝑎)c
𝑐𝑐′𝑆𝑆(𝑎𝑎)c

where 𝐻𝐻(𝑎𝑎) and 𝑆𝑆(𝑎𝑎) are the Hamiltonian and overlap 𝐾𝐾 × 𝐾𝐾 matrices, respectively.
𝐻𝐻(𝑎𝑎) and 𝑆𝑆(𝑎𝑎) are functions of the nonlinear parameters contained in the basis-set
of ECGs. We write 𝑎𝑎 for the set of these parameters and 𝑐𝑐 for the vector of the linear
expansion coefficients of the wave function in terms of basis functions.

6.2. Vibrational frequency analysis calculations 237

We derive and implement the analytic gradient of the energy with respect to the nonlinear
parameters of the Gaussians, starting with the secular equation (H − 𝜀𝜀S)C=0 :

Multiplying this equation by 𝑐𝑐′ from the left, we obtain the well-known Hellmann-
Feynman theorem:

To obtain this expression, we utilize the secular equation, and we assume that the wave
function is normalized, that is, 𝑐𝑐′𝑆𝑆𝑆𝑆 = 1 . The expression for 𝑑𝑑𝑑𝑑 involves 𝑑𝑑H and 𝑑𝑑S
, which depend on the first derivatives of the Hamiltonian and overlap integrals with
respect to the Gaussian nonlinear parameters.

The method employs explicitly correlated all-particle Gaussian functions for expanding
the wave function of the system. The nonlinear parameters of the Gaussians are
variationally optimized with an approach employing an analytical energy gradient
determined with respect to these parameters.

6.2. Vibrational frequency analysis
calculations
Within the BO approximation, the total energy of a molecule is the sum of the electronic,
vibrational, and rotational energy:

Molecular vibrations can be modeled like the motion of particles connected by springs,
representing atoms connected by chemical bonds of variable lengths. In the harmonic
oscillator approximation, the force required to extend the spring is proportional to the
extension (Hooke's law). When the vibrational energy is high, the harmonic oscillator
approximation is no longer valid, and neither is the concept of normal mode. We now
consider the simple case of a diatomic molecule.

𝑑𝑑(H − εS)C = (𝑑𝑑H)c − (𝑑𝑑ε)Sc − ε(𝑑𝑑S)c + (H − εS)𝑑𝑑c

𝑑𝑑ε = 𝑐𝑐′(𝑑𝑑H − ε𝑑𝑑S)c

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

238 Beyond Born-Oppenheimer

Modeling the vibrational-rotational levels of a
diatomic molecule
The rotational energies of a diatomic molecule are represented by a series of
discrete values:

where:

•	 𝐽𝐽 is the angular momentum quantum number.

•	 𝑅𝑅𝑒𝑒 is the equilibrium distance.

•	 ℏ is the reduced Planck constant.

•	 𝑀𝑀 is the reduced mass of the two atoms, 𝑀𝑀 = 𝑀𝑀𝐴𝐴𝑀𝑀𝐵𝐵
𝑀𝑀𝐴𝐴+𝑀𝑀𝐵𝐵

 .

For a non-rotating diatomic molecule, the rotational quantum number 𝐽𝐽 is zero. The
potential energy 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) can be approximated by a quadratic function of the displacement
𝑥𝑥 around the equilibrium position 𝑥𝑥 = 0 , which corresponds to the equilibrium distance
𝑅𝑅𝑒𝑒 between the two nuclei:

where 𝑘𝑘 is the restoring force constant (Hooke's law). For such a parabolic potential,
the vibrating molecule is a quantum harmonic oscillator. The energy levels are a simple
function of the integer vibrational quantum number 𝑣𝑣 :

𝐸𝐸𝑣𝑣 = ℎ𝜔𝜔(𝑣𝑣 + 1
2)

where 𝜔𝜔 = √𝑘𝑘 𝑀𝑀⁄ depends on the constant 𝑘𝑘 and the reduced mass 𝑀𝑀 of the two atoms.

The normalized wave functions of the quantum harmonic oscillator are:

The Hermite polynomial of order 𝑣𝑣 is defined by the generation equation:

𝐻𝐻𝑣𝑣(𝑧𝑧) = (−1)𝑣𝑣(𝑒𝑒𝑧𝑧2) 𝑑𝑑𝑣𝑣
𝑑𝑑𝑧𝑧𝑣𝑣 (𝑒𝑒

−𝑧𝑧2)

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐽𝐽(𝐽𝐽 + 1)ℏ2
2𝑀𝑀𝑅𝑅e2

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) =
1
2𝑘𝑘𝑥𝑥

2

() =
1

√2 !
⋅ (ℏ)1/4

. (√ ℏ) . − 2 2ℏ⁄

6.2. Vibrational frequency analysis calculations 239

Hermite polynomials are computed using the following recursion relation:

𝑧𝑧 𝐻𝐻𝑣𝑣(𝑧𝑧) = 𝑧𝑧 𝐻𝐻𝑣𝑣−1(𝑧𝑧) +
1
2 𝐻𝐻𝑣𝑣+1(𝑧𝑧)

The first three Hermite polynomials are:

We define the N(v) function, which computes the normalization factor:

𝑁𝑁(𝑣𝑣) = (√𝜋𝜋 2𝑣𝑣 𝑣𝑣 !)−1 / 2

def N(v):

 return 1./np.sqrt(np.sqrt(np.pi)*2**v*factorial(v))

We define the Psi(v, x) function, which uses the special hermite() SciPy function
and computes a function with the same form as the normalized wave functions of the
quantum harmonic oscillator defined previously:

def Psi(v, x):

 return N(v)*hermite(v)(x)*np.exp(-0.5*x**2)

We now define a function called plot(n) that plots the potential energy as a parabola
(black) and spatial probabilities |𝜓𝜓𝑣𝑣(𝑥𝑥)|2 (color) of the normalized quantum Harmonic
oscillator wave functions for the integer vibrational quantum number 𝑣𝑣 = 0 to
𝑣𝑣 = 𝑛𝑛 − 1 . Here is the code:

def plot(n):

 fig, ax = plt.subplots(figsize=(n,n))

 # Range of x

 xmax = np.sqrt(2*n+1)

 x = np.linspace(-xmax, xmax, 1000)

 for v in range(n):

 # plot potential energy function 0.5*x**2

 ax.plot(x,0.5*x**2,color='black')

𝐻𝐻0(𝑧𝑧) = 1
𝐻𝐻1(𝑧𝑧) = 2𝑧𝑧

𝐻𝐻2(𝑧𝑧) = 4𝑧𝑧2 − 2

240 Beyond Born-Oppenheimer

 # plot spatial probabilities psi squared for each energy
level

 ax.plot(x,Psi(v,x)**2 + v + 0.5)

 # add lines and labels

 ax.axhline(v + 0.5, color='gray', linestyle='-')

 ax.text(xmax, 1.2*(v+0.5), f”v={v}”)

 ax.set_xlabel('x')

 ax.set_ylabel('$|\psi_v(x)|^2$')

We now call the plot(5) function. Figure 6.5 shows the result:

Figure 6.5 – Potential energy (black parabola) and spatial probabilities (color) of the normalized
quantum harmonic oscillator wavefunctions for = 0 to = 4

6.2. Vibrational frequency analysis calculations 241

For larger values of the displacement around the equilibrium position, the real potential
energy is better approximated by an anharmonic oscillator, and it has the following form:

where 𝜒𝜒 is the anharmonicity constant. The separations between energy levels decrease
with increasing vibrational quantum number 𝑣𝑣 .

The rotational energy at an internuclear distance 𝑅𝑅 can be approximated by the following
power series expansion [Demtröder]:

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐽𝐽(𝐽𝐽 + 1)ℏ2

2𝑀𝑀𝑅𝑅2 = 𝐽𝐽(𝐽𝐽 + 1)ℏ2

2𝑀𝑀𝑅𝑅e2
− 𝐽𝐽2(𝐽𝐽 + 1)2ℏ4

2𝑀𝑀2𝑘𝑘𝑅𝑅e6
 + 3𝐽𝐽3(𝐽𝐽 + 1)3ℏ6

2𝑀𝑀3𝑘𝑘2𝑅𝑅e10 + ⋯

where 𝑘𝑘 is a constant pertaining to the restoring force that binds the two atoms together.

This expression can be written in terms of rotational frequencies [Demtröder]:

where 𝐵𝐵𝑒𝑒 is the rotational constant, and 𝐷𝐷𝑒𝑒 and 𝐻𝐻𝑒𝑒 are centrifugal constants:

We define the Python Frot() function, which computes the rotational energy levels of
the hydrogen molecule using an expression obtained in Ref. [Campargue]:

def Frot(J, Be, De, He, show=False):

 F = Be*J*(J+1) + De*J**2*(J+1)**2 - He*J*3*(J+1)**3*10e-5

 if show:

 print(“{} {:.2f}”.format(J, F))

 return F

𝐸𝐸vib(𝑣𝑣) = ℎ 𝜔𝜔(𝑣𝑣 + 1
2) − 𝜒𝜒 ℎ 𝜔𝜔 (𝑣𝑣 + 1

2)
2

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐽𝐽) = 𝐵𝐵𝑒𝑒𝐽𝐽(𝐽𝐽 + 1) − 𝐷𝐷𝑒𝑒𝐽𝐽2(𝐽𝐽 + 1)2 + 𝐻𝐻𝑒𝑒𝐽𝐽3(𝐽𝐽 + 1)3 +⋯

𝐵𝐵𝑒𝑒 =
ℏ

4𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅e2

𝐷𝐷𝑒𝑒 =
ℏ3

4𝜋𝜋𝜋𝜋𝜋𝜋𝑀𝑀2𝑅𝑅e6

𝐻𝐻𝑒𝑒 =
3ℏ5

4𝜋𝜋𝜋𝜋𝑘𝑘2𝑀𝑀3𝑅𝑅e10

242 Beyond Born-Oppenheimer

We set up a dictionary, rov, with the vibrational quantum number 𝑣𝑣 as key and the
following values:

•	 Ground state 𝐸𝐸(𝑣𝑣, 𝐽𝐽 = 0) energy computed by Komasa et al. in 2011 [Komasa]

•	 Rovibrational parameters of the vibrational levels = 0 to 𝑣𝑣 = 13 computed by
Campargue in 2011 [Campargue]

Here is the code:

v E(v,J=0) Ee Be De He
rms

rov = {0: (36118.0696, 0.0, 59.33289, 0.045498, 4.277,
3.4),

 1: (31956.9034, 4161.1693, 56.37318, -0.043961, 4.168,
3.2),

 2: (28031.0670, 8087.0058, 53.47892, -0.042523, 4.070,
3.2),

 3: (24335.6787, 11782.3940, 50.62885, -0.041175, 3.963,
3.2),

 4: (20867.7039, 15250.3688, 47.79997, -0.039927, 3.846,
3.2),

 5: (17626.1400, 18491.9328, 44.96596, -0.038795, 3.717,
3.2),

 6: (14612.2901, 21505.7826, 42.09566, -0.037808, 3.571,
3.1),

 7: (11830.1543, 24287.9184, 39.15105, -0.037004, 3.399,
3.1),

 8: (9286.9790, 26831.0937, 36.08416, -0.036451, 3.187,
3.1),

 9: (6994.0292, 29124.0436, 32.83233, -0.036251, 2.902,
3.2)}

We compute the vibrational energy levels of the hydrogen molecule for the ground
rotational state (𝐽𝐽 = 0) and for the first excited rotational state (𝐽𝐽 = 1), and the
difference between the two levels for each vibrational quantum number (𝑣𝑣 = 0,… ,9) .
Here is the code:

print(“v E(v,J=0) E(v,J=1) BO Diff.”)

for v in range(10):

 E0 = rov[v][0] - Frot(0, rov[v][2], rov[v][3], rov[v][4])

 E1 = rov[v][0] - Frot(1, rov[v][2], rov[v][3], rov[v][4])

6.2. Vibrational frequency analysis calculations 243

 print(“{} {:.4f} {:.4f} {:.4f}”.format(v, E0, E1, E0 -
E1))

The result in Figure 6.6 is in good agreement with the result by Komasa et al. [Komasa]:

Figure 6.6 – Vibrational energy levels of the hydrogen molecule for = 0, … ,9 , = 0 and = 1

Computing all vibrational-rotational levels of
a molecule
We present an outline of the method generally used for computing all vibrational-
rotational levels of a molecule [Gaussian_1] [Neese] on a classical computer.

Optimizing the geometry of the molecule
The geometry of the molecule used for vibrational analysis must first be optimized so that
the atoms are in equilibrium and have no momentum, that is, all first derivatives of the
energy with respect to nuclear Cartesian coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) of the atoms are zero:

Calculating a force constant Hessian matrix
A force constant Hessian matrix is calculated, which holds the second partial derivatives
of the energy 𝐸𝐸 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 with respect to displacement of the 𝑛𝑛 atoms
in Cartesian coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) , 𝑖𝑖 = 0,… , 𝑛𝑛 , 𝑗𝑗 = 0,… , 𝑛𝑛 , for instance:

𝐹𝐹𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 =
∂2𝐸𝐸

∂𝑥𝑥𝑖𝑖 ∂𝑥𝑥𝑗𝑗

 ,
𝐹𝐹𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 =

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑦𝑦𝑗𝑗

 ,
𝐹𝐹𝑥𝑥𝑖𝑖𝑧𝑧𝑗𝑗 =

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗

…

∂𝐸𝐸
∂𝑥𝑥𝑖𝑖

= ∂𝐸𝐸
∂𝑦𝑦𝑖𝑖

= ∂𝐸𝐸
∂𝑧𝑧𝑖𝑖

= 0

244 Beyond Born-Oppenheimer

A force constant Hessian matrix is a 3𝑛𝑛 by 3𝑛𝑛 matrix. The second derivatives are
calculated as finite differences of the gradient when analytical expressions of these
derivatives are not available.

Converting to mass weighted Cartesian coordinates
The following change of Cartesian coordinates is then applied:

𝑥𝑥𝑖𝑖 → √𝑚𝑚𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 → √𝑚𝑚𝑖𝑖 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 → √𝑚𝑚𝑖𝑖 𝑧𝑧𝑖𝑖

by dividing by √𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗 each element pertaining to atoms 𝑖𝑖 and 𝑗𝑗 in the force constant
Hessian matrix.

Diagonalizing the mass weighted Hessian matrix
The mass weighted Hessian matrix is then diagonalized, yielding a set of 3𝑛𝑛 eigenvectors
and 3𝑛𝑛 eigenvalues. The vibrational frequencies are then derived from the eigenvalues,
which are forces using the equation that gives the harmonic oscillator frequency:

where 𝜐𝜐 is the frequency in s-1, 𝜇𝜇 is the reduced mass, and 𝑘𝑘 is the force constant. The
frequency 𝑓𝑓 in cm-1 is obtained by the relation 𝑓𝑓 = 𝜐𝜐

𝑐𝑐 , where 𝑐𝑐 is the speed of light,
𝑐𝑐 = 2.998 × 1010 cm s-1:

We now illustrate this method by performing a vibrational frequency analysis of the
CO2 molecule with Psi4 [Psi4_0], an open source quantum chemistry package. We
refer the reader interested in installing this package to the “Get Started with Psi4”
[Psi4_1] documentation.

First, we import Psi4 in our Python notebook:

import psi4

We redirect the output of the Psi4 calculation to a file:

psi4.core.set_output_file('psi_CO2_output.txt', False)

𝜐𝜐 = 1
2𝜋𝜋√

𝑘𝑘
𝜇𝜇

𝑓𝑓 = 1
2𝜋𝜋𝜋𝜋√

𝑘𝑘
𝜇𝜇

6.2. Vibrational frequency analysis calculations 245

We specify the amount of memory for the calculation:

psi4.set_memory('500 MB')

Then we define the geometry of the CO2 molecule [Psi4_2]:

co2 = psi4.geometry(“””

symmetry c1

0 1

C 1.6830180 -0.4403696 3.1117942

O 0.5425545 -0.2216001 2.9779653

O 2.8186228 -0.6587208 3.2810031

units angstrom

“””)

We optimize the geometry of the molecule:

psi4.set_options({'reference': 'rhf'})

psi4.optimize('scf/cc-pvdz', molecule=co2)

Here is the result, the energy of the ground electronic state of a CO2 molecule:

Optimizer: Optimization complete!

-187.65250930298149

We now perform a vibrational frequency analysis:

scf_e, scf_wfn = psi4.frequency('scf/cc-pvdz', molecule=co2,
return_wfn=True)

We print the frequencies with the following code:

for i in range(4):

 print(scf_wfn.frequencies().get(0,i))

Here is the result, a list of harmonic vibrational frequencies in cm-1:

761.4181081677268

761.4181227549785

1513.1081106509557

2579.8280005025586

246 Beyond Born-Oppenheimer

These results are in excellent agreement with those presented by the Molecular Sciences
Software Institute in their lesson to build a CO2 molecule [MolSSI]. ChemTube3D
provides an interactive 3D animation of the vibrations of carbon dioxide with these
vibrations [ChemTube3D].

Figure 6.7 shows an extract of the vibrational frequency analysis performed with Psi4.

Figure 6.7 – Vibrational frequency analysis of the CO2 molecule with Psi4 (extract)

We now present the vibrational spectra for ortho-para isomerization of hydrogen
molecules calculated with BO and non-BO methods and a comparison with
experimental data.

6.3. Vibrational spectra for ortho-para
isomerization of hydrogen molecules
Figure 6.8 shows a table comparing the energy spacing in wavenumber pertaining to
the vibrational spectra for ortho-para isomerization of hydrogen molecules from the
following sources described by columns A to C:

•	 𝐴𝐴 is the energy in wave numbers produced by non-BO method with 10,000 basis
functions [Sharkey].

•	 𝐵𝐵 is the energy in wave numbers produce by BO method [Komasa].

6.3. Vibrational spectra for ortho-para isomerization of hydrogen molecules 247

•	 𝐶𝐶 is experimental data in wave numbers [Dabrowski].

For each vibrational level (𝑣𝑣 = 0,… ,14) with the differences presented in percent
[Sharkey_1] described by D to G:

•	 𝐷𝐷 = (𝐶𝐶 − 𝐴𝐴) ∗ 100

•	 𝐸𝐸 = (𝐶𝐶 − 𝐵𝐵) ∗ 100

•	 𝐹𝐹 = (𝐴𝐴 − 𝐵𝐵) ∗ 100

•	 𝐺𝐺 = (𝐹𝐹/𝐵𝐵) ∗ 100

 Here is the table [Sharkey_1]:

Figure 6.8 – Table comparing non-BO versus BO Computations to Experiment [Sharkey_1]

248 Beyond Born-Oppenheimer

The non-BO method is highly accurate in predicting all states, including excited states,
as shown in Figure 6.9, which presents columns A and B as a function of the vibrational
quantum number. It is consistently lower in the predictions of the energy levels, with
the exception of the 𝑣𝑣 = 2 excited state, an anomaly attributed to the inaccuracy of the
experimental data. There is a 5% breakdown of the BO prediction in the highest bound
state (𝑣𝑣 = 14) [Sharkey_1].

Figure 6.9 – Diagram comparing non-BO versus BO Computations to Experiment [Sharkey_1]

Figure 6.10 shows column G, a plot of the difference between the BO and non-BO
computations as a function of the vibrational quantum number (𝑣𝑣) .

Figure 6.10 – Diagram showing the % difference between BO/non-BO versus vibrational quantum
number () [Sharkey_1]

Summary 249

Summary
In this chapter, we have recalled the non-BO molecular Hamiltonian and given an outline
of a method for extending the very accurate non-BO calculations with ECGs to states
where the diatomic molecule is excited to the first rotational state and also vibrationally
excited to an arbitrary level. We have shown a vibrational frequency analysis calculation
with Psi4 of the carbon dioxide molecule. We have presented the vibrational spectra
for ortho-para isomerization of hydrogen molecules calculated with a non-BO method
[Sharkey], with a BO method [Komasa], and their comparison with experimental data.
The non-BO method is highly accurate in predicting all states, including excited states of
the hydrogen molecule. The scaling of the wave functions used for both BO and non-BO
methods has a factorial dependence and is considered an NP-hard problem.

Questions
1.	 True or False: The computational complexity of determining molecular

structure and vibrational spectra increases exponentially as a function of
the number of atoms.

2.	 What does the acronym ECG stand for?
3.	 True or False: In the harmonic oscillator approximation, the force required to

extend the spring is proportional to the extension.
4.	 True or False: When the vibrational energy is high, the harmonic oscillator

approximation is no longer valid.
5.	 True or False: The geometry of the molecule used for vibrational analysis must first

be optimized so that the atoms are in equilibrium and have no momentum.

Answers
1.	 True
2.	 Explicitly correlated Gaussian function
3.	 True
4.	 True
5.	 True

250 Beyond Born-Oppenheimer

References
[Adamowicz_1] Sergiy Bubin, Michele Pavanello, Wei-Cheng Tung, Keeper L. Sharkey,
and Ludwik Adamowicz, Born–Oppenheimer and Non-Born–Oppenheimer, Atomic and
Molecular Calculations with Explicitly Correlated Gaussians, Chem. Rev. 2013, 113, 1,
36–79, October 1, 2012, https://doi.org/10.1021/cr200419d

[Adamowicz_2] Sergiy Bubin and Ludwik Adamowicz, Computer program ATOM-MOL-
nonBO for performing calculations of ground and excited states of atoms and molecules
without assuming the Born–Oppenheimer approximation using all-particle complex
explicitly correlated Gaussian functions, J. Chem. Phys. 152, 204102 (2020), https://
doi.org/10.1063/1.5144268

[Adamowicz_4] Jim Mitroy, Sergiy Bubin, Wataru Horiuchi, Yasuyuki Suzuki,
Ludwik Adamowicz, Wojciech Cencek, Krzysztof Szalewicz, Jacek Komasa, D. Blume,
and Kálmán Varga, Rev. Mod. Phys. 85, 693 – Published 6 May 2013, Theory and
application of explicitly correlated Gaussians, https://journals.aps.org/rmp/
abstract/10.1103/RevModPhys.85.693

[Campargue] Alain Campargue, Samir Kassi, Krzysztof Pachucki and Jacek Komasa,
The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the
literature data and accurate ab initio line list up to 35000 cm-1, Physical Chemistry
Chemical Physics, 13 Sep 2011, Table 5. Rovibrational parameters of the V=0-13
vibrational levels of H2 obtained from the fit of the J=0-7 energy levels calculated in Ref.
[36], https://www.fuw.edu.pl/~krp/papers/camparge.pdf

[ChemTube3D] Vibrations of Carbon Dioxide, https://www.chemtube3d.com/
vibrationsco2

[D4.1 VA Beta] Arseny Kovyrshin, AstraZeneca AB R&D, Giorgio Silvi, HQS
Quantum Simulations GmbH, D4.1: VA Beta and BBO Beta, NExt ApplicationS of
Quantum Computing, 23 Nov 2021, https://www.neasqc.eu/wp-content/
uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf ,
https://github.com/NEASQC/Variationals_algorithms

[Dabrowski] Dabrowski, The Lyman and Werner Bands of H2, Can. J. Phys. 62, 1639
(1984) Table 5. Observed energy levels of the X^1 Sigma_g^+ of H_2, https://doi.
org/10.1139/p84-210

[Demtröder] Atoms, Molecules and Photons, Wolfgang Demtröder, Second Edition,
Springer, 9.5. Rotation and Vibration of Diatomic Molecules, Springer, ISBN-13:
978-3642102974

https://doi.org/10.1021/cr200419d
https://doi.org/10.1063/1.5144268
https://doi.org/10.1063/1.5144268
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.693
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.693
https://www.fuw.edu.pl/~krp/papers/camparge.pdf
https://www.chemtube3d.com/vibrationsco2
https://www.chemtube3d.com/vibrationsco2
https://www.neasqc.eu/wp-content/uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf
https://www.neasqc.eu/wp-content/uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf
https://github.com/NEASQC/Variationals_algorithms
https://doi.org/10.1139/p84-210
https://doi.org/10.1139/p84-210

References 251

[Gaussian_1] Joseph W. Ochterski, Gaussian, Vibrational Analysis in Gaussian,
https://gaussian.com/vib/

[Hartke] Hartke, T., Oreg, B., Jia, N. et al. Quantum register of fermion pairs. Nature 601,
537–541 (2022). https://doi.org/10.1038/s41586-021-04205-8

[Komasa] Komasa et al., Quantum Electrodynamics Effects in Rovibrational Spectra
of Molecular Hydrogen J. Chem. Theory Comput. 2011, 7, 10, 3105–3115, Table 1.
Theoretically Predicted Dissociation Energies {in cm^(-1)} of All 302 Bound States of
H_2. https://doi.org/10.1021/ct200438t

[Maytus] Edit Mátyus, Edit Mátyus (2019) Pre-Born–Oppenheimer molecular structure
theory, Molecular Physics, 117:5, 590-609, DOI: 10.1080/00268976.2018.1530461,
https://doi.org/10.1080/00268976.2018.1530461

[MolSSI] Basis set convergence of molecular properties: Geometry and Vibrational
Frequency, Molecular Sciences Software Institute (MolSSI), http://education.
molssi.org/qm-tools/04-vib-freq/index.html

[Neese] Vibrational Spectroscopy, Frank Neese from the Max Planck Institute for
Chemical Energy Conversion, 2014 summer school, https://www.youtube.com/
watch?v=iJjg2L1F8I4

[Psi4_0] Psi4 manual master index, https://psicode.org/psi4manual/
master/index.html

[Psi4_1] Get Started with PSI4, https://psicode.org/installs/v15/

[Psi4_2] Test case for Binding Energy of C4H5N (Pyrrole) with CO2 using MP2/
def2-TZVPP, https://github.com/psi4/psi4/blob/master/samples/
mp2-def2/input.dat

[Psi4_3] Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis
R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP,
Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O'Brien JS, Waldrop
JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF 3rd, Sokolov
AY, Patkowski K, DePrince AE 3rd, Bozkaya U, King RA, Evangelista FA, Turney JM,
Crawford TD, Sherrill CD. Psi4 1.4: Open-source software for high-throughput quantum
chemistry. J Chem Phys. 2020 May 14;152(18):184108. doi: 10.1063/5.0006002. PMID:
32414239; PMCID: PMC7228781. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf

[Sawaya] Nicolas P. D. Sawaya, Francesco Paesani, Daniel P. Tabor, Near- and long-
term quantum algorithmic approaches for vibrational spectroscopy, 1 Feb 2021,
arXiv:2009.05066 [quant-ph], https://arxiv.org/abs/2009.05066

https://gaussian.com/vib/
https://doi.org/10.1038/s41586-021-04205-8
https://doi.org/10.1021/ct200438t
https://doi.org/10.1080/00268976.2018.1530461
http://education.molssi.org/qm-tools/04-vib-freq/index.html
http://education.molssi.org/qm-tools/04-vib-freq/index.html
https://www.youtube.com/watch?v=iJjg2L1F8I4
https://www.youtube.com/watch?v=iJjg2L1F8I4
https://psicode.org/psi4manual/master/index.html
https://psicode.org/psi4manual/master/index.html
https://psicode.org/installs/v15/
https://github.com/psi4/psi4/blob/master/samples/mp2-def2/input.dat
https://github.com/psi4/psi4/blob/master/samples/mp2-def2/input.dat
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
https://arxiv.org/abs/2009.05066

252 Beyond Born-Oppenheimer

[Schiffer_1] Fabijan Pavošević, Tanner Culpitt, and Sharon Hammes-Schiffer,
Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum
Effects via the Nuclear−Electronic Orbital Method, Chem. Rev. 2020, 120, 9, 4222–4253,
https://doi.org/10.1021/acs.chemrev.9b00798

[Schiffer_2] Kurt R. Brorsen, Andrew Sirjoosingh, Michael V. Pak, and Sharon Hammes-
Schiffer, Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach:
Restricted basis sets and open-shell systems, J. Chem. Phys. 142, 214108 (2015),
https://doi.org/10.1063/1.4921304

[SciPy_0] SciPy, https://scipy.org/

[Sharkey] K. Sharkey et. al. Non-Born-Oppenheimer method for direct variational
calculations of diatomic first excited rotational states using explicitly correlated all-particle
Gaussian functions Physical Review A, 88, 032513 (2013, Table I. Total energies (in
hartrees) of the (v,0) and (v,1) states of H_2. https://journals.aps.org/pra/
abstract/10.1103/PhysRevA.88.032513

[Sharkey_1] K. Sharkey, Molecular-hydrogen poster, QLEAN™, https://qlean.
world/molecular-hydrogen-poster

[Veis] Libor Veis, Jakub Višňák, Hiroaki Nishizawa, Hiromi Nakai, Jiří Pittner, Quantum
chemistry beyond Born–Oppenheimer approximation on a quantum computer: A
simulated phase estimation study, International Journal of Quantum Chemistry, 22 June
2016, https://doi.org/10.1002/qua.25176

https://doi.org/10.1021/acs.chemrev.9b00798
https://doi.org/10.1063/1.4921304
https://scipy.org/
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.032513
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.032513
https://qlean.world/molecular-hydrogen-poster
https://qlean.world/molecular-hydrogen-poster
https://doi.org/10.1002/qua.25176

7
Conclusion

"I have no special talents. I am only passionately curious."

– Albert Einstein

Figure 7.1 – Circular dependency of quantum chemistry and quantum computing [authors]

254 Conclusion

7.1. Quantum computing
The initial quantum circuit model of computation as a time-ordered sequence of logical
quantum gates performing a unitary evolution of the state of a quantum register has
evolved into a tightly integrated model of dynamic quantum circuits that allow concurrent
classical processing of mid-circuit measurement results [Corcoles] [IBM_mid]. This new
paradigm of dynamic quantum computation paves the way to a smooth transition from
classical to quantum-boosted computing.

An often-overlooked potential quantum advantage is the energy efficiency of quantum
computation [Auffeves] [Q Daily] [Quantum_AI] [Thibault]. The quantum supremacy
experiment [Arute] involved an energy consumption three orders of magnitude smaller
than the one a high-performance computer would require to achieve an exact computation
of the expected result of the experiment. Determining the conditions under which an
energetic quantum advantage could be achieved is an open research topic [Auffeves].

The recent demonstration of a new quantum register of fermion pairs where information
is stored in the vibrational motion of atom pairs held in a superposition of two vibrational
states opens the perspective of programmable quantum simulators of molecules [Hartke].
The accurate calculations of the vibrational spectra of molecules, which have applications
from astrochemistry to biochemistry and climate change mitigation, might be easier to
achieve on a quantum computer than electronic energy calculations [Sawaya].

7.2. Quantum chemistry
In Chapter 4, Molecular Hamiltonians and Chapter 5, Variational Quantum Eigensolver
(VQE) Algorithm, we illustrated some of the methods of quantum computational
chemistry with Python and open-source quantum chemistry packages PySCF, ASE,
PyQMC, and Qiskit, solving for the ground state energy level and plotting the BOPES
of the hydrogen molecule, the lithium hydride molecule, and the macro-molecule
ONCHHC. With the simplest basis (STO-3G), and with a noise-free simulation of a
quantum circuit (statevector simulator), the different methods of calculations were in
good agreement.

References 255

Scientific or industrial applications require highly accurate relative energy estimates of
about 1 milli-Hartree (mHA) or even 0.1 mHA of chemical reaction mechanisms. The
same accuracy is required for the total electronic energy of each molecule species involved
in a chemical reaction of interest [Burg]. The authors of a benchmark of algorithms for
calculating the electronic structures of molecules of relevance to prebiotic chemistry have
concluded that "To utilize VQE and achieve near chemical accuracy will be extremely
challenging for NISQ processors" [Lolur]. They point out that the main challenge is
the large number of Pauli terms resulting from the mapping of fermionic to qubit
Hamiltonian, the large number of variational parameters, and the large number of energy
evaluations. Furthermore, to get an accurate energy estimate of 1 mHA, the ansatz for the
VQE must be close to the true ground state by less than one in a million [Troyer].

In Chapter 6, Beyond Born-Oppenheimer, we explained how non-Born-Oppenheimer
(non-BO) calculations include the effects that are needed to make better predictions
of chemical states at above ground state vibrations. Implementing these non-BO
calculations with innovative hybrid classical-quantum algorithms is an open research
topic. Ryan Babbush, head of Google's quantum algorithms team, has developed the
first quantized quantum simulations algorithms for chemistry. In the introduction of his
presentation of these algorithms [Babbush], he stated that there are lots of contexts where
non-BO simulations are important, such as low temperatures where hydrogen bondings
are involved, or tunneling or couplings between electrons and nuclei, or to compute
dynamics, reactive scattering coefficients, or thermo rate constants directly from quantum
dynamics. A study of these algorithms [Su] has shown potential advantages to algorithms
in second quantization. However, these algorithms require fault-tolerant quantum
computers with several thousand logical qubits able to run quantum circuits with a huge
number of gates (1011 to 1012), way beyond the capabilities of the current or near-term
NISQ-era processors.

References
[Arute] Arute, F., Arya, K., Babbush, R. et al., Quantum supremacy using a
programmable superconducting processor, Nature 574, 505–510 (2019), https://doi.
org/10.1038/s41586-019-1666-5

[Auffeves] Alexia Auffèves, Optimiser la consommation énergétique des calculateurs
quantiques : un défi interdisciplinaire, Reflets phys. N°69 (2021) 16-20, 12 July 2021,
https://doi.org/10.1051/refdp/202169016

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1051/refdp/202169016

256 Conclusion

[Babbush] Ryan Babbush, Feb. 24, 2021, The Promise of First Quantized Quantum
Simulations of Chemistry, Google AI Quantum, Chemistry's fault tolerant future is first
quantized!, https://www.youtube.com/watch?v=iugrIX616yg

[Burg] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus
Reiher, Martin Roetteler, Matthias Troyer, Quantum computing enhanced computational
catalysis, 3 Mar 2021, 10.1103/PhysRevResearch.3.033055, https://arxiv.org/
abs/2007.14460

[Corcoles] A. D. Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K. Minev,
Jerry M. Chow, and Jay M. Gambetta, Exploiting Dynamic Quantum Circuits in a
Quantum Algorithm with Superconducting Qubits, Phys. Rev. Lett. 127, 100501,
31 August 2021, https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.127.100501

[Hartke] Hartke, T., Oreg, B., Jia, N. et al., Quantum register of fermion pairs, Nature 601,
537–541 (2022), https://doi.org/10.1038/s41586-021-04205-8

[IBM_mid] Mid-Circuit Measurements Tutorial, IBM Quantum systems, https://
quantum-computing.ibm.com/lab/docs/iql/manage/systems/
midcircuit-measurement/

[Lolur] Lolur, Phalgun, Magnus Rahm, Marcus Skogh, Laura García-Álvarez and
Göran Wendin, Benchmarking the Variational Quantum Eigensolver through
Simulation of the Ground State Energy of Prebiotic Molecules on High-Performance
Computers, arXiv:2010.13578v2 [quant-ph], 5 Jan 2021, https://arxiv.org/
pdf/2010.13578.pdf

[Q Daily] Quantum Technology | Our Sustainable Future, The Quantum Daily, Jul 29,
2021, https://www.youtube.com/watch?v=iB2_ibvEcsE

[Quantum_AI] The Quantum AI Sustainability Symposium, Q4Climate, Speakers: Dr.
Karl Thibault, Mr. Michał Stęchły, Sep 1, 2021, https://quantum.ieee.org/
conferences/quantum-ai

[Sawaya] Nicolas P. D. Sawaya, Francesco Paesani, Daniel P. Tabor, Near- and long-
term quantum algorithmic approaches for vibrational spectroscopy, 1 Feb 2021,
arXiv:2009.05066 [quant-ph], https://arxiv.org/abs/2009.05066

[Su] Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush,
Fault-Tolerant Quantum Simulations of Chemistry in First Quantization, 11 Oct. 2021,
PRX Quantum 2, 040332, DOI:10.1103/PRXQuantum.2.040332, https://doi.
org/10.1103/PRXQuantum.2.040332

https://www.youtube.com/watch?v=iugrIX616yg
https://arxiv.org/abs/2007.14460
https://arxiv.org/abs/2007.14460
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501
https://doi.org/10.1038/s41586-021-04205-8
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://arxiv.org/pdf/2010.13578.pdf
https://arxiv.org/pdf/2010.13578.pdf
https://www.youtube.com/watch?v=iB2_ibvEcsE
https://quantum.ieee.org/conferences/quantum-ai
https://quantum.ieee.org/conferences/quantum-ai
https://arxiv.org/abs/2009.05066
https://doi.org/10.1103/PRXQuantum.2.040332
https://doi.org/10.1103/PRXQuantum.2.040332

References 257

[Thibault] Casey Berger, Agustin Di Paolo, Tracey Forrest, Stuart Hadfield, Nicolas
Sawaya, Michał Stęchły, Karl Thibault, Quantum technologies for climate change:
Preliminary assessment, IV. ENERGY EFFICIENCY OF QUANTUM COMPUTERS
By Karl Thibault, arXiv:2107.05362 [quant-ph], 23 Jun 2021, https://arxiv.org/
abs/2107.05362

[Troyer] Matthias Troyer, Matthias Troyer: Achieving Practical Quantum Advantage
in Chemistry Simulations, QuCQC 2021, https://www.youtube.com/
watch?v=2MsfbPlKgyI

https://arxiv.org/abs/2107.05362
https://arxiv.org/abs/2107.05362
https://www.youtube.com/watch?v=2MsfbPlKgyI
https://www.youtube.com/watch?v=2MsfbPlKgyI

8
References

[ASE_0] Atomic Simulation Environment (ASE), https://wiki.fysik.dtu.dk/
ase/index.html

[ASE_1] ASE, The Atoms object, https://wiki.fysik.dtu.dk/ase/ase/
atoms.html

[ASE_2] ASE Visualization, https://wiki.fysik.dtu.dk/ase/ase/
visualize/visualize.html#module-ase.visualize

[Aaronson_1] Scott Aaronson, The Limits of Quantum Computers, Scientific
American, March 2008, https://www.scientificamerican.com/article/
the-limits-of-quantum-computers/

[Aaronson_2] Scott Aaronson, The Limits of Quantum Computers (DRAFT), https://
www.scottaaronson.com/writings/limitsqc-draft.pdf

[Adamowicz_1] Sergiy Bubin, Michele Pavanello, Wei-Cheng Tung, Keeper L. Sharkey,
and Ludwik Adamowicz, Born–Oppenheimer and Non-Born–Oppenheimer, Atomic and
Molecular Calculations with Explicitly Correlated Gaussians, Chem. Rev. 2013, 113, 1,
36–79, October 1, 2012, https://doi.org/10.1021/cr200419d

[Adamowicz_2] Sergiy Bubin and Ludwik Adamowicz, Computer program ATOM-MOL-
nonBO for performing calculations of ground and excited states of atoms and molecules
without assuming the Born–Oppenheimer approximation using all-particle complex
explicitly correlated Gaussian functions, J. Chem. Phys. 152, 204102 (2020), https://
doi.org/10.1063/1.5144268

https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/ase/atoms.html
https://wiki.fysik.dtu.dk/ase/ase/atoms.html
https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#module-ase.visualize
https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#module-ase.visualize
https://www.scientificamerican.com/article/the-limits-of-quantum-computers/
https://www.scientificamerican.com/article/the-limits-of-quantum-computers/
https://www.scottaaronson.com/writings/limitsqc-draft.pdf
https://www.scottaaronson.com/writings/limitsqc-draft.pdf
https://doi.org/10.1021/cr200419d
https://doi.org/10.1063/1.5144268
https://doi.org/10.1063/1.5144268

260 References

[Adamowicz_3] Tung WC, Pavanello M, Adamowicz L., Very accurate potential energy
curve of the LiH molecule. TABLE I. Comparison of the convergence of the BO energy,
in Eh, for the ground state of LiH molecule at R = 3.015 bohrs, J Chem Phys. 2011 Feb
14;134(6):064117. doi: 10.1063/1.3554211, https://doi.org/10.1063/1.3554211

[Adamowicz_4] Jim Mitroy, Sergiy Bubin, Wataru Horiuchi, Yasuyuki Suzuki,
Ludwik Adamowicz, Wojciech Cencek, Krzysztof Szalewicz, Jacek Komasa, D. Blume,
and Kálmán Varga, Rev. Mod. Phys. 85, 693 - Published 6 May 2013, Theory and
application of explicitly correlated Gaussians, https://journals.aps.org/rmp/
abstract/10.1103/RevModPhys.85.693

[Africa21] IBM Quantum Challenge Africa 2021, https://github.com/qiskit-
community/ibm-quantum-challenge-africa-2021

[Arute] Arute, F., Arya, K., Babbush, R. et al., Quantum supremacy using a
programmable superconducting processor, Nature 574, 505–510 (2019), https://doi.
org/10.1038/s41586-019-1666-5

[Auffeves] Alexia Auffèves, Optimiser la consommation énergétique des calculateurs
quantiques : un défi interdisciplinaire, Reflets phys. N°69 (2021) 16-20, 12 July 2021,
https://doi.org/10.1051/refdp/202169016

[Babbush] Ryan Babbush, Feb. 24, 2021, The Promise of First Quantized Quantum
Simulations of Chemistry, Google AI Quantum, Chemistry's fault tolerant future is first
quantized!, https://www.youtube.com/watch?v=iugrIX616yg

[Balmer_series] Balmer Series, Wikipedia, https://en.wikipedia.org/wiki/
Balmer_series

[Bell_1] Bell, J. S., On the Einstein Podolsky Rosen Paradox, Physics
Physique Fizika 1, 195: 195–200, 1964, https://doi.org/10.1103/
PhysicsPhysiqueFizika.1.195

[Bell_2] "Chapter 2: On the Einstein-Podolsky-Rosen paradox". Speakable and
Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Alain
Aspect introduction to 1987 ed.), Reprinted in JS Bell (2004), Cambridge University Press.
pp. 14–21. ISBN 978-0521523387

[Benioff] Benioff, P., The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing machines,
https://doi.org/10.1007/BF01011339

https://doi.org/10.1063/1.3554211
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.693
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.693
https://github.com/qiskit-community/ibm-quantum-challenge-africa-2021
https://github.com/qiskit-community/ibm-quantum-challenge-africa-2021
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1051/refdp/202169016
https://www.youtube.com/watch?v=iugrIX616yg
https://en.wikipedia.org/wiki/Balmer_series
https://en.wikipedia.org/wiki/Balmer_series
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1007/BF01011339

﻿ 261

[Bittel] Lennart Bittel and Martin Kliesch, Training variational quantum algorithms
is NP-hard — even for logarithmically many qubits and free fermionic systems,
DOI:10.1103/PhysRevLett.127.120502, 18 Jan 2021, https://doi.org/10.1103/
PhysRevLett.127.120502

[Bohr_1] N. Bohr, I., On the Constitution of Atoms and Molecules, Philosophical
Magazine, 26, 1-25 (July 1913), DOI: 10.1080/14786441308634955

[Bohr_2] Bohr's shell model, Britannica, https://www.britannica.com/
science/atom/Bohrs-shell-model#ref496660

[Born_1] Born, M., Jordan, P. Zur Quantenmechanik, Z. Physik 34, 858–888 (1925),
https://doi.org/10.1007/BF01328531

[Bravyi] Sergey Bravyi, Jay M. Gambetta, Antonio Mezzacapo, Kristan Temme, Tapering
off qubits to simulate fermionic Hamiltonians, arXiv:1701.08213v1, 27 Jan 2017,
https://arxiv.org/pdf/1701.08213.pdf

[Bubin] Bubin, S., Cafiero, M., & Adamowicz, L., Non-Born-Oppenheimer
variational calculations of atoms and molecules with explicitly correlated Gaussian
basis functions, Advances in Chemical Physics, 131, 377-475, https://doi.
org/10.1002/0471739464.ch6

[Burg] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus
Reiher, Martin Roetteler, Matthias Troyer, Quantum computing enhanced computational
catalysis, 3 Mar 2021, 10.1103/PhysRevResearch.3.033055, https://arxiv.org/
abs/2007.14460

[Bushmanov] Sergey Bushmanov, How to plot a histogram using Matplotlib in
Python with a list of data?, Stack Overflow, https://stackoverflow.com/
questions/33203645/how-to-plot-a-histogram-using-matplotlib-
in-python-with-a-list-of-data

[Byjus] BYJU'S, Hydrogen Spectrum, Wavelength, Diagram, Hydrogen Emission
Spectrum, https://byjus.com/chemistry/hydrogen-spectrum/#

[CERN_quark] CERN, Voyage into the world of atoms, https://www.youtube.com/
watch?v=7WhRJV_bAiE

[Campargue] Alain Campargue, Samir Kassi, Krzysztof Pachucki and Jacek Komasa,
The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the
literature data and accurate ab initio line list up to 35000 cm-1, Table 5. Rovibrational
parameters of the V=0-13 vibrational levels of H2 obtained from the fit of the J=0-7
energy levels calculated in Ref. [36], Physical Chemistry Chemical Physics, 13 Sep 2011,
https://www.fuw.edu.pl/~krp/papers/camparge.pdf

https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevLett.127.120502
https://www.britannica.com/science/atom/Bohrs-shell-model#ref496660
https://www.britannica.com/science/atom/Bohrs-shell-model#ref496660
https://doi.org/10.1007/BF01328531
https://arxiv.org/pdf/1701.08213.pdf
https://doi.org/10.1002/0471739464.ch6
https://doi.org/10.1002/0471739464.ch6
https://arxiv.org/abs/2007.14460
https://arxiv.org/abs/2007.14460
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-matplotlib-in-python-with-a-list-of-data
https://byjus.com/chemistry/hydrogen-spectrum/#
https://www.youtube.com/watch?v=7WhRJV_bAiE
https://www.youtube.com/watch?v=7WhRJV_bAiE
https://www.fuw.edu.pl/~krp/papers/camparge.pdf

262 References

[Cao] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D.
Sawaya, Sukin Sim, Libor Veis, Alán Aspuru-Guzik, Quantum Chemistry in the Age of
Quantum Computing, Chem. Rev. 2019, 119, 19, 10856–10915, Aug 30, 2019, https://
doi.org/10.1021/acs.chemrev.8b00803

[Chem-periodic] Chemistry LibreTexts, 5.17: Electron Configurations and the Periodic
Table, https://chem.libretexts.org/Bookshelves/General_Chemistry/
Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_
Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_
Periodic_Table

[ChemChiral] 5.1 Chiral Molecules, Chemistry LibreTexts, 5 Jul 2015, https://chem.
libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_
Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_
Chiral__Molecules

[ChemTube3D] Vibrations of Carbon Dioxide, https://www.chemtube3d.com/
vibrationsco2

[Chem_spectr] Chemistry LibreTexts, 7.3: The Atomic Spectrum of Hydrogen,
https://chem.libretexts.org/Courses/Solano_Community_College/
Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_
The_Atomic_Spectrum_of_Hydrogen

[Chen] Sija Chen, Quantum Monte Carlo Methods, Maplesoft, https://
fr.maplesoft.com/Applications/Detail.aspx?id=154748

[Chiew] Mitchell Chiew and Sergii Strelchuk, Optimal fermion-qubit mappings,
arXiv:2110.12792v1 [quant-ph], 25 Oct 2021, https://arxiv.org/
pdf/2110.12792.pdf

[Clay] Millenium problems, https://www.claymath.org/millennium-problems

[Cmap] Choosing Colormaps in Matplotlib, https://matplotlib.org/stable/
tutorials/colors/colormaps.html

[Comp_Zoo] Complexity Zoo, https://complexityzoo.net/Complexity_Zoo

[Corcoles] A. D. Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K. Minev,
Jerry M. Chow, and Jay M. Gambetta, Exploiting Dynamic Quantum Circuits in a
Quantum Algorithm with Superconducting Qubits, Phys. Rev. Lett. 127, 100501,
31 August 2021, https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.127.100501

https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.17%3A_Electron_Configurations_and_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Vollhardt_and_Schore)/05._Stereoisomers/5.1%3A_Chiral__Molecules
https://www.chemtube3d.com/vibrationsco2
https://www.chemtube3d.com/vibrationsco2
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://chem.libretexts.org/Courses/Solano_Community_College/Chem_160/Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_Spectrum_of_Hydrogen
https://fr.maplesoft.com/Applications/Detail.aspx?id=154748
https://fr.maplesoft.com/Applications/Detail.aspx?id=154748
https://arxiv.org/pdf/2110.12792.pdf
https://arxiv.org/pdf/2110.12792.pdf
https://www.claymath.org/millennium-problems
https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://complexityzoo.net/Complexity_Zoo
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.100501

﻿ 263

[Crockett] Christopher Crockett, Superpositions of Chiral Molecules, September 14, 2021,
Physics 14, s108, https://physics.aps.org/articles/v14/s108

[D4.1 VA Beta] Arseny Kovyrshin, AstraZeneca AB R&D, Giorgio Silvi, HQS
Quantum Simulations GmbH, D4.1: VA Beta and BBO Beta, NExt ApplicationS of
Quantum Computing, 23 Nov 2021, https://www.neasqc.eu/wp-content/
uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf ,
https://github.com/NEASQC/Variationals_algorithms

[Dabrowski] Dabrowski, The Lyman and Werner Bands of H2, Table 5. Observed energy
levels of the X^1 Sigma_g^+ of H_2, Can. J. Phys. 62, 1639 (1984), https://doi.
org/10.1139/p84-210

[Dagrada] Mario Dagrada, Improved quantum Monte Carlo simulations : from open to
extended systems, Materials Science [cond-mat.mtrl-sci]. Université Pierre et Marie Curie
- Paris VI; Universidad Nacional de San Martín, 2016. English. ⟨NNT : 2016PA066349⟩. ⟨tel-
01478313⟩, https://tel.archives-ouvertes.fr/tel-01478313/document

[Daskalatis] Costis Daskalakis, Equilibrium Computation & the Foundations of Deep
Learning, Costis Daskalakis on Foundation of Data Science Series, Feb 18, 2021,
https://www.youtube.com/watch?v=pDangP47ftE

[De Keijzer] de Keijzer, R. J. P. T., Colussi, V. E., Škorić, B., & Kokkelmans, S. J. J. M. F.
(2021), Optimization of the Variational Quantum Eigensolver for Quantum Chemistry
Applications, arXiv, 2021, [2102.01781], https://arxiv.org/abs/2102.01781

[Demtröder] Atoms, Molecules and Photons, 9.5. Rotation and Vibration of Diatomic
Molecules, Wolfgang Demtröder, Second Edition, Springer, Springer, ISBN-13:
978-3642102974

[Deutsch-Jozsa] David Deutsch and Richard Jozsa, Rapid solutions of problems by
quantum computation, Proceedings of the Royal Society of London A. 439: 553 558,
https://doi.org/10.1098/rspa.1992.0167

[DiVincenzo] David P. DiVincenzo, The Physical Implementation of Quantum
Computation, 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E,
https://arxiv.org/abs/quant-ph/0002077

[Dirac_2] Dirac, P.A.M., The physical interpretation of the quantum dynamics, Proc. R.
Soc. Lond. A 1927, 113, 621–641, https://doi.org/10.1098/rspa.1927.0012

[Dowling] Jonathan P. Dowling and Gerard J. Milburn, Quantum technology: the second
quantum revolution, Royal Society, 20 June 2003, https://doi.org/10.1098/
rsta.2003.1227

https://physics.aps.org/articles/v14/s108
https://www.neasqc.eu/wp-content/uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf
https://www.neasqc.eu/wp-content/uploads/2022/01/NEASQC_D4.1_VA-Beta-and-BBO-Beta-R1.0.pdf
https://doi.org/10.1139/p84-210
https://doi.org/10.1139/p84-210
https://tel.archives-ouvertes.fr/tel-01478313/document
https://www.youtube.com/watch?v=pDangP47ftE
https://arxiv.org/abs/2102.01781
https://doi.org/10.1098/rspa.1992.0167
https://arxiv.org/abs/quant-ph/0002077
https://doi.org/10.1098/rspa.1927.0012
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227

264 References

[E_mass] Fundamental physical constants, electron mass, NIST, https://physics.
nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass

[Ebomwonyi] Ebomwonyi, Osarodion, A Quantum Monte Carlo Calculation of the
Ground State Energy for the Hydrogen Molecule Using the CASINO Code, 2013, Table
3.1: Comparative analysis of the ground state energies for the hydrogen molecule by
different researchers, https://www.semanticscholar.org/paper/A-Quantum-
Monte-Carlo-Calculation-of-the-Ground-for-Ebomwonyi/5316eb86f3
9cf4fa0a8fd06d136aac4db1105ad4

[Fearnley] John Fearnley (University of Liverpool), Paul W. Goldberg (University of
Oxford), Alexandros Hollender (University of Oxford), and Rahul Savani (University
of Liverpool), The Complexity of Gradient Descent: CLS = PPAD PLS, STOC 2021:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
June 2021 Pages 46–59, https://doi.org/10.1145/3406325.3451052

[Freeman] Freedman–Diaconis rule, Wikipedia, https://en.wikipedia.org/
wiki/Freedman%E2%80%93Diaconis_rule

[Gard] Gard, B.T., Zhu, L., Barron, G.S. et al., Efficient symmetry-preserving state
preparation circuits for the variational quantum eigensolver algorithm, npj Quantum Inf
6, 10 (2020), https://doi.org/10.1038/s41534-019-0240-1

[Gaussian_1] Joseph W. Ochterski, Gaussian, Vibrational Analysis in Gaussian,
https://gaussian.com/vib/

[Getty] Girl looking up, https://media.gettyimages.com/photos/
you-learn-something-new-every-day-picture-id523149221?k
=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-
uYXccQwiuNKEk0hGKKIU=

[Gorelov] Vitaly Gorelov, Quantum Monte Carlo methods for electronic structure
calculations: application to hydrogen at extreme conditions, 1.4.1 Variational Monte Carlo
(VMC), https://tel.archives-ouvertes.fr/tel-03045954/document

[Grok] Grok the Bloch Sphere, https://javafxpert.github.io/grok-bloch/

[H5py] Quick Start Guide, https://docs.h5py.org/en/stable/quick.html

[Hartke] Hartke, T., Oreg, B., Jia, N. et al., Quantum register of fermion pairs, Nature 601,
537–541 (2022), https://doi.org/10.1038/s41586-021-04205-8

[Hill] Learning Scientific Programming with Python, Chapter 2: The Core Python
Language I, Problems, P2.5, Electronic configurations, https://scipython.com/
book/chapter-2-the-core-python-language-i/questions/problems/
p25/electronic-configurations/

https://physics.nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass
https://physics.nist.gov/cgi-bin/cuu/Value?me|search_for=electron+mass
https://www.semanticscholar.org/paper/A-Quantum-Monte-Carlo-Calculation-of-the-Ground-for-Ebomwonyi/5316eb86f39cf4fa0a8fd06d136aac4db1105ad4
https://www.semanticscholar.org/paper/A-Quantum-Monte-Carlo-Calculation-of-the-Ground-for-Ebomwonyi/5316eb86f39cf4fa0a8fd06d136aac4db1105ad4
https://www.semanticscholar.org/paper/A-Quantum-Monte-Carlo-Calculation-of-the-Ground-for-Ebomwonyi/5316eb86f39cf4fa0a8fd06d136aac4db1105ad4
https://doi.org/10.1145/3406325.3451052
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://doi.org/10.1038/s41534-019-0240-1
https://gaussian.com/vib/
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://media.gettyimages.com/photos/you-learn-something-new-every-day-picture-id523149221?k=20&m=523149221&s=612x612&w=0&h=7ZFg6ETuKlqr1nzi98IBNz-uYXccQwiuNKEk0hGKKIU=
https://tel.archives-ouvertes.fr/tel-03045954/document
https://javafxpert.github.io/grok-bloch/
https://docs.h5py.org/en/stable/quick.html
https://doi.org/10.1038/s41586-021-04205-8
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/
https://scipython.com/book/chapter-2-the-core-python-language-i/questions/problems/p25/electronic-configurations/

﻿ 265

[IBM_CEO] IBM CEO: Quantum computing will take off 'like a rocket ship' this decade,
Fast Company, Sept 28, 2021., https://www.fastcompany.com/90680174/
ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-
this-decade

[IBM_comp1] Welcome to IBM Quantum Composer, https://quantum-
computing.ibm.com/composer/docs/iqx/

[IBM_comp2] IBM Quantum Composer, https://quantum-computing.ibm.
com/composer/files/new

[IBM_mid] Mid-Circuit Measurements Tutorial, IBM Quantum systems, https://
quantum-computing.ibm.com/lab/docs/iql/manage/systems/
midcircuit-measurement/

[Intro_BOA_1] M. Born, J.R. Oppenheimer, On the Quantum Theory of Molecules,
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-
translated-s-m-blinder.pdf

[Intro_BOA_2] M. Born and R. J. Oppenheimer, Zur Quantentheorie der Molekeln,
Annalen der physik, 20, 457-484 (August 1927), https://doi.org/10.1002/
andp.19273892002

[Kaplan] Ilya G. Kaplan, Modern State of the Pauli Exclusion Principle and the
Problems of Its Theoretical Foundation, Symmetry 2021, 13(1), 21, https://doi.
org/10.3390/sym13010021

[Knill] Emanuel Knill, Raymond Laflamme, A Theory of Quantum Error-Correcting
Codes, https://arxiv.org/abs/quant-ph/9604034

[Komasa] Komasa et al., Quantum Electrodynamics Effects in Rovibrational Spectra
of Molecular Hydrogen J. Chem. Theory Comput. 2011, 7, 10, 3105–3115, Table 1.
Theoretically Predicted Dissociation Energies {in cm^(-1)} of All 302 Bound States of
H_2, https://doi.org/10.1021/ct200438t, https://www.fuw.edu.
pl/~krp/papers/H2D2v18.pdf

[Lolur] Lolur, Phalgun, Magnus Rahm, Marcus Skogh, Laura García-Álvarez and
Göran Wendin, Benchmarking the Variational Quantum Eigensolver through
Simulation of the Ground State Energy of Prebiotic Molecules on High-Performance
Computers, arXiv:2010.13578v2 [quant-ph], 5 Jan 2021, https://arxiv.org/
pdf/2010.13578.pdf

https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://www.fastcompany.com/90680174/ibm-ceo-quantum-computing-will-take-off-like-a-rocket-ship-this-decade
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-measurement/
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-translated-s-m-blinder.pdf
https://www.theochem.ru.nl/files/dbase/born-oppenheimer-translated-s-m-blinder.pdf
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.3390/sym13010021
https://doi.org/10.3390/sym13010021
https://arxiv.org/abs/quant-ph/9604034
https://doi.org/10.1021/ct200438t
https://www.fuw.edu.pl/~krp/papers/H2D2v18.pdf
https://www.fuw.edu.pl/~krp/papers/H2D2v18.pdf
https://arxiv.org/pdf/2010.13578.pdf
https://arxiv.org/pdf/2010.13578.pdf

266 References

[Lucr_1] Lucretius on the Nature of Things, Literally translated into English
prose by the Rev. John Selby Watson, M.A., London 1870, https://www.
google.fr/books/edition/Lucretius_On_the_Nature_of_
Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover

[Lucr_2] Thomas Nail, Lucretius: Our Contemporary, 15 Feb 2019, https://www.
youtube.com/watch?v=VMrTk1A2GX8

[Lucr_3] David Goodhew, Lucretius lecture, Life, love, death and atomic physics,
https://www.youtube.com/watch?v=mJZZd3f_-oE

[Lyman_series] Lyman series, From Wikipedia, https://en.wikipedia.org/
wiki/Lyman_series

[MIT_QC_1981] MIT Endicott House, The Physics of Computation Conference, Image
"Physics of Computation Conference, Endicott House MIT May 6-8, 1981", Mar 21, 2018,
https://mitendicotthouse.org/physics-computation-conference/

[Maytus] Edit Mátyus, Edit Mátyus (2019) Pre-Born - Oppenheimer molecular structure
theory, Molecular Physics, 117:5, 590-609, DOI: 10.1080/00268976.2018.1530461,
https://doi.org/10.1080/00268976.2018.1530461

[Mezzacapo] Antonio Mezzacapo, Simulating Chemistry on a Quantum Computer,
Part I, Qiskit Global Summer School 2020, IBM Quantum, Qiskit, Introduction to
Quantum Computing and Quantum Hardware, https://qiskit.org/learn/
intro-qc-qh/, Lecture Notes 8, https://github.com/qiskit-community/
intro-to-quantum-computing-and-quantum-hardware/blob/master/
lectures/introqcqh-lecture-notes-8.pdf?raw=true

[Micr_Algebra] Linear algebra, QuantumKatas/tutorials/LinearAlgebra/, https://
github.com/microsoft/QuantumKatas/tree/main/tutorials/
LinearAlgebra

[Micr_Complex] Complex arithmetic, QuantumKatas/tutorials/ComplexArithmetic/,
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/
ComplexArithmetic

[MolSSI] Basis set convergence of molecular properties: Geometry and Vibrational
Frequency, Molecular Sciences Software Institute (MolSSI), http://education.
molssi.org/qm-tools/04-vib-freq/index.html

[Neese] Vibrational Spectroscopy, Frank Neese from the Max Planck Institute for
Chemical Energy Conversion, 2014 summer school, https://www.youtube.com/
watch?v=iJjg2L1F8I4

https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.google.fr/books/edition/Lucretius_On_the_Nature_of_Things/59HTAAAAMAAJ?hl=en&gbpv=1&printsec=frontcover
https://www.youtube.com/watch?v=VMrTk1A2GX8
https://www.youtube.com/watch?v=VMrTk1A2GX8
https://www.youtube.com/watch?v=mJZZd3f_-oE
https://en.wikipedia.org/wiki/Lyman_series
https://en.wikipedia.org/wiki/Lyman_series
https://mitendicotthouse.org/physics-computation-conference/
https://doi.org/10.1080/00268976.2018.1530461
https://qiskit.org/learn/intro-qc-qh/
https://qiskit.org/learn/intro-qc-qh/
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://github.com/qiskit-community/intro-to-quantum-computing-and-quantum-hardware/blob/master/lectures/introqcqh-lecture-notes-8.pdf?raw=true
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/ComplexArithmetic
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/ComplexArithmetic
http://education.molssi.org/qm-tools/04-vib-freq/index.html
http://education.molssi.org/qm-tools/04-vib-freq/index.html
https://www.youtube.com/watch?v=iJjg2L1F8I4
https://www.youtube.com/watch?v=iJjg2L1F8I4

﻿ 267

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Neutron-electron-mass-ratio] neutron-electron mass ratio, NIST, https://physics.
nist.gov/cgi-bin/cuu/Value?mnsme

[Orb_Approx] Definition of Orbital Approximation, https://www.chemicool.com/
definition/orbital-approximation.html

[Panagiotis] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll,
Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio
Mezzacapo, Stefan Filipp, Ivano Tavernelli, Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function expansions, Phys.
Rev. A 98, 022322 – Published 20 August 2018, DOI: 10.1103/PhysRevA.98.022322,
https://link.aps.org/doi/10.1103/PhysRevA.98.022322

[Part_1] List of particles, Wikipedia, https://en.wikipedia.org/wiki/List_
of_particles

[Pauling] L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with
Applications to Chemistry, Dover (1935)

[Pease] Christopher Pease, An Overview of Monte Carlo Methods, Towards Data Science,
https://towardsdatascience.com/an-overview-of-monte-carlo-
methods-675384eb1694

[Phys5250] Addition of angular momentum, University of Colorado, PHYS5250,
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/
lecture/lec32-addition-angular-momentum/

[PoorLeno] File:Hydrogen Density Plots.png, from Wikipedia, https://
en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png

[Preskill_40y] John Preskill, Quantum computing 40 years later, https://arxiv.org/
abs/2106.10522

[Psi4_0] Psi4 manual master index, https://psicode.org/psi4manual/
master/index.html

[Psi4_1] Get Started with PSI4, https://psicode.org/installs/v15/

[Psi4_2] Test case for Binding Energy of C4H5N (Pyrrole) with CO2 using MP2/
def2-TZVPP, https://github.com/psi4/psi4/blob/master/samples/
mp2-def2/input.dat

https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://physics.nist.gov/cgi-bin/cuu/Value?mnsme
https://physics.nist.gov/cgi-bin/cuu/Value?mnsme
https://www.chemicool.com/definition/orbital-approximation.html
https://www.chemicool.com/definition/orbital-approximation.html
https://link.aps.org/doi/10.1103/PhysRevA.98.022322
https://en.wikipedia.org/wiki/List_of_particles
https://en.wikipedia.org/wiki/List_of_particles
https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694
https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/lecture/lec32-addition-angular-momentum/
https://physicscourses.colorado.edu/phys5250/phys5250_fa19/lecture/lec32-addition-angular-momentum/
https://en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png
https://en.wikipedia.org/wiki/File:Hydrogen_Density_Plots.png
https://arxiv.org/abs/2106.10522
https://arxiv.org/abs/2106.10522
https://psicode.org/psi4manual/master/index.html
https://psicode.org/psi4manual/master/index.html
https://psicode.org/installs/v15/
https://github.com/psi4/psi4/blob/master/samples/mp2-def2/input.dat
https://github.com/psi4/psi4/blob/master/samples/mp2-def2/input.dat

268 References

[Psi4_3] Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis
R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP,
Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O'Brien JS, Waldrop
JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF 3rd, Sokolov
AY, Patkowski K, DePrince AE 3rd, Bozkaya U, King RA, Evangelista FA, Turney JM,
Crawford TD, Sherrill CD, Psi4 1.4: Open-source software for high-throughput quantum
chemistry, J Chem Phys. 2020 May 14;152(18):184108. doi: 10.1063/5.0006002. PMID:
32414239; PMCID: PMC7228781, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf

[PvsNP] P and NP, www.cs.uky.edu. Archived from the original on 2016-09-19,
https://web.archive.org/web/20160919023326/http://www.cs.uky.
edu/~lewis/cs-heuristic/text/class/p-np.html

[PyQMC] PyQMC, a Python module that implements real-space quantum Monte Carlo
techniques, https://github.com/WagnerGroup/pyqmc

[PySCF] The Python-based Simulations of Chemistry Framework (PySCF), https://
pyscf.org/

[Q Daily] Quantum Technology | Our Sustainable Future, The Quantum Daily, Jul 29,
2021, https://www.youtube.com/watch?v=iB2_ibvEcsE

[QC40] (Livestream) QC40: Physics of Computation Conference 40th Anniversary,
https://www.youtube.com/watch?v=GR6ANm6Z0yk

[QMC] Google Quantum AI, Unbiased fermionic Quantum Monte Carlo with a
Quantum computer, Quantum Summer Symposium 2021, 30 July 2021, https://www.
youtube.com/watch?v=pTHtyKuByvw

[Qa_Zoo] Stephen Jordan, Algebraic and Number Theoretic Algorithms, https://
quantumalgorithmzoo.org/

[Qiskit] Qiskit, https://qiskit.org/

[Qiskit_2021_Lab4] Julien Gacon, Lab 4: Introduction to Training Quantum
Circuits, Qiskit Summer School 2021, https://learn.qiskit.org/summer-
school/2021/lab4-introduction-training-quantum-circuits

[Qiskit_Alg] Linear Algebra, Qiskit, https://qiskit.org/textbook/
ch-appendix/linear_algebra.html

[Qiskit_Nat_0] Qiskit_Nature, https://github.com/Qiskit/qiskit-nature/
blob/main/README.md

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
http://www.cs.uky.edu
https://web.archive.org/web/20160919023326/
http://www.cs.uky.edu/~lewis/cs-heuristic/text/class/p-np.html
http://www.cs.uky.edu/~lewis/cs-heuristic/text/class/p-np.html
https://github.com/WagnerGroup/pyqmc
https://pyscf.org/
https://pyscf.org/
https://www.youtube.com/watch?v=iB2_ibvEcsE
https://www.youtube.com/watch?v=GR6ANm6Z0yk
https://www.youtube.com/watch?v=pTHtyKuByvw
https://www.youtube.com/watch?v=pTHtyKuByvw
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://qiskit.org/
https://learn.qiskit.org/summer-school/2021/lab4-introduction-training-quantum-circuits
https://learn.qiskit.org/summer-school/2021/lab4-introduction-training-quantum-circuits
https://qiskit.org/textbook/ch-appendix/linear_algebra.html
https://qiskit.org/textbook/ch-appendix/linear_algebra.html
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://github.com/Qiskit/qiskit-nature/blob/main/README.md

﻿ 269

[Qiskit_Nat_1] Qiskit Nature & Finance Demo Session with Max Rossmannek & Julien
Gacon, Oct 15, 2021, https://www.youtube.com/watch?v=UtMVoGXlz04

[Qiskit_Nat_2] FermionicOp, https://qiskit.org/documentation/nature/
stubs/qiskit_nature.operators.second_quantization.FermionicOp.
html

[Qiskit_Nat_3] ElectronicStructureProblem.second_q_ops, https://qiskit.org/
documentation/nature/stubs/qiskit_nature.problems.second_
quantization.ElectronicStructureProblem.second_q_ops.html

[Qiskit_Nat_4] QubitConverter, https://qiskit.org/documentation/
nature/stubs/qiskit_nature.converters.second_quantization.
QubitConverter.html

[Qiskit_Nat_5] Qiskit Nature Tutorials, Electronic structure, https://qiskit.org/
documentation/nature/tutorials/01_electronic_structure.html

[Qiskit_Nat_6] Qiskit Nature Tutorials, Sampling the potential energy surface, https://
qiskit.org/documentation/nature/_modules/qiskit_nature/
algorithms/pes_samplers/bopes_sampler.html

[Qiskit_Nat_T] Second-Quantization Operators (qiskit_nature.operators.second_
quantization) > FermionicOp > FermionicOp.set_truncation, https://qiskit.
org/documentation/nature/stubs/qiskit_nature.operators.second_
quantization.FermionicOp.set_truncation.html

[Qiskit_Nature] Introducing Qiskit Nature, Qiskit, Medium, April 6, 2021, https://
medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004

[QuTiP] QuTiP, Plotting on the Bloch Sphere, https://qutip.org/docs/latest/
guide/guide-bloch.html

[Quantum_AI] The Quantum AI Sustainability Symposium, Q4Climate, Speakers: Dr.
Karl Thibault, Mr. Michał Stęchły, Sep 1, 2021, https://quantum.ieee.org/
conferences/quantum-ai

[Rayleigh_Ritz] Rayleigh-Ritz method, Wikipedia, https://en.wikipedia.org/
wiki/Rayleigh%E2%80%93Ritz_method

[Ribeiro] Sofia Leitão, Diogo Cruz, João Seixas, Yasser Omar, José Emilio Ribeiro,
J.E.F.T. Ribeiro, Quantum Simulation of Fermionic Systems, CERN, https://
indico.cern.ch/event/772852/contributions/3505906/
attachments/1905096/3146117/Quantum_Simulation_of_Fermion_
Systems.pdf

https://www.youtube.com/watch?v=UtMVoGXlz04
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.problems.second_quantization.ElectronicStructureProblem.second_q_ops.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.converters.second_quantization.QubitConverter.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://qiskit.org/documentation/nature/_modules/qiskit_nature/algorithms/pes_samplers/bopes_sampler.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html
https://qiskit.org/documentation/nature/stubs/qiskit_nature.operators.second_quantization.FermionicOp.set_truncation.html
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://qutip.org/docs/latest/guide/guide-bloch.html
https://qutip.org/docs/latest/guide/guide-bloch.html
https://quantum.ieee.org/conferences/quantum-ai
https://quantum.ieee.org/conferences/quantum-ai
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Ritz_method
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Ritz_method
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf
https://indico.cern.ch/event/772852/contributions/3505906/attachments/1905096/3146117/Quantum_Simulation_of_Fermion_Systems.pdf

270 References

[Rioux] Mach-Zehnder Polarizing Interferometer Analyzed Using Tensor Algebra,
https://faculty.csbsju.edu/frioux/photon/MZ-Polarization.pdf

[Rydberg_R] Rydberg constant, from Wikipedia, https://en.wikipedia.org/
wiki/Rydberg_constant

[Rydberg_Ritz] Rydberg-Ritz combination principle, Wikipedia, https://
en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_
principle

[Sawaya] Nicolas P. D. Sawaya, Francesco Paesani, Daniel P. Tabor, Near- and long-
term quantum algorithmic approaches for vibrational spectroscopy, 1 Feb 2021,
arXiv:2009.05066 [quant-ph], https://arxiv.org/abs/2009.05066

[Schiffer_1] Fabijan Pavošević, Tanner Culpitt, and Sharon Hammes-Schiffer,
Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum
Effects via the Nuclear−Electronic Orbital Method, Chem. Rev. 2020, 120, 9, 4222–4253,
https://doi.org/10.1021/acs.chemrev.9b00798

[Schiffer_2] Kurt R. Brorsen, Andrew Sirjoosingh, Michael V. Pak, and Sharon Hammes-
Schiffer, Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach:
Restricted basis sets and open-shell systems, J. Chem. Phys. 142, 214108 (2015),
https://doi.org/10.1063/1.4921304

[SciPy] Statistical functions (scipy.stats), https://docs.scipy.org/doc/scipy/
getting_started.html

[SciPy_0], SciPy, https://scipy.org/

[SciPy_sph] SciPy, API reference, Compute spherical harmonics, scipy.special.sph_harm,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
special.sph_harm.html

[Seeley] Jacob T. Seeley, Martin J. Richard, Peter J. Love, The Bravyi-Kitaev transformation
for quantum computation of electronic structure, 29 Aug 2012, arXiv:1208.5986
[quant-ph], https://arxiv.org/abs/1208.5986v1

[Sharkey] K. Sharkey et. al., Non-Born-Oppenheimer method for direct variational
calculations of diatomic first excited rotational states using explicitly correlated all-particle
Gaussian functions, Table I. Total energies (in hartrees) of the (v,0) and (v,1) states of
H_2., Physical Review A, 88, 032513 (2013), https://journals.aps.org/pra/
abstract/10.1103/PhysRevA.88.032513

https://faculty.csbsju.edu/frioux/photon/MZ-Polarization.pdf
https://en.wikipedia.org/wiki/Rydberg_constant
https://en.wikipedia.org/wiki/Rydberg_constant
https://en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle
https://en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle
https://en.wikipedia.org/wiki/Rydberg%E2%80%93Ritz_combination_principle
https://arxiv.org/abs/2009.05066
https://doi.org/10.1021/acs.chemrev.9b00798
https://doi.org/10.1063/1.4921304
https://docs.scipy.org/doc/scipy/getting_started.html
https://docs.scipy.org/doc/scipy/getting_started.html
https://scipy.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
https://arxiv.org/abs/1208.5986v1
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.032513
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.032513

﻿ 271

[Sharkey_0] Keeper L. Sharkey and Ludwik Adamowicz, An algorithm for nonrelativistic
quantum mechanical finite-nuclear-mass variational calculations of nitrogen atom in L =
0, M = 0 states using all-electrons explicitly correlated Gaussian basis functions, J. Chem.
Phys. 140, 174112 (2014), https://doi.org/10.1063/1.4873916

[Sharkey_1] K. Sharkey, Molecular-hydrogen poster, QLEAN™, https://qlean.
world/molecular-hydrogen-poster

[Shor] Peter Shor, The Story of Shor's Algorithm, Straight From the Source, July 2, 2021,
https://www.youtube.com/watch?v=6qD9XElTpCE

[Skylaris] C.-K. Skylaris, CHEM6085: Density Functional Theory, Lecture 8, Gaussian
basis sets, https://www.southampton.ac.uk/assets/centresresearch/
documents/compchem/DFT_L8.pdf

[Skylaris_1] C.-K. Skylaris, CHEM3023: Spins, Atoms and Molecules, Lecture 8,
Experimental observables / Unpaired electrons, https://www.southampton.
ac.uk/assets/centresresearch/documents/compchem/chem3023_
L8.pdf

[Sph_Real] Wikipedia, Spherical Harmonics, Real forms, https://en.wikipedia.
org/wiki/Spherical_harmonics#Real_forms

[Spheres] How to Prepare a Permutation Symmetric Multiqubit State on an Actual
Quantum Computer, https://spheres.readthedocs.io/en/stable/
notebooks/9_Symmetrized_Qubits.html

[Stephens] Matthew Stephens, The Metropolis Hastings Algorithm, https://
stephens999.github.io/fiveMinuteStats/MH_intro.html

[Stickler] B. A. Stickler et al., Enantiomer superpositions from matter-wave interference
of chiral molecules, Phys. Rev. X 11, 031056 (2021), https://journals.aps.org/
prx/abstract/10.1103/PhysRevX.11.031056

[Su] Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush,
Fault-Tolerant Quantum Simulations of Chemistry in First Quantization, 11 Oct. 2021,
PRX Quantum 2, 040332, DOI:10.1103/PRXQuantum.2.040332, https://doi.
org/10.1103/PRXQuantum.2.040332

[SymPy] SymPy, A Python library for symbolic mathematics, https://www.sympy.
org/en/index.html

[SymPy_CG] SymPy, Clebsch-Gordan Coefficients, https://docs.sympy.org/
latest/modules/physics/quantum/cg.html

https://doi.org/10.1063/1.4873916
https://qlean.world/molecular-hydrogen-poster
https://qlean.world/molecular-hydrogen-poster
https://www.youtube.com/watch?v=6qD9XElTpCE
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/chem3023_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/chem3023_L8.pdf
https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/chem3023_L8.pdf
https://en.wikipedia.org/wiki/Spherical_harmonics#Real_forms
https://en.wikipedia.org/wiki/Spherical_harmonics#Real_forms
https://spheres.readthedocs.io/en/stable/notebooks/9_Symmetrized_Qubits.html
https://spheres.readthedocs.io/en/stable/notebooks/9_Symmetrized_Qubits.html
https://stephens999.github.io/fiveMinuteStats/MH_intro.html
https://stephens999.github.io/fiveMinuteStats/MH_intro.html
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031056
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031056
https://doi.org/10.1103/PRXQuantum.2.040332
https://doi.org/10.1103/PRXQuantum.2.040332
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://docs.sympy.org/latest/modules/physics/quantum/cg.html
https://docs.sympy.org/latest/modules/physics/quantum/cg.html

272 References

[SymPy_Rnl] Hydrogen Wavefunctions, https://docs.sympy.org/latest/
modules/physics/hydrogen.html

[Tamir] Abraham Tamir, Applications of Markov Chains in Chemical Engineering,
Elsevier, 1998, 9780080527390, 0080527396, https://www.google.fr/books/
edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC

[Thibault] Casey Berger, Agustin Di Paolo, Tracey Forrest, Stuart Hadfield, Nicolas
Sawaya, Michał Stęchły, Karl Thibault, Quantum technologies for climate change:
Preliminary assessment, IV. ENERGY EFFICIENCY OF QUANTUM COMPUTERS
By Karl Thibault, arXiv:2107.05362 [quant-ph], 23 Jun 2021, https://arxiv.org/
abs/2107.05362

[Toulouse] Julien Toulouse, Introduction to quantum chemistry, Jan 20, 2021,
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/
introduction_qc.pdf

[Toulouse_1] Julien Toulouse, Quantum Monte Carlo wave functions and their
optimization for quantum chemistry, CEA Saclay, SPhN Orme des Merisiers, April 2015,
https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/
presentation_saclay_15.pdf

[Tranter] Andrew Tranter, Peter J. Love, Florian Mintert, Peter V. Coveney, A comparison
of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation
of quantum chemistry, 5 Dec 2018, J. Chem. Theory Comput. 2018, 14, 11, 5617–5630,
https://doi.org/10.1021/acs.jctc.8b00450

[Troyer] Matthias Troyer: Achieving Practical Quantum Advantage in Chemistry
Simulations, QuCQC 2021, https://www.youtube.com/watch?v=2MsfbPlKgyI

[Ucsd] University of Californian San Diego, Spherical Coordinates and the Angular
Momentum Operators, https://quantummechanics.ucsd.edu/ph130a/130_
notes/node216.html

[VQE_1] Peruzzo, A., McClean, J., Shadbolt, P. et al., A variational eigenvalue solver
on a photonic quantum processor, Nat Commun 5, 4213 (2014), https://doi.
org/10.1038/ncomms5213

[VQE_2] Qiskit Nature, Ground state solvers, https://qiskit.org/
documentation/nature/tutorials/03_ground_state_solvers.html

[VQE_3] Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets, Nature 549, 242–246 (2017), https://doi.org/10.1038/
nature23879

https://docs.sympy.org/latest/modules/physics/hydrogen.html
https://docs.sympy.org/latest/modules/physics/hydrogen.html
https://www.google.fr/books/edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC
https://www.google.fr/books/edition/Applications_of_Markov_Chains_in_Chemica/X0ivOmHYPoYC
https://arxiv.org/abs/2107.05362
https://arxiv.org/abs/2107.05362
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_qc.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_saclay_15.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_saclay_15.pdf
https://doi.org/10.1021/acs.jctc.8b00450
https://www.youtube.com/watch?v=2MsfbPlKgyI
https://quantummechanics.ucsd.edu/ph130a/130_notes/node216.html
https://quantummechanics.ucsd.edu/ph130a/130_notes/node216.html
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://qiskit.org/documentation/nature/tutorials/03_ground_state_solvers.html
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879

﻿ 273

[VQE_4] Running VQE on a Statevector Simulator, https://qiskit.org/
textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-
Statevector-Simulator

[Vandersypen] Vandersypen, L., Steffen, M., Breyta, G. et al., Experimental realization
of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414,
883–887 (2001), https://doi.org/10.1038/414883a

[Veis] Libor Veis, Jakub Višňák, Hiroaki Nishizawa, Hiromi Nakai, Jiří Pittner, Quantum
chemistry beyond Born–Oppenheimer approximation on a quantum computer: A
simulated phase estimation study, International Journal of Quantum Chemistry, 22 June
2016, https://doi.org/10.1002/qua.25176

[Wiki-Comb] Number of k-combinations for all k, Wikipedia, https://
en.wikipedia.org/wiki/Combination#Number_of_k-combinations_
for_all_k

[Wiki-GAU] Gaussian orbital, Wikipedia, https://en.wikipedia.org/wiki/
Gaussian_orbital

[Wiki-STO] Slater-type orbital, Wikipedia, https://en.wikipedia.org/wiki/
Slater-type_orbital

[Wiki_1] Mathematical formulation of quantum mechanics, Wikipedia, https://
en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_
mechanics

[Wonders] Optical Isomers, Enantiomers and Chiral Molecules, WondersofChemistry,
https://www.youtube.com/watch?v=8TIZdWR4gIU

[Yepez] Jeffrey Yepez, Lecture notes: Quantum gates in matrix and ladder operator
forms, Jan 15, 2013, https://www.phys.hawaii.edu/~yepez/Spring2013/
lectures/Lecture2_Quantum_Gates_Notes.pdf

https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator
https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator
https://qiskit.org/textbook/ch-applications/vqe-molecules.html#Running-VQE-on-a-Statevector-Simulator
https://doi.org/10.1038/414883a
https://doi.org/10.1002/qua.25176
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Combination#Number_of_k-combinations_for_all_k
https://en.wikipedia.org/wiki/Gaussian_orbital
https://en.wikipedia.org/wiki/Gaussian_orbital
https://en.wikipedia.org/wiki/Slater-type_orbital
https://en.wikipedia.org/wiki/Slater-type_orbital
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://www.youtube.com/watch?v=8TIZdWR4gIU
https://www.phys.hawaii.edu/~yepez/Spring2013/lectures/Lecture2_Quantum_Gates_Notes.pdf
https://www.phys.hawaii.edu/~yepez/Spring2013/lectures/Lecture2_Quantum_Gates_Notes.pdf

9
Glossary

By convention an asterisk indicates that there is a complimentary entry in Appendix A –
Readying Mathematical Concepts.

Angular momentum quantum number *
Also known as the orbital quantum number or the azimuthal quantum number, and
denoted by , this describes the electron subshell and gives the magnitude of the orbital
angular momentum.

Anti-commutator *
An operation of two operators , defined as: { , } ≝ + .

Anti-commutation *
A set of fermionic annihilation operators and creation operators that act on local electron
modes can be defined that satisfy anti-commutation relations.

Atom
A basic particle that composes a chemical element. It consists of a nucleus surrounded
by moving electrons arranged in orbitals that describe their positions in terms of
probabilities. The atom has no overall electric charge.

276 Glossary

Atomic number
A number that identifies an atom by the number of protons/electrons in the atom
being specified.

Atomic or molecular orbital
A mathematical function that describes the probability of finding an electron at a given
point in space at a given time in an atom or molecule.

Atomic Simulation Environment (ASE)
A set of tools and Python modules for setting up, manipulating, running, visualizing, and
analyzing atomistic simulations.

Basis set
A set of functions that are combined in linear combinations to create molecular orbits.

Born-Oppenheimer (BO) approximation
This is the assumption that the wave functions of atomic nuclei and electrons in a
molecule can be treated separately such that the electronic motion and the nuclear motion
can be separated.

Bravyi-Kitaev (BK) transformation
A transformation method of mapping the occupation state of a fermionic system onto
qubits. This transformation maps the Hamiltonian of n interacting fermions to an

(log) local Hamiltonian of n qubits.

Center-of-mass (COM)
Mean location of a distribution of mass, which is the average location weighted by the
masses of the elements in a many-body system.

Clebsch-Gordon (CG) coefficients
The expansion coefficients of coupled total angular and/or spin momentum in an
uncoupled tensor product basis.

﻿ 277

Commutator *
An operation of two operators , defined as: [,] ≝ − . For any operators
and , [,] = 0 if and only if and commute. It can be shown that if a quantum
system has two simultaneously physically observable quantities, then the Hermitian
operators which represent them must commute.

Complete
For a function where all statistically important data that are needed to represent that
quantum system is available such that calculations of properties converge to a limit, that
is, a single value.

Constructive interference
When two or more waves add together so that the amplitude of the resulting wave is equal
to the sum of the individual amplitudes.

Coupled-cluster (CC)
A theory that constructs a multi-electron wavefunction using the exponential cluster
operator, which is the sum of the operator for all single excitations, the operator for all
double excitations, and so on.

Density-functional theory (DFT)
A simulation method based on quantum mechanical first principles (ab initio) and
spatially depend on density functionals that describe the electronic structure properties of
atomic systems, atoms, molecules, and crystals.

Density matrix *
Describes the state of a quantum system based on probabilities, average value, and
outcome for the measurement performed.

Destructive interference
When the maxima of two waves are out of phase by radians, the resulting
wave has smaller amplitude and can be zero amplitude, and this effect is called
destructive interference.

278 Glossary

Dirac notation *
Dirac notation is also known as bra-ket notation. The state of a quantum system, or the
wave function, is represented by a ket, which is a column vector of coordinates and/or
variables. The bra denotes a linear function that maps each column vector to a complex
conjugate row vector. The action of the row vector on a column vector.

Eigenvalue
When the result of applying a linear transformation to a vector is that vector multiplied
by a scalar, then the vector is called an eigenvector, and the scalar is called the eigenvalue
associated with that linear transformation.

Electron
A stable subatomic particle that has a negative electric charge, is a component of all atoms,
and is the primary carrier of electricity in solids.

Electronic structure molecular Hamiltonian
The Hamiltonian operator for a molecule represents the total energy of all its particles,
electrons, and nuclei, comprising the sum of the kinetic energy of all particles and the
potential energy between all particles.

Entangled
If the wave function for a multiple-particle system cannot be factored into a product of
single-particle functions, then the quantum system is said to be entangled.

Exchange operator
This is an operator that permutes the unphysical labels of the particles. It acts on states in
Fock space and identifies if identical particles are bosons or fermions.

Expectation value
This is the sum of all the possible outcomes of a measurement of a state weighted by
their probabilities.

﻿ 279

Explicitly correlated Gaussian (ECG)
This is the square of the distance between all pairs of particles in an exponential form.

Explicitly correlated Gaussian basis functions (ECGs)
More than one ECG in a set.

Fermion, fermionic, electron annihilation operator *
A mathematical operation that allows us to represent excitations or transitions of quasi
particles. An excitation requires the initial state to be at a lower energy level than the
final state.

Fermion, fermionic, electron creation operator *
A mathematical operation that allows us to represent disexcitement (de-exitation) or
transitions of quasi particles. A de-excitation requires the initial state to be at a higher
energy level than the final state.

Fermion, fermionic, electron excitation operator *
A mathematical operation that excites an electron from an occupied spin orbital into an
unoccupied orbital.

Fock space
An algebraic construct used in quantum mechanics to create the quantum states
space of a variable or unknown number of identical particles from the Hilbert space
of a single particle.

Gaussian-type orbitals (GTOs)
Functions that are utilized as atomic orbitals in the Linear Combination of Atomic
Orbitals (LCAO) method to represent electron orbitals in molecules and a variety of
attributes that are dependent on them.

280 Glossary

Gradient descent
An optimization algorithm for finding a local minimum of a function by iteratively
moving in the opposite direction of the gradient of the function at a given point that is the
direction of steepest descent. This can be compared to a ball rolling around the landscape.
If we give the ball a nudge in some direction, generally downward, the ball will end up in
the minimum.

Hamiltonian operator

The operator associated with the total energy of the quantum system, and it is a
sum of potential and kinetic energy operators.

Hartree (Ha)

An atomic unit of energy commonly used in molecular orbital calculations which
is defined as 2 ∞ℎ , where ∞ is the Rydberg constant, ℎ is the Planck constant,
and is the speed of light.

Hartree-Fock method
A technique that is used as an approximation approach for determining the wave function
and energy of a quantum many-body system in a stationary state.

Hermitian operator
A linear operator that is equal to its transpose conjugate, that is, self-adjoint, and has real
eigenvalues that correspond to an observable.

Jordan-Wigner transformation
The Jordan-Wigner transformation is widely used to simulate a system of electrons with
the same number of qubits as electrons. It stores the occupation of each spin orbital in
each qubit and maps the fermionic creation and annihilation operators to the tensor
product of Pauli operators.

﻿ 281

Linear Combination of Atomic Orbitals (LCAO)
A superposition of atomic orbitals.

Magnetic quantum number
Describes the electron's energy level within its subshell and the orientation of the
electron's orbital and is denoted by . It can take on integer values ranging from
− , … , 0, … , + where is the angular momentum quantum number.

Markov chain Monte Carlo (MCMC)
A method for producing samples from a target probability distribution by simulating a
Markov chain whose stationary distribution is the target probability distribution.

Markov Chain theory (MCT)
An approximation method of a (non-)quantum system that can occupy various states,
and whose (time-)evolution is defined once an initial state and the probability transitions
between the states are fixed.

Mean-field theory (MFT)
An approximation method that reduces the many-body interactions of a system by one
effective interaction with a mean-field.

Metropolis-Hastings (MH)
A Markov chain Monte Carlo (MCMC) method for producing samples from a probability.

Mixed quantum state
A statistical ensemble of pure quantum states.

Molecular Hamiltonian
The total energy operator for a molecule representing its particles, comprising the sum of
the kinetic energy of all particles and the potential energy between all particles.

282 Glossary

Molecular Orbital (MO) theory
A method for approximating the wave functions of electrons in a molecule, the molecular
orbitals, as linear combinations of atomic orbitals (LCAO) by applying the density
functional theory (DFT) or the Hartree-Fock method.

Monte Carlo method
Any stochastic method used to solve a problem.

Neutron
A nucleon that has an electric charge of zero and a mass that is 1,838.68366173 times
greater than the electron. The neutron is slightly heavier than the proton.

Normalizable
A wave function that is a solution of the Schrödinger equation such that the integral of its
squared module is finite, meaning that the positive definite product should be less than
infinity when integrated over all space.

Nucleons
The building blocks of atomic nuclei, which are protons and neutrons.

Nucleus (plural nuclei)
The core of every atom contains one or more protons and zero or more neutrons,
which are held together by the strong nuclear force.

Numerical Python (NumPy)
An open-source Python library that is used in almost every field of science
and engineering.

Occupation number
In a basis of the Fock space, the occupation number pertaining to a spin-orbital state is 0
if the spin-orbital state is not occupied by an electron and 1 if it is occupied by an electron.

﻿ 283

Occupation number operator *
An operator that acts on local electron modes and satisfy anti-commutation relations.

Occupation number representation
A synonym of the second quantization representation.

Occupied spin-orbital
A spin-orbital that is occupied by an electron.

Parity transformation
Dual to the Jordan-Wigner transformation, the parity operators are low-weight, while the
occupation operators become high-weight.

Pauli exclusion principle (PEP) *
In 1925, Pauli described the PEP for electrons, which states that it is impossible for two
electrons of the same atom to simultaneously have the same values of the following four
quantum numbers: the principal quantum number, the angular momentum quantum
number, the magnetic quantum number, and the spin quantum number.

Following the discovery of various types of elementary particles, the PEP for electrons
has been generalized for all elementary particles and composite systems. For fermions,
the total wave function must be antisymmetric with respect to the exchange of identical
pair particles. For bosons, the total wave function must be symmetric with respect to
the exchange of pair particles. For composite systems with both identical fermions and
identical bosons, the preceding operations must hold true simultaneously.

Pauli Matrices
A set of three 2 × 2 complex matrices that are Hermitian, unitary, and represent the
orbital and spin angular momentum magnetic interactions.

Polymerase chain reaction (PCR)
An amplification technique to replicate complex proteins using a series of the same
chemical reaction.

284 Glossary

Potential energy surface (PES)
The potential energy of a system, usually a molecule, that describes a function of
parameters such as the bond length and the bond angle between two atoms.

Positive definite
This applies to matrices, vectors, and wave functions such that the complex conjugate
transpose, indicated by a dagger (†), multiplied by itself, is strictly greater than zero.

Principal quantum number
Describes the energy level or the electron's position in a shell of the atom and is numbered
from one up to the shell containing the outermost electron of that atom that can range
from one to infinity, thus it is a continuous quantum number. However, as the electron is
excited to higher and higher values, and dissociates from the atom, it is then considered
a free electron plus an ion. This process is called ionization, and the energy levels are
considered to be discrete.

Proton
A stable subatomic particle that is a component of a nucleus of an atom and carries a
positive electric charge equal in magnitude to that of an electron and a mass that is 3
orders of magnitude higher than the electron.

Pseudopotential
An effective potential that replaces the full atomic all-electron potential, eliminates the
core states, and describes the valence electrons by pseudo-wavefunctions.

Pure quantum state
A synonym for a state vector or a wave function.

Python-based Simulations of Chemistry Framework (PySCF)
An open-source collection of electronic structure modules powered by Python.

Quantum chemistry
A branch of chemistry that aims to understand chemical systems starting from the
postulates of quantum mechanics.

﻿ 285

Quantum mechanics
A fundamental physics theory that mathematically describes the behavior of matter,
energy, and the interactions with light at the scale of subatomic particles, atoms,
and molecules.

Quantum Monte Carlo (QMC)
A Monte Carlo method applied to a quantum system.

Quantum Phase Estimation (QPE) *
An algorithm to measure the phase of a quantum state.

Quantum Toolbox in Python (QuTiP)
A general framework for solving quantum mechanics problems such as systems composed
of few-level quantum systems and harmonic oscillators.

Qiskit
An open-source software development kit (SDK) for working with quantum computers at
the level of pulses, circuits, and application modules.

Quantum Natural SPSA (QN-SPSA)
A gradient descent method used to optimize systems that is based on SPSA and samples
the natural gradient instead of the first gradient by approximating Hessian of the fidelity
of the ansatz circuit.

Qubit
A quantum bit of computing information that is represented by a state vector through
coupling together angular and spin momentum.

Qubit Hamiltonian
A Hermitian operator that is represented by a Hermitian matrix.

Rayleigh-Ritz variational theorem
The expectation value of the Hamiltonian of a system is always an upper bound to the
lowest energy associated with the eigenvalue being solved for.

286 Glossary

Restricted HF (RHF) method
A HF method used for closed-shell molecules. The spin-orbitals are either alpha (spin-up)
or beta (spin-down) and all orbitals are doubly occupied by alpha and beta spin-orbitals.

Restricted open-shell (ROHF) method
A HF method used for open-shell molecules where the numbers of electrons of each spin
are not equal. ROHF uses as many doubly occupied molecular orbitals as possible and
singly occupied orbitals for the unpaired electrons.

Second quantization representation
A representation of quantum many-body states in the Fock-state basis.

Sequential Least Squares Programming (SLSQP)
A sequential quadratic programming optimization algorithm originally defined by
Dieter Kraft.

Simultaneous Perturbation Stochastic Approximation (SPSA)
A gradient descent method used to optimize systems that uses the stochastic gradient
approximation and only performs two measurements of the objective function at
each step.

SymPy
A Python library for symbolic mathematics.

Single-valued
A function that, for a given input variable, only has one possible output.

Slater determinant wave function
An expression that describes the wave function of a multi-fermionic system satisfying
anti-symmetry criteria of the PEP by changing sign when two electrons are exchanged.

Slater-type orbitals (STOs)
Functions used in a determinate to formulate atomic orbitals and molecular orbitals
through a linear combination of atomic orbitals (LCAO).

﻿ 287

Spin projection quantum number
Gives the projection of the spin momentum along the specified axis as either spin up
(+½) or spin down (-½) in a given spatial direction, which in quantum computing is
defined as the -axis.

Spin quantum number
Describes the intrinsic spin momentum of a certain particle type; it varies for each
particle type, and there is no classical analog to describe what it is. For the electron, it
is equal to 1/2.

Square integrable
A real or complex-valued function for which the square of the absolute value is finite for
the integration over all possible values of the domain.

State vector
A vector used to represent the wave function of a quantum state.

Superposition
A linear combination of all real or complex basis functions.

Total wave function *
Describes the physical behavior of a system. It contains all the information of a quantum
system including complex numbers as parameters. In general, it is a function of all the
particles in the system and includes the spatial position, the spin directional coordinates
of each particle, and time.

Trotterization
A truncation method of quantum simulations that is widely used to simulate
non-commuting Hamiltonians on quantum computers.

Unitary Coupled Cluster Singles and Doubles (UCCSD)
A unitary coupled-cluster theory that constructs a multi-electron wavefunction using the
exponential cluster operator, which is the sum of the operator for all single excitations and
of the operator for all double excitations.

288 Glossary

Unrestricted HF (UHF) method
A HF method used for open-shell molecules where the numbers of electrons of each spin
are not equal. UHF orbitals can have either alpha or beta spin, but the alpha and beta
orbitals may have different spatial components.

Variational Monte Carlo (VMC)
A Quantum Monte Carlo method that implements a variational method.

Variational Quantum Algorithm (VQA)
An algorithm which uses a parameterized quantum circuit to prepare a trial quantum
state as a trial solution (an ansatz) and a classical computer to optimize the parameters of
this quantum circuit with respect to an objective function.

Variational Quantum Eigensolver (VQE)
An algorithm introduced in 2014 that is defined using quantum-based hardware. It is the
first of several variational quantum algorithms (VQAs) that are currently being explored
by the scientific industry. In a loop, a classical computer optimizes the parameters of a
quantum circuit with respect to an objective function, such as finding the ground state of
a molecule, which is the state with the lowest energy. The parameterized quantum circuit
prepares a trial quantum state as a trial solution (an ansatz). By repeatedly measuring
qubits at the output of the quantum circuit, we get the expectation value of the energy
observable with respect to the trial state.

Appendix A
Readying

Mathematical
Concepts

By convention, a # indicates that there is a complimentary entry in Chapter 9, Glossary.

In this appendix, we will cover the following topics:

•	 Notations used

•	 Mathematical definitions

290 Readying Mathematical Concepts

Technical requirements
A companion Jupyter notebook for this chapter can be downloaded from GitHub at
https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious, which has been tested in the Google Colab
environment, which is free and runs entirely in the cloud, and in the IBM Quantum Lab
environment. Please refer to Appendix B – Leveraging Jupyter Notebooks in the Cloud, for
more information. The companion Jupyter notebook automatically installs the following
list of libraries:

•	 Numerical Python (NumPy) [NumPy], an open-source Python library that is used
in almost every field of science and engineering

•	 SymPy [SymPy], a Python library for symbolic mathematics

•	 Qiskit [Qiskit], an open-source SDK for working with quantum computers at the
level of pulses, circuits, and application modules

•	 Qiskit visualization support to enable the use of its visualization functionality and
Jupyter notebooks

Installing NumPy, SimPy, and Qiskit and importing
various modules
Install NumPy with the following command:

pip install numpy

Install SymPy using the following command:

pip install simpy

Install Qiskit using the following command:

pip install qiskit

Importing NumPy and a function that returns a LaTeX
representation of a complex array
Import NumPy with the following command:

import numpy as np

https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious
https://github.com/PacktPublishing/Quantum-Chemistry-and-Computing-for-the-Curious

Notations used 291

Import the required functions and class methods. The array_to_latex function()
returns a LaTeX representation of a complex array with dimension 1 or 2:

from qiskit.visualization import array_to_latex

Notations used
We will be using the following notations wherever it is appropriate:

•	 𝛼𝛼, 𝛽𝛽, 𝜃𝜃, 𝜎𝜎, 𝜑𝜑 , and so on – Lowercase Greek letters for scalars.

•	 𝑎𝑎, 𝑏𝑏, 𝑥𝑥 , and so on – Lowercase Latin letters for column vectors in particle space.
These vectors have n components denoted 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑥𝑥𝑘𝑘 , and so on where k is an
integer.

•	 𝐴𝐴, 𝐵𝐵, 𝑋𝑋 , and so on – Uppercase Latin letters for matrices in particle space. These
are n X n matrices.

•	 𝑎𝑎′, 𝑎𝑎𝑇𝑇, 𝐴𝐴′, 𝐴𝐴𝑇𝑇 , and so on – The prime symbol (') and the letter 𝑇𝑇 stand for vector
and matrix transpose.

•	 𝑎𝑎∗, 𝑋𝑋∗ , and so on – The asterisk symbol (*) is used for vector and matrix complex
conjugate.

•	 𝑥𝑥† , 𝑋𝑋† , and so on – The dagger symbol, † , is used for vector and matrix complex
conjugate transpose.

•	 𝐴𝐴−1 , and so on – A power to the negative one (−1) represents the inverse of a
matrix.

•	 𝑋𝑋⊗𝑌𝑌 , and so on – The o-times symbol ⊗ represents the Kronecker product or
tensor product of matrices and/or vectors.

•	 𝑋𝑋⊕𝑌𝑌 , and so on. – The symbol ⊕ represents the Kronecker sum of square
matrices.

•	 – There exists at least one.

•	 ∀ – For all.

•	 ∈ – Is member of, for example 𝛼𝛼 ∈ ℝ means that 𝛼𝛼 is in the set ℝ of real numbers.

292 Readying Mathematical Concepts

Mathematical definitions
Pauli exclusion principle (PEP) #
In 1925, Pauli described the PEP for electrons, which states that it is impossible for two
electrons of the same atom to simultaneously have the same values of the following four
quantum numbers: 𝑛𝑛 , the principal quantum number; 𝑙𝑙 , the angular momentum quantum
number; 𝑚𝑚𝑙𝑙 , the magnetic quantum number; and 𝑚𝑚𝑠𝑠 , the spin quantum number.

Following the discovery of various types of elementary particles, the PEP for electrons
has been generalized for all elementary particles and composite systems. Remember that
fermions are particles that have half-integer spin (𝑠𝑠 =

1
2 ,
3
2 ,
5
2 , …) and bosons are particles

that have integer spin (𝑠𝑠 = 0,1,2,…). The general formulation of the PEP states the total
wave function 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for a quantum system must have certain symmetries for all sets of
identical particles, that is, electrons and identical nuclei, both bosons and fermions, under
the operation of pair particle permutation:

•	 For fermions, the total wave function must be antisymmetric (−) with respect to the
exchange of identical pair particles (𝐴̂𝐴𝑖𝑖𝑖𝑖) :

𝐴̂𝐴𝑖𝑖𝑖𝑖𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

meaning that the spatial part of the wave function is antisymmetric while the spin part is
symmetric, or vice versa.

•	 For bosons, the total wave function must be symmetric (+) with respect to the
exchange of pair particles (𝑆̂𝑆𝑖𝑖𝑖𝑖):

𝑆̂𝑆𝑖𝑖𝑖𝑖𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = +𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

meaning that both the spatial wave function and spin function are symmetric, or both
are antisymmetric.

•	 For composite systems with both identical fermions and identical bosons, the
preceding operations must hold true simultaneously.

Mathematical definitions 293

Angular momentum quantum number #
Also known as the orbital quantum number or the azimuthal quantum number, and
denoted by 𝑙𝑙 , this describes the electron subshell and gives the magnitude of the
orbital angular momentum through the relation: 𝐿𝐿2 = ℏ2𝑙𝑙(𝑙𝑙 + 1) . In chemistry and
spectroscopy, 𝑙𝑙 = 0 is called the 𝑠𝑠 orbital, 𝑙𝑙 = 1 the 𝑝𝑝 orbital, 𝑙𝑙 = 2 the 𝑑𝑑 orbital, and
𝑙𝑙 = 3 the 𝑓𝑓 orbital. Technically, there are more orbitals beyond the 𝑓𝑓 orbital, that is,
𝑙𝑙 = 4 = 𝑔𝑔 , 𝑙𝑙 = 5 = ℎ , and so on, and these are of higher energy levels.

Occupation number operator #
An operator 𝑎̂𝑎𝑗𝑗†𝑎̂𝑎𝑗𝑗 where 𝑗𝑗 ∈ [0,𝑁𝑁 − 1] , and {𝑎̂𝑎𝑖𝑖}𝑖𝑖=0𝑁𝑁−1 are the annihilation operators

and {𝑎̂𝑎𝑗𝑗†}𝑗𝑗=0
𝑁𝑁−1

 are the creation operators that act on local electron modes, and satisfy the

following anti-commutation relations:

{𝑎𝑎𝑖𝑖†, 𝑎𝑎𝑗𝑗†} = {𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗} = 0

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Dirac delta function and {𝐴𝐴, 𝐵𝐵} ≝ 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 is the anti-commutator of two
operators 𝐴𝐴 and 𝐵𝐵 .

Quantum Phase Estimation (QPE) #
Given a unitary operator 𝑈𝑈 , its eigenstate and eigenvalues, 𝑈𝑈|𝜓𝜓⟩ = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋|𝜓𝜓⟩ , the ability
to prepare a state |𝜓𝜓⟩ , and the ability to apply 𝑈𝑈 itself, the QPE algorithm calculates 2𝑛𝑛𝜃𝜃 ,
where 𝑛𝑛 is the number of qubits used to estimate 𝜃𝜃 thereby allowing measurement of 𝜃𝜃 as
precisely as we want.

Complex numbers
Complex numbers are of the form 𝜑𝜑 = 𝛼𝛼 + 𝑖𝑖𝛽𝛽 where 𝛼𝛼 and 𝛽𝛽 are real numbers and
𝑖𝑖 (𝑗𝑗 in Python) is called the imaginary unit that by definition satisfies the equation
 2 = -1 . The magnitude of a complex number is: |𝜑𝜑| = |𝛼𝛼 + 𝑖𝑖𝛽𝛽| = √𝛼𝛼2 + 𝛽𝛽2 . The
complex conjugate of 𝜑𝜑 = 𝛼𝛼 + 𝑖𝑖𝛽𝛽 is 𝜑𝜑∗ = 𝛼𝛼 − 𝑖𝑖𝛽𝛽 . Euler's formula 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
is convenient for multiplying complex numbers, and exponentiation. The set of complex
numbers together with the addition and multiplication operations is a field denoted ℂ .
Algebraic expressions composed of complex numbers follow the standard rules of algebra;
the difference with real numbers is that 𝑖𝑖2 is replaced by -1 .

{𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗†} = 𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 + 𝑎̂𝑎𝑗𝑗𝑎̂𝑎𝑖𝑖† = 𝛿𝛿𝑖𝑖𝑖𝑖 = {0, 𝑖𝑖 ≠ 𝑗𝑗
1, 𝑖𝑖 = 𝑗𝑗

294 Readying Mathematical Concepts

Vector space
A vector space 𝑉𝑉 over the field ℂ of complex numbers or the field ℝ of real numbers is a set
of objects called vectors that can be added together and multiplied ("scaled") by numbers.

The following Python code illustrates a vector with two complex components:

x = np.array([[1j],

 [2]])

array_to_latex(x, prefix='x = ')

𝑥𝑥 = [𝑖𝑖2]

We use the @ operator introduced in Python 3.5 to multiply a vector by a number, as
illustrated below, multiplying vector 𝑥𝑥 = [𝑖𝑖2] by the imaginary unit 𝑖𝑖 (𝑗𝑗 in Python)
where 𝑖𝑖2 is replaced by -1 :

α = 1j

print('α =', α)

y = α*x

array_to_latex(y, prefix=' y = α*x =')

𝛼𝛼  = 1𝑗𝑗

Linear operators
A function 𝑓𝑓 defined on a vector space 𝑉𝑉 over ℂ is a linear operator if it has the two
following properties:

•	 For any 𝑥𝑥, 𝑦𝑦 in 𝑉𝑉 , 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦)

•	 For any 𝑥𝑥 in 𝑉𝑉 , 𝛼𝛼 in ℂ , 𝑓𝑓(𝛼𝛼𝛼𝛼) = 𝛼𝛼𝛼𝛼(𝑥𝑥)

𝑦𝑦 = 𝛼𝛼 ∗ 𝑥𝑥 = [−1
2𝑖𝑖]

Mathematical definitions 295

Matrices
A matrix is a set of elements arranged in a square or rectangular array. Elements can be
numbers, matrices, functions, or algebraic expressions. The order or shape of a matrix
is written (number of rows) x (number of columns). Indices are written in row, column
format so for example, 𝑎𝑎𝑘𝑘,𝑙𝑙 is an element in row 𝑘𝑘 and column 𝑙𝑙 . Matrices represent linear
operators in a vector space. It is convenient to use the same symbol for an operator and its
matrix in some orthonormal basis.

Eigenvalues and eigenvectors
By definition, an eigenvector of a linear operator 𝑓𝑓 defined on a vector space 𝑉𝑉 over ℂ is
a non-zero vector 𝑥𝑥 that has the following property: 𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝜆𝜆 where 𝜆𝜆 is a scalar in ℂ
known as the eigenvalue associated with the eigenvector 𝑥𝑥 .

For a finite-dimensional space 𝑉𝑉 , the above definition is equivalent to 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 where 𝐴𝐴 is
the matrix representation of 𝑓𝑓 .

Vector and matrix transpose, conjugate, and conjugate
transpose
The transpose of some vector 𝑎𝑎 or some matrix 𝐴𝐴 often denoted as 𝑎𝑎′, 𝑎𝑎𝑇𝑇, 𝐴𝐴′, 𝐴𝐴𝑇𝑇 is obtained
by switching the row and column indices of the vector 𝑎𝑎 or matrix 𝐴𝐴 . The following
Python code illustrates the transpose of vector 𝑥𝑥 = [𝑖𝑖2] :

x = array_to_latex(x.transpose(), prefix='x^T = ')

𝑥𝑥𝑇𝑇 = [𝑖𝑖 2]
The complex conjugate of some vector 𝑎𝑎 or some matrix 𝐴𝐴 often denoted as 𝑎𝑎∗ , 𝐴𝐴∗ is
obtained by performing the complex conjugate of all the elements:

x = array_to_latex(x.conjugate(), prefix='x^* = ')

𝑥𝑥∗ = [−𝑖𝑖2]

296 Readying Mathematical Concepts

The complex conjugate transpose of some vector 𝑎𝑎 or matrix 𝐴𝐴 often is denoted as 𝑎𝑎† ,
𝐴𝐴† in quantum mechanics. The symbol, † , is called the dagger. 𝐴𝐴† is called the adjoint or
Hermitian conjugate of 𝐴𝐴 :

x = array_to_latex(x.conjugate().transpose(), prefix='(x^*)^T =
')

𝑥𝑥† = (𝑥𝑥∗)𝑇𝑇 = [−𝑖𝑖 2]

Dirac's notation #
In Dirac's notation, also known as bra-ket notation:

•	 A ket |𝑥𝑥⟩ denotes a vector, which represents a state of a quantum system.

•	 A bra ⟨𝑓𝑓| denotes a linear function that maps each vector to a complex number.

•	 The action of the linear function ⟨𝑓𝑓| on a vector |𝑥𝑥⟩ is written as ⟨𝑓𝑓|𝑥𝑥⟩ .
They are related as follows:

|𝑥𝑥⟩ = (
𝑥𝑥1
𝑥𝑥2
…
𝑥𝑥𝑛𝑛

) ⟨𝑥𝑥| = (|𝑥𝑥⟩∗)T = (𝑥𝑥1
∗, 𝑥𝑥2

∗, … 𝑥𝑥𝑛𝑛
∗)

Inner product of two vectors
An inner product over a vector space 𝑉𝑉 over ℂ is a complex function (·, ·) of two vectors
that returns a scalar, and which satisfies the following:

•	 For any 𝑥𝑥 in 𝑉𝑉 , (𝑥𝑥, 𝑥𝑥) ≥ 0 . Moreover (𝑥𝑥, 𝑥𝑥) = 0 if and only if 𝑥𝑥 = 0 .

•	 For any 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 in 𝑉𝑉, (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽, 𝑧𝑧) = 𝛼𝛼(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽(𝑦𝑦, 𝑧𝑧) .

•	 For any 𝑥𝑥, 𝑦𝑦 in 𝑉𝑉, (𝑥𝑥, 𝑦𝑦) = (𝑦𝑦, 𝑥𝑥)∗ .

On ℂ𝑛𝑛 the standard Hermitian inner product is: (𝑥𝑥, 𝑦𝑦) ≝∑𝑥𝑥𝑖𝑖∗𝑦𝑦𝑖𝑖
n

𝑖𝑖=1
 .

Mathematical definitions 297

Using Dirac's notation, the inner product of vectors |𝑥𝑥⟩ and |𝑦𝑦⟩ is denoted ⟨𝑥𝑥|𝑦𝑦⟩ and is
the same as the result of applying the bra ⟨𝑥𝑥| to the ket |𝑦𝑦⟩ :

|𝑥𝑥⟩ = (
𝑥𝑥1
𝑥𝑥2
…
𝑥𝑥𝑛𝑛

) |𝑦𝑦⟩ = (
𝑦𝑦1
𝑦𝑦2
…
𝑦𝑦𝑛𝑛

)

The Python numpy.vdot function returns the Hermitian inner product of two vectors:

array_to_latex(x, prefix='x = ')

𝑥𝑥 = [𝑖𝑖2]

array_to_latex(y, prefix='y = ')

𝑦𝑦 = [−1
2𝑖𝑖]

print("np.vdot(x, y) = ", np.vdot(x, y)

np. vdot(x, y) = 5j

Norm of a vector
The inner product yields a norm defined by ‖𝑥𝑥‖ = ⟨𝑥𝑥|𝑥𝑥⟩

1
2 . In addition to the triangle

inequality ‖𝑥𝑥 + 𝑦𝑦‖ ≤ ‖𝑥𝑥‖ + ‖𝑦𝑦‖ , the norm also satisfies the Schwarz inequality
⟨𝑥𝑥|𝑦𝑦⟩ ≤ ‖𝑥𝑥‖ ‖𝑦𝑦‖ . The vector norm or the vector's magnitude is commonly known as the
length of the vector.

The Python numpy.linalg.norm function returns the norm of a vector:

print("Norm of vector x: {:.3f}".format(np.linalg.norm(x)))

Norm of vector x: 2.236

⟨𝑥𝑥|𝑦𝑦⟩ ≝ (𝑥𝑥1
∗, 𝑥𝑥2

∗, … 𝑥𝑥𝑛𝑛
∗) (

𝑦𝑦1
𝑦𝑦2
…
𝑦𝑦𝑛𝑛

) = 𝑥𝑥1
∗𝑦𝑦1 + 𝑥𝑥2

∗𝑦𝑦2 + ⋯ + 𝑥𝑥𝑛𝑛
∗ 𝑦𝑦𝑛𝑛

298 Readying Mathematical Concepts

Hilbert space
An inner-product space 𝑉𝑉 is a Hilbert space if it is complete under the induced norm, that
is, if every Cauchy sequence converges: for every sequence {𝑥𝑥𝑛𝑛} with 𝑥𝑥𝑛𝑛 ∈ 𝑉𝑉 such that
lim

𝑛𝑛,𝑚𝑚→∞
‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚‖ = 0 there is an 𝑥𝑥 in 𝑉𝑉 with lim

𝑛𝑛→∞
 ‖𝑥𝑥𝑛𝑛 − 𝑥𝑥‖ = 0 . This property allows

the technique of calculus to be used.

Matrix multiplication with a vector
The @ operator introduced in Python 3.5 implements matrix multiplication with a vector:

A = np.array([[1, 2],

 [3, 1j]])

array_to_latex(A, prefix='A = ')

𝐴𝐴 = [1 2
3 𝑖𝑖]

a = np.array([[1],

 [1]])

array_to_latex(a, prefix='a = ')

𝑎𝑎 = [11]

array_to_latex(A@ 𝑥𝑥 , prefix='A@ 𝑥𝑥 = ')

𝐴𝐴@𝑎𝑎 = [3
3 + i]

Matrix addition
The addition of two matrices of the same shape is achieved by adding the corresponding
entries together:

(𝐴𝐴 + 𝐵𝐵)𝑗𝑗,𝑘𝑘 = 𝐴𝐴𝑗𝑗,𝑘𝑘 + 𝐵𝐵𝑗𝑗,𝑘𝑘

A = np.array([[1, 0],

 [0, 1j]])

array_to_latex(A, prefix='A = ')

𝐴𝐴 = [1 0
0 𝑖𝑖]

Mathematical definitions 299

B = np.array([[0, 1],

 [1j, 0]])

array_to_latex(B, prefix='B = ')

B = [0 1
𝑖𝑖 0]

array_to_latex(A+B, prefix='A+B = ')

A + B = [1 1
𝑖𝑖 𝑖𝑖]

Matrix multiplication
Let 𝐴𝐴 be an m-by-n matrix and 𝐵𝐵 an n-by-p matrix, then the product 𝐴𝐴𝐴𝐴 is the m-by-p
matrix defined as follows:

𝐴𝐴𝐴𝐴𝑗𝑗,𝑘𝑘 =∑𝐴𝐴𝑗𝑗,𝑟𝑟𝐵𝐵𝑟𝑟,𝑘𝑘
𝑛𝑛

𝑟𝑟=1

The @ operator introduced in Python 3.5 implements matrix multiplication:

A = np.array([[1, 0],

 [0, 1j]])

array_to_latex(A, prefix='A = ')

𝐴𝐴 = [1 0
0 𝑖𝑖]

B = np.array([[1, 1, 1j],

 [1, -1, 0]])

array_to_latex(B, prefix='B = ')

𝐵𝐵 = [1 1 𝑖𝑖
1 −1 0]

array_to_latex(A@B, prefix='A@B = ')

𝐴𝐴@𝐵𝐵 = [1 1 𝑖𝑖
𝑖𝑖 −𝑖𝑖 0]

300 Readying Mathematical Concepts

Matrix inverse
The inverse of some matrix 𝐴𝐴 when it exists is denoted as 𝐴𝐴−1 is a matrix such that
𝐴𝐴−1𝐴𝐴 = 𝐴𝐴𝐴𝐴−1 = 𝟙𝟙 where 𝟙𝟙 is the identity matrix, for any matrix 𝐴𝐴 : 𝐴𝐴𝟙𝟙 = 𝟙𝟙 𝐴𝐴 = 𝟙𝟙 . The
numpy.linalg.inv function computes the multiplicative matrix inverse of a matrix:

from numpy.linalg import inv

a = np.array([[1., 2.], [3., 4.]])

array_to_latex(A, prefix='A =')

𝐴𝐴 = [1 2
3 4]

array_to_latex(inv(A), prefix='A^{-1} = ')

Tensor product
Given vector spaces 𝑈𝑈 of dimension 𝑚𝑚 and 𝑉𝑉 of dimension 𝑛𝑛 over ℂ the tensor product
𝑈𝑈⊗𝑉𝑉 is another vector space 𝑊𝑊 of dimension 𝑚𝑚𝑚𝑚 over ℂ .
∀ , ∈ ℂ, ∀ 1, 2 ∈ , ∀ 1, 2 ∈ and ∀ 𝐴𝐴, 𝐵𝐵 linear maps on 𝑈𝑈 and ∀ 𝐶𝐶, 𝐷𝐷 linear

maps on 𝑉𝑉 :

Bilinearity

(𝑢𝑢1 + 𝑢𝑢2) ⊗ 𝑣𝑣1 = 𝑢𝑢1 ⊗ 𝑣𝑣1 + 𝑢𝑢2 ⊗ 𝑣𝑣1
𝑢𝑢1 ⊗ (𝑣𝑣1 + 𝑣𝑣2) = 𝑢𝑢1 ⊗ 𝑣𝑣1 + 𝑢𝑢1 ⊗ 𝑣𝑣2

(𝛼𝛼𝑢𝑢1) ⊗ (𝛽𝛽𝑣𝑣1) = 𝛼𝛼𝛼𝛼(𝑢𝑢1 ⊗ 𝑣𝑣1)

Associativity

𝐴𝐴⊗ (B⊗C) = (𝐴𝐴⊗B)⊗ C
𝑣𝑣1 ⊗ (𝑢𝑢1 ⊗ 𝑢𝑢2) = (𝑣𝑣1 ⊗ 𝑢𝑢1)⊗ 𝑢𝑢2

Linear maps properties

(𝐴𝐴⊗ 𝐶𝐶)(𝐵𝐵⊗𝐷𝐷) = 𝐴𝐴𝐴𝐴⊗𝐶𝐶𝐶𝐶
(𝐴𝐴⊗ 𝐶𝐶)(𝑢𝑢1 ⊗ 𝑣𝑣1) = 𝐴𝐴𝑢𝑢1 ⊗ C𝑣𝑣1

𝐴𝐴−1 = [
−2 1
3
2 − 1

2
]

Mathematical definitions 301

If the inner-product space 𝑊𝑊 is the tensor product of two inner-product spaces 𝑈𝑈 , 𝑉𝑉 , then
for each pair of vectors |𝑢𝑢⟩ ∈ 𝑈𝑈 , |𝑣𝑣⟩ ∈ 𝑉𝑉 there is an associated tensor product |𝑢𝑢⟩ ⊗ |𝑣𝑣⟩
in 𝑊𝑊 .
In Dirac's notation, we denote the tensor product |𝑢𝑢⟩ ⊗ |𝑣𝑣⟩ as |𝑢𝑢⟩|𝑣𝑣⟩ or |𝑢𝑢𝑢𝑢⟩ .
The inner product of |𝑢𝑢1⟩ ⊗ |𝑣𝑣1⟩ and |𝑢𝑢2⟩ ⊗ |𝑣𝑣2⟩ is ⟨𝑢𝑢1|𝑢𝑢2⟩. ⟨𝑣𝑣1|𝑣𝑣2⟩ .

Kronecker product or tensor product of matrices or
vectors
The Kronecker product or tensor product denoted as ⊗ of two matrices is a composite
matrix made of blocks of the second matrix scaled by the first. Let 𝐴𝐴 be an m-by-n matrix
and 𝐵𝐵 an p-by-q matrix, then the Kronecker product 𝐴𝐴⊗𝐵𝐵 is the pm-by-qn block matrix:

𝐴𝐴⊗𝐵𝐵 = (
𝑎𝑎11 𝐵𝐵 …    𝑎𝑎1𝑛𝑛 𝐵𝐵 
…     …     …  

𝑎𝑎𝑚𝑚1 𝐵𝐵    …    𝑎𝑎𝑚𝑚𝑚𝑚 𝐵𝐵
)

The Python numpy.kron function implements the Kronecker product:

A = np.array([[1,2],

 [3, 4]])

array_to_latex(A, prefix='A =')

𝐴𝐴 = [1 2
3 4]

B = np.array([[0, 5],

 [6, 7]])

array_to_latex(B, prefix='B =')

𝐵𝐵 = [0 5
6 7]

C = np.kron(A,B)

array_to_latex(C, prefix='A \otimes B =')

𝐴𝐴 ⊗ 𝐵𝐵 = [
0 5 0 10
6 7 12 14
0 15 0 20

18 21 24 28
]

302 Readying Mathematical Concepts

Kronecker sum
The Kronecker sum of any two square matrices, 𝐴𝐴 n-by-n and 𝐵𝐵 m-by-m, noted 𝐴𝐴⊕𝐵𝐵 is
defined by:

𝐴𝐴⊕𝐵𝐵 = 𝐴𝐴⊗ 𝟙𝟙𝑚𝑚 + 𝟙𝟙𝑛𝑛 ⊗𝐵𝐵

where 𝟙𝟙𝑚𝑚 is the identity matrix or order 𝑚𝑚 and 𝟙𝟙𝑛𝑛 is the identity matrix of order 𝑛𝑛 .

Outer product
The outer product of a ket |𝑥𝑥⟩ and a bra ⟨𝑦𝑦| is the rank-one operator |𝑥𝑥⟩⟨𝑦𝑦| with the rule:

(|𝑥𝑥⟩⟨𝑦𝑦|)(𝑧𝑧) = ⟨𝑦𝑦|𝑧𝑧⟩|𝑥𝑥⟩
For a finite-dimensional vector space, the outer product is a simple matrix multiplication:

The Python numpy.outer function implements the outer product:

array_to_latex(x, prefix='x = ')

𝑥𝑥 = [𝑖𝑖
2]

array_to_latex(y, prefix='y = ')

𝑦𝑦 = [−1
2𝑖𝑖]

array_to_latex(np.outer(x, y), prefix='np.outer(x, y) = ')

𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦) = [−𝑖𝑖 −2
−2 4𝑖𝑖]

|𝑥𝑥⟩⟨𝑦𝑦| ≝ (
𝑥𝑥1
𝑥𝑥2
…
𝑥𝑥𝑛𝑛

) (𝑦𝑦1
∗, 𝑦𝑦2

∗, … 𝑦𝑦𝑛𝑛
∗) = (

𝑥𝑥1𝑦𝑦1
∗ 𝑥𝑥1𝑦𝑦2

∗ … 𝑥𝑥1𝑦𝑦𝑛𝑛
∗

𝑥𝑥2𝑦𝑦1
∗ 𝑥𝑥2𝑦𝑦2

∗ … 𝑥𝑥2𝑦𝑦𝑛𝑛
∗

… … … …
𝑥𝑥𝑛𝑛𝑦𝑦1

∗ 𝑥𝑥𝑛𝑛𝑦𝑦2
∗ … 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛

∗
)

Mathematical definitions 303

Writing matrices as a sum of outer products
Any matrix can be written in terms of outer products. For instance, for a 2 x 2 matrix:

|0⟩⟨0| = (1
0) (1 0) = (1 0

0 0)

|1⟩⟨1| = (0
1) (0 1) = (0 0

0 1)

|0⟩⟨1| = (1
0) (0 1) = (0 1

0 0)

|1⟩⟨0| = (0
1) (1 0) = (0 0

1 0)

𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) = 𝑚𝑚0,0|0⟩⟨0| + 𝑚𝑚0,1|0⟩⟨1| +𝑚𝑚1,0|1⟩⟨0| + 𝑚𝑚1,1|1⟩⟨1|

Hermitian operator
The complex conjugate transpose of some vector 𝑎𝑎 or matrix 𝐴𝐴 is often denoted as 𝑎𝑎† ,
𝐴𝐴† in quantum mechanics. The symbol, † , is called the dagger. 𝐴𝐴† is called the adjoint or
Hermitian conjugate of 𝐴𝐴 .

A linear operator 𝑈𝑈 is called Hermitian or self-adjoint if it is its own adjoint: 𝑈𝑈† = 𝑈𝑈 .

The spectral theorem says that if 𝑈𝑈 is Hermitian then it must have a set of orthonormal
eigenvectors

{|𝑒𝑒𝑖𝑖⟩ ; 𝑖𝑖 ∈ [1,𝑁𝑁], ⟨𝑒𝑒𝑖𝑖|𝑒𝑒𝑗𝑗⟩ = 𝛿𝛿𝑗𝑗𝑗𝑗}
where 𝛿𝛿𝑗𝑗𝑗𝑗 = {0, 𝑖𝑖 ≠ 𝑗𝑗

1, 𝑖𝑖 = 𝑗𝑗 with real eigenvalues 𝜆𝜆𝑖𝑖 , 𝑈𝑈|𝑒𝑒𝑖𝑖⟩ = 𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩ , and 𝑁𝑁 is the number
of eigenvectors, or also is the dimension of the Hilbert space. Hermitian operators
have a unique spectral representation in terms of the set of eigenvalues {𝜆𝜆𝑖𝑖} and the
corresponding eigenvectors |𝑒𝑒𝑖𝑖⟩ :

𝑈𝑈 =∑𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩⟨𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

Unitary operator
A linear operator 𝑈𝑈 is called unitary if its adjoint exists and satisfies 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝟙𝟙
where 𝟙𝟙 is the identity matrix, which by definition leaves any vector it is multiplied
with unchanged.

Unitary operators preserve inner products:

⟨𝑈𝑈𝑈𝑈|𝑈𝑈𝑈𝑈⟩ = ⟨𝑥𝑥|𝑈𝑈†𝑈𝑈|𝑦𝑦⟩ = ⟨𝑥𝑥|𝟙𝟙|𝑦𝑦⟩ = ⟨𝑥𝑥|𝑦𝑦⟩

304 Readying Mathematical Concepts

Hence unitary operators also preserve the norm commonly known as the length of
quantum states:

‖𝑈𝑈𝑈𝑈‖ = ⟨𝑈𝑈𝑈𝑈|𝑈𝑈𝑈𝑈⟩
1
2 = ⟨𝑥𝑥|𝑥𝑥⟩

1
2 = ‖𝑥𝑥‖

For any unitary matrix 𝑈𝑈 , any eigenvectors |𝑥𝑥⟩ and |𝑦𝑦⟩ and their eigenvalues 𝜆𝜆𝑥𝑥 and 𝜆𝜆𝑦𝑦 ,
 𝑈𝑈|𝑥𝑥⟩ = 𝜆𝜆𝑥𝑥|𝑥𝑥⟩ and 𝑈𝑈|𝑦𝑦⟩ = 𝜆𝜆𝑦𝑦|𝑦𝑦⟩ , the eigenvalues 𝜆𝜆𝑥𝑥 and 𝜆𝜆𝑦𝑦 have the form 𝑒𝑒𝑖𝑖𝑖𝑖 and if
𝜆𝜆𝑥𝑥 ≠ 𝜆𝜆𝑦𝑦 then the eigenvectors |𝑥𝑥⟩ and |𝑦𝑦⟩ are orthogonal: ⟨𝑥𝑥|𝑦𝑦⟩ = 0 .

 It is useful to note that since for any 𝜃𝜃 , |𝑒𝑒𝑖𝑖𝑖𝑖| = 1 :

|𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖| = |𝑒𝑒

𝑖𝑖(𝑎𝑎+𝑏𝑏)
2 (𝑒𝑒

𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)

2)| = |𝑒𝑒
𝑖𝑖(𝑎𝑎+𝑏𝑏)

2 | |𝑒𝑒
𝑖𝑖(𝑎𝑎−𝑏𝑏)

2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 | = |𝑒𝑒

𝑖𝑖(𝑎𝑎−𝑏𝑏)
2 + 𝑒𝑒−𝑖𝑖(𝑎𝑎−𝑏𝑏)

2 |

Density matrix #
Any quantum state, either mixed or pure, can be described by a density matrix (𝜌𝜌),
which is a normalized positive Hermitian operator where 𝜌𝜌 = 𝜌𝜌† . According to the spectral
theorem, there exists an orthonormal basis, defined in Section 2.3.1, Hermitian operator,
such that the density is the sum of all eigenvalues (𝑁𝑁):

where 𝑖𝑖 ranges from 1 to 𝑁𝑁 , 𝜆𝜆𝑖𝑖 are positive or null eigenvalues (𝜆𝜆𝑖𝑖 ≥ 0), and the sum of
eigenvalues is the trace operation (𝑡𝑡𝑡𝑡) of the density matrix and is equal to 1:

For example, when the density is 𝜌𝜌 = (
𝜌𝜌0,0 𝜌𝜌0,1
𝜌𝜌1,0 𝜌𝜌1,1) , with 𝜌𝜌 = 𝜌𝜌† , the trace of the

density is:

𝑡𝑡𝑡𝑡(𝜌𝜌) = 𝜌𝜌0,0 + 𝜌𝜌1,1 = 1

𝜌𝜌 =∑𝜆𝜆𝑖𝑖|𝑒𝑒𝑖𝑖⟩⟨𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

𝑡𝑡𝑟𝑟(𝜌𝜌) =∑𝜆𝜆𝑖𝑖
𝑁𝑁

𝑖𝑖=1
= 1

Mathematical definitions 305

Here are some examples of the density matrices of pure quantum states:

The density matrix of a mixed quantum state consisting of a statistical ensemble of 𝑛𝑛 pure
quantum states {|𝑥𝑥𝑖𝑖⟩ ; 𝑖𝑖 ∈ [1, 𝑛𝑛]} , each with a classical probability of occurrence 𝑝𝑝𝑖𝑖 , is
defined as:

𝜌𝜌 =∑𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖⟩⟨𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

where every 𝑝𝑝𝑖𝑖 is positive or null and their sum is equal to one:

𝑡𝑡𝑡𝑡(𝜌𝜌) =∑𝑝𝑝𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

We summarize the difference between pure states and mixed states in Figure AA.1 which
is the same as Figure 2.20.

Figure AA.1 – Density matrix of pure and mixed quantum states

Pauli matrices
There are three Pauli matrices (𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦 and 𝜎𝜎𝑧𝑧):

𝜎𝜎𝑥𝑥 = (0 1
1 0)

 ,
𝜎𝜎𝑦𝑦 = (0 −𝑖𝑖

𝑖𝑖 0)
 ,

𝜎𝜎𝑧𝑧 = (1 0
0 −1)

(1 0
0 0) = (1

0) (1 0) = |0⟩⟨0|

(0 0
0 1) = (0

1) (0 1) = |1⟩⟨1|

1
2 (1 −1

−1 1) = 1
2 (|0⟩ − |1⟩)(|0⟩ − |1⟩)

306 Readying Mathematical Concepts

which are Hermitian and unitary making the square of each equal to the (2 × 2)
identity matrix:

𝜎𝜎𝑥𝑥
2 = 𝜎𝜎𝑦𝑦

2 = 𝜎𝜎𝑧𝑧
2 = (1 0

0 1)

Each of the Pauli matrices is equal to its inverse:

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑥𝑥−1
𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦−1
𝜎𝜎𝑧𝑧 = 𝜎𝜎𝑧𝑧−1

 We summarize the Pauli matrices and the operations on a qubit that yields the associated
eigenvectors in the following table:

Decomposing a matrix into the weighted sum of the tensor product
of Pauli matrices
It can be shown that any matrix can be decomposed into the weighted sum of the
tensor product of the identity matrix and the Pauli matrices 𝑃𝑃𝑖𝑖 = ⊗𝑗𝑗

𝑁𝑁 𝜎𝜎𝑖𝑖,𝑗𝑗 where
𝜎𝜎𝑖𝑖,𝑗𝑗 ∈ {𝟙𝟙, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑧𝑧} with weights ℎ𝑖𝑖 and 𝑁𝑁 qubits:

𝑀𝑀 =∑ℎ𝑖𝑖 ⊗𝑗𝑗
𝑁𝑁 𝜎𝜎𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑖𝑖=1

Mathematical definitions 307

For Hermitian matrices, all weights ℎ𝑖𝑖 are real.

We provide a proof for any 2x2 matrix, 𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) .

Since 𝜎𝜎𝑥𝑥|0⟩ = |1⟩ hence ⟨1| = ⟨0|𝜎𝜎𝑥𝑥 we have:

Starting from the decomposition of a 2x2 matrix as a sum of outer products:

𝑀𝑀 = (
𝑚𝑚0,0 𝑚𝑚0,1
𝑚𝑚1,0 𝑚𝑚1,1

) = 𝑚𝑚0,0|0⟩⟨0| + 𝑚𝑚0,1|0⟩⟨1| + 𝑚𝑚1,0|1⟩⟨0| + 𝑚𝑚1,1|1⟩⟨1|
We can then write:

Anti-commutator #
An operation of two operators 𝐴𝐴, 𝐵𝐵 defined as: {𝐴𝐴, 𝐵𝐵} ≝ 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 .

𝜎𝜎𝑧𝑧 𝜎𝜎𝑥𝑥 = (1 0
0 −1) (0 1

1 0) = (0 1
−1 0) = 𝑖𝑖𝜎𝜎𝑦𝑦

𝜎𝜎𝑥𝑥𝜎𝜎𝑧𝑧 = (0 1
1 0) (1 0

0 −1) = (0 −1
1 0) = −𝑖𝑖𝜎𝜎𝑦𝑦

𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 = 1

2 ((1 0
0 1) + (1 0

0 −1)) = (1 0
0 0) = |0⟩⟨0|

𝟙𝟙 − 𝜎𝜎𝑧𝑧
2 = 1

2 ((1 0
0 1) − (1 0

0 −1)) = (0 0
0 1) = |1⟩⟨1|

|0⟩⟨1| = |0⟩⟨0|𝜎𝜎𝑥𝑥 = 𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 𝜎𝜎𝑥𝑥 =

𝜎𝜎𝑥𝑥 + 𝑖𝑖𝜎𝜎𝑦𝑦
2

|1⟩⟨0| = 𝜎𝜎𝑥𝑥|0⟩⟨0| = 𝜎𝜎𝑥𝑥
𝟙𝟙 + 𝜎𝜎𝑧𝑧
2 =

𝜎𝜎𝑥𝑥 − 𝑖𝑖𝜎𝜎𝑦𝑦
2

𝑀𝑀 = 𝑚𝑚0,0
𝟙𝟙 + 𝜎𝜎𝑧𝑧

2 + 𝑚𝑚0,1
𝜎𝜎𝑥𝑥 + 𝑖𝑖𝜎𝜎𝑦𝑦

2 + 𝑚𝑚1,0
𝜎𝜎𝑥𝑥 − 𝑖𝑖𝜎𝜎𝑦𝑦

2 + 𝑚𝑚1,1
𝟙𝟙 − 𝜎𝜎𝑧𝑧

2

𝑀𝑀 = 𝑚𝑚0,0 + 𝑚𝑚1,1
2 𝟙𝟙 +𝑚𝑚0,1 + 𝑚𝑚1,0

2 𝜎𝜎𝑥𝑥 + 𝑖𝑖𝑚𝑚0,1 − 𝑚𝑚1,0
2 𝜎𝜎𝑦𝑦 +

𝑚𝑚0,0 − 𝑚𝑚1,1
2 𝜎𝜎𝑧𝑧

308 Readying Mathematical Concepts

Anti-commutation #
A set of fermionic annihilation operators {𝑎̂𝑎𝑖𝑖}𝑖𝑖=0𝑁𝑁−1 and creation operators {𝑎̂𝑎𝑗𝑗†}𝑗𝑗=0

𝑁𝑁−1

that act on local electron modes can be defined that satisfy the following anti-
commutation relations:

{𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗†} = 𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 + 𝑎̂𝑎𝑗𝑗𝑎̂𝑎𝑖𝑖† = 𝛿𝛿𝑖𝑖𝑖𝑖 = {0, 𝑖𝑖 ≠ 𝑗𝑗
1, 𝑖𝑖 = 𝑗𝑗

Commutator
An operation of two operators 𝐴𝐴, 𝐵𝐵 defined as: [𝐴𝐴, 𝐵𝐵] ≝ 𝐴𝐴𝐴𝐴 −𝐵𝐵𝐵𝐵 . For any operators
𝐴𝐴 and 𝐵𝐵 , [𝐴𝐴, 𝐵𝐵] = 0 if and only if 𝐴𝐴 and 𝐵𝐵 commute. It can be shown that if a quantum
system has two simultaneously physically observable quantities, then the Hermitian
operators that represent them must commute. For any operators 𝐴𝐴 , 𝐵𝐵 and 𝐶𝐶 we have the
following relations, which are useful for calculating commutators:

[𝐴𝐴, 𝐴𝐴] = 0
[𝐴𝐴, 𝐵𝐵] + [𝐵𝐵, 𝐴𝐴] = 0

[𝐴𝐴, 𝐵𝐵 + 𝐶𝐶] = [𝐴𝐴, 𝐵𝐵] + [𝐴𝐴, 𝐶𝐶]
[𝐴𝐴 + 𝐵𝐵, 𝐶𝐶] = [𝐴𝐴, 𝐶𝐶] + [𝐵𝐵, 𝐶𝐶]
[𝐴𝐴, 𝐵𝐵𝐵𝐵] = [𝐴𝐴, 𝐵𝐵]𝐶𝐶 + 𝐵𝐵[𝐴𝐴, 𝐶𝐶]
[𝐴𝐴𝐴𝐴, 𝐶𝐶] = [𝐴𝐴, 𝐶𝐶]𝐵𝐵 + 𝐴𝐴[𝐵𝐵, 𝐶𝐶]

[𝐴𝐴, [𝐵𝐵, 𝐶𝐶]] + [𝐶𝐶, [𝐴𝐴, 𝐵𝐵]] + [𝐵𝐵, [𝐶𝐶, 𝐴𝐴]] = 0

Fermion, fermionic, electron annihilation operator #
A mathematical operation that allows us to represent excitations or transitions of quasi-
particles. An excitation requires the initial state to be at a lower energy level than the
final state.

An operator 𝑎̂𝑎𝑖𝑖 that lowers by one unit the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ
fermionic orbital:

𝑎̂𝑎𝑖𝑖|… 𝑚𝑚𝑖𝑖 …⟩ = 𝑚𝑚𝑖𝑖 (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 |… (𝑚𝑚 − 1)𝑖𝑖 …⟩

where:
𝑚𝑚𝑖𝑖 and (𝑚𝑚 − 1)𝑖𝑖 are the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital.
𝑚𝑚𝑖𝑖 is a pre-factor that annihilates the state in the Slater determinant if there is no electron
in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital, that is, if 𝑚𝑚𝑖𝑖 = 0 .

{𝑎𝑎𝑖𝑖†, 𝑎𝑎𝑗𝑗†} = {𝑎̂𝑎𝑖𝑖, 𝑎̂𝑎𝑗𝑗} = 0

Mathematical definitions 309

The phase factor (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 keeps the anti-symmetric properties of the whole
superposition of states.

Fermion, fermionic, electron creation operator #
A mathematical operation that allows us to represent disexcitement (de-exitation) or
transitions of quasi-particles. A de-excitation requires the initial state to be at a higher
energy level than the final state.

An operator 𝑎̂𝑎𝑖𝑖† that raises by one unit the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ
fermionic orbital:

𝑎̂𝑎𝑖𝑖
†|… 𝑚𝑚𝑖𝑖 …⟩ = (1 − 𝑚𝑚𝑖𝑖) (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 |… (𝑚𝑚 + 1)𝑖𝑖 …⟩

where:

𝑚𝑚𝑖𝑖 and (𝑚𝑚 + 1)𝑖𝑖 are the number of particles sitting in the 𝑖𝑖𝑡𝑡ℎ fermionic orbital.

(1 −𝑚𝑚𝑖𝑖) is a pre-factor that annihilates the state if we had an electron in the 𝑖𝑖𝑡𝑡ℎ fermionic
orbital, that is, if 𝑚𝑚𝑖𝑖 = 1 .

The phase factor (−1)∑ 𝑚𝑚𝑗𝑗𝑗𝑗<𝑖𝑖 keeps the anti-symmetric properties of the whole
superposition of states.

Fermion, fermionic, electron excitation operator #
An operator 𝑎̂𝑎𝑖𝑖†𝑎̂𝑎𝑗𝑗 that excites an electron from the occupied spin orbital 𝜓𝜓𝑗𝑗(𝒓𝒓𝑝𝑝)𝜒𝜒𝑗𝑗(𝒔𝒔𝑝𝑝)
into the unoccupied orbital 𝜓𝜓𝑖𝑖(𝒓𝒓𝑝𝑝)𝜒𝜒𝑖𝑖(𝒔𝒔𝑝𝑝) .

Total wave function #
Describes the physical behavior of a system and is represented by the capital Greek
letter Psi: 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . It contains all the information of a quantum system including complex
numbers (𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖) as parameters. In general, 𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a function of all the particles
in the system {1,… , 𝑖𝑖, … , 𝑁𝑁} , where the total number of particles is 𝑁𝑁 . Furthermore,
𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 includes the spatial position of each particle (𝒓𝒓𝑖𝑖 = {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖}), the spin directional
coordinates of each particle (𝒔𝒔𝑖𝑖 = {𝑠𝑠𝑥𝑥𝑖𝑖, 𝑠𝑠𝑦𝑦𝑖𝑖, 𝑠𝑠𝑧𝑧𝑖𝑖}), and time (𝑡𝑡) :

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓, 𝒔𝒔, 𝑡𝑡)

310 Readying Mathematical Concepts

where 𝒓𝒓 and 𝒔𝒔 are vectors of single particle coordinates:

𝒓𝒓 = {𝒓𝒓1,… , 𝒓𝒓𝑖𝑖, … , 𝒓𝒓𝑁𝑁}
𝒔𝒔 = {𝒔𝒔1,… , 𝒔𝒔𝑖𝑖, … , 𝒔𝒔𝑁𝑁}

The total wave function for a one particle system is a product of a spatial 𝜓𝜓(𝒓𝒓1) , spin
𝜒𝜒(𝒔𝒔1) , and time 𝑓𝑓(𝑡𝑡) functions:

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒓𝒓1, 𝒔𝒔1, 𝑡𝑡) = 𝜓𝜓(𝒓𝒓1) ∗ 𝜒𝜒(𝒔𝒔1) ∗ 𝑓𝑓(𝑡𝑡)

References
[Micr_Algebra] Linear algebra, QuantumKatas/tutorials/LinearAlgebra/: https://
github.com/microsoft/QuantumKatas/tree/main/tutorials/
LinearAlgebra

[Micr_Complex] Complex arithmetic, QuantumKatas/tutorials/ComplexArithmetic/:
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/
ComplexArithmetic

[NumPy] NumPy: the absolute basics for beginners: https://numpy.org/doc/
stable/user/absolute_beginners.html

[Qiskit] Qiskit: https://qiskit.org/

[Qiskit_Alg] Linear Algebra, Qiskit: https://qiskit.org/textbook/
ch-appendix/linear_algebra.html

[SymPy] SymPy, A Python library for symbolic mathematics: https://www.sympy.
org/en/index.html

https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://github.com/microsoft/QuantumKatas/tree/main/tutorials/LinearAlgebra
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://qiskit.org/
https://qiskit.org/textbook/ch-appendix/linear_algebra.html
https://qiskit.org/textbook/ch-appendix/linear_algebra.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html

Appendix B
Leveraging Jupyter
Notebooks on the

Cloud
In this appendix, we will cover the following topics:

•	 Jupyter Notebook

•	 Google Colaboratory

•	 IBM Quantum Lab

•	 Companion Jupyter notebooks

Jupyter Notebook
The Jupyter Notebook is a free web application for creating and sharing computational
documents that combine executable code with narrative text in Markdown format
[Jupyter_0]. It offers a simple, streamlined, document-centric experience. Project Jupyter
is a non-profit, open-source project.

312 Leveraging Jupyter Notebooks on the Cloud

Google Colaboratory
Google Colaboratory (or Colab for short) is a free Jupyter Notebook environment that
runs entirely in the cloud and provides shared online instances of Jupyter notebooks
without having to download or install any software [Colab_0] [Colab_1]. You just need to
have a working Gmail account to save and access Google Colab Jupyter notebooks.

IBM Quantum Lab
IBM Quantum Lab is a cloud-enabled Jupyter notebook environment that requires no
installation [IBM_QLab0] [IBM_QLab1]. IBM Quantum Composer is a graphical quantum
programming tool that lets you drag and drop operations to build quantum circuits and run
them on real quantum hardware or simulators [IBM_comp1] [IBM_comp2]. It allows public
and free access to cloud-based quantum computing services provided by IBM. In Quantum
Lab, you can write scripts that combine Qiskit code, equations, visualizations, and narrative
text in a customized Jupyter Notebook environment.

Companion Jupyter notebooks
We provide a repository on GitHub of the companion Jupyter notebooks of the book
here: https://github.com/PacktPublishing/Quantum-Chemistry-and-
Computing-for-the-Curious. These companion notebooks automatically install the
relevant list of libraries, as follows:

•	 Numerical Python (NumPy) [NumPy], an open-source Python library that is used
in almost every field of science and engineering.

•	 Qiskit [Qiskit], an open-source SDK for working with quantum computers at the
level of pulses, circuits, and application modules.

•	 Qiskit visualization support, to enable use of visualization functionality and
Jupyter notebooks.

•	 Qiskit Nature [Qiskit_Nature] [Qiskit_Nat_0], a unique platform to bridge the gap
between natural sciences and quantum simulations.

•	 Python-based Simulations of Chemistry Framework (PySCF) [PySCF] is an
open-source collection of electronic structure modules powered by Python.

•	 Quantum Toolbox in Python (QuTiP) [QuTiP] is designed to be a general
framework for solving quantum mechanics problems such as systems composed of
few-level quantum systems and harmonic oscillators.

References 313

•	 Atomic Simulation Environment (ASE) [ASE_0], a set of tools and Python
modules for setting up, manipulating, running, visualizing, and analyzing atomistic
simulations. The code is freely available under the GNU LGPL license.

•	 PyQMC [PyQMC], a Python module that implements real-space quantum Monte
Carlo techniques. It is primarily meant to interoperate with PySCF.

•	 h5py [H5py] package, a Pythonic interface to the HDF5 binary data format.

•	 SciPy [SciPy_0], a free and open-source Python library used for scientific
computing and technical computing. SciPy provides algorithms for optimization,
integration, interpolation, eigenvalue problems, algebraic equations, differential
equations, statistics, and many other classes of problems.

•	 SymPy [SymPy], a Python library for symbolic mathematics.

All companion Jupyter notebooks have been successfully run in both Google Colab and
Quantum Lab environments.

The companion Jupyter notebook of Chapter 6, Beyond Born-Oppenheimer does not
include the installation of the Psi4, open-source software for high-throughput quantum
chemistry [Psi4_0] that we used to perform a simple calculation of the vibrational
frequency analysis of the carbon dioxide (CO2) molecule. We refer the reader interested
in installing this package to the "Get Started with Psi4" [Psi4_1] documentation and to the
article Ref. [Psi4_3].

References
[ASE_0] Atomic Simulation Environment (ASE), https://wiki.fysik.dtu.dk/
ase/index.html

[Colab_0] Welcome to Colaboratory, Google Colab FAQ, https://research.
google.com/colaboratory/faq.html

[Colab_1] Welcome to Colaboratory, https://colab.research.google.com/

[H5py] Quick Start Guide, https://docs.h5py.org/en/stable/quick.html

[IBM_QLab0] IBM Quantum Lab, https://quantum-computing.ibm.com/lab

[IBM_QLab1] Welcome to Quantum Lab, https://quantum-computing.ibm.
com/lab/docs/iql/

[IBM_comp1] Welcome to IBM Quantum Composer, https://quantum-
computing.ibm.com/composer/docs/iqx/

https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://colab.research.google.com/
https://docs.h5py.org/en/stable/quick.html
https://quantum-computing.ibm.com/lab
https://quantum-computing.ibm.com/lab/docs/iql/
https://quantum-computing.ibm.com/lab/docs/iql/
https://quantum-computing.ibm.com/composer/docs/iqx/
https://quantum-computing.ibm.com/composer/docs/iqx/

314 Leveraging Jupyter Notebooks on the Cloud

[IBM_comp2] IBM Quantum Composer, https://quantum-computing.ibm.
com/composer/files/new

[Jupyter_0] Jupyter, https://jupyter.org/

[NumPy] NumPy: the absolute basics for beginners, https://numpy.org/doc/
stable/user/absolute_beginners.html

[Psi4_0] Psi4 manual master index, https://psicode.org/psi4manual/
master/index.html

[Psi4_1] Get Started with PSI4, https://psicode.org/installs/v15/

[Psi4_3] Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis
R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP,
Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O'Brien JS, Waldrop
JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF 3rd, Sokolov
AY, Patkowski K, DePrince AE 3rd, Bozkaya U, King RA, Evangelista FA, Turney JM,
Crawford TD, Sherrill CD, Psi4 1.4: Open-source software for high-throughput quantum
chemistry, J Chem Phys. 2020 May 14;152(18):184108. doi: 10.1063/5.0006002. PMID:
32414239; PMCID: PMC7228781, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf

[PyQMC] PyQMC, a Python module that implements real-space quantum Monte Carlo
techniques, https://github.com/WagnerGroup/pyqmc

[PySCF] The Python-based Simulations of Chemistry Framework (PySCF), https://
pyscf.org/

[Qiskit] Qiskit, https://qiskit.org/

[Qiskit_Nat_0] Qiskit_Nature, https://github.com/Qiskit/qiskit-nature/
blob/main/README.md

[Qiskit_Nature] Introducing Qiskit Nature, Qiskit, Medium, April 6, 2021, https://
medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004

[QuTiP] QuTiP, Plotting on the Bloch Sphere, https://qutip.org/docs/latest/
guide/guide-bloch.html

[SciPy_0], SciPy, https://scipy.org/

[SymPy] SymPy, A Python library for symbolic mathematics, https://www.sympy.
org/en/index.html

https://quantum-computing.ibm.com/composer/files/new
https://quantum-computing.ibm.com/composer/files/new
https://jupyter.org/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://psicode.org/psi4manual/master/index.html
https://psicode.org/psi4manual/master/index.html
https://psicode.org/installs/v15/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228781/pdf/JCPSA6-000152-184108_1.pdf
https://github.com/WagnerGroup/pyqmc
https://pyscf.org/
https://pyscf.org/
https://qiskit.org/
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://github.com/Qiskit/qiskit-nature/blob/main/README.md
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://medium.com/qiskit/introducing-qiskit-nature-cb9e588bb004
https://qutip.org/docs/latest/guide/guide-bloch.html
https://qutip.org/docs/latest/guide/guide-bloch.html
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html

Appendix C
Trademarks

Atomic Simulation Environment (ASE) is copyright © 2022, ASE-developers.

Google Colab is copyright © 2017, COLAB, LLC.

h5py, a thin, Pythonic wrapper around HDF5, which runs on Python 3 (3.6+), is
copyright © 2008, Andrew Collette and contributors.

IBM®, IBM Q Experience®, and Qiskit® are registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Psi4, an open-source quantum chemistry software package, is copyright © 2007-2022, the
Psi4 developers.

pyQMC, a Python module that implements real-space quantum Monte Carlo techniques,
is copyright © 2019, Lucas K Wagner, pyQMC authors.

The Python-based Simulations of Chemistry Framework (PySCF) is copyright © 2014,
the PySCF developers.

Python is copyright© 2001-2022 Python Software Foundation.

The Python logo is trademark of the Python Software Foundation: https://www.
python.org/community/logos/.

Quantum Toolbox in Python (QuTiP) is copyright © 2011-2021 inclusive, QuTiP
developers and contributors.

https://www.python.org/community/logos/
https://www.python.org/community/logos/

316 Trademarks

SciPy, an open-source software for mathematics, science, and engineering, is copyright ©
2001-2002 Enthought, Inc., and 2003-2022, SciPy developers.

SymPy is copyright © 2021, SymPy Development Team.

The NumPy trademark is registered with the U.S. Patent & Trademark Office (USPTO).

The Jupyter trademark is registered with the U.S. Patent & Trademark Office (USPTO).

Index

A
Ab Initio electronic structure 139
angular, and spin momentum

coupling 43-45
angular momentum quantum

number 5, 11, 35
anti-commutation relations 135
antisymmetrized state

examples 116-121
antisymmetry

scenarios 133
atom

about 9
energy levels 13

atomic elements
electron configuration, calculating

with Madelung rule 15
atomic nuclei 9
atomic orbital letter

about 15
list, setting up 16

atomic symbols
list, setting up 16

azimuthal quantum number 11

B
basis sets 138
Bell state

cityspace plot 100
creating 98
density matrix 100
final state vector 99

Bloch sphere 84-86
Bloch vector, corresponding to state vector

displaying 86-89
BOPES

computing, of hydrogen molecule 208
computing, of lithium hydride

molecule 215
computing, of macro molecule 221, 222

Born-Oppenheimer (BO)
approximation 4, 130-132

bosons 12
bra-ket notation 12
Bravyi-Kitaev (BK)

transformation 159-161

318

C
center-of-mass (COM) motion 131
chemical calculations

example 191-201
classical computing 80
Clebsch-Gordon (CG) coefficients

defining 40, 41
using, to add momenta 40
using, with Python SymPy 41

colour_plot() function 37
complexity theory 21, 22
composite particles

about 9, 12
atom 9
atomic nuclei 9
molecule 10

computation-driven interference 103
constructive interference 80
contracted Gaussian function 142
control qubit

post selecting 112-115
Coupled-Cluster (CC) 7, 190

D
de Broglie wavelength 13
Density-functional theory (DFT) 7
density matrix 66, 67
destructive interference 80
Dirac notation 12
draw_axes() function 38

E
eigenvalue 63
electron configuration

about 15
calculating, of atomic elements

with Madelung rule 15
ElectronicEnergy property

importing 129
ElectronicIntegrals property

importing 129
electronic structure Hamiltonian 137
electrons

about 8
in atom 10
list, initializing with 1s orbital 17, 18

elementary particles 8
energy 12
energy minimization 236, 237
excitation operator 137
explicitly correlated Gaussian basis

functions (ECGs) 233, 236

F
fermion annihilation operator 136
fermion creation operator 136
fermionic Hamiltonian operator

constructing, of hydrogen
molecule 144-150

constructing, of lithium hydride
molecule 150-154

constructing, with Qiskit Nature 144
fermionic operator 135
fermionic spin

pairing, to antisymmetric state 42
pairing, to symmetric state 42

 319

fermionic spin state
coupling 43-45

fermions 8, 11
fermion_to_qubit() function 192
Fock space 132-135
force constant Hessian matrix

calculating 243, 244
function

defining, that computes real form of
spherical harmonic function (Y) 39

defining, that displays spatial
wave functions for range of
values of angular momentum
quantum number 39

defining, that displays spatial wave
functions for range of values of
magnetic quantum number 39

defining, that plots axes of
Matplotlib figure 38

defining, that sets title 38

G
Gaussian-type orbitals (GTOs) 139-144
general single-qubit quantum gate 95
get_particle_number() function 192
grids

setting up 36, 37

H
Hadamard gate 94
handedness qubit 104
Hartree-Fock (HF) method 7, 126, 137
Heisenberg uncertainty principle 13
Hellmann-Feynman theorem 237
Hermitian operator 63, 64
Hilbert space 63

hydrogen anion
probability amplitude 59-63

hydrogen atom
spatial wave functions 40

hydrogen molecule (H2)
about 201
BOPES, computing 208
ground state, solving 202-208
fermionic Hamiltonian operator,

constructing 144-150
qubit Hamiltonian operator,

constructing 163-165
varying 202

hydrogen spectrum
about 14
Balmer series 14
Brackett series 14
Lyman series 14
Paschen series 14
Pfund series 14

hyperparameters 34

I
interference 80
interferometric sensing

simulating, of quantum superposition
of left- and right-handed
enantiomer states 104-107

internal Hamiltonian operators 234, 235

J
Jordan-Wigner (JW)

transformation 156, 157

320

K
kinetic energy operator 70-72

L
LAB Hamiltonian

about 131
operators 131, 232

laboratory (LAB) frame
coordinate system 130

light 12
lithium hydride molecule

about 209
BOPES, computing 215
fermionic Hamiltonian operator,

constructing 150-154
ground state, solving 209-214
qubit Hamiltonian operator,

constructing 166
varying 209

M
macro molecule

about 216, 217
BOPES, computing 221, 222
ground state, solving 218-221

Madelung rule
used, for calculating electron

configuration of atomic elements 15
magnetic quantum number 5, 11
Markov chain Monte Carlo (MCMC) 180
Markov chain theory 180
mass weighted Hessian matrix

diagonalizing 244-246
math factorial function

importing 232

math libraries
importing 82, 129

Matplotlib
importing 128, 231

Matplotlib Python modules
importing 36

matrices
writing, as sum of outer products 65

matter
about 7
quantization 10

mean field 137
measurable quantum quantities 63, 64
Metropolis-Hastings (MH) 180
mixed quantum states 66, 67
mixed states

versus pure states 67
modules

importing 173-177
Molecular Orbitals (MOs) 138
molecule

about 10
energy levels 13

momenta
adding, with CG coefficients 40

momentum operator 69, 70

N
neutrons 9
non-Born-Oppenheimer

molecular Hamiltonian
about 232, 233
energy minimization 236, 237
explicitly correlated all-particle

Gaussian functions 236
internal Hamiltonian operator 234

nucleons 9

 321

NumPy
importing 36, 82, 128, 231
installing 81, 127, 173-177, 231

O
occupation number 135
occupation number operators 135
occupied spin-orbital 137
orbital quantum number 11
orbitals

list, initializing with 1s orbital 17, 18

P
parallel Hadamard gates 101, 102
parallel quantum gates 98
parity transformation 158
particles

about 7
composite particles 9
elementary particles 8

Pauli exclusion principle (PEP)
about 5, 11
general formulation 50-56

Pauli matrices
about 89, 90
matrix, decomposing into weighted

sum of tensor product 92
measurement, in sign basis 91

permutation asymmetric state
preparing 107

permutation symmetric state
preparing 107

Physics of Computation 20
Planck constant 12
Planck relation 12
polymerase chain reaction (PCR) 180

position operator 67, 68
potential energy operator 72-74
principal quantum 35
principal quantum number 5, 10
probability amplitude

about 56
for hydrogen anion 59-63

probability density plots
wave functions, of electron in

hydrogen atoms 19
protons 9
pseudopotentials 132
pure states

versus mixed states 67
PySCF

installing 127
Python SymPy

CG coefficients, using with 41

Q
Qiskit

installing 81, 127, 173-177
visualization support, installing 81, 127

Qiskit Nature
installing 127
used, for constructing fermionic

Hamiltonian 144
Qiskit Nature libraries

importing 128
Qiskit Nature property

importing 129
Qiskit quantum circuit 99
quantization

about 10
of matter 10

322

quantum chemistry
about 254
history 4-7

quantum circuit
about 99
creating 108
creating, by defining swapper()

function 108-112
quantum computation

history 20, 21
quantum computer

scaling 80
quantum computing 80, 103, 254
quantum entanglement 84
quantum gates

about 93
parallel quantum gates 98
serially wired quantum gates 98
single qubit quantum gates 94-96
three-qubit quantum gates 97
two-qubit quantum gates 96, 97

quantum mechanics
history 3-7

Quantum Monte Carlo (QMC) 7
Quantum Natural SPSA (QN-SPSA) 191
quantum numbers 10
Quantum Phase Estimation

(QPE) 177, 186, 187
qubit

about 4, 80, 83
initializing 108
tensor ordering 83

qubit annihilation operator 155
qubit creation operator 155
qubit Hamiltonian operator

about 137
constructing, of hydrogen

molecule 163-165

constructing, of lithium
hydride molecule 166

constructing, with Qiskit
Nature 162, 163

qubit mappings 155
QuTiP

importing 82
installing 82, 173-177

R
radial wave functions

computing 57-59
random states

creating 107
Rayleigh-Ritz variational

theorem 6, 7, 178, 179
Restricted Hartree-Fock (RHF) 126, 138
Restricted Open-shell Hartree-

Fock (ROHF) 126, 138
Rydberg constant 15
Rydberg formula 15
Rydberg-Ritz recombination principle 15

S
Schrödinger's equation 19
SciPy

importing 36
installing 231

SciPy special Hermite polynomials
importing 231

Sequential Least Squares
Programming (SLSQP) 191

serially wired quantum gates 98
setup_grid() function 36

 323

single qubit quantum gates
about 94-96
general single-qubit quantum gate 95
Hadamard gate 94
X gate 94

Slater determinant 133
Slater-type orbitals (STOs) 139-141
spatial wave functions

CG coefficients, computing 48
CG coefficients, printing 48
computing, of Nitrogen atom

with three p electrons 49
dictionary, setting up of six

configuration tuples 47
displaying, of ground state of nitrogen

atom with three p electrons 49
function, defining that computes

product of CG coefficients 47
ground state of nitrogen atom,

with three p electrons 46
of hydrogen atom 40
set, defining 48
states of nitrogen atom, with

three p electrons 45, 46
spherical harmonic functions 34-36
spherical harmonic function (Y)

plotted surface of real
functions, coloring 37

spin orbitals (SOs) 201
spin projection quantum number 11, 145
spin quantum number 5, 11
state vector 80
STO-nG 139
swapper circuit

unitary matrix 110
swapper unitary

action, computing of 110

symmetrized state
examples 116-122

SymPy CG coefficients module
importing 41

T
tensor ordering

of qubit 83
three-qubit quantum gates 97
time evolution dynamics 76
time-independent stationary state 75
total energy operator 75
total wave function 6
trial wave functions 190
tuples

list, setting up in corresponding
orbitals 16, 17

two-qubit quantum gates 96, 97

U
Unitary Coupled Cluster Singles

and Doubles (UCCSD) 172
Unitary Coupled Cluster (UCC) 190, 191
unitary operator 65
unoccupied orbital 137
Unrestricted Hartree-Fock

(UHF) 126, 138

V
vacuum state 134
variational method

about 177
Quantum Phase Estimation

(QPE) 186, 187

324

Rayleigh-Ritz variational
theorem 178, 179

variational Monte Carlo (VMC)
method 179-185

Variational Quantum Algorithms
(VQAs) 172

Variational Quantum Eigensolver
(VQE) 6, 172, 188, 189

vibrational frequency analysis
calculations 237

vibrational-rotational levels of
diatomic molecule

modeling 238-243
vibrational-rotational levels of molecule

computing 243
force constant Hessian matrix,

calculating 244
geometry, optimizing 243
mass weighted Cartesian coordinates,

converting to 244
mass weighted Hessian matrix,

diagonalizing 244-246
vibrational spectra

for ortho-para isomerization of
hydrogen molecules 246-248

VQE solver
setting up 190, 191

W
wave function

about 11, 32
properties 33, 34

X
X gate 94

Z
zero-particle state 134

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

326 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Dancing with Qubits

Robert S. Sutor

ISBN: 9781838827366

•	 See how quantum computing works, delve into the math behind it, what makes it different,
and why it is so powerful with this quantum computing textbook

•	 Discover the complex, mind-bending mechanics that underpin quantum systems

•	 Understand the necessary concepts behind classical and quantum computing

•	 Refresh and extend your grasp of essential mathematics, computing, and
quantum theory

•	 Explore the main applications of quantum computing to the fields of scientific computing,
AI, and elsewhere

•	 Examine a detailed overview of qubits, quantum circuits, and quantum algorithm

https://packt.link/9781838827366

Other Books You May Enjoy 327

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

Hassi Norlen

ISBN: 9781838828448

•	 Visualize a qubit in Python and understand the concept of superposition

•	 Install a local Qiskit® simulator and connect to actual quantum hardware

•	 Compose quantum programs at the level of circuits using Qiskit® Terra

•	 Compare and contrast Noisy Intermediate-Scale Quantum computing (NISQ) and Universal
Fault-Tolerant quantum computing using simulators and IBM Quantum® hardware

•	 Mitigate noise in quantum circuits and systems using Qiskit® Ignis

•	 Understand the difference between classical and quantum algorithms by implementing
Grover's algorithm in Qiskit®

https://packt.link/9781838828448

328

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Quantum Chemistry and Computing for the Curious, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go straight
to the Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-24390-2
https://packt.link/r/1-803-24390-2

	Cover
	Quantum Chemistry and Computing for the Curious: Illustrated with Python and Qiskit® code
	Copyright
	Dedication
	Foreword
	Contributors
	Acknowledgments
	Table of Contents
	Preface
	1. Introducing Quantum Concepts
	Technical requirements
	1.1. Understanding the history of quantum chemistry and mechanics
	1.2. Particles and matter
	Elementary particles
	Composite particles

	1.3. Quantum numbers and quantization
of matter
	Electrons in an atom
	The wave function and the PEP

	1.4. Light and energy
	Planck constant and relation
	The de Broglie wavelength
	Heisenberg uncertainty principle
	Energy levels of atoms and molecules
	Hydrogen spectrum
	Rydberg constant and formula
	Electron configuration
	Schrödinger's equation
	Probability density plots of the wave functions of the electron in a hydrogen atom

	1.5. A brief history of quantum computation
	1.6. Complexity theory insights
	Summary
	Questions
	Answers

	References

	2. Postulates of Quantum Mechanics
	Technical requirements
	2.1. Postulate 1 – Wave functions
	2.1.1. Spherical harmonic functions
	2.1.2. Addition of momenta using CG coefficients
	2.1.3. General formulation of the
Pauli exclusion principle

	2.2. Postulate 2 – Probability amplitude
	2.2.1. Computing the radial wave functions
	2.2.2. Probability amplitude for a hydrogen anion ￼

	2.3. Postulate 3 – Measurable quantities
and operators
	2.3.1. Hermitian operator
	2.3.2. Unitary operator
	2.3.3. Density matrix and mixed quantum states
	2.3.4. Position operation
	2.3.5. Momentum operation
	2.3.6. Kinetic energy operation
	2.3.7. Potential energy operation
	2.3.8. Total energy operation

	2.4. Postulate 4 – Time-independent
stationary states
	2.5. Postulate 5 – Time evolution dynamics
	Questions
	Answers
	References

	3. Quantum Circuit Model of Computation
	Technical requirements
	Installing NumPy, Qiskit, QuTiP, and importing various modules

	3.1. Qubits, entanglement, Bloch sphere,
Pauli matrices
	3.1.1. Qubits
	3.1.2. Tensor ordering of qubits
	3.1.3. Quantum entanglement
	3.1.4. Bloch sphere
	3.1.5. Displaying the Bloch vector corresponding
to a state vector
	3.1.6. Pauli matrices

	3.2. Quantum gates
	3.2.1. Single-qubit quantum gates
	3.2.2. Two-qubit quantum gates
	3.2.3. Three-qubit quantum gates
	3.2.4. Serially wired gates and parallel quantum gates
	3.2.5. Creation of a Bell state
	3.2.6. Parallel Hadamard gates

	3.3. Computation-driven interference
	3.3.1. Quantum computation process
	3.3.2. Simulating interferometric sensing of a
quantum superposition of left- and right-handed enantiomer states

	3.4. Preparing a permutation symmetric or antisymmetric state
	3.4.1. Creating random states
	3.4.2. Creating a quantum circuit and initializing qubits
	3.4.3. Creating a circuit that swaps two qubits with a controlled swap gate
	3.4.4. Post selecting the control qubit until the desired state is obtained
	3.4.5. Examples of final symmetrized and antisymmetrized states

	References

	4. Molecular Hamiltonians
	Technical requirements
	Installing NumPy, Qiskit, and importing the
various modules

	4.1. Born-Oppenheimer approximation
	4.2. Fock space
	4.3. Fermionic creation and annihilation operators
	4.3.1. Fermion creation operator
	4.3.2. Fermion annihilation operator

	4.4. Molecular Hamiltonian in the
Hartree-Fock orbitals basis
	4.5. Basis sets
	4.5.1. Slater-type orbitals
	4.5.2. Gaussian-type orbitals

	4.6. Constructing a fermionic Hamiltonian with Qiskit Nature
	4.6.1. Constructing a fermionic Hamiltonian operator of the hydrogen molecule
	4.6.2. Constructing a fermionic Hamiltonian operator of the lithium hydride molecule

	4.7. Fermion to qubit mappings
	4.7.1. Qubit creation and annihilation operators
	4.7.2. Jordan-Wigner transformation
	4.7.3. Parity transformation
	4.7.4. Bravyi-Kitaev transformation

	4.8. Constructing a qubit Hamiltonian operator with Qiskit Nature
	4.8.1. Constructing a qubit Hamiltonian operator of the hydrogen molecule
	4.8.2. Constructing a qubit Hamiltonian operator of the lithium hydride molecule

	Summary
	Questions
	References

	5. Variational Quantum Eigensolver (VQE) Algorithm
	Technical requirements
	Installing NumPy, Qiskit, QuTiP, and importing
various modules

	5.1. Variational method
	5.1.1. The Rayleigh-Ritz variational theorem
	5.1.2. Variational Monte Carlo methods
	5.1.3. Quantum Phase Estimation (QPE)
	5.1.4. Description of the VQE algorithm

	5.2. Example chemical calculations
	5.2.1. Hydrogen molecule (H2)
	5.2.2. Lithium hydride molecule
	5.2.3. Macro molecule

	Summary
	Questions
	Answers
	References

	6. Beyond Born-Oppenheimer
	Technical requirements
	Installing NumPy, SimPy, and math modules

	6.1. Non-Born-Oppenheimer molecular Hamiltonian
	Internal Hamiltonian operator
	Explicitly correlated all-particle Gaussian functions
	Energy minimization

	6.2. Vibrational frequency analysis calculations
	Modeling the vibrational-rotational levels of a diatomic molecule
	Computing all vibrational-rotational levels of
a molecule

	6.3. Vibrational spectra for ortho-para isomerization of hydrogen molecules
	Summary
	Questions
	Answers
	References

	7. Conclusion
	7.1. Quantum computing
	7.2. Quantum chemistry
	References

	8. References
	9. Glossary
	Appendix A: Readying mathematical concepts
	Technical requirements
	Installing NumPy, SimPy, and Qiskit and importing various modules

	Notations used
	Mathematical definitions
	Pauli exclusion principle (PEP) #
	Angular momentum quantum number #
	Occupation number operator #
	Quantum Phase Estimation (QPE) #
	Complex numbers
	Vector space
	Linear operators
	Matrices
	Eigenvalues and eigenvectors
	Vector and matrix transpose, conjugate, and conjugate transpose
	Dirac's notation #
	Inner product of two vectors
	Norm of a vector
	Hilbert space
	Matrix multiplication with a vector
	Matrix addition
	Matrix multiplication
	Matrix inverse
	Tensor product
	Kronecker product or tensor product of matrices or vectors
	Kronecker sum
	Outer product
	Hermitian operator
	Unitary operator
	Density matrix #
	Pauli matrices
	Anti-commutator #
	Anti-commutation #
	Commutator
	Total wave function #

	References

	Appendix B: Leveraging Jupyter Notebooks on the Cloud
	Jupyter Notebook
	Google Colaboratory
	IBM Quantum Lab
	Companion Jupyter notebooks

	References

	Appendix C: Trademarks
	Index
	About Packt
	Other Books You May Enjoy

