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Preface

In modern society, theoretical calculation and simulation are advancing the develop-
ment of physics, chemistry, and materials science, etc., along with the great successes
in computer technology. After the successful exfoliation of graphene from graphite
by Sir Andre Geim and Konstantin Novoselov, then various two-dimensional materi-
als are predicted, synthesized, transferred, and characterized, and we are witnessing
the coming of the ear of two-dimensional materials. In comparison to the corre-
sponding bulk counterparts, materials in low dimension exhibit unprecedented
novel chemical and physical properties. Meanwhile, many novel phenomena as well
as promising potential devices are proposed based on low-dimensional materials.

Among these intriguing physics in two-dimensional lattices, for example, the
valley physics, excitonic effects, and Rashba effect attract special interest from the
standpoints of both fundamental and applied level. Thus, there is an impressing
progress in the research on these exciting topics. For the magnetic property, it was
extensively studied in conventional bulk systems, as it had long been considered
to survive in low-dimensional systems due to the thermal fluctuations according
to the Mermin–Wagner theorem. In recent years, with the discovery of long-range
magnetic order in two-dimensional lattice, magnetic materials in two dimensions
spurred extensive attention. Currently, there are many works devoted to investigate
the magnetic properties in two-dimensional materials. Also, the past decades have
witnessed the evolution of topological phases and topological materials which
reshape our understanding of physics and materials. First-principles calculations
based on the density functional theory provide effective descriptions of topological
phases and play important roles in predicting realistic topological materials, from
insulators to semimetals, and from nonmagnetic systems to magnetic ones. In
fields of photochemistry and photoelectrochemistry, the theoretical calculations
and simulations are so powerful in designing, screening, and characterizing the
photocatalysts and electrocatalysts of high stability, selectivity, and activity. Indeed,
calculation and simulation are guiding, leading, and moving forward these fields.

The book is divided into eight chapters. In Chapter 1, density functional theory
and its derivatives (e.g., the tight-binding method) are briefly introduced, and
in Chapter 2, the recent development of valley physics and Rashba effect in
two-dimensional materials from the first-principles are reviewed. In Chapter 3,
calculations and simulation results for low-dimensional ferromagnetic materials



x Preface

are discussed. Chapter 4 provides a gentle introduction of topological phases
and topological materials especially in two dimensions. The concepts of different
topological states are discussed using first-principles band structures and topo-
logical invariants. In Chapter 5, ingredients in the many-body Green’s function
perturbation theory for calculating the excited-state properties of low-dimensional
materials are summarized, and in Chapter 6, time-dependent density functional
theory and nonadiabatic molecular dynamics are introduced for those who are
studying photoexcited charge carrier dynamics. Process of how to calculate and
simulate photocatalytic reaction is presented in Chapter 7, and electrochemical
reactions from calculations and simulations are reviewed in Chapter 8.

This book would not have been possible without help from many people.

Jinan, China
Summer, 2022 Ying Dai

Wei Wei
Yandong Ma
Chengwang Niu



1

1

An Introduction to Density Functional Theory (DFT) and
Derivatives

1.1 The Problem of a N-electron System

The density functional theory (DFT) is first resulted from the work by Hohenberg
and Kohn [1], wherein the complicated individual electron orbitals are substituted
by the electron density. Namely, the DFT is entirely expressed in terms of the func-
tional of electron density, rather than the many-electron wave functions. In this case,
DFT significantly reduces the calculations of the ground state properties of materi-
als. That is why DFT is useful for calculating electronic structures, especially with
many electrons. As the foundation of DFT, two theorems are proposed by Hohenberg
and Kohn [1]. The first theorem presents that the ground state energy is a functional
of electron density. The second theorem shows that the ground state energy can be
achieved by minimizing system energy on the basis of electron density.

It should be noted that, although Hohenberg and Kohn point out there are rela-
tions between properties and electron density functional, they do not present the
exact relationship. But fortunately, soon after the work of Hohenberg and Kohn,
Kohn and Sham simplified the many-electron problems into a model of individual
electrons in an effective potential [2]. Such a potential contains the external poten-
tial and exchange-correlation interactions. For exchange-correlation potential, it is
a challenge to describe it rigorously.

The simplest approximation for treating the exchange-correlation interaction is
the local density approximation (LDA) [3], wherein the exchange and correlation
energies are obtained by the uniform electron gas model and fitting to the uniform
electron gas, respectively. LDA can provide a realistic description of the atomic struc-
ture, elastic, and vibrational properties for a wide range of systems. Yet, because LDA
treats the energy of the true density using the energy of a local constant density, it
cannot describe the situations where the density features rapid changes such as in
molecules [4, 5]. To address this problem, the generalized gradient approximation
(GGA) is proposed [6–8], which depends on both the local density and the spatial
variation of the density. And in principle, GGA is as simple to use as LDA. Currently,
in the vast majority of DFT calculations for solids, these two approximations are
adopted.

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.



2 1 An Introduction to Density Functional Theory (DFT) and Derivatives

By considering the Born–Oppenheimer and non-relativistic approximations, the
effective Hamiltonian of a N-electron system in the position representation can be
given by,

H(r1, r2,… rN ) = T̂ + V̂ ext + V̂ ee = −1
2
∑

i
∇2

i +
∑

i
v̂ne(ri) +

1
2
∑

i

∑
j≠i

1|ri − rj|
(1.1)

The first term is kinetic energy operator. The second term is an external potential
operator. In systems of interest to us, the external potential is simply the Coulomb
interaction of electrons with atomic nuclei:

v̂ne(ri) = −
∑
𝛼

Z
𝛼|ri − R
𝛼
| (1.2)

where the ri is the coordinate of electron i and the charge on the nucleus at R
𝛼

is Z
𝛼
.

The third term of Eq. (1.1) is the electron-electron operator. The electronic state can
be obtained by the Schrödinger equation:

H(r1, r2, rN )Ψ(r1, r2, rN ) = EΨ(r1, r2, rN ) (1.3)

Here, Ψ(r1, r2, rN ) is a wave function in terms of space-spin coordinates. Apparently,
the wave function is antisymmetric under exchanging the coordinates. Under Dirac
notation, the Eq. (1.1) can be expressed in representation-independent formalism:

H|Ψ⟩ = E|Ψ⟩ (1.4)

In principle, the ground state energy E0 of the N-electron system can be found
based on the variational theorem, which is obtained by the minimization:

E0 = min
Ψ

⟨Ψ|Ĥ|Ψ⟩ (1.5)

Here, the search is over all antisymmetric wave functions Ψ. In this regard, bet-
ter approximations for Ψ can readily result in the ground state energy E0 of the
N-electron system, but the computational cost would be very high. Therefore, the
direct solution is not feasible. To address this issue, DFT is developed, which is based
on a reformulation of the variational theorem in terms of electron density.

We know that |Ψ|2 =Ψ*Ψ represents the probability density of measuring the first
electron at r1, the second electron at r2, … and the Nth electron at rN . By integrating
|Ψ|2 over the first N − 1 electrons, the probability density of the Nth electron at rN is
determined. Then the probability electron density that defines any of the N electrons
at the position r is given by:

𝜌(r) = N ∫ …∫ Ψ∗(r1, r2, rN )Ψ(r1, r2,… rN )dr2
… drN

(1.6)

And the electron density is normalized to the electron number:

∫ 𝜌(r)dr = N (1.7)

The energy of the system is expressed as:

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|T̂|Ψ⟩ + ⟨Ψ|V̂ ext|Ψ⟩ + ⟨Ψ|V̂ ee|Ψ⟩ = T + Vext + Vee (1.8)
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Here,

T = ⟨Ψ|T̂|Ψ⟩ = ∑
i
∫ Ψ∗(r1, r2, rN )

(
−1

2
∇2

i

)
Ψ(r1, r2, rN )dr1

dr2
… drN

(1.9)

Vext = ⟨Ψ|V̂ ext|Ψ⟩ = ∑
i
∫ Ψ∗(r1, r2, rN )v̂ne(ri)Ψ(r1, r2,… rN )dr1

dr2
… drN

= ∫ vne(r)𝜌(r)dr = Vext[𝜌] (1.10)

1.2 The Thomas–Fermi Theory for Electron Density

Before discussing the Hohenberg–Kohn theorems, we first introduce the Thomas–
Fermi theory. The Thomas–Fermi theory is important as it gives the relation between
external potential and the density distribution for interacting electrons moving in an
external potential:

𝜌(r) = 𝛾(𝜇 − veff(r))3∕2 (1.11)

veff(r) ≡ vne(r) + ∫
𝜌(r′)|r − r′|dr′ (1.12)

Here,

𝛾 = 1
3𝜋2

(
2m
ℏ

2

)3∕2

(1.13)

and 𝜇 is the r independent chemical potential. The second term is Eq. (1.12) is the
classical electrostatic potential raised by the density 𝜌(r). Based on the Thomas–
Fermi theory, Hohenberg and Kohn build up the connection between electron den-
sity and the Schrödinger equation. And in the following, we will introduce the two
Hohenberg–Kohn theorems, which lie at the heart of DFT.

1.3 The First Hohenberg–Kohn Theorem

By replacing the external potential vne(r) with an arbitrary external local potential
v(r), the corresponding ground state wave function Ψ can be found by solving
the Schrödinger equation. Based on the obtained wave function, the ground state
density 𝜌(r) can be computed. And obviously, two different local potentials would
give two different wave functions and thus two different electron densities. This
gives the map:

v(r) → 𝜌(r) (1.14)

Based on the Thomas–Fermi theory, Hohenberg and Kohn demonstrated that the
preceding mapping can be inverted, namely, the ground state electron density 𝜌(r) of
a bound system of interacting electrons in some external potential v(r) determines the
potential uniquely:

𝜌(r) → v(r) (1.15)

This is known as the first Hohenberg–Kohn theorem.
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To demonstrate this theorem, we consider two different local potentials v1(r) and
v2(r), which differ by more than the constant. These two potentials yield two differ-
ent ground state wave functions Ψ and Ψ′ , respectively. And apparently, these two
ground state wave functions are different. Assume v1(r) and v2(r) correspond to the
same ground state wave function, then

Ĥ|Ψ⟩ = E0|Ψ⟩ (1.16)

Ĥ′|Ψ⟩ = E′
0|Ψ⟩ (1.17)

By subtracting Eq. (1.17) from Eq. (1.16), we can obtain:

(V̂ 1 − V̂ 2)|Ψ⟩ = (
E0 − E′

0
) |Ψ⟩ (1.18)

which can be expressed in position representation,∑
i
[v̂1(r1) − v̂2(ri)]Ψ(r1, r2, rN ) =

(
E0 − E′

0
)
Ψ(r1, r2, rN ) (1.19)

This suggests that

v1(r) − v2(r) = const (1.20)

thus in contradiction with the assumption that v1(r) and v2(r) differ by more than
a constant. Accordingly, two different local potentials that differ by more than the
constant cannot share the same ground state wave function, which demonstrate the
map:

v(r) → Ψ (1.21)

Then, we demonstrate the map:

Ψ → 𝜌(r) (1.22)

Let Ψ and Ψ′ be the ground state wave functions corresponding to v1(r) and v2(r),
respectively. Assuming that Ψ and Ψ′ exhibit the same ground state electron density
𝜌(r), then the variational theorem gives the ground state energy as:

E0 = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ′ + V̂ 1 − V̂ 2|Ψ′⟩
= E′

0 + ∫ [v1(r) − v2(r)]𝜌(r)dr (1.23)

E′
0 = ⟨Ψ′|Ĥ′|Ψ′⟩ < ⟨Ψ|Ĥ′|Ψ⟩ = ⟨Ψ|Ĥ − V̂ 1 + V̂ 2|Ψ′⟩
= E0 + ∫ [v2(r) − v1(r)]𝜌(r)dr (1.24)

By subtracting Eq. (1.23) from Eq. (1.24), we can obtain:

E′
0 − E0 < E0 − E′

0 (1.25)

This makes no sense. This finally leads to the conclusion that there cannot exist two
local potentials differing by more than an additive constant that has the same ground
state density.
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1.4 The Second Hohenberg–Kohn Theorem

According to the first Hohenberg–Kohn theorem, the ground state density 𝜌(r) deter-
mines the local potential v(r), and in turn determines the Hamiltonian. Therefore,
for a given ground state density 𝜌0(r) that is generated by a local potential, it is pos-
sible to compute the corresponding ground state wave function Ψ0. That is to say, Ψ0
is also a unique functional of 𝜌0(r):

Ψ0 = Ψ0[𝜌0] (1.26)

According to Eq. (1.26), the ground state energy E0 is also a functional of 𝜌0(r):

E0 = E0[𝜌0] (1.27)

Hohenberg and Kohn define the universal density functional:

F[𝜌] = ⟨Ψ[𝜌]|T̂ + V̂ ee|Ψ[𝜌]⟩ (1.28)

Here, Ψ[𝜌] is any ground state wave function corresponding to the ground state den-
sity 𝜌(r). By combining Eq. (1.10), the total energy functional can be defined as:

E[𝜌] = F[𝜌] + ∫ vne(r)𝜌(r)dr (1.29)

From the Ritz principle, we have:

E0 = min
𝜌

E[𝜌] = min
𝜌

{
F[𝜌] + ∫ vne(r)𝜌(r)dr

}
(1.30)

This is known as the second Hohenberg–Kohn theorem.

1.5 The Kohn–Sham Equations

For a system with noninteracting electrons, the effective Hamiltonian n can be
given by:

Ĥs = T̂ + V̂ s (1.31)

The corresponding Schrödinger equation is:(
−1

2
∇2 + v̂s(r)

)
𝜓i(r) = 𝜀i𝜓i (1.32)

Then the density is given by:

𝜌s(r) =
∑

i
|𝜓i(r)|2 (1.33)

Here, the single particle orbital 𝜓 i(r) is constructed based on the effective potential
vs(r).

The total energy can be expressed as:

Es[𝜌] = Ts[𝜌] + Vs[𝜌] (1.34)
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The first term is the kinetic energy of the noninteracting electrons, which is given by:

Ts[𝜌] = ⟨Ψ[𝜌]|T̂|Ψ[𝜌]⟩ = ∑
i

⟨
𝜓i(r) ∣ −

1
2
∇2 ∣ 𝜓i(r)

⟩
(1.35)

The second term is the effective potential, which is given by:

Vs[𝜌] = ⟨Ψ[𝜌]|V̂ s|Ψ[𝜌]⟩ = ∫ v̂s(r)𝜌(r)dr (1.36)

Accordingly, the total energy can be given by:

Es[𝜌] =
∑

i
𝜀i (1.37)

By combining Eqs. (1.36) and (1.37), the kinetic energy can be expressed as:

Ts[𝜌] =
∑

i

⟨
𝜓i(r)

||| − 1
2
∇2|||𝜓i(r)

⟩
=
∑

i
𝜀i − ∫ v̂s(r)𝜌(r)dr (1.38)

Using the method of Lagrange multipliers, we can obtain the following equation:

𝜇 =
𝛿Es[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+
𝛿Vs[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+ vs(r) (1.39)

Solution of Eq. (1.39) yields the density 𝜌s(r).
The classical electrostatic interaction energy is given by:

EH[𝜌] =
1
2 ∫ VH(r)𝜌(r)dr (1.40)

And

VH(r) = ∫
𝜌(r′)|r − r′|dr′ (1.41)

Then the following equation is obtained:

E[𝜌] = T[𝜌] + Vee[𝜌] + V[𝜌] = Ts[𝜌] + EH[𝜌]

+ (T[𝜌] − Ts[𝜌] + Vee[𝜌] − EH[𝜌]) + V[𝜌] (1.42)

The third term is exchange and correlation energy functional:

Exc = T[𝜌] − Ts[𝜌] + Vee[𝜌] − EH[𝜌] (1.43)

The exchange-correlation potential is defined as:

Vxc =
𝛿Exc[𝜌]
𝛿𝜌(r)

(1.44)

Using the method of Lagrange multipliers, we can obtain the following equation:

𝜇 = 𝛿E[𝜌]
𝛿𝜌(r)

=
𝛿Ts[𝜌]
𝛿𝜌(r)

+ VH(r) + Vxc(r) + vne(r) (1.45)

And solution to Eq. (1.45) is 𝜌(r).
Therefore, given the relation:

vs(r) ≡ VH(r) + Vxc(r) + vne(r) (1.46)
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We have:

𝜌s(r) ≡ 𝜌(r) (1.47)

We then arrive at the Kohn–Sham equation:(
−1

2
∇2 + V̂ H(r) + V̂ xc(r) + v̂ne(r)

)
𝜓i(r) = 𝜀i𝜓i (1.48)

Solving this equation gives the orbital and then the density of the original interacting
system.

The exchange and correlation functional can be written as:

Exc[𝜌] = ∫ 𝜀xc(r′; 𝜌)𝜌(r′)dr′ (1.49)

Here, 𝜀xc(r′; 𝜌) is the exchange-correlation energy density. And the exchange-
potential is defined as:

Vxc(r; 𝜌) =
𝛿Exc[𝜌]
𝛿𝜌(r)

= 𝜀xc(r; 𝜌) + ∫
𝛿𝜀xc(r′; 𝜌)
𝛿𝜌(r)

𝜌(r′)dr (1.50)

Then the total energy can be given by:

E[𝜌] =
∑

i
𝜀i − EH[𝜌] + Exc[𝜌] − ∫ Vxc(r; 𝜌)𝜌(r)dr (1.51)

From preceding equation, we can see that, except for the exchange-correlation func-
tional, all the aforementioned expressions are exact. In practice, we have to use
approximations for exchange-correlation potential, as the exact form is unknown.

1.6 The Local Density Approximation (LDA)

LDA is one of the most widely used and simplest approximations for Exc. In LDA,
the exchange-correlation functional is approximated as:

ELD
xc [𝜌] = ∫ 𝜌(r)𝜀unif

xc [𝜌(r)dr] (1.52)

Here, 𝜀unif
xc [𝜌(r)] is the exchange-correlation energy per electron in homogeneous

electron gas at density 𝜌. LDA works well for homogeneous electron gas, and thus is
valid for systems where electron density does not change rapidly.

The exchange-correlation energy density can be broken down into two parts:

𝜀
unif
xc [𝜌(r)] = 𝜀

unif
x [𝜌(r)] + 𝜀unif

c [𝜌(r)] (1.53)

The first term is the exchange term, which is given by:

𝜀
unif
x [𝜌(r)] = Const. × 𝜌1∕3(r) (1.54)

While for the second term of Eq. (1.53), it is the correlation density, which does
not have an analytic formula. However, the correlation energies can be obtained
numerically from quantum Monte Carlo (QMC) calculations by Ceperley and
Alder [9].
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And for spin-polarized systems, the spin-up and spin-down densities are taken as
two independent densities in the exchange-correlation energy. And in this case, the
Eq. (1.52) can be expressed as:

ELSD
xc [𝜌] = ∫ 𝜌(r)𝜀unif

xc [𝜌↓(r), 𝜌↓(r)]dr (1.55)

For calculating the electronic structure, LDA approach is estimated to be successful.
However, for some systems, it does not work. As a result, many efforts are devoted
to improve it. One of them is to include the gradient of the density in the exchange
correlation functional, as we will show next.

1.7 The Generalized Gradient Approximation (GGA)

To introduce the gradient of the density in the exchange correlation functional, the
gradient expansion approximation (GEA) is first proposed. Starting from the uni-
form electron gas, a slowly varying external potential v(r) is introduced. And then
the exchange-correlation energy is expanded in terms of the gradients of the density:

EGEA
xc [𝜌] = ELD

xc [𝜌] + ∫ Cxc(𝜌(r))𝜌(r)4∕3
(

∇𝜌(r)
𝜌(r)4∕3

)2

dr (1.56)

Here, Cxc(𝜌) is the sum of the exchange and correlation coefficients of the gradient
expansion. As the reduced density gradient is small, GEA approach should be supe-
rior to LDA approach. However, because the reduced density gradient can be large
in some region of space for real systems, GEA is shown to be worse than LDA.

To overcome the shortcomings of GEA, the GGA is developed. In GGA, the
exchange-correlation functional is approximated as:

EGGA
xc [𝜌] = ∫ f (𝜌(r),∇𝜌(r))dr (1.57)

Here, f is some function. Many GGA functionals have been proposed, including B88
[10], Lee-Yang-Parr (LYP) [11], PW91 [12], and Perdew–Burke–Ernzerhof (PBE) [13]
exchange-correlation functionals.

1.8 The LDA+U Method

While LDA and GGA are estimated to be able to deal with the many systems and phe-
nomena, they do not work well for the systems with rare-earth and late-transition
metal elements. This is because the effective single-particle methods are applica-
ble for highly delocalized band states but not for strongly localized states. For the
d and f electrons of rare-earth and late-transition metal elements, they essentially
retain their atomic character in solids. As a consequence, standard DFT function-
als such as LDA, local spin density approximation (LSDA), and GGA itinerant d
states and metallic ground state for many transition metal oxides, for which semi-
conducting behavior is demonstrated experimentally. For improving these issues,
LDA+U method is developed [14–16]. Here, if not specified elsewhere, +U indicates
a Hubbard, and LDA indicates the standard DFT functionals, i.e. LDA, LSDA, and



1.9 The Heyd–Scuseria–Ernzerhof Density Functional 9

GGA. The idea of LDA+U method is on the basis that the strongly correlated elec-
tronic states (i.e. d and f sates) are treated by the Hubbard model, and the rest of
the valence electrons are described by the standard DFT functionals. Therefore, the
total energy within LDA+U method can be given by:

ELDA+U[𝜌] = ELDA[𝜌] + EHub
[{
𝜌

I𝜎
mm′

}]
− Edc[{𝜌I𝜎}] (1.58)

Here, the first term is the standard DFT total energy functional being corrected,
the second term represents the Hubbard Hamiltonian to model correlated states,
and the third is the double-counting term. The LDA+U method can well describe
the electronic properties of the Mott insulators and increase the band gaps in the
Kohn–Sham spectrum.

1.9 The Heyd–Scuseria–Ernzerhof Density Functional

In standard DFT, the Fock exchange energy is computed based on a local energy
density and its derivatives. However, the exact form for the Fock exchange energy
is known as nonlocal from the Hartree–Fock theory. To improve the accuracy,
the PBE exchange energy should be mixed with a fraction of the exact non-
local Fock exchange energy, giving rise to the hybrid functionals, such as the
Heyd–Scuseria–Ernzerhof (HSE) functional [17]. The HSE exchange-correlation
energy is given by:

EHSE
xc = 𝛼EHF,short

x [𝜇] + (1 − 𝛼)EPBE,short
x [𝜇] + EPBE,long

x [𝜇] + EPBE
c [𝜇] (1.59)

Here, EHF
x and EPBE

x , respectively, represent the exact Fock exchange energy and the
PBE exchange energy. EPBE

c is the PBE correlation energy. 𝜇 is the range-separation
parameter. 𝛼 is the mixing parameter. From Eq. (1.59), it can be seen that the HSE
functional is split into short- and long-range terms. In this case, it can improve the
accuracy, while avoiding the computational cost.

1.9.1 Introduction to Tight-Binding Approximation

Consider in a single atom there are multiple atomic orbitals 𝜑m(r) with m being the
orbital indices. Here,𝜑m(r) must be eigenfunctions of the Hamiltonian of that single
atom Hatom. When we place it in a crystal with plenty of atoms, the wave function
of different atoms overlap each other to form a different wave function. Due to that
𝜑m(r) is not a real eigenfunction for a Hamiltonian of crystal and we need to find
out what the true eigenfunctions are. If the overlap of one atom on another is small
enough, we can still assume that electrons are tightly bound to the corresponding
atoms, which is exactly the reason why we call it as tight-binding approximation. The
approximate Hamiltonian is H(r) = Hatom(r)+ΔU(r), whose Bloch wave function
can be taken as a combination of all the isolated orbitals: [18, 19]

𝜓m(r) =
∑
Rn

bm(Rn)𝜑m(r − Rn),

where Rn denotes all lattice points and bm(Rn) is just a coefficient number for orbital
m. In the presence of translation symmetry, coefficient numbers can be replaced by
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a Bloch form, which gives:

𝜓m(r) ≈
1√
N

∑
Rn

eik⋅Rn𝜑m(r − Rn).

1.9.2 Matrix Elements of Tight-Binding Hamiltonian

To get Hamiltonian in the momentum space, we shall do a basis transformation such
as: [20]

𝜓k(r)|H|𝜓k(r) =
1
N
∑

i,j
e−ik⋅(Ri−Rj)⟨𝜑(r − Ri)|H|𝜑(r − Rj)⟩.

When Ri is equal to Rj, we will find the onsite energy represented for the atomic
energy shift due to the overlap of other atoms, which can be given as:

𝛽i = ⟨𝜑(r − Ri)|H|𝜑(r − Ri)⟩.
If Ri is not equal to Rj, hopping energy between different lattice sites can be defined
as:

tij = −⟨𝜑(r − Ri)|H|𝜑(r − Rj)⟩.
1.9.3 Matrix Elements with the Help of Wannier Function

Usually, Bloch wave functions are not orthogonal, which may result in some prob-
lems. To resolve that we should define the orthogonal Wannier function as:

w(r − Ri) =
1√
N

∑
k

e−ik⋅Ri𝜓k(r).

By using a bra-ket notation, the Hamiltonian in the real space takes the form of: [21]

H = 𝛽i

∑
Ri

|Ri⟩⟨Ri| − tij

∑
i≠j

|Ri⟩⟨Rj|,
where 𝛽 i and tij denote the onsite energy and hopping energy, respectively. To get
the energy of Hamiltonian, we shall do a basis transformation into the momentum
space, which is implemented by a Fourier transform:

H =
∑

i
𝛽i

∑
k
|k⟩⟨k| − tij

∑
i≠j

1
N
∑

k
e−ik⋅(Ri−Rj)|k⟩⟨k|.

1.9.4 Example for a Graphene Model

By using graphene lattice [22] as an example, we give a detailed description about
how to use tight-binding method. Here, we consider two atoms with s orbital in a
single unit cell of unit lattice constant, whose lattice vector can be written as:

a1 = 1
2

(
3,
√

3
)
, a2 = 1

2

(
3,−

√
3
)
.

Each atom is connected with three nearest-neighbor atoms with a distance of:

𝛿1 = 1
2

(
1,
√

3
)
, 𝛿2 = 1

2

(
1,−

√
3
)
, 𝛿3 = (−1, 0).
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In the momentum space, we consider the onsite energy for two s orbitals is 𝜖1. The
nearest-neighbor hopping strength is t, which leaves a Hamiltonian matrix as fol-
lows:

H =

||||||||
𝜖1 −t

∑
j

eik𝛿j

−t
∑

j
e−ik𝛿j 𝜖1

||||||||
.

We can get the energy dispersion with an implementation of diagonalization,
which results in:

E(kx, ky) = 𝜖1 ± t

√√√√√1 + 4 cos
⎛⎜⎜⎝
√

3ky

2

⎞⎟⎟⎠ cos
(3kx

2

)
+ 4cos2

⎛⎜⎜⎝
√

3ky

2

⎞⎟⎟⎠ .

1.10 Introduction to k • p Perturbation Theory

A single electron in a periodic potential V(r) obeys a Schrödinger equation, and such
a form can be written as [23, 24]:[

p2

2m
+ V(r)

]
𝜓(k,r) = E𝜓(k,r),

where the eigenvalues and eigenfunctions can be written as En(k) and 𝜓n(k, r) =
eik • run(k, r). The periodic part that is called as a Bloch function satisfies such an
equation as:

H0(k)un(k, r) = En(k)un(k, r),

where the Hamiltonian located at momentum point of k0 can be given as: H0(k0) =
p2

2m
+ ℏ

m
k0 ⋅ p + ℏ

2k2
0

2m
+ V(r). If the eigenvalues and eigenfunctions are assumed to be

solved for point as k0, we can get the solutions of nearby points such as k = k0 + 𝛿k
through the following equation:[

H0(k0) +
ℏ

m
𝛿k ⋅ p

]
un(k, r) =

[
En(k0) +

ℏ
2

2m
(
k2

0 − k2)] un(k, r).

Then, the perturbation Hamiltonian gains a form of H′(k) = ℏ

m
𝛿k ⋅ p. With the help

of perturbation theory, we can solve the energy of nearby points under two different
situations, which is illustrated in the following chapter.

1.10.1 Solution for Non-degenerate Bands

If the bands are not degenerate for k0, the perturbated eigenvalues of the points
k = k0 + 𝛿k can be given by [25, 26]:

En(k) = En(k0) +
2

2m
(

k2
0 − k2) + ℏ

m
𝛿k⟨unk0(r) ∣ p ∣ unk0(r)⟩

+ ℏ2
m2

∑
n′≠n

⟨unk0
(r) ∣ p ∣ un′k0

(r)⟩⟨un′k0
(r) ∣ p ∣ unk0

(r)⟩𝛿k2

En(k0) − En′ (k0)
,



12 1 An Introduction to Density Functional Theory (DFT) and Derivatives

where the first term and second term of right-hand side are zero order approxima-
tion, and the third term and fourth term serve as the first and second order approx-
imation. Here, we give an explicit example to describe how to get a Hamiltonian
based on the following equation. We assume the eigenvalues and eigenfunctions of
k0 = 0 are known by first-principles calculations or experiment. Consider a cubic
lattice with a point group of Oh and two bands |u1k(r)⟩ and |u2k(r)⟩ that transform
as Γ+

1 and Γ−
1 representation, and the symmetry representation of H′ is the vector

representation as Γ−
15.

For the first order approximation, the direct product Γ+
1 ⊗ Γ−

15 ⊗ Γ+
1 = Γ−

15 changes
the representation Γ+

1 into Γ−
15, resulting in a vanishing matrix. While for the second

order approximation, the direct product Γ−
15 ⊗ Γ+

1 = Γ−
15 limits the |un′k0

(r)⟩ to the
Γ−

15 representation, which is just the band representation of antibonding p bands.
There are three basis x, y, and z for Γ−

15 representation; only three terms can exist as
a cross term of

⟨
Γ+

1 |px|x⟩,
⟨
Γ+

1 |py|y⟩, and
⟨
Γ+

1 |pz|z⟩ according to the selection rules.
Finally, we can get the total eigenvalues as:

E1(k) = E1(0) +
ℏ

2k2

2m
+ ℏ

2k2

m2

∑
n′≠1

|⟨u1k0
(r)|px|x⟩|2

E1(0) − En′ (0)
.

1.10.2 Solution for Degenerate Bands

If the bands are degenerate for k0, the eigenfunction must be a linear combination
of degenerated bands. Here, we assume band i is degenerate with band j, and the
first order perturbation equation can be written as: [27]

|||||
⟨i|H0 + H′|i⟩ − 𝜀 ⟨i|H0 + H′| j⟩⟨ j|H0 + H′|i⟩ ⟨j|H0 + H′| j⟩ − 𝜀

||||| = 0.

The four terms on left-hand side can change the forms as ⟨i|H0 + H′|i⟩ = E0
i − 𝜀,⟨j|H0 + H′|j⟩ = E0

j − 𝜀, ⟨i|H0 +H′ |j⟩ = (ℏ/m)k • ⟨i|p|j⟩, and ⟨j|H0 +H′ |i⟩ = (ℏ/m)k •⟨j|p|i⟩. The solution yields:

𝜀(𝜅⃗) =
E0

i + E0
j

2
± 1

2

√(
E0

i − E0
j

)2
+ 4ℏ2

m2 k ⋅ p↔
ij ⋅ k,

where p↔
ij is a third order tensor. For a cubic lattice, such a tensor has a form of:

p↔
ij =

⎛⎜⎜⎜⎝
p2

ij 0 0
0 p2

ij 0
0 0 p2

ij

⎞⎟⎟⎟⎠
.

1.10.3 Explicit Hamiltonian of k • p Perturbation Theory

Generally, any 4× 4 Hamiltonian can be expanded with 16 Dirac matrices as:

H = 𝜖(k)I +
∑

i
di(k)Γi +

∑
ij

dij(k)Γij,
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where I is the identify matrices, and the five Dirac Γi matrices can be defined as
Γ1 = 𝜎1 ⊗𝜏1, Γ2 = 𝜎2 ⊗𝜏1, Γ3 = 𝜎3 ⊗𝜏1, Γ4 = 1⊗𝜏2, Γ5 = 1⊗𝜏4, and Γij = [Γi, Γj]/2i
with 𝜎i and 𝜏 i are two sets of Pauli matrices.

First, we should write the symmetry matrix in the basis we choose. Taken Bi2Se3
as an example, [28, 29] we choose four states as:|||P1+−,

1
2

⟩
,
|||P2−+,

1
2

⟩
,
|||P1+−,−

1
2

⟩
, and |||P2−+,−

1
2

⟩
. According to the transformation

formula, four symmetry matrices D(R) can be constructed as:

1. Time-reversal symmetry: T = i𝜎yK ⊗ 1.
2. Threefold rotation symmetry along z axis: R3 = ei(𝜎3⊗1)𝜋∕3.
3. Twofold rotation symmetry along x axis: R2 = i𝜎1 ⊗𝜏3.
4. Inversion symmetry: P = 1⊗𝜏3.

Second, we apply the symmetry matrices into 16 Dirac matrices to get the repre-
sentation of matrices, which is implemented by D(R)ΓiD(R)−1. In the presence of
time-reversal symmetry, we only need to take into consideration one identity matrix
and five Dirac Γi matrices.

Third, we combined the Dirac matrices with corresponding polynomials of the
momentum k who share get the Hamiltonian. It can be written as:

H = 𝜖k + M(k)Γ5 + B(kz)Γ4kz + A(k∥)(Γ1ky − Γ2kx),

where 𝜖k = C0 + C1k2
z + C2k2

∥, M(k) = M0 + M1k2
z + M2k2

∥,B(kz) = B0 + B2k2
z , and

k2
∥ = k2

x + k2
y .
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2

New Physical Effects Based on Band Structure

2.1 Valley Physics

Valley refers to the local minimum in the conduction band or the local maximum
in the valence band in the momentum space. Given the systems with two or more
valleys, if the valleys can be polarized and detected, the valley can form a new degree
of freedom of carriers in addition to charge and spin. Analogy to charge for electron-
ics and spin for spintronics, the possibility of utilizing valley degree of freedom as
information carrier gives rise to the concept of valleytronics [1–3]. The idea of using
valley degree of freedom dates back to the studies in the late 1970s, which investi-
gated the valley behavior and inter-valley coupling in silicon inversion layers [4–6].
Moreover, by tuning the intravalley exchange and correlation, the electrons would
preferentially occupy the valleys, thereby generating the valley polarization. Subse-
quently after the works on silicon inversion layer, several other systems like the AlAs
quantum well, silicon heterostructures, bismuth, and diamond are also shown to fea-
ture the valley feature [7–11]. Despite these extensive efforts, there lacks an intrinsic
physical property that correlated with the valley occupancy. This is in sharp con-
trast with the case of spin, where the magnetic moment, the spin optical selection
rule, and the spin-orbit coupling (SOC) can be employed as the intrinsic properties
associating with the spin. Therefore, the utilization of the valley index is severely
limited as compared with the spintronics, and the intrinsic property associated with
the valley occupancy is under exploration.

The recent rise of 2D materials [12–14] provides an unprecedented opportunity to
address the aforementioned issues. The first 2D system harboring the valley physics
is proposed in graphene (Figure 2.1) [1]. In graphene with broken inversion sym-
metry, the band edges of the band structure lie at the +K and −K points of the 2D
Brillouin zone, forming two degenerate by nonequivalent valleys. Importantly, the
carriers in the +K and −K valleys are subjected to opposite Berry curvatures and
orbital magnetic moment. These two quantities can be used to distinguish the val-
leys. The Berry curvature can behave like effective magnetic fields, which would
result in an anomalous velocity perpendicular to an electric field. This is a Hall
effect, which is referred to as the valley Hall effect [15]. While for the orbital mag-
netic moment, it results from self-rotating, so an energy shift can be expected under

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Figure 2.1 Schematic diagram of the valley filter based on graphene. Top panel:
Dispersion relation in the wide and narrow regions. An electron in the first valley (modes
n = 0, 1, 2, …) is transmitted (filled circle), whereas an electron in the second valley (modes
n = −1, −2, …) is reflected (open circle). Middle panel: Honeycomb lattice of carbon atoms
in a strip containing a constriction with zigzag edges. Bottom panel: Variation of the
electrostatic potential along the strip for the two cases of an abrupt and smooth potential
barrier (solid and dashed lines). The polarity of the valley filter switches when the potential
height, U0, in the constriction crosses the Fermi energy, EF. Source: Rycerz et al. [1]/with
permission of Springer Nature.
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the magnetic field. It should be noted that, under the inversion symmetry, the +K
and −K valleys can be transformed into each other, making it not possible for dis-
tinguishing the valleys. Therefore, breaking the inversion symmetry is a necessary
condition for utilizing Berry curvature and orbital magnetic moment to distinguish
the valley occupancy. Currently, several approaches are proposed to break the inver-
sion symmetry of graphene, including the creation of edge modes [16] and defect
lines [17]. However, these approaches are challenging in experiments, limiting their
practical applications.

After discovering the valley behaviors in graphene, the monolayer group-VI transi-
tion metal dichalcogenides (TMDs), i.e. MoS2, WS2, MoSe2, and WSe2, are identified
as the most promising platform to study the novel valley-contrasting physics [18–21].
In monolayer TMDs, the M atomic layer is sandwiched between two X atomic lay-
ers, which breaks the inversion symmetry naturally (Figure 2.2a). Moreover, there
are two degenerate but nonequivalent valleys locating at the +K and −K points, gen-
erating two valleys. Therefore, under an in-plane electric field, the carriers in +K
and −K valleys would be accumulated at the opposite edges of the sample, which
is related to the opposite Berry curvatures at the two valleys (Figure 2.2c). More
importantly, as the valleys are dominated by the d orbitals of the M atoms, the val-
leys experience a valley spin splitting due to the strong SOC strength within M-d
orbitals [22]. And due to the in-plane character of the d orbitals for the valleys in the
valence bands, they have a very large valley spin splitting. While for the valleys in
the conduction bands, because of the out-of-plane character, the valley spin splitting

(a)

(b)
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– 2
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Figure 2.2 Crystal structure and valley physics in monolayer TMDs. (a) 2D hexagonal
lattice. (b) Valley contrasting optical selection rules in a 2D hexagonal lattice with broken
inversion symmetry. The interband transition in valley K (−K) couples to 𝜎+ (𝜎−) circularly
polarized light only (circular arrows). (c) Diagram of the valley Hall effect in monolayer
TMDs. Arrows suggest the pseudo-vector quantities, i.e. Berry curvature or orbital magnetic
moment, of the carriers. Source: Xu et al. [18]/with permission of Springer Nature.
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Figure 2.3 Electronic band structures calculated for the MX2 monolayer systems with
(solid line) and without (dotted line) inclusion of the spin-orbit interaction. Source: Zhu
et al. [22]/with permission of American Physical Society.

is rather small (Figure 2.3). Under such splitting, we can manipulate the carrier with
one spin in one valley. This indicates novel spin and valley physics that are absent in
graphene. Considering these merits, monolayer TMDs are considered as one of the
most promising 2D valleytronic materials.

Besides graphene and monolayer TMDs, many other 2D materials presenting the
valley-contrasting physics are proposed. For example, using first-principles calcula-
tions, we reported that monolayer H-Tl2O is a compelling 2D valleytronic material
with spin-valley coupling [23]. Soon after the work on monolayer H-Tl2O, we dis-
covered another class of 2D valleytronic materials in monolayer MN2X2 (M = Mo,
W; X = F, H), which are shown to be dynamically and thermally stable. Monolayer
MN2X2 is an indirect gap semiconductor with the valence band maximum locating
at the +K and −K points, forming two degenerate but nonequivalent valleys in the
valence band [24].

Recently, Lu et al. proposed that hexagonal monolayer MoSi2N4 and MoSi2As4
exhibit a pair of valleys at the +K and −K points [25]. The circularly polarized
photons can be adopted to distinguish the +K and −K valleys. Arising from the
valley-contrasting Berry curvature, the intriguing valley Hall and spin Hall effects
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can be realized. In addition to the traditional two level valleys, the valleys in
monolayer MoSi2As4 are shown to be multiple folded. This suggests an additional
intrinsic degree of freedom for monolayer MoSi2N4 and MoSi2As4. Moreover,
monolayer MoSi2N4 and MoSi2As4 have several advantages over monolayer TMDs.
For example, while monolayer TMDs suffer from the limited size of growth [26] and
low electron/hole mobility [27], which restricts them for further quantum-transport
applications, monolayer MoSi2N4 and MoSi2As4 were successfully synthesized with
large size up to 15 mm× 15 mm [28] and is predicted to be with a large electron/hole
mobility of four to six times larger than that of monolayer MoS2 [29]. Therefore,
monolayer MoSi2N4 and MoSi2As4 are believed to be promising candidates for the
potential of valleys to be applied in multiple information processing.

After discovering these promising valleytronic materials, the next step is to explore
how to use these materials for applications in valleytronic devices. To make a val-
leytronic device, the crucial step is to lift the degeneracy between the+K and−K val-
leys, thereby producing the valley polarization [15]. In 2D valleytronic materials, the
valley-contrasting orbital magnetic moment is accompanied by a valley-contrasting
optical selection rule. In detail, the interband transitions in the vicinity of the +K
and −K valleys correlate with the right- and left-handed circularly polarized, see
Figure 2.2b [18]. To this end, the method of optical pumping is proposed to achieve
the valley polarization in monolayer TMDs. Cui et al. found that the photolumines-
cence in monolayer MoS2 has the same helicity as the circularly polarized compo-
nent of the excitation laser [30]. This is a strong signature of the valley polarization
induced by optical pumping. Below temperature 90 K, a high photoluminescence
circular polarization is obtained, and it decays with temperature, see Figure 2.4.
To confirm that the polarized photoluminescence is related to the valley instead of
spin, the Hanle effect is investigated. They showed that the persistent photolumi-
nescence polarization is observed in monolayer MoS2 when traversing the magnetic
field. This confirms that the polarized photoluminescence is attributed to the valley

Figure 2.4 The variation
of degree of circular
polarization P with
temperature. For fitting the
relationship, assuming an
inter-valley scattering
proportional to the phonon
population is assumed.
Source: Zeng et al.
[30]/with permission of
Springer Nature.
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polarization as a transverse magnetic field causes the spin to precess. Furthermore,
for bilayer MoS2 with inversion symmetry, the photoluminescence is found to be
unpolarized by applying the same excitation condition, which again confirms the
optically pumped valley polarization in monolayer MoS2. Similar to this work, Mak
et al. also identified the viability of optical control of valleys and the valleytronics in
monolayer MoS2 [20]. Besides these two experimental works, there are also many
other experimental breakthroughs in optical pumped valley polarization. For more
detail, please see the review of Ref. [18].

Although valley polarization is successfully achieved through optical pumping,
it is subjected to the quite short lifetime of carriers. Considering this point, opti-
cal pumping is unable to robustly tune the valley, making it not applicable for
developing practical information devices. An alternative approach for realizing
the valley polarization is to break time-reversal symmetry. That is because the
time-reversal symmetry requires the spins at the +K and −K valley to be energet-
ically degenerate, but opposite, forming the valley-spin locking relationship. By
breaking the time-reversal symmetry, the valley degeneracy would be lifted. In fact,
lifting the valley degeneracy in monolayer TMDs has been achieved by applying
an external magnetic field in some experimental works [31, 32]. However, this
approach is shown to be rather modest. For instance, the valley polarization is
estimated to be 0.1–0.2 meV T−1 [31, 32]. This is suitable for the development of
valleytronic devices where the large valley polarization is required, analogous to
large spin polarization for spintronics. Recently, the research efforts for breaking
the time-reversal symmetry in this field have been devoted to introducing foreigner
atom doping and proximity-induced magnetic interaction, and many breakthroughs
have been made. In addition, with the recent discovery of 2D magnetic materials,
the intrinsic valley polarization is also identified, which attracts more and more
attention. In the following, we will discuss the recent theoretical developments on
the spontaneous valley polarization, valley polarization induced by foreign atom
doping, and valley polarization in van der Waals heterostructures.

2.1.1 Spontaneous Valley Polarization

Spontaneous valley polarization was first proposed in 2013 [33]. Using the
tight-binding model, Feng et al. proposed the theory of spin and valley physics
of an antiferromagnetic honeycomb lattice. In the antiferromagnetic honeycomb
lattice, there is an emergent electronic degree of freedom of carriers, which is
characterized by the product of spin and valley indices (s•𝜏). This gives rise to
the s•𝜏-dependent optical selection rule. When the spin-valley coupling is weak,
namely the valley degeneracy is considered to be kept, the system would exhibit
an s•𝜏-selective circular dichroism (CD). Illuminated by the left-polarized light, the
spin-up electrons at the +K valley and spin-down electron at the −K valley would
be excited to the conduction band. And by illustrating the right-polarized light, the
spin-down electrons at the +K valley and spin-up electron at the −K valley would
be excited to the conduction band. For the case with strong spin-valley coupling, the
valley degeneracy is lifted, and thus the gaps at the +K and −K points are different.
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In this regard, by tuning the frequency of the polarized light, one spin from one
valley can be excited. Besides the optical selection rule, the Berry curvature is also
s•𝜏-dependent. Charge carrier with opposite s•𝜏 indices would exhibit opposite
transversal anomalous velocities. After establishing the theory of spin and valley
physics in an antiferromagnetic honeycomb lattice, Feng et al. suggested one actual
material of monolayer manganese chalcogenophosphates, MnPX3, X = S, Se [33].
By calculating their band structure, they showed that the gaps at +K and −K differ
by 43 meV, indicating the spontaneous valley polarization and the s•𝜏-dependent
physics.

After discovering the spontaneous valley polarization in the antiferromagnetic
honeycomb lattice, the spontaneous valley polarization in the ferromagnetic lattice
is also proposed. Using the two-band k⋅p model, Duan et al. also proposed that the
coexistence of SOC and intrinsic exchange interaction can result in that the valley
polarization occurs spontaneously [34]. They further predicted one such real mate-
rial of monolayer 2H-VSe2.

Similar to the anomalous Hall effect, Duan et al. defined the valley Hall effect in
ferromagnetic material as anomalous valley Hall effect [34]. Note that the charge
Hall current is easier to be detected experimentally, and the anomalous valley Hall
effect would provide a promising way to realize the valley-based information storage.
On the basis of the anomalous valley Hall effect, Duan et al. proposed the possible
electrically reading and magnetically writing memory devices [34]. This significantly
advances the practical applications of valleytronics.

Based on the preceding two works [33, 34], the spontaneous valley polarization is
well established. However, for monolayer MnPX3, they show the s•𝜏-selective, rather
than the 𝜏-selective, CD, and Berry curvature. And valley is not an independent
degree of freedom of carriers any more. While for monolayer 2H-VSe2, this mono-
layer phase is not stable in experiments. Therefore, the candidate materials with
spontaneous valley polarization are still under exploration. In the following, we will
discuss the systems that are recently identified with spontaneous valley polarization.

Using first-principles calculations, Lu et al. investigated the valley physics in
monolayer VAgP2Se6 [35]. They found that monolayer VAgP2Se6 can be easily
exfoliated from its bulk counterpart. Monolayer VAgP2Se6 is intrinsically spin
polarized. Monolayer VAgP2Se6 is a ferromagnetic semiconductor. The easy magne-
tization axis is along the out-of-plane, with a magnetocrystalline energy of 1.5 meV
per unit cell, enabling the possible stable ferromagnetism. The spin-polarized
band structure of monolayer VAgP2Se6 without SOC shows that the up-spin and
down-spin channels are split significantly, and the bands near the Fermi level are
dominated by the up-spin states and are characterized by the two massive Dirac
cones with a band gap. This forms two degenerate valleys. Upon considering SOC,
the gap at +K valley decreases to 29 meV and increases to 44 meV at the −K valley,
thus lifting the valley degeneracy. Based on these results, Lu et al. designed a valley
pseudospin field effect transistor. And different from the conventional transistors,
such transistor could carry information of not only the electrons but also the valley
pseudospins, which opens an approach to an avenue for realizing the low-power
and high-performance valleytronic devices in the future.
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Compared with monolayer TMDs, monolayer transition metal dinitrides
(TMDNs) usually exhibit distinct properties because of the fewer valence elec-
trons. For instance, monolayer MoN2 is a ferromagnetic semiconductor, while
monolayer MoS2 is a semiconductor. Thus, monolayer TMDNs are considered as
promising high-capacity electrode materials for alkali-ion batteries [36]. Wang
et al. systematically studied the electronic properties of hydrogenated monolayer
NbN2 (H-NbN2H2), and found that they present spontaneous valley polarization.
To investigate the magnetic ground state, they constructed a 2× 2 supercell, and
considered the ferromagnetic and the possible antiferromagnetic states. The
simulated temperature-dependent magnetization of monolayer H-NbN2H2 and
the Curie temperature are found to be 225 K. Based on the band structure with
SOC of monolayer H-NbN2H2, there are two inequivalent valleys locating at the
+K and −K points. Up including SOC but without magnetization, the valley spin
splitting occurs. The magnitudes of spin splitting energies at the two valleys are
same, but the signs are opposite. Therefore, two valleys are still degenerate at
the nonmagnetic state, protecting by the time-reversal symmetry. When further
including the exchange interaction, the valley polarization occurs spontaneously.

As Nb and V belong to the same family and monolayer VSe2 is identified as a typ-
ical example with spontaneous valley polarization, monolayer NbX2 (X = S, Se) is
also expected to be with such interesting valley physics. We then investigated the
valleytronic properties of monolayer NbX2 [37]. The research on bulk NbX2 dates
back to 1980s [38]. More importantly, the synthesis of monolayer NbX2 has been
reported experimentally [39–42], indicating that any properties predicted in it show
high experimental feasibility. The crystal structure of monolayer NbX2 exhibited a
hexagonal lattice with D3h space group. Concerning Nb atom, its electronic configu-
ration is 4d45s1. When bonding with the six X atoms, four electrons are transferred
to the X atom. In this case the low-lying orbital of dz2 is half-occupied, forming a
magnetic moment of 1 μB. The magnetic moment is mainly distributed on the Nb
atom. To investigate its magnetic ground state, we studied the energies of the ferro-
magnetic and antiferromagnetic states and found that the ferromagnetic state is the
ground state. Considering the important role of out-of-plane magnetization in val-
ley polarization, we studied the magnetocrystalline anisotropy energy of monolayer
NbS2 and NbSe2, which is estimated to be 8.1 and 5.4 meV per unit cell, respectively.

As monolayer NbS2 and NbSe2 share similar electronic properties, we only discuss
the band structures of monolayer NbSe2. Without considering SOC and exchange
interaction, one spin-degenerate band crosses the Fermi level. And this band has
dominated Nb-dz2, dx2−y2, dxy orbitals. By taking exchange interaction into consid-
eration, the spin degeneracy is lifted. In this condition, monolayer NbSe2 becomes
semiconducting with an indirect band gap. Its top valence band locates at the +K
and −K points, forming two degenerate, but inequivalent, valleys. Different from
the case of monolayer NbSe2, the top valence band maximum of monolayer NbS2
does not locate at the +K and −K point, which however can be tuned to the +K
and −K points under external strain. Upon further introducing SOC, the valley at
the −K point shifts above the +K point, thus generating the valley polarization. And
the valley polarization is 219 meV, which is large enough for further manipulating
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the valley feature, highly desirable for practical applications. And by reversing the
magnetization orientation, the valley polarization can also be reversed, forming a
valley polarization of −219 meV. The large valley polarization in monolayer NbSe2
can be attributed to the strong SOC strength in the Nb atoms. Similar to monolayer
NbSe2, due to the intrinsic magnetic exchange interaction and strong SOC strength,
a spontaneous valley polarization of 156 meV is also realized in monolayer NbS2.
Besides, the strain effect on the valleytronic properties of monolayer NbX2 are also
investigated. For more details, please refer to Ref. [37].

Recently, Janus monolayer TMDs were synthesized experimentally [43], which
has attracted great interest. Quite naturally, the searching for spontaneous valley
polarization in traditional monolayer TMDs can be extended to such Janus TMDs.
One such example is the Janus monolayer VSSe [44]. Du et al. found that, similar
to monolayer VSe2, monolayer VSSe also exhibits a pair of valleys at the +K and
−K points [44]. Upon including SOC, the spontaneous valley polarization occurs
in monolayer VSSe. Besides the spontaneous valley polarization, monolayer VSSe
exhibits a strain-driven 90∘ lattice rotation with an extremely high reversal strain
(73%), suggesting an intrinsic ferroelasticity. Besides VSSe, monolayer VSeTe is also
identified with spontaneous valley polarization [45].

Duan et al. investigated the valleytronic properties in another Janus structure of
monolayer VClBr [46]. Analogues to Janus TMDs, monolayer VClBr exhibits two
phases, i.e. H and T phases. Here, we only discuss the H phase, as it features the val-
ley physics. Figure 2.5a presents the crystal structure of monolayer VClBr, which
shows a sandwich layer structure of Cl-V-Br. The lattice constant is found to be
3.563 Å. The ground state is demonstrated to be ferromagnetic. Figure 2.5b shows
the band structure of monolayer VClBr with considering magnetic exchange inter-
action but without SOC. The top valence band locates at the +K and −K points,
producing two valleys. For the bottom of the conduction band, it locates near the Γ
point. This forms an indirect gap of 0.61 eV. According to the orbital analysis, the
valleys are mainly contributed by the V-3dxy and V-3dx2–y2, while for the lowest con-
duction at the +K and −K points, it is dominated by the V − 3dyz and V − dxz. This
is different from the case of monolayer VSe2 and VSSe. When taking SOC into con-
sideration, the +K valley shifts above the −K valley, forming the spontaneous valley
polarization, see Figure 2.5c. The valley polarization is found to be about 70 meV.
And the valley polarization can be reversed upon reversing the magnetization ori-
entation, see Figure 2.5d. Duan et al. also investigated the relationship between the
magnetism and chiral optical band gap at the +K and −K points.

As mentioned earlier, Janus TMD structure is obtained by hydrogenating the non-
metal atoms. In fact, hydrogenating the metal atoms in 2D materials also receives
more and more attention. As an example, we constructed such a system of TiVI6 and
demonstrated that it is a promising valleytronic material with spontaneous valley
polarization [47]. The electronic configurations of Ti and V, respectively, are 3d24s2

and 3d34s2. By bonding with the I atoms, the electrons of Ti are completely denoted
to I and V atoms, resulting in the oxidation states of +4 and +2 for Ti and V atoms,
respectively. Under the octahedral crystal field, the d orbit splits into three groups,
i.e. a(dz2), e1(dxy,dx2–y2), and e2(dxz,dyz). Obviously, the magnetic moment on each
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Figure 2.5 (a) Top and side views of the crystal structure of monolayer VClBr. (b) Band
structures of monolayer VClBr with considering exchange interaction and without
considering SOC. (c) Band structure of monolayer VClBr with considering both exchange
interaction and SOC; (d) is the same as (c) but with the opposite magnetization direction. EF
is set to 0 eV. Source: Zhao et al. [46]/with permission of American Physical Society.

V atom is 3 μB, while it is 0 μB for the Ti atom. The ferromagnetic state is found to
be more stable than the other three antiferromagnetic configurations. Magnetocrys-
talline anisotropy energy of monolayer TiVI6 is also calculated, which is found to be
11 meV per unit cell. This suggests that the spins in monolayer TiVI6 are favorably
aligned along the out-of-plane direction. Moreover, because the easy axis is along
the out-of-plane direction, the Ising model can be employed to estimate Curie tem-
perature. Based on the Monte Carlo simulation, the Curie temperature is estimated
to be 18 K, comparable with that of monolayer CrI3 [48].

The spin-polarized band structure of monolayer TiVI6 with considering SOC
shows that there is an energy gap for both the up-spin and down-spin channels.
Therefore, monolayer TiVI6 is a ferromagnetic semiconductor. Although its con-
duction band minimum locates at the Γ point, its valence band maximum lies at
the +K and −K points, leading to two valleys. Considering its broken inversion
symmetry, the monolayer TiVI6 is 2D valleytronic material. The band structure
of monolayer TiVI6 with including SOC indicates that the degeneracy of the +K
and −K points is lifted. Therefore, the spontaneous valley polarization is obtained
in monolayer TiVI6. The valley polarization of monolayer TiVI6 is found to be
22 meV. The orbital-resolved band structure with considering SOC shows that
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the band edges are dominated by the d orbitals of Ti and V atoms. The valley
polarization is resulted from the SOC strength within the d orbitals. Besides, the
strain effect on the electronic properties of monolayer TiVI6 is also investigated.
It is worth emphasizing that when increasing the compressive strain to −4%, the
top valence bands at the Γ point shifts above the valleys, which would deform
the valley behaviors. Under such condition, monolayer TiVI6 is not suitable for
practical valleytronic applications. Accordingly, strain can be used to manipulate
the switching of the valley behavior.

Using first-principles calculations, we studied the spintronic and valleytronic
properties of monolayer LaBr2 [49]. The study on bulk LaBr2 dates back to 1989
[50]. It exhibits a hexagonal layered structure with the space group of P63/mmc.
Therefore, monolayer LaBr2 can be easily obtained experimentally via exfoliation.
Figure 2.6a shows the crystal structure of monolayer LaBr2. Apparently, it presents
a hexagonal lattice and contains a formula unit in each unit cell. The spin-polarized
calculations show that monolayer LaBr2 is spin polarized with a total magnetic
moment of 1 μB per unit cell. And the magnetic moment is mainly distributed on
the La atom. Such spin polarization can be attributed to the valence electronic
configuration of La atom. By denoting two electrons to the Br atoms, one electron
is left to occupy the lower dz2 orbital, leaving other higher orbitals empty. The
ferromagnetic configuration is found to be most stable among these three configura-
tions. Such magnetic coupling is sought into the Goodenough-Kanamori-Anderson
rule. In monolayer LaBr2, the La-Br-La angle approximates 90∘. Based on the
Goodenough-Kanamori-Anderson rule, the exchange interaction between the mag-
netic moment would be dominated by the ferromagnetic superexchange interaction.

The band structure of monolayer LaBr2 without considering spin polarization and
SOC is shown in Figure 2.6b. It can be seen that there is one spin-degenerated band
crossing the Fermi level, leading to the metallic feature. This band is mainly con-
tributed by the La-dz2,x2–y2,xy orbitals and slightly from Br-s/p orbitals. When consid-
ering both spin polarization and SOC, as shown in Figure 2.6c, the spin degeneracy
of this band is lifted, which results in a semiconducting feature. There monolayer
LaBr2 is a ferromagnetic semiconductor. The magnetocrystalline anisotropy energy
is also calculated for monolayer LaBr2, which indicates that easy axis for monolayer
LaBr2 is normal to the 2D plane. From the band structure of monolayer LaBr2 shown
in Figure 2.6c, we can see that there is a pair of valleys locating at the +K and −K
points in both the conduction and valence bands. As the lowest conduction band
locates at the M points, only the valley at the valence band is discussed. Upon fur-
ther taking SOC into consideration, the degeneracy between the +K and −K valleys
are lifted, achieving the interesting valley polarization. When the magnetization is
reversed, the valley polarization is also reversed. The valley polarization of mono-
layer LaBr2 is found to be 33 meV, which is equivalent to the case of a valley degen-
erate material exposed to an external magnetic field of 192 T. Moreover, because
monolayer LaBr2 shows high experimental feasibility with an ultralow exfoliation
energy, the spontaneous valley polarization is ready to be verified in experiment.

Similar to monolayer LaBr2, monolayer Nb3I8 also has its layered bulk counterpart
[51, 52] and was proposed to exhibit the spontaneous valley polarization [53]. Bulk
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2.1 Valley Physics 29

Nb3I8 exhibits a space group of R-3m. When exfoliated into the monolayer form, the
space group is transferred into P3m1. Each unit cell of Nb3I8 contains three Nb and
eight I atoms. Each three Nb atoms is assembled into a Nb3 trimer in monolayer
Nb3I8. Accordingly, monolayer Nb3I8 features two different Nb-Nb distances: one
is 3.02 Å for the intratrimer distance and one is 4.63 Å for the intertrimer distance.
This gives rise to a distorted octahedral coordination environment for the Nb atoms.
Moreover, in monolayer Nb3I8, the Nb3 trimers form a Kagome lattice. Therefore,
the inversion symmetry of monolayer Nb3I8 is broken. Normally, the Nb-d orbitals
split into two groups, i.e. eg and t2g. By forming the Nb3 trimer, the d orbitals split
into more energy levels. Concerning the t2g orbital, it splits into 1e, 1a1, 2e, 2a1, 3e,
and 1a2 orbitals. For the Nb3 trimer, the three Nb atoms share seven electrons, lead-
ing to a magnetic moment of 1 μB. Accordingly, monolayer Nb3I8 is spin polarized.
After examining all the possible magnetic configurations, the ferromagnetic state
is estimated to be the ground state. In addition, monolayer Nb3I8 is shown to favor
an in-plane magnetization orientation. However, the magnetic anisotropy energy
is only 0.5 meV, which can be easily tuned to the out-of-plane direction via external
approaches. Therefore, in this work, Nb3I8 with out-of-plane magnetization is
discussed.

The spin-polarized band structure of monolayer Nb3I8 without considering SOC
shows that the up-spin and down-spin channels are separated significantly, leav-
ing the up-spin bands near the Fermi level. Moreover, monolayer Nb3I8 exhibits a
semiconducting feature with a direct band gap, with the band edges locating at the
+K and −K points. Accordingly, monolayer Nb3I8 has a pair of valleys locating at
the +K and −K points in both the conduction and valence bands. By further tak-
ing SOC into consideration, the valley degeneracy between the +K and −K valleys
is broken, resulting in the spontaneous valley polarization. Such fascinating sponta-
neous valley polarization is related to the combined effect of strong SOC strength and
the magnetic exchange interaction. In addition to the two pairs of valleys near the
Fermi level, there is another pair of valleys locating in the second-lowest conduction
band. The valley polarization is found to be −95 meV. Besides, the valley feature of
monolayer Nb3I8 is demonstrated to be sensitive to the spin orientation. When spin
lies along in-plane direction, the valley polarization is excluded in the presence of
SOC. And the spin lies along the out-of-plane direction, the valley polarization in
monolayer Nb3I8 is realized.

Using first-principles calculations, Yang et al. showed that monolayer VSi2N4
[54] is a promising valleytronic material with spontaneous valley polarization. In
monolayer VSi2N4, the V, Si, and N atomic layers are sandwiched in the sequence of
N-Si-N-V-N-Si-N. Central V atom coordinates with six neighboring N atoms, form-
ing a trigonal prismatic geometry. The lattice constant of monolayer N-Si-N-VN-Si-N
is found to be 2.88 Å. It exhibits a hexagonal lattice with the D3h space group. There-
fore, the inversion symmetry is also broken in nature. The calculated phonon
spectra show that monolayer VSi2N4 is stable. Different from the synthesized
MoSi2N4 and WSi2N4, monolayer VSi2N4 is spin polarized. The bond angle of the
V-N-V is found to be 90.26∘. On the basis of the Goodenough-Kanamori-Anderson
rule, the exchange coupling between the V atoms is dominated by the ferromagnetic
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superexchange coupling. After examining the relative stability of the ferromagnetic
and antiferromagnetic coupling using first-principles calculations, the ferromag-
netic state is more favorable than the antiferromagnetic state by 29.70 meV. For
examining its magnetization easy axis, the magnetocrystalline anisotropy energy of
monolayer VSi2N4 is calculated, which is found to favor the in-plane magnetization.
Therefore, in principle, monolayer VSi2N4 is a 2D XY magnet. In such system, the
magnetic order can be stablished at the finite size limit, and the Curie temperature
is 307 K.

Due to the local character of the V-d orbital, the PBE+U method is employed here.
When Ueff = 0 eV, monolayer VSi2N4 exhibits a metallic feature. By increasing the
Ueff to 3 eV, it transforms into a semiconductor with a direct gap. The valence band
maximum and conduction band minimum both locate at the +K and −K points,
indicating the valley features. Figure 2.7a displays the band structure of monolayer
VSi2N4 with including SOC. It can be seen that the valley degeneracy is preserved.
Upon tuning the orientation of magnetization from in-plane to out-of-plane, a valley
polarization of 63.11 meV is achieved in monolayer VSi2N4, as shown in Figure 2.7b.
It should be noted that the energy barrier for tuning the magnetization orientation is
estimated to be 63.99 μeV. This is not so feasible in experiment. To this end, the strain
effect is applied to monolayer VSi2N4. Under the strain of 4–8%, the magnetization
orientation is tuned from in-plane to out-of-plane. Under such condition, the valley
polarization can be achieved in monolayer VSi2N4.

The last candidate material for realizing spontaneous valley polarization that we
introduce here is monolayer GdI2. Using first-principles calculations, Feng et al.
reported that monolayer GdI2 is a 2D valleytronic material with spontaneous val-
ley polarization [55]. Bulk GdI2 is a ferromagnetic material with a large magnetic
moment of 7.33 μB per Gd atom [56–58]. It exhibits a layered structure with van der
Waals interaction dominating the interlayer coupling. To examine the experimental
feasibility of the exfoliation of monolayer GdI2, the exfoliation energy is calculated.
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Figure 2.7 The band structure of monolayer VSi2N4 with considering both spin
polarization and SOC when the magnetization is along (a) +x and (b) +z. EF is set to 0 eV.
Source: Cui et al. [54]/with permission of American Physical Society.
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The exfoliation energy is found to be 0.33 J m−2, suggesting that it is experimentally
achievable. The crystal structure of monolayer GdI2 is similar to that of monolayer H
phase MoS2. The lattice constant is optimized to be 4.099 Å. The thermal and dynam-
ical stability of monolayer GdI2 is confirmed using the phonon spectra calculations
and molecular dynamic simulations. In monolayer GdI2, each Gd atom denotes two
electrons to the I atoms, resulting in the electronic configuration of 4f75d1. This leads
to a magnetic moment of 8 μB per Gd atom. After investigating all the possible mag-
netic orders, the ferromagnetic ground state is established for monolayer GdI2.

A significant spin splitting is observed in the band structure of monolayer GdI2,
forming an indirect band of 0.589 eV. Interestingly, the band edges of the conduction
and valence bands come from different spin channels, which suggests that mono-
layer GdI2 is a bipolar magnetic semiconductor. The valence band maximum lies at
the K point, while the conduction band minimum locates at the M point. Therefore,
there are two valleys locating at the +K and −K points in the valence band, sug-
gesting monolayer GdI2 a valleytronic material. When considering SOC, the valley
degeneracy in the valence band is lifted, giving rise to a spontaneous valley polar-
ization of 149 meV in monolayer GdI2. This large valley polarization is equivalent to
a magnetic field of 745–1490 T. And by reversing the magnetization orientation, the
valley polarization is also reversed. Such sizeable valley polarization is attributed to
the joint effects of the intrinsic magnetic exchange field and strong SOC strength.

Currently, several 2D valleytronic materials have been proposed, which, however,
is still rare. And a large part of these candidate materials suffer from the in-plane
magnetization. Therefore, candidate materials with spontaneous valley polarization,
especially with large valley polarization and experimental feasibility, are still under
exploration.

2.1.2 Valley Polarization by Foreign Atom Doping

To realize valley polarization, foreign atom doping is an effective approach as atom
doping technologies have been well established in experiment. Based on this point,
Schwingenschlögl et al. investigated the valley physics in Mn-doped monolayer
MoS2 on the basis of first-principles calculations [59]. Concerning monolayer MoS2,
it is considered as one of the most promising valleytronic material, but its inequiva-
lent valleys are energetically degenerate. Therefore, external approaches are needed
to lift this degeneracy. Mn atom is known as a magnetic transition metal atom,
which is usually used to induce spin polarization. For the MnMo configuration, the
total magnetic moment is 1 μB, which can be attributed to the fact that Mn has one
more electron than Mo atom. While for the MnS configuration, the total magnetic
moment is 1 μB. The spin-polarized band structure of monolayer MoS2 without
considering SOC exhibits that its band edges locate at the +K and −K points. The
spin-polarized band structure of MnMo configuration without considering SOC
shows that the bands are spin polarized. By taking SOC into consideration, in
MnMo configuration, the valley polarization is realized. When the magnetization
orientation is inverted, the valley polarization is inverted. There are some impurity
bands located in the band gap, which are occupied by the state from Mn.
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Although valley polarization is realized in Mn-doped MoS2, the valleys lie far
away from the Fermi level. In this case, the valleys are not applicable for practical
applications. Is it quite natural to consider if the valley polarization can be real-
ized in Cr-doped MoS2? If yes, would the valleys locate at around the Fermi level?
Schwingenschlögl et al. then systematically investigated the valleytronic properties
of Cr-doped MoS2 [60]. Despite the isoelectronic nature of Cr and Mo atoms, in the
Cr-doped MoS2, the magnetic moment is found to be 2.1 μB per Cr atom. This is
sought into the fact that Cr4+ has two valence electrons. And such spin polarization
is related to the electronic correlations, as repeated calculations without considering
the on-site Coulomb interaction give a non-spin-polarized state. In fact, the introduc-
ing of Cr atom in monolayer MoS2 not only results in the magnetic moment on the
Cr site but also impacts the atoms neighboring it significantly. And the total mag-
netic moment of the Cr-doped MoS2 is 0 μB. When doping the V rather than the Cr
atom, a total magnetic moment of 1 μB is obtained. That is because V has one more
electron with respect to Mo.

The band structure of monolayer MoS2 is shown in Figure 2.8a. It shows a direct
band gap with the band edges locating at the +K and −K point. This results in
two pairs of valleys in the conduction and valence bands. In the valence band, the
SOC-induced valley spin splitting is significant, which is estimated to be 143 meV.
While for the conduction band, the valley spin splitting is neglectable. The band
structure of Cr-doped MoS2 without considering SOC is displayed in Figure 2.8b.
This allows to identify the states from different spin channels. There are three
up-spin states locating above the Fermi level and one down-spin state locating
below the Fermi level. Figure 2.8c shows the band structure of Cr-doped MoS2 with
considering SOC. It only slightly differs from that without considering SOC except
for the +K and −K points in the valence band. The valley polarization is realized in
Cr-doped MoS2, as shown in Figure 2.8c. However, the valleys are separated by one
flat band from the Fermi level. Obviously, this is not what we want. Then Schwin-
genschlögl et al. investigated the valleytronic properties of V-doped MoS2 [60].
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Figure 2.8 (a) Band structures of pure monolayer MoS2 with considering SOC. (b) Band
structures of Cr-doped monolayer MoS2 without considering SOC. The spin-up and
spin-down channels are indicated by the dashed and solid lines, respectively. (c) Band
structures of Cr-doped monolayer MoS2 with considering SOC. (d) Band structures of
V-doped monolayer MoS2 with considering SOC. EF is set to 0 eV. Source: Singh and
Schwingenschlögl [60]/with permission of John Wiley & Sons.
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Figure 2.8d shows the band structure of V-doped MoS2. Compared with the case
of Cr-doped case, the valley polarization is preserved. And more importantly, the
polarized valleys form the valence band edges, benefiting for practical applications.
The valley polarization in V-doped MoS2 is 120 meV, which is sizeable for further
exploiting the valley physics.

For the doping atoms, they can also be adsorbed on the surface, which might
induce spin polarization as well and then break the time-reversal symmetry. Accord-
ing to this scheme, Qi et al. investigated the valleytronic properties of monolayer
MoS2 when Sc, Mn, Fe, and Cu atoms are adsorbed on the surface [61]. Figure 2.9
shows the band structures of monolayer MoS2 adsorbed by Sc, Ti, V, Cr, Mn, Fe, Co,
and Cu atoms with considering SOC, where the magnetization orientation is along
the out-of-plane direction. For the adsorption of Sc, Mn, Fe, and Cu atoms, one valley
is higher than the other valley, leading to the valley polarization. While for the cases
of Ti, V, Cr, and Co, the bands from the transition-metal (TM) atom hybridize with
the valence band of the host atoms, which makes the valleys indistinguishable. For
the cases of Sc and Cu, the valley spin splitting at the +K point is more significant as
compared with that at the −K point. That is why the +K valley is higher in energy
than the −K valley. For the cases of Mn and Fe, the spin splitting at the −K point is
more significant than that at the +K point, resulting in the +K valley lying below the
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−K valley in energy. This discrepancy results from the opposite exchange interaction:
it is positive for Mn and Fe cases and negative for Sc and Cu cases. Based on these
systems, the anomalous charge and spin and valley Hall effect can be obtained [61].

The n-p codoping, with the coexistence of both n-type and p-type dopants, is
shown to be a promising method for engineering the electronic properties. Using
first-principles calculations, Yang et al. [62] explored the valleytronic properties of
n-p codoped monolayer MoS2 [62]. For constructing the codoping configuration,
one Nb atom (Nb1) is first introduced into monolayer MoS2, which tends to sub-
stitute the Mo atom. Then, the second Nb atom (Nb2) is introduced, which favors
the top site above the Nb1 atom. For the adsorption of Nb2 atom, the adsorption
energy is 3.845 eV for the pure monolayer MoS2, and it is 3.789 eV for Nb1 doped
MoS2. Before including SOC, the quadratic non-Dirac band dispersions can be
observed at the Γ point. In this case, the system is referred to as spin-gapless
semiconductor. When including SOC, such band dispersion is deformed, and a
band gap is introduced. Such spin polarization combined with the broken inversion
symmetry would lead to the valley polarization. It should be noted that a 3× 3
supercell is used here in the calculations, which results in the band folding. By
unfolding the bands, a valley polarization of 125 meV is obtained.

As in the same group of TMDs, monolayer WS2 shares many similar properties
with MoS2, including the valley physics. To induce the valley polarization in mono-
layer WS2, Zhang et al. introduced the adsorption of 3d TM atoms [63]. To determine
the energetically stable configurations, various sites for the adsorption of 3d TM
atoms are considered. And the site above the W atom is found to be energetically
most stable. The adsorption strength is related to the electronic configuration of 3d
TM atoms. For the TM atoms with half-filled and unfilled states, i.e. Sc, Ti, V, Fe, Co,
and Ni, they are chemically adsorbed on monolayer WS2. While for Cr, Mn, Cu, and
Zn, the adsorption energy is small. By adsorbing TM atom on monolayer WS2, the
spin polarization would be introduced. For the cases of Sc, Ti, V, and Cr, the total
magnetic moment increases from 2.98 to 6 μB with increasing atomic number. And
because of the strong hybridization with the host atoms, the 4s electrons of the TM
are transferred to the 3d orbitals, which increases the magnetic moment. For the
cases of Mn, Fe, Co, and Ni, the total magnetic moment decreases from 5 to 0 μB
with increasing atomic number. For the case of Cu, the 4s electrons are transferred
to the 3d orbital of W, forming a magnetic moment of 0.9 μB. For the case of Zn, due
to the closed 3d and 4s shells, no magnetic moment is obtained.

The spin-polarized band structure of TM adsorbed monolayer WS2 with consider-
ing SOC is shown in Figure 2.10. It can be seen that the local energy levels appear
in the band gap. Among these 3d TM atoms, the introduction of Sc, Ti, V, Cr, Mn,
Fe, Co, and Cu can be considered as n-type dopants, because of the fact that the par-
tially filled impurity levels are close to the conduction band. This would enhance the
n-type mobile carrier density. Except Zn adsorbed case, the large valley spin splitting
can be observed in the conduction band. More importantly, the valley spin splitting
at the +K and −K valleys are different with considering SOC. In this regard, one
valley shifts higher in energy with respect to another valley, forming the valley polar-
ization. The values for the valley polarization in these systems range from 30.86 to
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Figure 2.10 Spin-polarized band structures of TM atom doped monolayer WS2 with
including SOC. EF is set to 0 eV. Source: Guo et al. [63]/with permission of IOP Publishing.

83.78. And the case of Ti exhibits the largest valley polarization of 83.78 meV. Such
valley polarization is sought into the joint effects of SOC and time-reversal symmetry
breaking.

Recently, monolayer MoSSe is shown to feature the interesting valley physics
[64, 65], which are considered as a promising valleytronic material. To incorporate
monolayer MoSSe into valleytronic devices, effective approach for achieving the
valley polarization is necessary. To this end, using first-principles calculations,
Dai et al. proposed that valley polarization can be realized in Janus monolayer
MoSSe via atomic doping of V and Cr [66]. Monolayer MoSSe is a semiconductor
with a direct band gap of 1.56 eV. The band edges locate at the +K and −K points
in both the conduction and valence bands form two pairs of valleys. The valence
band edge is mainly from the Mo-dx2−y2 and dxy orbitals, while the conduction
band edge is dominated by Mo-dz2 orbital. For pure monolayer MoSSe, it is not
spin polarized. By considering SOC, the band gap decreases to 1.47 eV. And a large
valley spin splitting of 169 meV occurs in the valence band, while this value is one
14 meV in the conduction band. Such discrepancy results from the different orbital
contribution to the valence and conduction edges.

To break the time-reversal inversion symmetry, Cr and V atoms are selected as the
dopants, as their atomic radii are close to that of Mo atom. This would not damage
the crystal structure and then the valley feature significantly. The calculated binding
energies for Cr and V doping are found to be 2.204 and 2.773 eV, respectively, which
suggest the stability of the doped systems. After introducing the dopant, the spin
polarization is induced in monolayer MoSSe. For the case of Cr, the total magnetic
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moment is calculated to be 0 μB. But, the doped Cr atom has a local magnetic
moment of 2.0 μB, which can be attributed to the more localized character of the 3d
orbital as compared with the 4d orbitals. And because of the strong hybridization
with the Cr atom, the host atoms also have magnetic moments, which are aligned
antiferromagnetically to the Cr atom. For the case of V, a total magnetic moment of
1.0 μB is obtained, which results from the fact that V has less electron with respect to
Mo. And the magnetic moment is mainly localized on the V atom, and the magnetic
moment localized on the host atoms are rather small.

For the spin-polarized band structure of Cr-doped monolayer MoSSe without con-
sidering SOC, although several defect levels appear in the band gap, the valley fea-
ture is preserved. The spin polarization lifts the spin degeneracy of the bands of
Cr-doped MoSSe, and the +K and −K valleys show the same spin sign. The states of
Cr atom spread in a large energy range, indicating a strong hybridization with the
host atoms. Upon considering SOC, the valley degeneracy of the +K and −K valleys
are lifted, resulting in a valley polarization of 10 meV. It should be noted that there
are some defect levels locating between the valleys and the Fermi level, making it not
applicable for valleytronics. For V-doped monolayer MoSSe, similar to the Cr-doped
case, the valley feature is preserved when excluding SOC and a large spin splitting
in the band structure is observed. There are one spin-up and one spin-down bands
locating in the band gap. Importantly, the defect levels lie far away from the Fermi
level. Therefore, there is no defect level locating between the valleys and the Fermi
level. By considering SOC, the valley spin splitting at the +K valley is weaker than
that at the −K valley, resulting in the valley polarization of 59 meV. And importantly,
the defect levels lie far away from the valleys and the Fermi level in the presence of
SOC, making it an ideal valleytronic material.

In the works mentioned earlier, the time-reversal inversion symmetry is broken
by introducing magnetic metal atoms, which has been proposed as an effective way
for realizing valley polarization. However, the doped metal atoms in the host mate-
rials normally tend to form clusters, which would deform the valley behaviors. In
fact, spin polarization can also be induced by introducing nonmetal dopants. Using
first-principles calculations, Dai et al. proposed that promising valley polarization in
monolayer Tl2O is realized through doping nonmetal atoms [67]. Monolayer Tl2O
shows a metal-shrouded structure with one O atomic layer sandwiched between two
Tl atomic layers. The lattice constant of monolayer Tl2O is optimized to be 3.51 Å.
The space group of monolayer Tl2O is P62m, and the inversion symmetry is broken.
Monolayer Tl2O is a semiconductor with an indirect band gap of 1 eV. Its valence
band maximum lies at the + K and −K point. For its conduction band, although the
minimum locates at the Γ point, the lowest band at the +K and −K points also form
valleys. When taking SOC into consideration, the valleys in the conduction band
show a large valley spin splitting, while it is small in the valence band.

To induce the spin polarization in monolayer Tl2O, C and N atoms are selected as
the dopants because their atomic radii are close to that of O. By introducing the non-
metal dopants, the annoying cluster effect can be avoided. The calculated binding
energy for doping C and N are 4.9 and 6.42 eV, respectively, which suggests that the
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doped systems are experimentally feasible. Due to the differing electronic configu-
rations of C/N from that of O, the spin polarization is expected. And the calculations
show that the total magnetic moment for the C-doped case is 2.0 μB, agreeing with
the fact that C has two less electrons than O atom. While for N-doped case, the
magnetic moment is only 0.37 μB. Such small values can be attributed to the strong
hybridization between N and the host atoms. For both cases, the spin polarization
is mainly distributed on the dopants. When excluding SOC, due to the existence of
spin polarization, the spin-up and spin-down bands are asymmetric. However, the
+K and −K valleys are still degenerate. The Fermi level crosses the valence band
for both cases, making them semimetallic. It should be noted that the Fermi level
in such systems could be easily tuned by electron doping. When considering SOC,
the degeneracy between the +K and −K valleys are lifted for both cases, causing
the valley polarization. For the N-doped monolayer Tl2O, the valley spin splitting
induced by SOC is larger than that at the −K point, and the spin signs are oppo-
site at the two valleys. The valley polarization for the N-doped monolayer Tl2O is
23 meV. In addition, the defect levels introduced by N doping lie below the val-
leys, indicating that N doping does not affect the band gap of the host material.
For C-doped case, a defect level lies above the valleys. But fortunately, it lies by
200 meV away from the valleys, which would not affect the valley features. The val-
leys polarization for C-doped case is 44 meV. The strain effect on the valley physics
of these systems is also investigated, which is shown to be able to modulate the
valley polarization in both systems effectively. For more information, please refer
to Ref. [67].

2.1.3 Valley Polarization in van der Waals Heterostructures

Aside from foreign atom doping, magnetic proximity effect is also an effective way
to break the time-reversal symmetry and thus realize valley polarization in 2D
valleytronic materials. In the early stage, the research in this field is mainly focused
on the bulk magnetic substrates, such as EuO, EuS, CoO, MnO, and so on [68–84].
However, the interfacial state raised from the dandling bonds of the bulk magnetic
substrates usually would inhibit the valley features, which is not favorable for
valleytronic applications. The recent rise of 2D magnetic semiconductors offers a
promising avenue for overcoming this problem. With respect to the bulk magnets,
2D magnetic semiconductors feature a clean surface without any dangling bonds.
When forming interface with 2D valleytronic materials, the weak van der Waals
interaction would dominate the interlayer coupling between them. And thus the
formation of excessive interface states can be avoided, beneficial for protecting the
valley physics. In this section, we will review and discuss the research on the valley
polarization in TMDs induced by contacting with 2D magnetic semiconductors.

Using first-principles calculations, Zhou et al. investigated the valley polarization
properties of monolayer WS2 induced by magnetic proximity effect of monolayer
MnO2 [85]. The lattice constants of monolayer t-MnO2 and WS2 are optimized to
be 3.03 and 3.15 Å, respectively. The lattice mismatch between them is only 3.8%.
Six possible stacking configurations of WS2/MnO2 are investigated, and the fcc-II
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stacking pattern, where the Mo atom sites above Mn or O atoms, are found to be
most stable. To confirm the stability of the heterostructure, phonon spectra calcula-
tions are performed. The absence of imaginary frequency in the whole Brillouin zone
indicates its stability. The interlayer distance is found to be 2.71 Å. More importantly,
by contacting with monolayer t-MnO2, spin polarization is induced in monolayer
MoS2, and the largest magnetic moment is 0.065 μB. The valley spin splitting at the
+K point is enhanced to 420 meV, while it is reduced to 345 meV at the −K point.
This suggests the valley polarization occurs in WS2/MnO2. For the trigonal crys-
tal field, the d orbitals split into three groups: one singlet a1 (dz2) and two doublets
e1 (dxy, dx2−y2) and e2 (dxz, dyz). The conduction band minimum, the O-pz orbital is
strongly hybridized with the Mn-e1 and -e2 orbitals. For the valence band maximum,
it is dominated by W-e1 orbitals. Accordingly, the W-e1 orbital plays an important
role in the valley spin splitting and the valley polarization.

Similar to monolayer MnO2, monolayer h-VN is also a ferromagnetic material, but
exhibiting a half-metallic feature [87]. The Curie temperature of monolayer h-VN is
predicted to be 768 K. Meanwhile, its lattice constant is found to be 3.23 Å. This value
is close to that of monolayer WS2 (3.19 Å). Considering this point, Kang et al. con-
structed the WS2/VN heterostructure and investigated its valleytronic properties on
the basis of first-principles calculations [86]. According to the symmetry, six highly
symmetric stacking configurations are considered for the WS2/VN heterostructure.
To determine the most stable configuration, the binding energies between mono-
layer WS2 and h-VN are calculated. The structure with S atoms siting above V atoms
and W siting above N atoms is found to be most stable. So only this configuration is
considered. Figure 2.11a and b presents the band structure of WS2/VN heterostruc-
ture. The lowest conduction band is mainly contributed by the orbitals of h-VN,
while the highest valence band is mainly from the orbitals of WS2. This suggests
a typical type-II band alignment. Figure 2.11c shows the spin-projected band struc-
ture of WS2/VN heterostructure. It can be seen that the lowest conduction band and
highest valence band of WS2 still exhibit the valley feature. However, the valley spin
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Figure 2.11 (a and b) Orbital resolved band structures of WS2/VN heterostructure. (c) Spin
resolved band structure of WS2/VN heterostructure. EF is set to 0 eV. Source: Ke et al.
[86]/with permission of American Physical Society.
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splitting in the valence band at different valleys is significantly different, which is
627 and 2 meV at +K and −K points. As a result, a valley polarization of 376 meV
is produced in the first valence band, and a valley polarization of 249 meV is gener-
ated at the second valence band. Moreover, a valley spin splitting of 130 (141) meV is
found in the conduction band of WS2 at the +K (−K) point, which results in the val-
ley polarization of 148 (123) meV in the lowest (second) conduction band. As shown
in Figure 2.11c, the spins at the +K valley for the lowest conduction band and high-
est valence band are antiparallel, indicating the bright exciton state. While for the
case at the −K point, it is parallel, suggesting the existence of the dark exciton state.
Such a feature demonstrates that the spin alignment of carriers in WS2 can be altered
by constructing WS2/VN heterostructure. And based on these findings, Kang et al.
proposed a prototype filter device for both the valley and spin [86].

Recently, the WSe2/CrI3 heterostructure has been fabricated through transferring
mechanically exfoliated monolayer WSe2 onto CrI3 substrate [88, 89]. Such a het-
erostructure shows distinguishable energy and intensity under left and right circular
polarization, which is a hallmark of the valley polarized state. And the valley polar-
ization is estimated to be 3.5 meV. To explore the underlying physics of the valley
polarization in WSe2/CrI3 heterostructure, Liu et al. performed systematical inves-
tigation on its valleytronic properties based on first-principles calculations [90]. To
construct the WSe2/CrI3 heterostructure, a 2× 2 supercell of monolayer WSe2 is used
to match one unit cell of monolayer CrI3. To determine the most stable structure
of WSe2/CrI3 heterostructure, three high symmetrical stacking patterns are consid-
ered. In the C-1 configuration, one Cr atom sites above one Se atom. In C-2 configu-
ration, one Cr atom sites above one W atom. In C-3 configuration, two Cr atoms site
above one Se and one W atoms, respectively. The calculated binding energies show
that there is only a small energy barrier between these three structures. Moreover,
these three configurations share similar band structures.

Taking C-3 as an example, in WSe2/CrI3 heterostructure, the valley features are
well preserved. Moreover, the direct band gap features of WSe2 at the +K and −K
points are also preserved. After contacting with the ferromagnetic substrate of CrI3,
the valley degeneracy between the +K and −K valleys is lifted, resulting in the valley
polarization. The magnetic moment on the W atom is found to be nearly zero, which
suggests the interaction with CrI3 is rather weak. This is similar to the case where
the valley polarization is induced by external magnetic field, which is favorable for
practical valleytronic applications. Furthermore, the electrostatic potential gradient
is also an important factor for lifting the valley degeneracy. And previous work has
shown that under an electrical field, the valley polarization induced by magnetic
field can be significantly enhanced [91]. In this heterostructure, there indeed is an
interlayer electrostatic potential gradient, generating a vertical electrical field. How-
ever, the interlayer electric field is rather weak in WSe2/CrI3 heterostructure.

Besides Ref. [90], Ren et al. also investigated the valleytronic properties of
WSe2/CrI3 heterostructure [92]. A valley polarization of 2 meV is obtained in
WSe2/CrI3 heterostructure. They also attribute this feature to the joint effect of
time-reversal symmetry breaking and inversion symmetry breaking. Moreover, they
show that the valley polarization is insensitive to the stacking patterns of WSe2/CrI3
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heterostructure. By reversing the magnetization in the CrI3 layer, the valley splitting
and polarization at the +K and −K points are switchable.

Besides monolayer WSe2, monolayer CrI3 is also found to be a suitable ferro-
magnetic substrate to induce valley polarization for monolayer AgBiP2Se2. Using
first-principles calculations, Cheng et al. predicted monolayer AgBiP2Se2 is a 2D
valleytronic material with large valley spin splitting in the conduction band, and
find that the valley polarization can be induced by contacting with monolayer
CrI3 [93]. Bulk AgBiP2Se6 exhibits a lamellar structure and is an antiferroelectric
semiconductor [94]. By reducing the layer thickness to monolayer, it transforms into
a ferroelectric semiconductor with out-of-plane electric polarization. The lattice
constant of monolayer AgBiP2Se6 is found to be 6.754 Å. Monolayer AgBiP2Se6
presents an indirect band gap of 1.22 eV, with the valence band maximum locating
at the +K and −K points and conduction band minimum locating at the Γ point.
For the conduction bands at the +K and −K points, there is also an energy extrama.
Therefore, there are two pairs of valleys in the valence and conduction bands of
monolayer AgBiP2Se6. Figure 2.12a shows the orbital resolved band structure of
monolayer AgBiP2Se6 without considering SOC. It can be seen that the valence
band edges are mainly from the Ag orbitals, while the conduction band edges are
dominated by the Bi orbitals. Hence, the SOC strength within the conduction band
would be larger than that in the valence band. When taking SOC into considera-
tion, as shown in Figure 2.12b, the valleys in the conduction band experiences a
significant spin splitting of 472 meV. And due to the time-reversal symmetry, the
spins at +K and −K valleys are opposite.

The AgBiP2Se2/CrI3 heterostructure is constructed with the unit cells, resulting
in a lattice mismatch of 3.6%. The phonon spectra calculations are carried out, and
only tiny imaginary frequency appears at the Γ point, which confirms the stability
of AgBiP2Se2/CrI3 heterostructure. Figure 2.12c and d shows the band structures
of AgBiP2Se2/CrI3 heterostructure under two different ferroelectric polarizations.
When the ferroelectric polarization pointing to the interface, the spin splitting at
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Figure 2.12 Band structure of monolayer AgBiP2Se2 (a) without and (b) with considering
SOC. Band structure of AgBiP2Se2/CrI3 heterostructure with considering SOC with the
electric polarization pointing (c) to and (d) away from the interface. EF is set to 0 eV. Source:
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the +K valley in the conduction band is enhanced to 551 meV and the spin splitting
at the −K valley in the conduction is reduced to 359 meV. In this regard, the valley
polarization occurs in AgBiP2Se2/CrI3 heterostructure. Though valley polarization
is obtained in this case, the lowest conduction band locates at the Γ point, which
would deform the valley physics, making it not applicable. Interestingly, by revers-
ing the ferroelectric polarization, the lowest conduction band transforms from the Γ
point to the −K point, see Figure 2.12d. In this case, the valley physics is preserved
in the conduction band, enabling the anomalous valley Hall effect. Therefore, the
valley polarization in AgBiP2Se2/CrI3 heterostructure can be controlled via exter-
nal electric field [93], which is promising for developing controllable valleytronic
devices.

Considering the positive role played by monolayer CrI3 for realizing valley
polarization, Xu et al. systematically investigated the valleytronic properties of
the heterostructures constructed by monolayer TMD (MoS2, MoSe2, MoTe2, WS2,
and WSe2) and CrI3 [95]. Moreover, the monolayer CrBr3 is also considered as the
ferromagnetic substrate. In total, 10 systems are investigated, including MoS2/CrI3,
MoSe2/CrI3, MoTe2/CrI3, WS2/CrI3, WSe2/CrI3, MoS2/CrBr3, MoSe2/CrBr3,
MoTe2/CrBr3, WS2/CrBr3, and WSe2/CrBr3. For constructing the heterostructure,
a unit cell of the ferromagnetic substrate is employed to match a 2× 2 supercell
of 2H-phase TMD monolayer. For all these systems, the ferromagnetic properties
monolayer CrBr3 or CrI3 are well preserved. The calculations on the magnetic
anisotropy energy show that the magnetic easy axes of all these systems favor the
out-of-plane direction.

WSe2/CrI3, MoTe2/CrI3, WSe2/CrBr3, and MoTe2/CrBr3 without considering
SOC feature a semiconducting state with a much smaller band gap as compared
with those of their respective monolayers. And a similar character is also found
for MoSe2/CrBr3, MoS2/CrBr3, WS2/CrBr3, WS2/CrI3, MoS2/CrI3, and MoSe2/CrI3
heterostructures. When taking SOC into consideration, the band gaps of WSe2/CrI3
and MoTe2/CrI3 are further decreased. While for WSe2/CrBr3 and MoTe2/CrBr3,
the introduction of SOC even induces the phase transition from insulating to
metallic. In addition, the +K and −K valleys of monolayer TMD are well preserved
in the heterostructures, and the valleys are from the Mo or W. For pure monolayer
TMD, the +K and −K valleys are degenerate in energy when excluding SOC.
After including SOC, the spin degeneracies at the +K and −K valleys are broken,
and the highest valence bands at +K and −K points feature opposite spins. By
interfacing with the ferromagnetic substrate of monolayer CrBr3 or CrI3, the spin
degeneracies at the +K and −K points are further broken, leading to the valley
polarization. Remarkably, the valley polarization of WSe2/CrBr3 and MoTe2/CrBr3
are found to be ∼15.2 and 28.7 meV, respectively. This suggests that WSe2/CrBr3
and MoTe2/CrBr3 are suitable candidates to generate large valley polarization.

Using first-principles calculations, Dai et al. employed monolayer CrCl3 as the
ferromagnetic substrate to induce valley polarization in monolayer 2H-CrX2 (X = S,
Se) [96]. Monolayer 2H-CrS2 (CrSe2) is found to be a 2D valleytronic semiconductor
with a direct band gap of 0.93 (0.75) eV locating at the +K and −K points. This
results in two pairs of valleys, respectively, in the valence and conduction bands.
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For monolayer 2H-CrS2 (CrSe2), the including of SOC induces a valley spin splitting
of 68.5 (90.6) meV in the valence band. While for the conduction band, the valley
splitting is extremely small, which is found to be 4.1 and 15.4 meV, respectively.
This difference is attributed to the different orbital contributions of the valence
and conduction band edges. Given the large valley splitting, monolayer 2H-CrX2 is
considered as a promising 2D valleytronic material. For realizing valley polarization
in monolayer 2H-CrX2, monolayer CrCl3 is selected by considering two facts. First,
monolayer CrCl3 is a ferromagnetic semiconductor with large band gap of 1.51 eV.
Second, monolayer CrCl3 has a lattice constant close to that of monolayer 2H-CrX2.
When forming the heterostructures, the valley polarization is successfully obtained.
Additionally, the valley polarization is found to be dependent on the stacking
patterns.

Similar to transition metal trihalides, monolayer TM dihalides are also discov-
ered as 2D ferromagnetic semiconductors, which hold potential to be used as ferro-
magnetic substrates to realize valley polarization. One typical example is monolayer
NiCl2. Monolayer NiCl2 can be fabricated from its layered bulk counterpart. And it is
a promising 2D ferromagnetic semiconductor with a band gap of 2.4–2.8 eV [97, 98].
The Curie temperature of monolayer NiCl2 is 120 K [99]. Using first-principles cal-
culations, Teng et al. employed monolayer NiCl2 as the ferromagnetic substrate to
induce the valley polarization in WSe2 [100]. For the WSe2/NiCl2 heterostructure,
six possible configurations are considered. The calculated binding energy shows that
the T1, T2, T5, and T6 configurations are lower in energy with respect to the T3
and T4 configurations. The phonon spectra of T1, T2, T5, and T6 configurations
present no negative values in the whole Brillouin zone, indicating their dynamical
stability. Therefore, only these four configurations are considered for WSe2/NiCl2
heterostructure.

As these four configurations share similar band structure, only the band structure
of T5 configuration for WSe2/NiCl2 heterostructure is discussed. With interfacing
with the ferromagnetic substrate of monolayer NiCl2, the valley polarization is real-
ized. And by reversing the magnetization orientation, the valley polarization is also
reversed, but the magnitude of the valley polarization is preserved. The obtained
valley polarization for T1, T2, T5, and T6 configurations are 1.17, 9.13, −11.87, and
−11.01 meV, respectively. As the valley polarization in T2, T5, and T6 configurations
are significantly larger than that of T1 configuration, the interlayer stacking pattern
can be used to tune the valley physics in WSe2/NiCl2 heterostructure. And to further
increase the valley polarization in monolayer WSe2, Teng et al. proposed to increase
the heterostructure from two to three layers, namely, a WSe2 layer is sandwiched
between two layers of NiCl2. In this case, the valley polarization indeed is increased
significantly.

Using first-principles calculations, Tang et al. [101] and Yin et al. [102] also
employed monolayer transition metal dihalides as the ferromagnetic substrates
to induce valley polarization in monolayer TMD. Tang et al. [101] showed that
the magnitude of the valley polarization in the heterostructures is related to the
strength of the magnetic proximity effect, namely depending on the interlayer
charge transfer and Coulomb interaction. For a given heterostructure, the type-III
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configuration features a large valley polarization as compared with that of a type-I
or type-II band alignment. Yin et al. [102] found that biaxial strain can induce a
transition of the band alignment from type-II to type-I, which in turn influences
the valley physics. Besides binary ferromagnetic systems, ternary ferromagnetic
systems are also used as substrates to achieve the valley polarization, and similar
results are obtained [103–106].

2.2 Rashba Effects

From the preceding sections, we can see that the valley physics is correlated
with SOC. In this section, we will discuss another SOC-related phenomena –
Rashba effect. Rashba effect was first proposed in seminal works discussing the
SOC-induced band splitting in wurtzite semiconductors, such as CdS and CdSe
[107, 108]. Later, the Bychkov–Rashba model is reported to describe the motion
of electrons in the 2D electron gas system with a potential gradient [109]. Rashba
effect generally is aroused from potential gradient induced by structure inversion
asymmetry. Under such a potential gradient (Ez), an electron with k and spin 𝜎

would experience an effective magnetic field [109, 110], which can be represented
by the Rashba Hamiltonian:

HR = 𝜆𝜎 ⋅ (EZ × k)

Here, 𝜆 is the coupling constant. As a result of this effect, the spin degenerated
parabolic bands would split into two bands with opposite spin-polarized states. And
the corresponding energy values are:

E±(k) = ℏ
2k2

2m∗ ± 𝛼R|k|
Here, m* is the effective mass of electrons, and 𝛼R is the Rashba parameter that indi-
cates the strength of Rashba effect.

The gate tunability of Rashba effect makes it possible to electrically control the
spin degree of freedom, without needing the magnetic field or materials [111, 112].
One typical example is the Datta–Das spin field effect transistor, which is proposed
by Datta et al. [113]. In such a transistor, the spin precession in the 2D electron
gas can be engineered via Rashba effect. Since then, great efforts have been devoted
to the research on Rashba effect, and many systems have been demonstrated to be
with the Rashba effect, such as semiconductor systems [114–119], perovskite oxides
[120–122], the metal surfaces [123–127], and so on. Recently, the discovery of Rashba
effect in 2D systems attracts rapidly increasing attention as the strength of Rashba
effect is significantly enhanced in 2D systems. The realization of Rashba effect in
2D materials offers opportunities for promising spintronic applications and hosting
nontrivial phenomena. In this section, we will discuss the recent theoretical progress
of the Rashba effect in 2D materials.

Using first-principles calculations, Freeman et al. found that a remarkable Rashba
spin splitting can be produced in monolayer LaOBiS2 [128]. By excluding SOC, the
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band structure of monolayer LaOBiS2 shows a semiconducting nature with a direct
band gap locating at the X point. The bands in the low energy area are dominated by
the BiS2 layers. In this regard, monolayer LaOBiS2 can be considered as a quantum
well, in which the La2O2 layer behaves like a potential barrier and thus prevents
the overlap of the wave functions from the two BiS2 layers. This results in that the
two highest valence bands (HVB-1, 2) and two lowest conduction bands (LCB-1, 2)
are twofold degenerate, and the degenerated states are separate from different BiS2
layers.

In fact, the La2O2 layer plays an important role for producing the Rashba effect
in monolayer LaOBiS2. In monolayer LaOBiS2, the bonding between La2O2 layer
and BiS2 layers is ionic, which enables the BiS2 layers under polar electric field
with opposite directions. This makes the two BiS2 layers individually exhibit a
Rashba effect. There are two polar fields with opposite directions. The Rashba spin
splitting is attributed to the two polar fields. Therefore, there are two sets of Rashba
states localized at the top and bottom BiS2 layers. And the two sets of state are
degenerated in energy because of the inversion symmetry of monolayer LaOBiS2.
More importantly, the spin splitting energy of the HVBs is found to be 119 meV,
resulting in a significant large Rashba parameter of 4.78 eV Å. Such large value
is significantly desirable for practical applications. In addition, under an external
electric field perpendicular along the z direction, the degenerate Rashba bands split,
which is attributed to the Stark effect. This further confirms that the states from top
and bottom BiS2 layers are separated not only spatially but also energetically [128].

As BiS2-based layered compounds usually feature similar properties, the Rashba
effect might be expected in other BiS2-based systems. To this end, Dai et al.
investigated the electronic properties of monolayer SrFBiS2 and BiOBiS2 [129].
Different from LaOBiS2, SrFBiS2, and BiOBiS2 are two new members of BiS2-based
compounds. They also exhibit a layered structure with the space group of P4/nmm.
In each slab of SrFBiS2 (BiOBiS2), the interaction between Bi2O2 and BiS2 (Sr2F2
and BiS2) layers is ionic. The band structures of monolayer SrFBiS2 and BiOBiS2
are shown in Figure 2.13. When excluding SOC, as shown in Figure 2.13a and c,
monolayers SrFBiS2 and BiOBiS2 are semiconductors with a direct gap of 0.89 and
1.00 eV, respectively. The lowest conduction band and the highest valence band
around the X point are referred to as 𝛼 and 𝛽, respectively. For both systems, the
bands in the low energy area form the BiS2 layers, and the SrF and BiO layers have
almost no contribution. Accordingly, the SrF and BiO layers in monolayer SrFBiS2
and BiOBiS2, respectively, behave like the potential barrier preventing the overlap
between the wave functions from the opposite BiS2 layers. Therefore, the bands
𝛼 and 𝛽 are twofold degenerate without considering SOC. When taking SOC into
consideration, as shown in Figure 2.13b and d, the band gaps of monolayers SrFBiS2
and BiOBiS2 are reduced to 0.48 and 0.50 eV, respectively. This is sought into the
strong SOC strength within the constituent atoms in both systems. Besides the
band gap narrowing, a spin splitting occurs for the bands 𝛼 and 𝛽 for both systems,
indicating a Rashba-like effect.

As compared with the cases with inversion symmetry for whole structure,
the identification of Rashba effect in systems with inversion asymmetry is more
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Figure 2.13 Band structures of monolayer SrFBiS2 (a) without and (b) with considering
SOC. Band structures of monolayer BiOBiS2 (c) without and (d) with considering SOC. EF is
set to 0 eV. Source: Ma et al. [129]. Reproduced with permission of The Royal Society of
Chemistry.

straightforward. One typical example is monolayer BiTeX (X = Br and I). Using
first-principles calculations, Dai et al. investigated the Rashba effect in monolayer
BiTeX [130]. Bulk BiTeX displays a layered structure with the P3m1 space group
[131, 132]. In each slab, one Te atomic layer and one X atomic layer sandwich one
Bi atomic layer, resulting in a triple layer. Each Bi atom coordinates with three Te
and three X atoms, which form a distorted octahedron. Different from the strong
intralayer interaction, the interlayer coupling is the van der Waals interaction.
Such weak interlayer coupling offers a natural cleaving plane, and thus monolayer
BiTeX can be readily obtained experimentally. Because of the broken inversion
symmetry, the charge in monolayer BiTeX would distribute unevenly along the
out-of-plane direction, which would lead to the potential gradient and thus electric
polarization. Then the magnitude of the dipole moment in monolayer BiTeX is
examined. The dipole moment in monolayer BiTeBr is significantly larger than
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that of the monolayer BiTeI. This is sought into the specific crystal structure of
monolayer BiTeX. In detail, as compared with the Bi-I bond in monolayer BiTeI, the
bong length of Bi-Br in monolayer BiTeBr is smaller. Based on the Debye equation,
the dipole moments of the Bi-X bonds increase in the order of Bi-Br < Bi-I. While
for the Bi-Te bonds in these two systems, the bond lengths are comparable with
only a slight difference. As the Bi-X bond behaves like cancellers to the net dipole
moments, the net dipole moments would increase in the order of BiTeI < BiTeBr.

Figure 2.14 shows the band structures of monolayer BiTeX. When excluding SOC,
a semiconducting character with an indirect band gap is observed for both systems.
For the three conduction bands shown in Figure 2.14, they mainly form the Bi-p
orbitals. While for the six valence bands, they are dominated by the Te/X-p orbitals.
Considering the constituent atoms of monolayer BiTeX are heavy atoms, strong SOC

2

0
no SOC

E
n
e
rg

y
 (

e
V

)

–2

–4

M KГ

2

0
with SOC

–2

–4

M KГ

2

0
no SOC

E
n
e
rg

y
 (

e
V

)

–2

–4

M KГ

2

0
with SOC

–2

–4

M KГ

Figure 2.14 Band structures of monolayer BiTeX. The upper panels show the band
structure of monolayer BiTeBr with and without considering SOC. The lower panels show
the band structures of monolayer BiTeI without and with considering SOC. EF is set to 0 eV.
Source: Ma et al. [130]. Reproduced with permission of The Royal Society of Chemistry.
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strength is expected in both systems. As shown in Figure 2.14, when including SOC,
the band gaps are significantly reduced, which is related to the energy splitting under
the SOC. In addition, as compared with the band structures without considering
SOC, the conduction band minimum shift slight off the Γ point, giving rise to the
Rashba spin splitting. To quantitatively describe the strength of the Rashba effect
in monolayer BiTeX, the Rashba parameter is calculated. The Rashba parameter is
found to be 1.31 and 1.86 meV, respectively, for monolayer BiTeBr and BiTeI eV Å.
After estimating the Rashba effect in monolayer BiTeX [130], Liu et al. employed
uniaxial stress to engineer the Rashba effect in monolayer BiTeI on the basis of
first-principles calculations and model analysis [131]. And using first-principles cal-
culations, Li et al. studied the effect of biaxial tensile strain on the Rashba effect of
monolayer BiTeBr [132]. These two works demonstrate that applying strain is an
effective way to modulate the Rashba effect of monolayer BiTeX.

Following the strategy of material discovery by substituting the chemical element
Bi in monolayer BiTeI with Sb in the same group, Kent et al. obtained monolayer
SbTeI [133]. In monolayer SbTeI, the atoms are stacked in the sequence of I-Sb-Te,
forming a hexagonal lattice with the space group P3m1. To examine the stability of
monolayer SbTeI, the formation energy with respect to the bulk structure is calcu-
lated. The obtained formation energy is found to be small, indicating that monolayer
SbTeI can be synthesized. In addition to the formation energy, the phonon spectra
of monolayer SbTeI is also calculated. All branches of the phonon dispersions are
real, suggesting the dynamical stability. Without considering SOC, monolayer SbTeI
is a semiconductor with an indirect band gap. The valence band maximum locates
slightly off the Γ point, while the conduction band minimum sites at the Γ point.
The orbitals in the low energy area are from the p orbital of all these three species.
Upon taking SOC into consideration, as shown in Figure 2.15a, the band structure
of monolayer SbTeI changes significantly. The enlarged view of the bands near the
conduction band minimum are shown in Figure 2.15b and c. Obviously, the initially
degenerate bands split into two, forming the Rashba spin splitting. To characterize
the Rashba spin splitting in monolayer SbTeI, the Rashba parameter is calculated.
Interestingly, the Rashba parameter is found to be 1.39 eV Å, which is comparable
with that of BiTeI [130].

Different from the giant Rashba effect in monolayer BiTeX, the Rashba effect in
monolayer MXY (M=Mo, W; X/Y= S, Se, Te) is rather weak, although it also exhibits
an intrinsic polar electric field induced by its broken inversion symmetry. Using
first-principles calculations, Cheng et al. predicted that the Rashba parameters in
monolayer MXY are around 0.01 eV Å [64]. Apparently, this is not applicable for
practical applications. To enhance the Rashba effect in monolayer MoXY, Chu et al.
proposed that in-plane strain is an effective way [65]. Using first-principles calcu-
lations, Chu et al. investigated the influence of biaxial strain on the Rashba effect
of monolayer MoXY. Considering the fact that the physics of monolayer MXY are
essentially the same, we take monolayer WSeTe as an example to demonstrate the
tunability of the Rashba effect. Figure 2.16b plots the band structure of monolayer
WSeTe without applying strain. For the highest valence bands around the Γ point,
they are mainly from the Se-pz and W-dz2 orbitals. In order to clarify the orbital
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dependence of the Rashba effect in monolayer WSeTe, the partial SOC is artificially
switched on or off. When the SOC of both Se-pz and W-dz2 orbitals are switched
off, the Rashba spin splitting at around the Γ point can be neglected, suggesting the
important role of these two orbitals. By further switching of the SOC of Se-pz or
W-dz2, it is found that the latter one contributes more to the Rashba spin splitting.
In fact, this agrees with fact that the SOC strength within d orbitals is stronger than
that of the p orbitals.

Then, biaxial strain ranging from −2 to 6% is applied on monolayer WSeTe, and
the corresponding band structures are shown in Figure 2.16. Under the tensile
strain, the highest valence bands around the Γ point are shifted up, and the Rashba
spin splitting energy is decreased. While for the compressive strain, the highest
valence bands around the Γ point are shifted down, and the Rashba spin splitting
energy is increased. Such changes are strongly related to local electric field change
induced by the change of the orbital overlap between atoms. To confirm this point,
the work function change under various strains is studied. Indeed, the out-of-plane
dipole of monolayer WSeTe decreases with increasing tensile strain and increases
with increasing compressive strain. This suggests that the overlap between the
Se-pz and W-dz2 orbitals can influence the local electric field, thus modulating the
Rashba effect in monolayer WSeTe. Moreover, by increasing the compressive strain
or decreasing the tensile strain, the Rashba parameter of monolayer WSeTe can be
increased. For instance, under 2% compressive strain, the Rashba parameter can be
increased to 50%, large enough for modulating the spin states. Besides the strain
effect, the external electric field is also applied on monolayer WSeTe to modulate the
Rashba spin splitting. However, it is found to be with a low efficiency as compared
with strain [65]. In addition to Ref. [65], Ren et al. also investigated the influence
of external electric field and in-plane biaxial strain on the Rashba spin splitting of
monolayer MXY on the basis of first-principles calculations, and similar results
are found [134]. Moreover, they show that the anisotropic character of the Rashba
spin splitting of monolayer MXY can be significantly enhanced under compressive
strain [134].

Based on Refs. [65, 134], the Rashba effect in monolayer MXY can be effectively
modulated by external electric field and in-plane strain. However, these approaches
suffer from the constant energy consumption. To address this issue, Yang et al. pro-
posed charge doping is a new and effective way to engineer the Rashba effect in
monolayer MXY on the basis of first-principles calculations [135]. And here, mono-
layer WSeTe is also taken as an example. Due to the difference in the electronegativ-
ity values of M, X, and Y atoms, the M atom features a positive charge, while X and Y
atoms show a negative charge. And the X atom has more electrons than the Y atom.
This gives rise to a local electric field in the out-of-plane direction pointing from Y to
X atoms. To investigate the effect of charge doping, the charge ranging from −0.3 e
to 0.3 e is doped in monolayer WSeTe. Here, the positive and negative charges corre-
spond to dop electrons and hole, respectively. It is found that the charge doping can
engineer the Rashba effect for the valence band at the Γ point and for the conduc-
tion band at the M point. For the electron doping, the Rashba effect can be enhanced.
Taking the case with electron doping of 0.3 e as an example, the positive charge on
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Figure 2.17 Charges on
W, Se, and Te atoms for
monolayer WSeTe with
doping (a) electron of +0.3
e and (b) hole of −0.3 e.
Band structures of
monolayer WSeTe with
doping (c) electron of +0.3
e and (d) hole of −0.3 e.
Spin textures around the Γ
point of monolayer WSeTe
with doping (e and f)
electron of +0.3 e and (g
and h) hole of −0.3 e. EF is
set to 0 eV. Source: Chen
et al. [135]. Reproduced
with permission of The
Royal Society of Chemistry.

W atom decreases and the negative charges on the Se and Te atoms increase with
respect to the case without charge doping, see Figure 2.17a. Furthermore, the elec-
tron doping shifts the Fermi level up and the Rashba parameter is increased by 10.5%.
And the Rashba spin splitting in monolayer WSeTe with electron doping of 0.3 e is
further confirmed by the spin textures shown in Figure 2.17e and g. Different from
electron doping, hole doping would weaken the Rashba effect for both the valence
and conduction bands. Taking hole doping of −0.3 e as an example, as shown in
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Figure 2.17b, the W atom has more positive charge, while the Se and Te atoms have
less negative charge as compared with the neutral case. From Figure 2.17d, it can
be seen that in this case the Fermi level shifts down, and the Rashba parameter is
reduced by 6.1%. And the corresponding spin texture suggesting the Rashba spin
splitting is shown in Figure 2.17f and h. Therefore, charge doping can effectively
engineer the Rashba effect in monolayer WSeTe.

Recently, monolayer III–VI chalcogenide NX (N = Ga, In; X = S, Se, Te) has
received great interest [136–139]. Monolayer NX is shown to be semiconducting
with an indirect band gap. Importantly, monolayer NX has a super high in-plane
stiffness value, even comparable with that of graphene [140, 141]. The field effect
transistors based on monolayer NX have been fabricated by several experimental
groups, and the on/off ratio and electron mobility are shown to be remarkably high
[136, 142]. Similar to monolayer TMD, monolayer NX also has mirror symmetry,
and the inversion symmetry is broken. Upon imposing external electric field in the
out-of-plane direction, the mirror symmetry of monolayer NX has a possibility to be
broken, and the Rashba spin splitting might be obtained. To verify this expectation,
Ju et al. comprehensively studied the Rashba effect in monolayer NX on the basis
of first-principles calculations [143]. The band structures of six systems share
similar band structure, and the SOC has slight influence on the band structure. For
monolayer GaTe, the conduction band minimum locates at the M point, while for
other systems, the conduction band minimum sites at the Γ point. The valence band
maximum of monolayer NX locates between the Γ and M point. As the inversion
symmetry of monolayer NX is broken, there is a spin splitting at the K point when
including SOC.

Figure 2.18 shows the band structures of monolayer NX with SOC under an
external electric field of 0.9 V Å−1. The valence bands at the Γ point are enlarged.
It should be noted that such an electric field can be realized by using ionic liquid in
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Figure 2.18 Band structures of monolayer NX with considering SOC under an external
electronic field of 0.9 V Å−1. Inserts present the enlarged bands around the Γ point. EF is set
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experiment. For monolayer GaS and InS, the Rashba spin splitting is not significant
because of the weak SOC strength, see Figure 2.18a and d. Different from these
two cases, significant Rashba spin splitting occurs in the other four systems. From
the inserts in Figure 2.18, the typical Rashba spin splitting is obtained in VB-4 and
VB-5 bands. And the Rashba strength of NTe is remarkably larger than that of NSe.
Therefore, the external electric field indeed can induce the Rashba effect in mono-
layer NX. By further examining the Rashba parameters, it is found that the Rashba
parameter is strongly related to the anions. For InS and GaS under the external
electric field of 0.9 V Å−1, the Rashba parameters are similar, almost zero. Upon
further increasing the electric field, the Rashba parameters gradually increased. For
GaSe and InSe under the external electric field of 0.9 V Å−1, the Rashba parameters
are 0.54 and 0.58 eV Å, respectively. While for GaTe and InTe under the external
electric field of 0.9 V Å−1, the values are 1.37 and 1.70 eV Å, respectively. The Rashba
spin splitting in these systems is also confirmed by the calculated spin texture.

Although Rashba effect is successfully obtained in monolayer NX, the Rashba
parameters are relatively weak. To enhance the Rashba parameters in monolayer
NX, constructing a Junus structure by substitution is shown to be an effective way
[144]. Using first-principles calculations, Ju et al. systematically investigated the
Rashba effect in Janus monolayer group III–VI chalcogenides [144]. Monolayer NX
consists of four atomic layers that are stacked in the sequence of X-N-N-X. By replac-
ing one X layer by Y layer, the polar XAAY (A = Ga, In; X a Y S, Se, Te) ternary
compounds can be obtained. And by replacing one X and one N layer, the polar
XABY (A, B = Ga, In; X ≠ Y = S, Se, Te) quaternary compounds can be realized.
To confirm the stability of these systems, the phonon spectra calculations are per-
formed. And the absence of negative frequency or tiny negative frequency around
the Γ point confirm the stability of these systems. Furthermore, the thermal sta-
bilities of these systems are also confirmed by carrying out the molecular dynamic
simulations. As the physical mechanisms of these systems are similar, only mono-
layer SeInGaTe and SInGaSe are taken as examples to discuss the Rashba effect.

Figure 2.19a and b presents the band structures without considering SOC. It
can be seen that the spin degeneracy is preserved for both systems, and no spin
polarization is generated in these systems. The band gaps of monolayer SeInGaTe
and SInGaSe are found to be 1.57 and 1.75 eV, respectively. Upon considering SOC,
as shown in Figure 2.19a and b, the bands around the Fermi level experience a spin
splitting. And the Rashba spin splitting is obtained around the conduction band
minimum at the Γ point. This is attributed to the broken inversion symmetry of
monolayer SeInGaTe and SInGaSe. The local electric field induced by the broken
inversion symmetry can be confirmed by the work function changes. As presented
in Figure 2.19c and d, the work function changes, which is directly related to dipole
moment, between the opposite surfaces are estimated to be 1.34 and 1.36 eV, respec-
tively, for monolayer SeInGaTe and SInGaSe. This results in the nonzero potential
gradient in the out-of-plane direction, and thus the Rashba effect in monolayer
SeInGaTe and SInGaSe. The influence of external electric field on the Rashba spin
splitting in the conduction bands of monolayer SeInGaTe and SInGaSe are also
investigated. By applying a positive electric field (pointing from Te to Se or from
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Se to S), the Rashba spin splitting can be significantly enhanced. While for applying
a negative electric field, the Rashba spin splitting can be weakened. For example,
the Rashba parameter for monolayer SeInGaTe is 0.67 eV Å, which increases to
0.96 eV Å under the external electric field of 0.9 V Å−1 and decreases to 0.21 eV Å−1

under the external electric field of −0.9 V Å−1. Therefore, Janus monolayer group
III–VI chalcogenides hold great promises for future spintronic applications.

Another typical example for realizing Rashba spin splitting by constructing Janus
structure is monolayer MA2Z4 family. Recently, 2D layered MoSi2N4 and WSi2N4
are synthesized in experiment via chemical vapor deposition (CVD), providing
a new family of 2D materials [28]. And monolayer MoSi2N4 and WSi2N4 can
be readily obtained in experiment. More importantly, this synthesis method is
applicable for other similar systems with a formula of MA2Z4 (M = W, V, Nb, Ta,
Ti, Zr, Hf, or Cr; A = Si or Ge, and Z = N, P, or As). Inspired by the synthesized
method of MSi2N4 (M = Mo and W), Ren et al. proposed that monolayer MSiGeN4
(M = Mo and W) can also be achieved by introducing Si and Ge during the CVD
growth [145]. Using first-principles calculations, Ren et al. systematically studied
the Rashba effect in monolayer MSiGeN4. Monolayer MSiGeN4 can be considered
as a Si-N layer and a Ge-N layer sandwiching a MN2 layer. Monolayer MSiGeN4
exhibits a hexagonal lattice with the space group of No. 156. Therefore, the mirror
symmetry is broken for monolayer MSiGeN4. The optimized lattice constants of
monolayer MoSiGeN4 and WSiGeN4 are found to be a = b = 2.963 and 2.964 Å,
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Figure 2.20 Band structures of monolayer MSiGeN4 without and with considering SOC. EF
is set to 0 eV. Source: Guo et al. [145]. Reproduced with permission of The Royal Society of
Chemistry.

respectively. And the dynamical, thermal, and mechanical stabilities of monolayer
MSiGeN4 are confirmed by the phonon spectra calculations, molecular dynamical
simulations, and the Born criteria, respectively. Therefore, it is possible to realize
monolayer MSiGeN4 in experiment.

Figure 2.20 shows the band structure of monolayer MSiGeN4. Regardless of SOC,
monolayer MSiGeN4 exhibits an indirect band gap. The conduction band minimum
for monolayer MSiGeN4 lies at the K point, and the valence band maximum locates
slightly away from the Γ point. Because of the intrinsic out-of-plane electric field
induced by the broken inversion symmetry, Rashba spin splitting occurs for the
bands around the Γ point when taking SOC into consideration. The band gap values
for monolayer MSiGeN4 without and with considering SOC are very close, which
are estimated to be around 1.3 and 1.6 eV for monolayer MoSiGeN4 and WSiGeN4,
respectively. Moreover, there is a Zeeman-type spin splitting in the valence bands
at the K point. The Rashba parameters for monolayer MoSiGeN4 and WSiGeN4 are
found to be 0.033 and 0.111 eV Å, respectively. Obviously, these values are rather
small. For practical application, further modulation based on external methods
is needed.
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3

Ferromagnetic Order in Two- and One-Dimensional
Materials

The research on intrinsic ferromagnetic order in 2D material dates back to 2012.
Using first-principles calculations, Ma et al. have predicted the monolayer VS2
and VSe2 should be ferromagnetic [1]. Based on spin-polarized calculations, it is
interesting to find that monolayer VX2 (X = S, Se) do harbor spin polarization.
In monolayer VS2, the V atom possesses a magnetic moment of 0.486 μB, and the
neighboring S atom takes a magnetic moment of −0.026 μB. In monolayer VSe2, the
magnetic moment on V atom is 0.680 μB, and the value on Se atom is −0.048 μB.
As the existence of magnetic moment does not guarantee the magnetic coupling
of the magnetic moments, the magnetic coupling of monolayer VX2 is investigated.
One ferromagnetic state and one antiferromagnetic (AFM) state are considered for
both systems. For both cases, the ground state is identified as the ferromagnetic
state, which is lower than the AFM state by 205 and 377 meV, respectively, in
energy.

Moreover, Ma et al. proposed that strain can deliberately modulate the magnetic
properties of monolayer VX2 [1]. Here, the tensile and compressive strain are uni-
formly applied along both the armchair and zigzag directions, and the strain ranges
from −5 to 5%. The magnetic moments on V and X atoms are found to increase
monotonically with increasing strain from −5 to 5%. As compared with the pure
case, the magnetic moment on V atom is increased by 87 and 135%, respectively, for
monolayer VS2 and VSe2 under 5% strain, and the magnetic moment on X atom is
increased by 215 and 144%. Under compressive strain of 5%, the magnetic moment
on V atom is decreased to 0.307 and 0.330 μB, respectively, for monolayer VS2 and
VSe2. Therefore, the spin polarization in monolayer VX2 is robust against strain.
In addition to the magnetic moment, the variation of magnetic coupling as a func-
tion of strain is also investigated. It is found that the ferromagnetic state is pre-
served to be the ground state under strain from −5 to 5%. The energy difference
between the AFM and ferromagnetic states increases with increasing strain from
−5 to 5%. That means, the ferromagnetic state is weakened under compressive strain
and is enhanced under tensile strain. To understand the change of magnetic moment
under strain, the joint effect of ionic and covalent bonding interactions is proposed.
And for the change of the energy difference between AFM and ferromagnetic states,
the combined effect of through-bond and through-space interactions is proposed.

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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These results open up a new direction in 2D magnetism. Soon after this theoretical
work [1], two experimental groups separately demonstrate the magnetism in mono-
layer VX2 [2, 3].

In 2017, Xu et al. proposed the magnetism in monolayer CrI3 [4]. They show that
the magnetic anisotropy is possible to remove the restriction of the Mermin–Wanger
theorem [5], which enables the occurrence of 2D magnetism. Using magneto-optical
Kerr effect microscopy, monolayer CrI3 is demonstrated to be an Ising ferromagnet
with easy magnetization axis along out-of-plane direction. The Curie temperature
is estimated to be 45 K. This value is slightly smaller than that of the bulk case, sug-
gesting the weak interlayer interaction. Moreover, CrI3 exhibits a layer-dependent
magnetic property. This work provides new insight into the magnetism in 2D
materials. Nearly at the same time, based on the scanning magneto-optic Kerr
microscopy, Zhang et al. reported the intrinsic long-range ferromagnetic state
in monolayer Cr2Ge2Te6 [6]. Interestingly, the transition temperature between
the ferromagnetic and paramagnetic states can be obtained by using the small
electric field. Such feature is different from the case of three-dimensional materials
wherein the transition temperature is insensitive to the magnetic field. Moreover,
an effective anisotropy can be induced by the applied field. Therefore, monolayer
Cr2Ge2Te6 is concluded as an ideal 2D Heisenberg ferromagnet and is promising for
investigating fundamental spin behaviors [6]. Following the discovery of monolayer
CrI3 and Cr2Ge2Te6, Zhang et al. reported a device fabrication technique and
exfoliated monolayer Fe3GeTe2 from the layered metallic magnet [7]. Importantly,
the ferromagnetic order is preserved in Fe3GeTe2 when the layer thickness thins
down to monolayer. The out-of-plane magnetization easy axis enables its long-range
ferromagnetic order. Compared with the bulk counterpart, the Curie temperature
is suppressed. However, by using ionic gate, the Curie temperature can be raised to
room temperature.

Based on these works, extensive efforts have been devoted to exploring intrin-
sic ferromagnetic orders in 2D materials. In Section 3.1, we will discuss the recent
theoretical progress on the intrinsic ferromagnetic order in 2D materials. And in
Section 3.2, we will briefly discuss the recent theoretical progress on the intrinsic
ferromagnetic order in 1D molecular nanowires.

3.1 Intrinsic Ferromagnetic Order in 2D Materials

Similar to CrI3, CrCl3 and CrBr2 also exhibit a layered structure and are expected
to show similar physical properties. In fact, before the experimental work on
monolayer CrI3 [4], Lam et al. already predicted the intrinsic ferromagnetism in
monolayer CrX3 (X = F, Cl, Br, and I) [8]. They found that monolayer CrX3 can be
easily exfoliated in monolayer form due to a low cleavage energy and a high in-plane
stiffness. Through phonon spectra calculations and molecular dynamic simulations,
these monolayer systems are shown to be stable. The calculations show that the
magnetic moment is found to be 3 μB per unit cell. To examine the magnetic ground
states of these systems, four different magnetic configurations are considered. For all
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these systems, the ferromagnetic state is found to be most stable. This suggests that
monolayer CrX3 exhibits intrinsic magnetic state. To establish the ferromagnetic
state, magnetic anisotropy energy is a key factor. For systems with small magnetic
anisotropy energy, the coupling between magnetic moments tends to form paramag-
netic feature. For all these systems, the easy axis is found to be along the out-of-plane
direction for all these four systems. The corresponding magnetic anisotropy energies
for CrF3, CrCl3, CrBr3, and CrI3 are estimated to be 120, 32, 186, and 686 μeV per
Cr atom, respectively, indicating the robust intrinsic ferromagnetism.

All monolayer systems exhibit a semiconducting character with an indirect band
gap. With increasing the atom number of X, the band gap decreases from 4.68 to
1.53 eV monotonically. The states around the Fermi level are fully spin polarized and
dominated by one spin channel. Interestingly, Cr-3d orbitals in the spin-up direction
are occupied, while Cr-3d orbitals in the spin-down direction are unoccupied. This
is sought into the crystal field theory. Under the octahedral field, the d orbitals of
Cr split into two groups: three low-lying t2g orbitals and two high-lying e2 orbitals.
Based on the Hund’s rule, the electronic configuration of Cr3+ is t2g3eg0. Under such
condition, all the occupied d orbitals should be in the same direction. Therefore,
monolayer CrX3 exhibits an intrinsic ferromagnetic semiconducting state.

Considering the important role of magnetic anisotropy energy in establishing the
ferromagnetic state in monolayer CrX3, Yan et al. investigated the influence of strain
on the magnetic anisotropy energy on the basis of first-principles calculations [9].
Interestingly, the magnetic anisotropy energy on monolayer CrX3 shows a strain
dependence. For monolayer CrI3, it increases with increasing compressive strain,
and an opposite trend is found in monolayer CrCl3 and CrBr3. In addition to the
magnetic anisotropy energy, the magnetic ground state also experiences a phase
transition. For more detail, please refer to Ref. [9].

Interestingly, although Refs. [8, 9] confirm the out-of-plane easy axis of monolayer
CrCl3, recent experiments show that monolayer CrCl3 favors the in-plane magnetic
easy axis [10, 11]. To solve this puzzle, using first-principles calculations, Wu et al.
systematically investigated the magnetic properties of monolayer CrX3 (X = Cl,
Br, I) and found that the inclusion of magnetic shape anisotropy is important for
estimating the magnetic easy axis [12]. The magnetic anisotropy energy consists of
two parts: the SOC-induced magnetocrystalline anisotropy (MCA) energy and the
dipole-dipole interaction induced magnetic shape anisotropy (MSA) energy. For all
these three systems, the values of MCA are positive. This suggests that the MCA part
favors the out-of-plane direction, which is consistent with previous works [8, 9].
Moreover, the MCA increases monotonically with increasing atom number from
Cl, Br, to I, which can be attributed to the increase in SOC strength from Cl, Br, to
I. Different from the case of MCA, the values of MSA for all these three systems are
found to be negative. Therefore, the MSA favors in-plane magnetic easy axis. The
resultant magnetic anisotropy energy is found to be negative for monolayer CrCl3
and positive for monolayer CrBr3 and CrI3. As a consequence, monolayer favors
in-plane magnetic easy axis, while monolayer CrBr3 and CrI3 favor out-of-plane
magnetic easy axis. With these results in hand, the aforementioned puzzle could be
easily understood.
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Another typical class of metal trihalides that receive great attention is monolayer
MnX3 (X = F, Cl, Br, I). Using first-principles calculations, Sun et al. investigated
the electronic and magnetic properties of monolayer MnX3 [13]. Monolayer MnX3
shares similar structure as monolayer CrX3, and each unit cell contains two Mn
and six X atoms. The Mn atom coordinates with six X atoms. The spin-polarized
calculations show that monolayer MnX3 is spin polarized. To reveal the cou-
pling among the magnetic moments in monolayer MnX3, the ferromagnetic
state, antiferromagnetic-Néel (AFM-N), antiferromagnetic-zigzag (AFM-ZZ),
antiferromagnetic-stripy (AFM-SR), and the mixed AFM-N-ST configurations are
considered. For all these systems, the ferromagnetic configuration is found to be
the ground state. Interestingly, the magnetic moment per Mn atom increases from
3.92 μB in MnF3 to 4.27 μB in MnI3. These values agree well with the +3 oxidation
state of Mn atom, which favors the high-spin state of t2g3eg1. The magnetic
anisotropy energy of monolayer MnX3 is calculated, which indicates that all these
systems favor the in-plane magnetic easy axis.

Figure 3.1a and c presents the spin-polarized band structures of monolayer MnF3
and MnI3. As monolayer MnCl3 and MnBr3 share similar band structure, they are
not shown here. For monolayer MnF3, MnCl3, and MnBr3, the minority-spin chan-
nel shows a large band gap, while the majority-spin channel presents a Dirac point at
the K point at the Fermi level. For monolayer MnI3, the Dirac point locates above the
Fermi level based on Perdew–Burke–Ernzerhof (PBE) functional and locates at the
Fermi level based on Heyd-Scuseria-Ernzerhof (HSE06) functional. Consequently,
monolayer MnX3 is a Dirac half-metal. Figure 3.1b and d shows the 3d plot of the
majority bands around the Fermi level for MnF3 and MnI3. As compared with mono-
layer MnF3, the Dirac bands become slightly flatter for monolayer MnI3, which can
be attributed to the stronger SOC strength. The corresponding projections of the
Dirac bands on 2D plane are shown in Figure 3.1b and d. It should be noted that
the bands shown in Figure 3.1a and c do not include SOC. Upon including SOC, a
small band gap of 3–10 meV opens at the Dirac point. This indicates that the feature
of the Dirac half-metal will be preserved in monolayer MnX3 in the presence of SOC.
Furthermore, the Curie temperature for the ferromagnetic state of monolayer MnX3
is investigated via Matropolis Monte Carlo simulations. The obtained Curie temper-
ature for monolayer MnX3 is found to be ranging from 450 to 720 K, beneficial for
practical applications.

Similar to CrI3, bulk VI3 also exhibits a layered structure wherein the slabs are
stacked in the c direction. It has a band gap of 0.6 and 0.7 eV [14, 15]. Moreover,
VI3 is spin polarized with a ferromagnetic state. Therefore, spin polarization is
also expected in monolayer VI3. Using first-principles calculations, Nachtigall
et al. demonstrated that monolayer VI3 has intrinsic ferromagnetism and exhibits
half-metallicity [16]. Importantly, the half-metallic Dirac point is observed around
the Fermi level. Different from the Dirac point of graphene, the Dirac point is dom-
inated by the d orbitals from V atom. Upon including SOC, a band gap of 12 meV
is opened at the Dirac point. Using the Ising model, the Curie temperature for the
ferromagnetic state of monolayer VI3 is estimated to be 98 K. Fortunately, carrier
doping is demonstrated to be able to increase the Curie temperature. Recently,
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Figure 3.1 Spin-polarized band structures of monolayer (a) MnF3 and (c) MnI3 based on
PBE and HSE06 functionals. 3D plot of the Dirac bands and the corresponding projections
of Dirac bands on 2D plane for monolayer (b) MnF3 and (d) MnI3. EF is set to 0 eV.
Source: Sun and Kioussis [13]/with permission of American Physical Society.

on the other hand, Long et al. proposed that the half-metallic state identified in
monolayer VI3 is a metastable state [17]. The Mott-insulator state is more stable
than the half-metallic state by 0.2–0.3 eV per VI3. And the magnetic easy axis
is along the out-of-plane direction. Later, Wu et al. showed that the monolayer
VI3 is an Ising-like ferromagnetic material [18]. The orbital moment on each V
atom is 1 μB, which is antiparallel to its spin moment of 2 μB. Therefore, the net
magnetic moment on each V atom is 1 μB for monolayer VI3. Using first-principles
calculations, Ren et al. determined the magnetic anisotropy energy for VI3 via
examining the spin orientations in terms of selection rules [19]. They show that
monolayer VI3 in ferromagnetic state is uniaxial, which is different from CrI3.
Except for these works, there are many other works devoted to monolayer metal
trihalides [20–30].

A family of materials related to monolayer transition metal trihalides that hold
equal promise for exhibiting ferromagnetic order are monolayer transition metal
dihalides. Similar to transition metal trihalides, transition metal dihalides present
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a layered structure, which are studied decades ago [31]. Using first-principles calcu-
lations, Hennig et al. systematically studied the electronic and magnetic properties
of monolayer iron dihalides FeX2 (X = Cl, Br, I) [32]. Monolayer FeX2 share the typi-
cal 1T structure of transition metal dichalcogenides. In monolayer FeX2, the Fe atom
is in an octahedral configuration coordinated with six X atoms. The exfoliation ener-
gies for monolayer FeCl2, FeBr2, and FeI2 are found to be 70, 75, and 83 meV atom−1,
respectively, indicating the high experimental feasibility of these materials. The sta-
bility of these materials is demonstrated by the phonon spectra calculations. The
lattice constants for monolayer FeCl2, FeBr2, and FeI2 are found to be 3.49, 3.70, and
3.98 Å, respectively. For all these three systems, the magnetic moment per Fe atom
is found to be 4 μB. This agrees with the electronic configuration of d6 for Fe2+ with
four unpaired electrons. The coupling between the magnetic moments on Fe atoms
is ferromagnetic for all these three systems. The ferromagnetic state in these systems
can be attributed to the Goodenough–Kanamori rules, as the Fe-X-Fe angle is nearly
90∘. All these three systems favor in-plane magnetic easy axis.

Monolayer FeX2 all exhibit a half-metallic character with one spin channel cross-
ing the Fermi level. Based on the orbital-resolved band structure, the two bands
crossing the Fermi level are dominated by the Fe-dxz, dyz, dxy, and dx2−y2 orbitals. This
results from the hybridization between the d orbitals of Fe atom and the p orbital of
Cl atom. While for the Fe-dz2 orbital, its out-of-plane character makes it not con-
tribute to the hybridization and leads to a flat band at ∼2 eV above the Fermi level.
For the other two systems, they share similar feature. Furthermore, for the bands
crossing the Fermi level, the Fermi velocities are found to between 1.2× 105 and
3.4× 105 m s−1, suggesting the high carrier mobility in these materials.

For transition metal dihalides, the transition metal can also be 4f rare-earth ele-
ments. One example is GdI2. Bulk GdI2 is shown to be a ferromagnetic material with
room temperature Tc in experiment [33–35]. It features a layered structure, similar to
2H-MoS2. This is different from the case of FeX2. Using first-principles calculations,
Wang et al. investigated the electronic and magnetic properties of monolayer GdI2
[36]. The exfoliation energy for monolayer GdI2 is 0.26 J m−2, indicating that mono-
layer GdI2 can be readily obtained in experiment. The stability of monolayer GdI2
is confirmed by performing phonon spectra calculations and molecular dynamic
simulations. The calculation shows that the ferromagnetic configuration is found
to be the ground state, which is lower than the AFM configuration by 139 meV per
Gd atom in energy. The magnetic moment is mainly distributed on the Gd atom.
The magnetic anisotropy energy indicates that monolayer GdI2 favors the in-plane
magnetic easy axis. Based on the Monte Carlo simulations, the Curie temperature is
745 K.

Monolayer GdI2 is a ferromagnetic semiconductor. With including SOC, the band
structure experiences only a slight change. Both the conduction and valence band
edges are dominated by the Gd atoms. The valence and conduction band edges
are from opposite spin channels. Therefore, monolayer GdI2 is a bipolar magnetic
semiconductor. Simply by shifting the Fermi level via gate voltage, completely
spin-polarized currents with reversible spin polarization can be realized and tuned.
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The preceding two works clearly show a high potential of monolayer transition
metal dihalides for achieving intrinsic ferromagnetism in 2D limit. Up to now, a
series of monolayer transition metal dihalides have been identified as 2D ferromag-
netic materials, including NiX2, CoX2, MnX2, VX2, and so on [37–42]. And in fact,
the intrinsic ferromagnetic order is also identified in other transition metal based
monolayer binary compound beyond the dihalides. For example, Shenoy et al. per-
formed a systematical first-principles study on the magnetic behaviors in non-van
der Waals systems and proposed monolayer Cr2O3 has an insulating ferromagnetic
phase [43]. Wang et al. reported a class of monolayer Cr3X4 (X = S, Se, Te), wherein
the two oxidation states of Cr lead to the double exchange interaction and hence
enhance ferromagnetic order significantly and result in Curie temperature up to
370 K for Cr3Se4 and 460 K for Cr3Te4, while for monolayer Cr3Se4 and Cr3Te4, they
are identified as ferromagnetic half-metals with 100% spin-polarized currents [44].
Ghergherehchi et al. explore the magnetic properties of monolayer FeX (X = S, Se,
Te) and show that while monolayer FeS and FeSe are nonmagnetic, monolayer FeTe
is a good candidate for spintronic applications [45]. Zhang et al. predict monolayer
CrTe2 as a ferromagnetic material and hold a Curie temperature above 300 K [46].

Except for binary systems, ternary monolayer systems are also shown to exhibit
intriguing ferromagnetic behaviors [47–56]. For example, Sun et al. reported the
intrinsic ferromagnetism monolayer CrOX (CrOCl and CrOBr) on the basis of
first-principles calculations [57]. Bulk MOX (M = Cr/V/Ti, X = Cl/Br), crystallizing
in an orthorhombic structure, are known as AFM semiconductors with spin-Peierls
features [58–62]. Each M atom coordinates with 4 O and 2 X atoms, forming a
distorted octahedral structure of MO4Cl2. To fabricate monolayer MOX, mechanical
cleavage and liquid exfoliation can be employed. The exfoliation energies for mono-
layer CrOCl and CrOBr are much smaller than that of graphene, indicating that
they can be easily obtained in experiment. The dynamical and thermal stabilities
of monolayer CrOCl and CrOBr are confirmed by carrying out the phonon spectra
calculations and molecular dynamic simulations.

To study the magnetic coupling between the magnetic moments of monolayer
CrOCl and CrOBr, six magnetic configurations are considered. The ground state
for monolayer CrOCl and CrOBr is found to be ferromagnetic. To identify the mag-
netic easy axis, the magnetic anisotropy energy is calculated. For both systems, the
out-of-plane direction is shown to be the magnetic easy axis. Therefore, the spins
in monolayer CrOCl and CrOBr are along the out-of-plane direction. Figure 3.2
displays the band structure and density of states of monolayer CrOCl. And mono-
layer CrOBr shares similar features. As shown in Figure 3.2, monolayer CrOCl is a
ferromagnetic semiconductor, exhibiting a band gap of 2.38 eV. Its conduction and
valence band edges are from the same spin channel. The conduction band edges are
dominated by the Cr-3d orbitals, while the valence band edges are mainly from the
Cl-2p orbitals. To investigate the spin dynamics, Monte Carlo simulations are carried
out. The Curie temperature is estimated to be 160 K for monolayer CrOCl. While
for monolayer CrOBr, it shows a smaller Curie temperature. The identification of
intrinsic in monolayer CrOX provides a new avenue to explore 2D semiconducting
intrinsic ferromagnets from bulk crystals.
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Figure 3.2 Band structures of monolayer CrOCl with (a) majority and (c) minority spins.
(b) Projected density of states of monolayer CrOCl. EF is set to 0 eV. Source: Miao et al.
[57]/with permission of American Chemical Society.

Similar to MOX, CrSX (X=Cl, Br, I) also crystallizes in an orthorhombic structure.
It exhibits a layered structure, suggesting the experimental feasibility of monolayer
structure. Using first-principles calculations, Wang et al. explored the electronic
and magnetic properties of monolayer CrSX [63]. Monolayer CrSX is spin polarized.
The magnetic moment is found to be 3 μB per f.u., which is mainly contributed by
the Cr atom. After considering one ferromagnetic and four AFM configurations,
ferromagnetic configuration is found to be the ground state with the lowest energy.
The intrinsic ferromagnetic state in monolayer CrSX can be understood by the
Goodenough–Kanamori–Anderson rules, as the cation–anion–cation bond angles
approximate 90∘.

All these systems exhibit a semiconducting feature. Monolayer CrSCl shows a
direct band gap of 0.856 eV, while monolayer CrSBr and CrSI harbor an indirect band
gap of 0.757 and 0.473 eV, respectively. The decreasing of band gap with increasing
atomic number of X can be attributed to weakening of the CrS4X2 octahedral crystal
field. The valence and conduction band edges are from the same spin channel. For all
these systems, the conduction band minimum is dominated by Cr-3p orbitals, while
the valence band maximum is mainly from X- and S-p orbitals. Moreover, Wang et al.
[63] stress that as the valence and conduction bands near the Fermi level are full spin
polarized, the 100% spin-polarized current can be realized in monolayer CrSX under
either electron or hole doping. Therefore, monolayer CrSX is a promising ferromag-
netic semiconductor.

In addition to the d/f-electron based monolayer ferromagnets, magnetic proper-
ties are also achieved in materials without d or f electrons, namely, d0 magnetism
[64, 65]. Compared with the former, d0 magnetism holds advantages in high-speed
and long-distance polarized transport. The underlying physics for realizing d0 mag-
netism is to partially occupy the p orbitals with localized character. Inspired by the
recent breakthroughs in the synthesis of 2D nonstoichiometric compounds [66–68],
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such as Na2Cl and Na3Cl, Zhao et al. propose that intrinsic d0 magnetism could
be obtained in the nonstoichiometric compounds [65]. Using the high-throughput
first-principles calculations, Zhao et al. screen out three types of 2D alkali metal
subnitrides, i.e. Na2N, K2N, and Rb2N with P6m2 and P3m1 space group (H phase
and T phase), and tetragonal I phase with P4/mmm space group are stable. Taking
K2N as an example, their electronic and magnetic properties are investigated. In
monolayer K2N, each N atom accepts two s electrons from the bonding K atoms,
leaving one unpaired electron. Therefore, a magnetic moment of 1 μB per N atom is
expected for all these three systems. The calculations indeed show that these three
phases of monolayer K2N are all spin polarized, which are mainly resulted from
the px/y orbitals of N atoms. The magnetic moment on each N atom is calculated
to be 0.81, 0.72, and 0.79 μB, respectively, for monolayer H-K2N, T-K2N, and I-K2N.
The magnetic ground state is found to be ferromagnetism, which is lower than the
AFM state by 0.11, 0.05, and 0.05 eV, respectively, for H-K2N, T-K2N, and I-K2N.
The Curie temperature is estimated to be 1180, 513, and 484 K, respectively, for
monolayer H-K2N, T-K2N, and I-K2N. Based on the spin-polarized band structures
of these systems, monolayer H- and I-K2N are ferromagnetic metals, while T-K2N is
half-metallic. This discrepancy is mainly from the different occupancies of the K-s
orbital around the Fermi level. For T-K2N, the s orbital is occupied in the spin-down
channel, while it is partially occupied for the other two phases. These exciting
results of course will inspire further research on d0 magnetism in 2D limit.

Besides the aforementioned works, there is a lot of theoretical research devoted to
intrinsic ferromagnetism in 2D lattice. For more detail, please refer to Refs. [69–79].

3.2 Intrinsic Ferromagnetic Order in 1D Molecular
Nanowires

With the increasing demand for device miniaturization, developing molecular
nanowires as building blocks for spintronic devices has attracted great attention.
Molecular nanowire ferromagnets are promising alternatives to monolayer ferro-
magnets and hold a wide range of applications from high-capacity storage devices
to quantum computers [80–82]. To realize molecular nanowire ferromagnets, it is
important to choose suitable functional molecules. Up to now, several molecular
nanowires have been predicated to exhibit the magnetic properties [83–92]. In the
following, we will discuss the several typical examples of molecular nanowires with
ferromagnetism.

Using first-principles calculations, Chen et al. investigated the electronic and mag-
netic properties of a series of vanadium naphthalene (Vn–1Npn) sandwich clusters
(SWCs) and the VNp sandwich nanowire (SWN) [89]. On the basis of the ener-
getically stable structure of Vn–1Npn SWCs, the infinite VNp SWN is constructed.
Figure 3.3a shows the crystal structure of VNp SWN. Each unit cell contains two Np
rings and two V atoms. The magnetic moment is calculated to be 1 μB per V atom.
By considering different magnetic configurations, AFM configuration is found to
be the ground state, which is lower by 58 meV than the ferromagnetic state. In the
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Figure 3.3 (a) Crystal structure of VNp SWN. (b) Band structure of VNp SWN. (c) Energy
difference between ferromagnetic and antiferromagnetic states as a function of carrier
doping. EF is set to 0 eV. Source: Li et al. [89]/with permission of American Chemical Society.

AFM state, the lattice constant is found to be 7.27 Å. From the band structure shown
in Figure 3.3b, it can be seen that VNp SWN is semiconducting with a band gap of
1.1 eV. By looking at the structure of VNp SWN, the Peierls deformation might exist.
To confirm this point, the VNp SWN with a rotation angle of 0∘ is also investigated.
Interestingly, the magnetic ground state is found to be ferromagnetic, which is lower
than the AFM state by 76 meV. And there is a majority band crossing the Fermi level,
which is the hallmark of the Peierls instability. Compared with the rotated case, VNp
SWN with a rotation angle of 0∘ is higher in energy by 400 eV. Such energy gain is
related to the electronic contribution because of the band gap opening.

Furthermore, the magnetic coupling in VNp SWN can be modulated under elec-
tron or hole doping. Under the doping of one electron per unit cell, the magnetic
ground state of VNp SWN transfers from AFM coupling to ferromagnetic coupling,
the ferromagnetic coupling is lower in energy than the AFM coupling by 40 meV,
see Figure 3.3c. Upon further increasing electron doping, the ferromagnetic state
can be enhanced. Under one hole doping, the AFM coupling is preserved in VNp
SWN. While for doping of two holes, the magnetic coupling of VNp SWN can be
switched to ferromagnetic state. Considering these merits, VNp SWN has potential
applications in nanoelectronics and spintronics [89].

Another typical class of molecular nanowire ferromagnets is transition metal
phthalocyanine (M-Pc, M = Cr, Mn, Co, Ni, Cu, and Zn) nanowire (M-PcNW). Using
first-principles calculations, Dai et al. investigated the electronic and magnetic
properties of M-PcNW [91]. The results show that Cr-PcNW, Mn-PcNW, Co-PcNW,
and Cu-PcNW are spin polarized, while Ni-PcNW and Zn-PcNW are not spin
polarized. The total magnetic moment per unit cell is found to be 4, 3, 1, and 1 μB,
respectively, for Cr-PcNW, Mn-PcNW, Co-PcNW, and Cu-PcNW. The magnetic
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moment is mainly localized on the M atom, while the neighboring N atoms are
slightly spin polarized. Considering all the possible magnetic configurations, the
magnetic couplings in Cr-PcNW and Cu-PcNW are found to be AFM, Co-PcNW
shows paramagnetic coupling, and Mn-PcNW exhibits a ferromagnetic state. The
ferromagnetic state in Mn-PcNW is 84 meV lower in energy than the AFM state.
More interestingly, the electronic structure calculation shows that Mn-PcNW
displays half-metallic property. These results provide ideal platforms for future
molecular spintronics.

It should be noted that although extensive efforts have been devoted to molecular
nanowires with ferromagnets, the experimental realization of the spintronic proper-
ties in molecular nanowires is still under exploration. It is thus of great significance
to explore new and suitable molecular nanowires in future.
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Two-Dimensional Topological States

The discovery of topological states of matter, as one of the most transformative
breakthroughs, has greatly enriched fundamental knowledge in condensed matter
physics and materials science [1–6]. According to the respective electronic struc-
tures, topologically nontrivial materials have been found in both insulators and
semimetals, which host a plethora of exotic phenomena such as the quantized Hall
and magnetoelectric effects, edge/surface states, and Fermi arcs, and remarkably
they are topologically protected by fundamental symmetries of the bulks. It is
generally believed that a material becomes topologically nontrivial if the conduc-
tion and valence bands are inverted after including the spin-orbit coupling (SOC),
where topological invariants can be calculated based on the wave functions in
momentum pace and identify the topological states accurately. Notably, advances
in topological band theory using symmetry indicators and topological quantum
chemistry provide a convenient way to probe and classify the band topology with the
band representations at high-symmetry momenta [7–11]. In fact, for the prediction
of topological material candidates, first-principles calculations play a key role and
very often guide the experiments. For example, past decade has witnessed the
emergence of topological insulators (TIs) in Bi2Se3 family [12, 13], topological
crystalline insulators (TCIs) in SnTe family [14–18], Dirac semimetals in Na3Bi and
Cd3As2 [19–24], Weyl semimetals in TaAs family [25–29], and antiferromagnetic
(AFM) TIs in MnBi2nTe3n+1 (n = 1, 2, 3) family [30–39], which were first proposed
theoretically before experimental verification. Recently, guided by the symmetry
indicators and topological quantum chemistry, the high-throughput first-principles
calculations predicted that at least a quarter of all known materials are topologically
nontrivial [40–42].

Topological states started from the two-dimensional (2D) systems. In 1980, Klaus
von Klitzing experimentally discovered the quantum Hall plateau in 2D electron
gas, i.e. quantum Hall effect. Under strong magnetic field and low temperature, the
Hall conductance is quantized in units of e2/h, where h is the Planck’s constant and
e is the charge of an electron [43]. It is now realized that the quantum Hall effect is
the first experimental realization of topological states with the topologically non-
trivial electronic structure characterized by a finite Chern number C and C number
of chiral edge states. Interestingly, Haldane proposed that the similar topologically
nontrivial characters can be achieved even without external magnetic field, leading
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to the quantum anomalous Hall (QAH) effect [44]. Another important milestone
in 2D topological states is the quantum spin Hall (QSH) effect protected by the
time-reversal symmetry (T), also called the 2D TI [45, 46], that can be regarded as a
combination of two QAH effects with opposite chirality [47, 48]. When T-symmetry
is broken usually by magnetic impurity or substrate, QSH insulator can be switched
into the QAH insulator, and based on this theoretical prediction, the QAH effect
is indeed demonstrated in Cr-doped (Bi,Sb)2Te3 experimentally [49, 50]. On the
other hand, when the role of T-symmetry is replaced by the crystalline mirror
and/or rotation symmetries, the TCIs can be obtained. Moreover, research on
topological states also started to reach out to 2D magnets, and the quantized spin
Hall conductance has been experimentally demonstrated in Mn-doped 2D HgTe,
pushing the first-principles calculations to pay more attention to this significant
burgeoning research field that has reshaped our understanding of physics and
materials [51–53].

4.1 Topological Insulators

Topological insulators are new quantum states of matter protected by the
time-reversal symmetry. Distinct from ordinary insulators and semiconductors with
strictly separated valence and conduction bands by trivial band gaps in both the
bulk and edge/surface, the nontrivial TIs exhibit metallic states on the edge/surface,
while the bulk remains insulating [1, 2]. A material with large SOC is usually found
to become nontrivial if its valence and conduction bands are inverted. In reality, the
band inversion is not new to physics, and it can be traced back to 1939 when William
Shockley, using a spinless model, revealed that band inversion induces unique
electronic states on the surface [54]. In the absence of SOC, the band inversion
can lead to gapless bulk phase. Interestingly, the SOC opens a full gap, giving
rise to the QSH insulator as predicted first in graphene with Kane–Mele model
in the 2D honeycomb lattice [55]. On the other hand, band inversion is typically
induced by the SOC at certain high-symmetry k-points of the Brillouin zone. It
refers to the order change between the highest occupied and lowest unoccupied
bands, for example the exchange of opposite parities for a material with space
inversion symmetry, providing another viewpoint to understand the QSH insulator
as realized in the HgTe/CdTe quantum wells with Bernevig–Hughes–Zhang (BHZ)
model in the 2D square lattice [56]. These two seminal proposals work out the
concept of QSH insulator. However, it is necessary to specify that the opening of
band gap or the band inversion driven by SOC is only an important signature but
cannot guarantee the emergence of the QSH effect, and further investigation of the
topological invariants and gapless edge states are required.

4.1.1 Graphene

Graphene is the single atomic layer of carbon atoms that crystallizes in the honey-
comb lattice, and is often regarded as a prototypical 2D material with unique elec-
tronic, optical, mechanical, and transport properties [57, 58]. Remarkably, graphene
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is the first realization of a material where the QSH effect is proposed. In 2005, Kane
and Mele described the topology of the single plane graphene with the effect of SOC,
and the Hamiltonian can be expressed as [45, 55]:

H = t
∑
⟨i,j⟩𝛼c

+
i𝛼(cj𝛼) + i𝜆

∑
⟨⟨ij⟩⟩𝛼𝛽𝜈ijc+i𝛼sz

𝛼𝛽
cj𝛽 ,

where c+i𝛼(cj𝛼) denotes the creation (annihilation) of an electron with the spin polar-
ization 𝛼 at site i. ⟨i, j⟩ and ⟨⟨i, j⟩⟩ restrict the sums to nearest and next-nearest neigh-
bors, respectively. The first term is the usual nearest-neighbor hopping. The second
term represents the intrinsic SOC with 𝜈ij = ± 1 chosen as the counterclockwise
and clockwise with respect to the positive z-axis for the next-nearest-neighboring
hopping.

In the absence of SOC, the system is gapless with two linear Dirac-like band
structures centered at the Brillouin zone corners K and K ′ , usually called as Dirac
semimetal. Switching on SOC leads to a band gap at the original Dirac points in
which the intrinsic SOC plays the corresponding role of the alternative magnetic
flux in Haldane’s model, and thus harbors two copies of QAH effect with opposite
spins and chiralities [44, 45, 55]. As shown in Figure 4.1, the two copies of edge
modes with opposite spins are protected by the time-reversal symmetry and related
to each other by the Kramers degeneracy theorem, leading to the most important
feature of 2D TIs, i.e. the elastic backscattering between spin-helical gapless edge
states is forbidden. However, the band gap of graphene is quite small due to the
extremely weak intrinsic SOC, making the 2D TIs unrealistic in pristine graphene
by employing the current experimental techniques.

4.1.2 HgTe/CdTe Quantum Wells

Parallel to the proposal of 2D TIs in graphene with half-filled bands, could be writ-
ten as a sum of split elementary band representations (EBRs) in topological quantum

1
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–1
0

X

π/a

E/t

2π/aKx

Figure 4.1 Band structure for one-dimensional nanoribbon of graphene. The bands
crossing the gap are spin filtered edge states. Source: Kane and Mele [55]/with permission
of American Physical Society.
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chemistry, Bernevig et al. suggested another route to obtain the 2D TI by utilizing
a semiconductor with fully filled valence bands, which are denoted more generi-
cally “no linear combination” of EBRs, as proposed in the HgTe/CdTe quantum wells
[46, 59]. Remarkably, one year after the theoretical proposal, electrical conductance
due to the edge states is indeed observed in transport experiments of the inverted
HgTe/CdTe quantum wells, the first signature of 2D TI phase [60].

Similar to other conventional semiconductors composed of light elements, the
filled valence bands of CdTe are gapped from the conduction bands with the s-type
Γ6 band lying above the p-type Γ8 band. By contrast, in HgTe, the p-type Γ8 band
rises above the s-type Γ6 band, leading to an inverted band structure. Bernevig et al.
considered a quantum well structure where HgTe is sandwiched between layers of
CdTe. When the thickness of HgTe layer is d< dc (dc = 6.3 nm), the HgTe/CdTe quan-
tum wells host normal band order because of the dominating contribution from
CdTe. However, for d> dc, a band inversion occurs with increasing contribution
from HgTe. The inversion of bands versus the increasing thickness d reveals a topo-
logical phase transition from the trivial insulator to 2D TIs. Around the critical point,
the general form of the effective Hamiltonian can be written as [59, 61]:

Heff(k) = 𝜀(k) +

⎡⎢⎢⎢⎢⎣

m(k) A𝜋+

A∗
𝜋 −m(k)

m(−k) −A∗
𝜋

−A𝜋+ −m(−k)

⎤⎥⎥⎥⎥⎦
,

where 𝜀(k) = C − D
(

k2
x + k2

y
)

and m(k) = M − B
(

k2
x + k2

y
)

represent the symmetric
and asymmetric mass terms, respectively. The two decoupled blocks are related by
the time-reversal operation. M is the mass or gap parameter defined as the energy
difference between the E1 and H1 levels at the Γ point. When M equals to zero, the
gapless Dirac dispersion appears. As varying the thickness d of the HgTe/CdTe well,
the E1 and H1 bands must cross at the dc, and M changes sign between the two
sides of the topological phase transition. The QSH effect appears also in InAs/GaSb
quantum wells, but a small bulk band gap leads to the experimental observation
requiring extreme conditions, such as the ultralow temperature and precisely con-
trolled molecular-beam epitaxy, which greatly obstructs further experimental inves-
tigations and potential room temperature applications [62].

4.1.3 Z2 Invariant and Spin Chern Number

For a time-reversal symmetric insulator, the nontrivial topology can be accurately
characterized by the Z2 invariant, given by [45, 63]:

Z2 = 1
2𝜋

⎡⎢⎢⎣∮d𝜏 A(k)dl − ∫
𝜏

F(k)d𝜏
⎤⎥⎥⎦mod(2),

where A(k) = i
∑N

n=1
⟨

un(k) ∣ ∇k ∣ un(k)
⟩

represents the Berry connection over all
of the occupied states, and F(k) =∇k ×A(k) represents the corresponding Berry cur-
vature [64]. The integrals are over half of the 2D Brillouin zone surface 𝜏 and its
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boundary d𝜏. There are only two values for the Z2 invariant due to the presence of
the mod(2) term, i.e. “0” and “1,” suggesting the binary classification of time-reversal
symmetric insulators with topologically trivial and nontrivial phases, respectively.
With inversion symmetry, Fu and Kane provide a convenient way to calculate the
Z2 invariant, which requires only the parity of the occupied Bloch wave functions
at the time-reversal invariant momentum (TRIM) points in the Brillouin zone [65].
There are four TRIM in the 2D Brillouin zone, and the time-reversal symmetry yields
one unique Z2 invariant 𝜈 with:

(−1)𝜈 =
n∏

i=1
𝛿i, 𝛿i =

∏
m
𝜉m(Λi)

where n is 4 in 2D system. 𝛿i is the product of parity eigenvalues at the TRIM points
Λi. 𝜉m(Λi) are parity eigenvalues with 𝜉m(Λi) = ± 1 and m is the number of all
occupied bands. According to the Z2 classification, 𝜈 = 1 identifies a topologically
nontrivial 2D TI where the system is robust against weak time-reversal invariant
perturbations, and 𝜈 = 0 characterizes a topologically trivial phase.

This Fu–Kane approach can also be used to probe the three-dimensional (3D) TIs
that involve eight TRIM points in the 3D Brillouin zone. In addition, there are four
distinct Z2 invariants (𝜈0; 𝜈1𝜈2𝜈3) in three dimensions. Here, 𝜈0 = 1 characterizes the
strong TIs, for which the time-reversal symmetry protects metallic surface bands on
all of the surfaces. On the other hand, weak TIs are obtained when 𝜈0 = 0 but at least
one of the indices 𝜈1, 𝜈2, or 𝜈3 is nonzero. The weak TIs can be viewed as a stacking
of 2D TIs and display protected metallicity only at surfaces with a certain orientation
while other surfaces do not contain topologically protected surface states. When all
four invariants are zero, a topologically trivial insulator is obtained.

In 2D systems, spin Chern number CS provides an equivalent characterization to
the Z2 invariant, i.e. the nonzero CS is equivalent to the nonzero Z2 invariant, that
is given as CS = (C+ −C−)/2 [66, 67]. Here, C+ and C− are Chern numbers for the
spin-up and spin-down channels [68, 69],

C = 1
2𝜋 ∫BZ

Ω(k)d2k,

and Ω(k) is the Berry curvature over all the occupied states,

Ω(k) =
∑

n<EF

∑
m≠n

2Im
⟨𝜓nk|𝜐x|𝜓mk⟩⟨𝜓mk|𝜐y|𝜓nk⟩

(𝜀mk − 𝜀nk)2 .

where m,n are band indices,𝜓m/nk and 𝜀m/nk are the Bloch wave functions and corre-
sponding eigenenergies of band m/n, respectively, and 𝜐x/y are the velocity operators.
To distinguish the spin-up and spin-down channels, a projected spin operator Pz,
Pz = PSzP, where Sz is the spin operator and P is the projector operator of the occu-
pied states below the Fermi level, needs to be constructed and diagonalized.

Although the SOC causes the spin degree of freedom to no longer be a good
quantum number, the eigenvalues of Pz are then not necessarily ±1. But as long as
the spectrum of Pz is gapped, the occupied states can still be divided into the spin-up
and spin-down manifolds [67]. The obtained even values of CS correspond to a
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topologically trivial insulator state, while odd values of CS indicate the emergence
of a 2D TI phase.

4.1.4 Large Gap Quantum Spin Hall Insulators

Similar to graphene, first-principles calculations show that silicene, germanene, and
stanene, atomically thin crystals of Si, Ge, and Sn, with topologically nontrivial elec-
tronic structures can realize the QSH effect. They are found to be buckled monolay-
ers and not flat like graphene, and remarkably, larger band gaps are obtained because
of the stronger SOC, reaching as much as 23.9 meV and 100 eV for germanene and
stanene, respectively [70, 71]. Moreover, the band gap can be effectively tuned by
the chemical functionalization, for example, an insulating gap as large as 300 meV
is predicted in I-decorated Sn [71]. A large energy gap is essential for the practi-
cal utilization of 2D TIs to stabilize the boundary current against the influence of
thermally activated bulk carriers.

As the heaviest atom with strong SOC, bismuth is an important ingredient for 2D
TIs. The low-buckled GaBi, InBi, and TlBi are predicted to be 2D TIs [73], and the Bi
monolayer has attracted great attention due to a relatively large band gap of 0.2 eV
[74–76] with the edge states observed experimentally [77]. However, (111)-oriented
Bi monolayer is unstable on weakly interacting substrates and grows in the black
phosphorous (A17) structure that resembles (110) layers of the bulk Bi (A7) struc-
ture and turns out to be topologically trivial [78–80]. First-principles calculations
indicate that the crystal, electronic, and topological properties of ultrathin Bi films
can be drastically modified when decorated by H [72]. Figure 4.2 presents the crystal
structures of H-decorated Bi (111) and H-decorated Bi (110). In contrast to Bi (111),
H-decorated Bi (111) has a quasiplanar geometry and the hexagonal lattice param-
eter increases from 4.54 to 5.49 Å. H-Bi (110) forms a structure with an AB stacking
of the pseudosquare layers, and the inversion symmetry is obtained. Moreover, the
structure is dynamically stable as shown in Figure. 4.2c.

In the case without SOC, as shown in Figure 4.3a and c, their band structures are
gapless and show a semimetallic character with the Dirac band crossing exactly at
the K point for the H-decorated Bi (111) and slightly away from the Y point for the
case of H-decorated Bi (110). This is different from other Bi-based TIs, such as the Bi
(111) bilayer [74–76] and the Bi2Se3 family [12], but is quite similar to graphene [55].
Taking SOC into account, a band gap opens as illustrated in Figure 4.3b and d.
Different from both the Bi-based TIs and graphene, the Dirac-related bands have
contributions mainly from the px and py orbitals while the pz orbital is removed away
from the Fermi level by H, resulting in the large band gap of 1.01 eV. A similar mech-
anism was reported as well for a Bi/Si system [81]. Their band topology is explicitly
confirmed by the Z2 invariant calculated based on the wave function parities at four
TRIM points, i.e. the Γ and three M points for H-decorated Bi (111) and Γ, X , Y , and
M for H-decorated Bi (110), as displayed in the insets of Figure 4.3b and d. Similarly,
the QSH insulators emerge in the F-, Cl-, Br-, and I-decorated Bi (111), with gigantic
energy gaps of 1.10, 0.93, 0.88, and 0.87 eV, respectively [72], and Cl-decorated GaBi
with a nontrivial band gap of 0.65 eV [82]. In addition, the methyl group is reported
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Figure 4.2 (a) Top and (b) side view of optimized structures for H-decorated Bi (111). The
corresponding phonon band structure is shown in (c). The top view of the unrelaxed and
relaxed crystal structure of H-decorated Bi (110) is shown in (d) and (e), respectively. (f) Side
view of the relaxed crystal structure of H-decorated Bi (110). (g) Zoomed-in view of the
highlighted areas in (e). The unit cells are indicated by gray dashed lines. Source: Niu et al.
[72]/with permission of American Physical Society.

to be suitable for surface passivation such as the methyl-functionalized surfaces are
resilient toward oxidation [83, 84]. The methyl-functionalized Bi, Sb, and Pb are
also theoretically proposed to be in the QSH phase with the large nontrivial bulk
gaps, and their topologically nontrivial properties are robust against the mechanical
deformation [85].

For device applications, it is important to make sure that the predicted large band
gap and topological properties are preserved [81].

√
3 ×

√
3 MoS2 fits H-decorated

Bi (111) nicely both in the lattice constant and in the alignment of the band gaps.
First-principles calculations confirm that both the large band gap and nontrivial
topological properties are unchanged [72]. Remarkably, the high-temperature QSH
effect is experimentally realized with Bi on top of the insulating SiC substrate [86].

A good layered material can be easily made even by the scotch-tape method like
graphene and easily obtain the chemically stable 2D system. Therefore, good lay-
ered materials and large 2D bulk band gaps are the most important criteria to realize
the QSH effect at high temperatures. The previously known thermoelectric materi-
als ZrTe5 and HfTe5 are interlayer weakly bonded binary compounds comparable
to graphite. As illustrated in Figure 4.4a, they crystallize in the orthorhombic lay-
ered structure with space group Cmcm [88]. The interlayer binding energy of ZrTe5
and/or HfTe5 is as weak as that of graphite and is much smaller than that of Bi2Se3
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Figure 4.3 Orbitally resolved band structures for (a), (b) H-decorated Bi (111) and (c),
(d) H-decorated Bi (110), without ((a), (c)) and with ((b), (d)) SOC, weighted with the s, px , py ,
and pz characters. Dark (blue) colors mark states that contribute to the fundamental band
gap. The Fermi level is indicated by the dashed line. The insets in (a) and (c) show the 2D
Brillouin zone, and those in (b) and (d) show the products of the parities of all occupied
bands at the time-reversal invariant momenta and the Z2 invariant. Source: Niu et al.
[72]/with permission of American Physical Society.

and Bi (111), suggesting that experimental fabrication of single-layer ZrTe5 and/or
HfTe5 is possible simply by exfoliation from their layered bulk [87]. In the absence of
SOC, the system is a semimetal, and one Dirac band crossing appears along the Γ-X
direction that is unavoidable because the Dirac-related bands belong to different rep-
resentations distinguished by the mirror symmetry mxz. The inclusion of SOC will
mix them and open up a gap, leading to the QSH insulator with a large band gap
of 0.4 eV for ZrTe5 and 0.1 eV for HfTe5 [87]. The 2D nontrivial insulating state is
characterized by nonzero Z2 invariant with Z2 = 1, and support topologically pro-
tected gapless edge states as shown in Figure 4.4d.

A SOC-induced band inversion is obtained in single-layer Bi4Br4 with a nonzero
Z2 invariant of Z2 = 1, verifying that the single-layer Bi4Br4 is a QSH insulator [89].
Bulk Bi4Br4 crystallizes in the monoclinic space group C2/m that can be regarded
as a combined packing of the normal and mirror-reflected single layer along the
z-axis [90]. The middle Biin atoms form a zigzag chain, and the Br atoms are tightly
attached to Biex along the edges of the molecular chain. The complex intrachain and
interchain coupling leads to the splitting of p±

x orbitals from two adjacent chains
within the 2D cell into bonding and antibonding states bonding, and the band order
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band structures of single-layer ZrTe5 (b) without and (c) with SOC. (d) Calculated gapless
edge states for ZrTe5 nanoribbon. Source: Weng et al. [87]/American Physical Society/CC
BY 3.0.

is inverted after including SOC as illustrated in Figure 4.5a. One can clearly see the
SOC-induced band inversion from the Biin-px and Biex-px orbitals projected bands in
Figure 4.5c and d. In the case without SOC, the CBM at the Γ point is dominated by
the Biex-px orbital with a positive parity, while the VBM is dominated by the Biin-px
orbital with a negative parity. Taking SOC into account, both the orbital character
and the parity of CBM and VBM are inverted.

Another major milestone in 2D TIs is the large gap QSH insulators in 2D transi-
tion metal dichalcogenides with 1T′ structure, namely, 1T′-MX2 with M = (W, Mo)
and X = (Te, Se, S) [91]. An intrinsic band inversion between X-p and M-d orbitals
takes place even without including SOC due to the period doubling of the metal
chain in the 1T′ structure, which lowers the M-d orbital below X-p orbital around
theΓ point. In the absence of SOC, this intrinsic band inversion results in the appear-
ance of two Dirac cones located at finite momenta along Y-Γ-Y in the 2D Brillouin
zone. Then, SOC opens up a gap at the Dirac points, leading to the QSH insulator
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Figure 4.5 (a) Schematic diagram of band evolution in single-layer Bi4Br4. (b) Schematic
plot of single-layer Bi4Br4 structure with the Br atoms neglected. Orbitally resolved band
structures (c) without and (d) with SOC. The parity is labeled by “+” and “−” for the
conduction band minimum (CBM) and valence band maximum (VBM) at the Γ point. Source:
Zhou et al. [89]/with permission of American Chemical Society.

characterized with Z2 = 1, which is further explicitly confirmed by the emergence of
the spin-polarized gapless edge states. Remarkably, the angle-resolved photoemis-
sion (ARPES) and scanning tunnelling microscopy (STM) measurements establish
the 1T′-MX2 as a new class of QSH insulator with large band gap experimentally
[92–94]. The inverted bands are tunable by the vertical electric field that breaks
inversion symmetry and introduces a strong Rashba splitting of the doubly degener-
ate bands. As the electric field increases, band gap becomes zero at a critical strength
of 0.142 V Å−1 and then reopens. The gap closing and reopening process induces a
topological phase transition to a trivial phase with the destruction of helical edge
states, revealing the possibility of an all-electrical control of the on/off charge/spin
conductance of helical edge states, which is highly desirable for van der Waals (vdW)
devices [91].
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4.2 Topological Crystalline Insulators

Topological crystalline insulator (TCI) refers to topological quantum state with
an insulating bulk energy gap and gapless edge or surface states arising from the
crystalline mirror and/or rotation symmetries [3, 95]. Similar to the Z2 TI, the TCI
cannot be adiabatically deformed to an atomic insulator as well while preserving
certain crystalline mirror and/or rotation symmetries. The first class of theoretically
predicted TCI material is the 3D IV-VI semiconductor SnTe, which crystallizes
in rock salt structure [14]. The symmetry responsible for topologically nontrivial
character is the crystalline mirror symmetry. In stark contrast, the isostructural
compound PbTe in the same rock salt structure is proposed to be topologically
trivial. Both SnTe and PbTe have small direct band gaps with the VBM and CBM
located at four symmetry-related TRIM points, the L points. The VBM and CBM
at a given L form two sets of Kramers doublets with opposite parity eigenvalues.
However, their band ordering at L points is inverted, and the first-principles
calculations indicate that the SnTe hosts an intrinsically inverted band structure,
i.e. the topologically nontrivial one, where the VBM and CBM are derived from the
Sn-p and Te-p states, respectively. However, there are two L points on the (110) and
each equivalent mirror plane, and SnTe is not a TI owing to an even number of
band inversions. Interestingly, the double band inversion gives the nonzero mirror
Chern number CM = 2. The CM is given as CM = (C+i −C−i)/2, where C+i and
C−i are Chern numbers of all occupied bands with opposite mirror eigenvalues +i
and −i, respectively [96]. The nonzero CM guarantees the existence of topological
surface states on the crystal faces that are symmetric with respect to the (110)
mirror planes. A key characteristic of TCIs is the presence of topological surface
states that are protected by crystalline mirror symmetry, rather than time-reversal
symmetry, Dirac points located at non-TRIM points as experimentally observed in
SnTe and Pb1−xSnxTe alloy [15–18]. Moreover, the TCI state has been theoretically
predicted to occur in two dimensions as discussed next.

4.2.1 SnTe Thin Films

The (001) films of 3D TCI SnTe with an odd number of atomic layers are symmetric
under the reflection z→ − z about the 2D plane in the middle [97]. In this case, the
Bloch states can be chosen to be eigenstates ±i of the mirror symmetry mz in all 2D
Brillouin zone. For each class of Bloch eigenstates, one can define the correspond-
ing Chern numbers C±i, resulting in two independent topological invariants – the
total Chern number C = C+i +C−i and mirror Chern number CM = (C+i −C−i)/2.
Importantly, even when the C is zero, the CM can be a nonzero integer and thus
defines the 2D TCI phase protected by the mirror symmetry z→ − z. Because of the
bulk topology for 3D TCI SnTe, the topological surface sates (001) surface, which is
normal to (110) and (110) mirror planes, can be expected for SnTe. However, when
the film thickness is below the penetration length of surface states, there is an energy
splitting between the bonding and antibonding states due to the wave function
hybridization between the top and bottom surfaces and the band ordering around
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the X point depends crucially on the competition between the hybridization of the
two surfaces. As the film thickness increases, the hybridization becomes weaker,
the band gap at X, Eg(X) = EA+(X) − EC−(X), decreases from three to five layers, and
then increases monotonically and eventually reaches the value 220 meV above five
layers, as schematically shown in Figure 4.6b and c. Clearly, a band inversion occurs
from three to five layers with the five-layer film having an inverted band ordering,
realizing a 2D TCI with mirror Chern number CM = 2. Around the critical film thick-
ness, the phase transition can be described by the k • p Hamiltonian H(k) = (̃vxkxsx −
ṽykysy)𝜏x + m̃𝜏z, where 𝜏z = ± 1 denotes the conduction and valence bands of the TCI
film at the X point. The velocities ṽx∕y and Dirac mass m are derived from the micro-
scopic parameters of surface states in 3D TCIs and their hybridization strengths.
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Figure 4.6 (a) Top view of the crystal structure of (001) Sn/PbTe monolayers with the unit
cell and the supercell indicated by black solid and blue dashed lines, respectively. (b) Berry
curvature distribution associated with ±i mirror eigenstates of the occupied bands along
the Γ-X-Γ path. Orbitally resolved band structures for (001) monolayers of (c), (d) SnTe and
(e), (f) PbTe, (c), (e) without, and (d), (f) with SOC, weighted with the contribution of s, py , and
pz states. Parities of the CBM and VBM at the X point are labeled by “+” and “−.” The Fermi
level is indicated with a dashed line. Source: Niu et al. [98]/with permission of American
Physical Society.
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A hallmark of 2D TCIs is the presence of gapless edge states and the mirror Chern
number CM = 2 suggests that there are two pairs of counter-propagating edge states
within the nontrivial band gap. This is confirmed in the band structure calculation
of a SnTe nanoribbon parallel to [98], using the recursive Green’s function method.
Within the energy window of the SOC gap, edge states with opposite mirror eigenval-
ues cross each other and connect the valence and conduction bands. Interestingly,
unlike helical edge states in a 2D TI, the band crossings of gapless edge states shown
here are located at non-TRIM points, so that they are protected solely by the mirror
symmetry z→ − z but not the time-reversal symmetry. A band gap opens up in these
edge states when the mirror symmetry is broken under a perpendicular electric field.

4.2.2 IV–VI Monolayers

IV–VI semiconductors SnTe and PbTe share the same face-centered-cubic NaCl-type
structure with the band structure of 3D bulk SnTe at the L point inverted relative to
PbTe [14], which results in the first realization of the 3D TCI state in bulk SnTe
and the 2D TCI state in SnTe multilayers [14, 97]. On the other hand, PbTe both
in bulk and in (001) thin films is in the normal insulator state [14]. However, the
first-principles calculations indicate that both the SnTe and PbTe as well as the other
IV–VI (001) monolayers are 2D TCIs [98–100]. In Figure 4.6a the top view of such a
2D monolayer is shown, with Sn (Pb) and Te atoms forming two square sublattices
positioned in the mirror plane z = 0. Accordingly, all Bloch states in the system can
be labeled with the mirror eigenvalues ±i with respect to this symmetry plane.

To get preliminary insight into the topological properties of the systems, Figure 4.6
presents the orbitally resolved band structures of SnTe and PbTe monolayers with
and without SOC. In the absence of SOC for SnTe, energy bands with the Sn-s and
Te-py orbital character (positive parity with the inversion center at the Sn atom) over-
lap around the X point with the Sn-pz states (negative parity). For PbTe at the X
point without SOC a direct band gap appears with the VBM and CBM dominated
by the Pb-s and Te-py orbitals (positive parity) and the Pb-pz orbital (negative par-
ity), respectively. Turning on SOC leads to an insulating character in both systems
(calculated band gaps are 0.05 eV for SnTe and 0.09 eV for PbTe), and to the band
inversion in PbTe, so that with SOC the band structure is inverted in both systems.

Owing to an even number of X points in the Brillouin zone, neither the SnTe
monolayer nor the PbTe monolayer is a 2D TI. However, taking the mirror sym-
metry into account, for both SnTe and PbTe monolayers, band inversion results in
the realization of a 2D TCI state. To show this explicitly, the mirror Chern number
CM is calculated. Figure 4.6b presents the distribution of the Berry curvature of all
occupied bands with a mirror eigenvalue ±i. The main contribution to the Berry
curvature comes from the region around X, with its values having an opposite sign
for opposite eigenvalues. The Chern number for each polarization is, respectively,
C+i =−2 and C−i = 2, yielding the total Chern number of all occupied states C= 0 and
the mirror Chern number CM =−2, proving clearly the TCI nature of (001)-oriented
SnTe and PbTe monolayers. The 2D TCI state is further explicitly confirmed by the
emergence of the gapless edge states in thin nanoribbons of the monolayers.
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4.2.3 Topological Phase Transition Between 2D TCI and TI

Both the TCI and TI can be originated from a topologically trivial system through
a topological phase transition by tuning the alloy composition [16, 17, 101, 102] or
the crystal lattice [103]. Similarly, a topological phase transition between TCI and
TI is possible as well and this phase transition is helpful for both the future use and
the fundamental understanding of the gapless edge states that are protected by dif-
ferent symmetries. As discussed earlier, the band inversion can be considered as a
heuristic scenario for both the TIs and TCIs with an odd and even number, and thus
the number change of the band inversions implies a topological phase transition, for
example in TlS and TlSe monolayers with a rectangle lattice [104].

The orbitally resolved band structures without and with SOC are plotted in
Figure 4.7. As we can see, the band structures of TlS and TlSe are quite similar.
In the absence of SOC, the lowest unoccupied bands are dominated by the Tl-pz
orbital over the whole Brillouin zone, while the highest occupied bands around
the X and Y points are dominated by the M-px and M-py orbitals, respectively. It
is, such as TlSe, a direct gap insulator with an energy gap of 0.15 eV (0.21 eV for
TlS) at the Y point while the energy gap is 0.21 eV (0.25 eV for TlS) at the X point.
When SOC is switched on, the orbital characters at both the X and Y points are
inverted and a direct gap of 0.12 eV (0.03 eV for TlS) appears at the X point. The even
number of band inversions at the TRIM points means that TlS and TlSe monolayers
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cannot be 2D Z2 TIs, while they could be the 2D TCIs owing to the presence of the
mirror symmetry in combination with the band inversion taking place at the mirror
plane z = 0. Indeed, the opposite sign of the Berry curvature for opposite mirror
eigenvalues, as shown in Figure 4.8, results in Chern numbers for each polarization
C−i = 2 and C+i = −2. Thus, the total Chern number is zero, but the mirror Chern
number is CM = −2, indicating that the TlS and TlSe monolayers are 2D TCIs.

Then, we show the strain-induced phase transition using TlSe monolayer as an
example. The magnitude of strain is described by a/a0 (b/b0), here a0 (b0) and a (b)
denote the lattice parameters of the unstrained and strained systems, respectively.
The calculated energy gaps at X and Y points without and with SOC versus the
uniaxial strain are presented in Figure 4.9. The energy gaps as well as the band topol-
ogy can be effectively modified by uniaxial strain along both a- and b-axes. Under
compressive strain, the band inversion takes place even without SOC, and the 2D
TCI phase remains with enhanced gap when SOC is taken into account, indicat-
ing that the 2D TCI phase is robust against compressive strain. The normal energy
gap increases with the tensile strain increasing at both the X and Y points for the
case without SOC. Considering SOC, a band gap closing and reopening occurs indi-
vidually at the X and Y points under different critical strains (vertical solid lines in
Figure 4.9). When the lattice parameter lies between the two critical values, the band
inversion occurs only at the X points for a-axis and Y points for b-axis. To determine
the band topology of the strain-induced 2D insulators, the spin Chern number CS
is calculated. For both spins, the Chern numbers are respectively C± = ∓ 1, leading
to a spin Chern number CS = −1. Thus, a phase transition from 2D TCI to 2D TI
can be effectively tuned by uniaxial strain. With further increasing strain, the band
inversion disappears at both the X and Y points, and the system becomes a trivial
insulator.

The values of CM = −2 and CS = −1 indicate that there are two pairs and one pair
of gapless edge states in the bulk energy gap for 2D TCI and 2D TI, respectively. To
illustrate this, the edge state band structures are calculated using maximally local-
ized Wannier functions (MLWFs), which can reproduce the band dispersion of TlSe
without and with 2% uniaxial strain (along the b-axis) quite precisely. Figure 4.10
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gaps. For case with SOC, a topological phase transition occurs accompanied by sign changes
of the energy gap. Source: Niu et al. [104]/with permission of American Chemical Society.

displays the edge states of an 80-atom wide TlSe nanoribbon edged with Tl atoms.
One can clearly see that two pairs of nontrivial edge states cross at Γ and X for the
TCI and one pair of that crosses at Γ for the TI phase, in direct agreement with the
values of mirror Chern number CM and spin Chern number CS. In contrast to 2D TI,
whose edge state is determined by time-reversal symmetry, the key property of the
2D TCI relies on crystalline mirror symmetry, resulting in the gapless edge state is
not spin degenerate [1–4]. In order to indicate the spin texture, the matrix element
of the Pauli matrices 𝜎

𝛼
(𝛼 = x, y, z) are computed on the basis of the MLWFs and the

edge states are colored with the expectation value of the 𝜎z. The edge states, as shown
in Figure 4.10, are spin polarized and change directions of spin when crossing the
time-reversal invariant points for the 2D TCI. At the time-reversal invariant points,
the expectation value of the 𝜎z is zero. This is obviously different from the situation
of the 2D TI as shown in Figure 4.10b, where the opposite spins are degenerate at
the time-reversal invariant points.

4.2.4 Dual Topological Insulator

In the presence of time-reversal and crystalline mirror symmetry, the coexistence of
TI and TCI phases has been predicted in three dimensions for Bi1−xSbx [96] and Bi
chalcogenides [105–108], and thus they exhibit a dual topological character (DTC).
Recently, unusual topological surface states for a 3D DTC system have been observed
experimentally [106–108]. In the 2D case, graphene may be a prototypical example
of a DTC [55, 97]. However, the extremely small band gap of graphene makes it very
difficult to verify the DTC in this material experimentally [109]. In many cases of the
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Figure 4.10 Band structures of 1D nanoribbon edged with Tl atoms for TlSe in (a) TCI
phase and (b) TI phase. The corresponding projected bulk band structures are represented
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the spin polarization on one particular side of 1D nanoribbon. Insets in (a) and (b) show the
2D and projected 1D Brillouin zones, and the corresponding zoom-in at the Γ point. Source:
Niu et al. [104]/with permission of American Chemical Society.

proposed 2D TIs, the complex structures and the lack of mirror symmetry prevent
the formation of the 2D TCI phase. On the other hand, 2D TCIs have been limited
to square lattices with mirror Chern number |CM| = 2, for which the even number
of band inversions leads to a vanishing Z2 invariant.

While the bulk Na3Bi in a hexagonal P63/mmc structure is a topological Dirac
semimetal [19, 21], i.e. 3D counterpart of grapheme, Na3Bi monolayer is demon-
strated to host both the 2D TI and TCI phases with an odd number of band inversion
[110]. In Figure 4.11b and c, the side and top view of the Na3Bi monolayer are pre-
sented, with Bi and Na atoms forming a honeycomb lattice. Unlike in the bulk mate-
rial, inversion symmetry is broken in a Na3Bi monolayer, but the mirror symmetry
z→ − z is preserved. Figure 4.12 presents the orbitally resolved band structures of
the Na3Bi monolayer without and with SOC. In the absence of SOC, Bi-px and Bi-py
orbitals contribute to the VBM while the CBM is dominated by Bi-s orbitals with
a direct band gap of 0.16 eV. Switching on SOC leads to an s-p band inversion that
occurs at the Γ point, and the insulating character is preserved with a band gap of
0.31 eV.

The existence of the mirror symmetry z→ − z for the Na3Bi monolayer offers the
possibility of realizing a 2D TCI. Indeed, the calculated Chern numbers for mirror
eigenvalues +i and −i are, respectively, C±i = ∓ 1, leading to a mirror Chern num-
ber CM = −1. Here, the band inversion occurs at the Γ point, i.e. an odd number
of band inversions is acquired. Spin Chern number CS is calculated to identify the
relationship between the 2D TI and the odd number of band inversions in the Na3Bi
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Figure 4.11 (a) Crystal structure of bulk Na3Bi with P63/mmc symmetry. (b) Top and (c) side
view of the honeycomb Na3Bi monolayer, where the unit cell is indicated by the dashed
lines. Source: Niu et al. [110]/with permission of American Physical Society.
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monolayer. The Chern number for each spin manifold is C+ = −1 and C− = 1, yield-
ing the spin Chern number CS = −1. This clearly demonstrates the 2D TI nature of
the Na3Bi monolayer. Therefore, the Na3Bi monolayer exhibits the DTC with respect
to the 2D TI and TCI phases. First-principles calculations indicate that the similar
ternary compounds, Na2MgPb and Na2CdSn, can possess the properties of both 2D
TI and TCI phases as well, realizing dual TIs with nonzero Z2 invariant Z2 = 1 and
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mirror Chern number CM = −1 [102]. Remarkably, Na2MgPb, which gains a large
nontrivial band gap of 0.58 eV, turns out to be a potential material for room temper-
ature applications [111].

A pair of gapless edge states in the 2D gap, as shown in Figure 4.13a, further con-
firms the nontrivial topology of Na3Bi monolayer. Generally, time-reversal symme-
try breaking generates a gap in the surface/edge states of TIs, while mirror symmetry
breaking is indispensable for the formation of a band gap in the surface/edge states
of TCIs [1–4]. One way to destroy these symmetries is to introduce magnetism in the
system. To mimic a magnetic environment, the matrix elements of the Pauli matri-
ces 𝜎

𝛼
(α= x, y, z) are computed on the basis of MLWFs, which allows to consider the

effect of an exchange field applied along different directions. For an exchange field
perpendicular to the mirror plane, Hmag = B⟂𝜎z, time-reversal symmetry is broken
while mirror symmetry is maintained. In this case, as shown in Figure 4.13b for the
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Figure 4.13 Localization-resolved edge states of the Na3Bi monolayer (a) without a
magnetic field, (b) with a magnetic field perpendicular to the mirror plane, and (c) with a
magnetic field within the mirror plane. The insets show the corresponding zoom-in at the Γ
point. Color from light green to red represents the weight of atoms located from the middle
to one edge of the ribbon structures. Source: Niu et al. [110]/with permission of American
Physical Society.
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Bi-Na(1) termination, the Dirac point moves slightly away from the Γ point, while
a band gap does not open as a consequence of the 2D TCI phase’s survival. If the
exchange field, on the other hand, is in the plane, Hmag = B//𝜎x, both time-reversal
and mirror symmetries are broken and the edge states become gapped as shown in
Figure 4.13c.

4.2.5 TCI in 2D Ferromagnets

Merging the fields of topology and magnetism expands the scope of fundamental
quantum phenomena with novel functionalities for topological spintronics enor-
mously. It is expected that crystalline mirror symmetry can give rise to the TCI phase
in 2D magnets; however, the material realization of 2D TCI with intrinsic magnetic
order remains elusive [112]. Tight-binding model and first-principles calculations
reveal that NpSb monolayer is a long-awaited 2D TCI with intrinsic out-of-plane
ferromagnetic (FM) order [113]. Remarkably, when rotating the magnetization into
the plane a higher-order TI phase with a parity-based invariant 𝜈2D = 1 is achieved,
and in-gap topological corner states emerge.

In many magnetic 2D (in the xy plane) systems the Mz symmetry of reflection
with respect to the xy plane is preserved when the magnetization points out of
the plane (along z), which provides a recipe to define the mirror Chern number
CM and achieve a TCI state. When the magnetization direction is varied, Mz
symmetry is naturally broken and (d− 1)-dimensional edge states become gapped.
However, for certain directions of the magnetization other mirror symmetries are
restored that result in the emergence of topologically protected corner states, i.e.
(d− 2)-dimensional boundary modes, appearing inside the band gap of the 2D
bulk and (d− 1)-dimensional edges, thus manifesting the formation of magnetic
higher-order TI state. To show this clearly from simple arguments, as sketched in
Figure 4.14a, a four-band tight-binding model for the 2D square lattice is used with
the Hamiltonian expressed as H = H0 +HB, where

H0 = [m − t(cos kx + cos kx)]𝜏z − 𝜆(sin kx𝜎x + sin ky𝜎y)𝜏x,

HB = B𝜎x sin 𝜃 cos𝜑 + B𝜎y sin 𝜃 sin𝜑 + B𝜎z cos 𝜃.

The onsite energy, the magnitude of the nearest-neighbor hopping, and the
strength of SOC correspond to parameters m, t, and 𝜆, respectively; 𝜎 and 𝜏 are
the vectors of spin and suborbital Pauli matrices. The FM order is represented
by the Zeeman term HB with an amplitude of exchange field given by B and the
magnetization direction defined by spherical angles 𝜃 and 𝜑.

For an out-of-plane FM ordering, 𝜃 = 0o, the mirror symmetry Mz remains intact
with M2

z = −1, while the time-reversal symmetry is broken, meaning that the Hamil-
tonian can be separated into two decoupled mirror subspaces based on the two mir-
ror eigenvalues ±i:

H±i(kx, ky) = ±[m + B − t(cos kx + cos ky)]𝜎z − sin kx𝜎x ∓ sin ky𝜎y.

The calculated Chern numbers for two opposite mirror subspaces are, respectively,
C+i = 1 and C−i = −1. Thus, the mirror Chern number is CM = +1, which proves
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Figure 4.14 (a) Sketch of a 2D square lattice, in which the mirror symmetries depend
sensitively on the magnetization direction. Edge spectra of the tight-binding model with an
(b) out-of-plane (𝜃 = 0∘) and (c) in-plane magnetization (𝜃 = 90∘ and ϕ = 45∘) for the
exchange field of B = 0.5t. (d) Energy spectrum of the 40× 40 nanoflake of the model
versus the magnitude of B. Corner states are highlighted with blue circles. Energy levels for
a nanoflake with an (e) out-of-plane and (f) in-plane magnetization. Insets show the spatial
weight of the edge states and corner states. Source: Mao et al. [113]/with permission of
American Physical Society.

the TCI nature of the considered 2D FM square lattice. This can be further explicitly
confirmed by observing the emergence of gapless edge states at all edges as displayed
in Figure 4.14b and e. It is widely known that a gap opens up in the edge states
when the protecting Mz symmetry is broken, for example by rotating the magnetic
moments into the xy plane, 𝜃 = 90o. However, for𝜑= 0o and 𝜑= 90o, Mx and My are
preserved, respectively, which keeps the edges, perpendicular to the corresponding
mirror planes, gapless. Remarkably, for𝜑= 45o, although the edges are gapped out as
shown in Figure 4.14c, the in-gap states, which are localized in the corners of a finite
sample, arise as visible from the spectrum analysis of a 0D nanoflake in Figure 4.14f.
This signals the emergence of higher-order TI phase, characterized by the winding
number 𝜈2D [114, 115],

(−1)𝜐2D =
4∏

i=1
(−1)[N−

occ(Γi)∕2]
,

where N−
occ(Γi) is the number of occupied states with an odd parity at TRIM Γi. As

expected, we find that at theΓ point, the parity eigenvalues of two occupied states are
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all odd, whereas those for the other three momenta (two X and one M) are all even,
yielding 𝜈2D = 1 and thus further explicitly confirming the higher-order TI state.

Similar to SnTe, bulk NpSb crystallizes in the face-centered-cubic NaCl structure
with space group Fm3m. Thus, when constructing a (001)-oriented NpSb mono-
layer, a 2D square lattice with Np and Sb atoms positioned in the mirror plane z = 0
is obtained. In absence of SOC, under the ground state with an FM coupling, the
majority bands are metallic with a band touching at the Γ point, while the minor-
ity bands exhibit a gap of 195 meV resulting in a pronounced half-metallic behav-
ior near the Fermi energy as illustrated in Figure 4.15a and b. Remarkably, SOC
opens a large gap in the majority channel, thereby making the whole system insu-
lating with the corresponding band gaps of 220 meV and 86 meV for the out-of-plane
and in-plane directions, respectively. Moreover, as illustrated in Figure 4.15c and d,
the fat-band analysis of the orbital contributions to the electronic states suggests
that SOC drives a band inversion between Sb-px/y and Np-dx2−y2 states both in the
minority and majority channels, implying the formation of a topologically nontrivial
insulator.

The magnetic space group of NpSb monolayer with out-of-plane magnetization
is P4/mm′m′ that possesses the Mz symmetry [116]. For two opposite mirror
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subspaces, the Chern numbers are calculated by the Wilson loop method with the
Wilson loop matrix given by:

W(kx+2𝜋,ky)←(kx ,ky) = lim
N→∞

FN−1FN−2 …F1F0,

where [Fi]mn = ⟨um(2𝜋(i+ 1)/N, ky) ∣un(2𝜋i/N, ky)⟩; ∣unk⟩ is the lattice periodic part
of the nth Bloch state at the k point (kx, ky) and N is the number of kx points. As
shown in Figure 4.16, the Chern numbers of all occupied bands for the opposite
mirror eigenvalues +i and −i are C+i = 1 and C−i = −1, respectively, yielding CM = 1
and confirming the fact that NpSb monolayer is a 2D FM TCI. On the other hand,
the magnetic space group turns into Cmm′m′ for the in-plane magnetization along
(100). The parities at (Γ, X1, X2, M) are (−, +, +, +), which leads to 𝜈2D = 1, thus
revealing the existence of the FM higher-order TI phase in the NpSb monolayer.
The emergence of edge and corner states unambiguously demonstrate further the
realization of topologically distinct phases as controlled by the direction of the
magnetization.

4.3 Quantum Anomalous Hall Effect

In 1980, Klaus von Klitzing et al. discovered that, as a function of external mag-
netic field, the Hall conductance shows a sequence of plateaus at very low tempera-
ture [43]. The values of these conductance plateaus equal to an integer C multiples of
e2/h, where the integer C originally known as the TKNN number, which was derived
by Thouless et al. from the Kubo formula in 1982, and now is characterized as a
topological invariant named “Chern number” [68]. The concept of Chern number
in mathematics describes the number of holes on a closed manifold. This discov-
ery is of great significance, because it brings a new way to understand the phases
of matters beyond the Landau’s symmetry-breaking theory and opens up the field
of topological electronic states in condensed matter physics. Interestingly, in 1988,
Haldane proposed that the quantum Hall effect can be achieved even in the absence
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of external magnetic field based on the well-known Haldane model given on a hon-
eycomb lattice [44]. It realizes the quantized version of the anomalous Hall effect,
namely quantum anomalous Hall (QAH) effect. The Hamiltonian of Haldane model
is given by:

H = Δ
∑

i
(−)𝜏i c+i cj + t1

∑
⟨i,j⟩

(
c+i cj + h.c.

)
+ t2

∑
⟨⟨i,j⟩⟩

(
ic+i cj + h.c.

)
where i and j run over all sites, 𝜏 i = {1, 2} is the sublattice index of the site, and t1
is the nearest-neighbor hopping strength for first-neighbor pairs indicated by <ij>.
This model describes spinless electrons hopping between two sites on a honeycomb
lattice. Crucially, Haldane added the last term, which describes a complex hopping
amplitude it2 to each second-nearest-neighbor pair ≪ij≫. The Hermitian conju-
gate term indicated by “h.c.” describes corresponding hopping amplitudes in the
reverse direction. This term breaks time-reversal symmetry as the complex conjuga-
tion reverses its sign. This model can realize nonzero Chern numbers in a parameter
space. Although the Haldane model theoretically proved that the quantum Hall
effect (QHE) can be realized without the external exchange field, its material real-
ization has so far remained elusive and is unrealistic in experiment.

In fact, the progress on QAH effect was comparatively slow until the discovery of
the QSH effect, protected by the time-reversal symmetry (T) and characterized by Z2
invariant and helical gapless edge states as discussed earlier [1, 2]. The QSH insulator
emerges in 2D systems without magnetization, and its gapless helical edge states can
be viewed as two copies of the chiral edge states in the QAH insulator [47]. Break-
ing the time-reversal symmetry usually by a magnetic impurity or substrate, the QSH
insulator can be switched into the QAH insulator, such as in magnetic doped 2D thin
films of the Bi2Se3 family [49]. The Bi2Se3 family, Bi2Te3, Bi2Se3, and Sb2Te3, are 3D
TIs [12, 13], and their thin films can cross over to the 2D TIs depending on the thick-
ness of the films [117, 118]. The 3d transition metal elements Ti, V, Cr, and Fe atoms,
which have a stable 3+ chemical state, are used to avoid introducing free carriers into
the system. The calculated density of states (DOS) reveal that Cr and Fe doping have
FM insulating state, while Ti or V doping are metallic. By substituting the Bi sites,
the local environment of dopants forms an octahedral that splits the 3d shell into
t2g and eg manifolds. For which, the high-spin state is always obtained due to the
large Hund’s rule, and thus a gap is obtained between the spin-up and spin-down
states for Fe3+ with a t3↑

2ge2↑
g t0↓

2ge0↓
g configuration and between the t2g and eg for Cr3+

with a t3↑
2ge0↑

g t0↓
2ge0↓

g configuration. While for the Ti- and V-doped cases, their t2g states
are partially occupied, resulting in the metallic states. Once the insulating FM order
is obtained, the QAH effect can be achieved in 2D thin films of Bi2Se3 family with
different thickness. The anomalous Hall conductance is indeed quantized in units
of e2/h when the Fermi level is located inside the energy gap. Experimentally, based
on the prediction, the QAH effect is first confirmed in Cr-doped (Bi,Sb)2Te3 [50], but
extreme requirements, such as the highly precise controlling of the extrinsic impu-
rities and the ultralow temperature due to the small bulk energy gap, are required,
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which greatly prohibits the potential device applications of this fundamental quan-
tum phenomenon [61, 119, 120].

To realize the high-temperature QAH effect, extensive investigations have been
carried out and numerous material candidates have been theoretically proposed,
such as the decorated 2D TIs, heterostructures, quantum wells, and layered materi-
als [72, 121–132]. Interestingly, for H-decorated Bi, the band gap of QAH states can
be as large as 0.35 eV. The fully H-decorated Bi is demonstrated to be the QSH insu-
lator protected by the time-reversal symmetry [72]. When the hydrogen atoms are
removed from one side of fully H-decorated Bi while keeping the other side hydro-
genated, the insulating FM ordering is obtained with a magnetic moment of 1.0 μB
per unit cell, carried by the pz states of the unhydrogenated Bi atoms. To identify the
QAH effect, the anomalous Hall conductivity 𝜎xy = (e2/h)C, where C is the Chern
number, is calculated as an integral of the Berry curvature of occupied stateΩ(k) over
the Brillouin zone. Figure 4.17c presents the 𝜎xy versus the position of the Fermi
level. When the Fermi level is located within the insulating band gap, the Chern
number C indeed acquires an integer value of +1, revealing clearly the QAH effect
in semihydrogenated Bi.

In addition, both the time-reversal and inversion symmetries are broken in half
H-decorated Bi, leading to the band structures at K and K′ showing different patterns
as illustrated in Figure 4.17b. Valleys K and K′ are distinguishable. Moreover, Berry
curvatures, as shown in Figure 4.17d, which is mainly localized in the vicinity of
K and K′, have opposite signs around the two valleys, realizing the valley-polarized
QAH effect, which exhibits characters of both the QAH and quantum valley Hall
(QVH) effects [128, 133]. The underlying physics of the formation of valley-polarized
QAH effect is revealed by the evolution of the band gap at valleys K and K′, shown in
Figure 4.17e, versus the SOC strength. As the SOC is increased, the band gap closes
and reopens at K′, while that always opens at the K point, and thus a topological
phase transition occurs at K′ but not at K. The valley-polarized QAH effect is further
confirmed by the edge states shown in Figure 4.17f.

The QAH effect is very hard to realize in experiment. To improve the feasibility
of experimental realization and possible applications, 2D layered FM insulators are
good candidates and deserve to be investigated in experiment and theory. The layered
rare-earth pnictides are well known for their extraordinary magnetic and thermo-
electric properties and attract growing attentions for the topological properties in
recent years, such as the Weyl semimetal EuCd2As2 [134–136]. Bulk EuCd2As2 has a
trigonal structure with space group P3m1, and its crystal structure can be visualized
as a stacking of quintuple layers (QLs) along the z direction. The exchange interac-
tion between the interlayer Eu atoms are AFM, and that between the intralayer ones
are FM. The magnetic moments on each Eu atoms are 6.9 μB and the spin polar-
ization occurs on the half-filled 4f orbitals that are far away from the Fermi level.
Similar to the bulk form, magnetic moments of EuCd2As2 QLs at intralayer Eu sites
couple ferromagnetically [131]. In the absence of SOC, as shown in Figure 4.18a and
b, the spin-up bands are gapless while a gap appears in the spin-down bands. When
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Figure 4.17 (a) Total density of states (DOS) and partial DOS of the unhydrogenated Bi
atoms of half H-decorated Bi without SOC. Positive and negative values indicate spin-up
and spin-down channels, respectively. (b) Wannier and first-principles band structures with
SOC for half H-decorated Bi. The Wannier results have been shifted down by 30 meV for
visibility. (c) Anomalous Hall conductivity as a function of the position of the Fermi level EF.
(d) Berry curvature distribution of the occupied bands in the K-Γ-K′ direction. The inset
shows the contour of the Berry curvature distribution (as marked in main panel) around
valleys K and K′. (e) The energy gaps at valleys K (EK ) and K′ (EK′ ) as a function of SOC
strength. (f) Band structure of half H-decorated Bi exhibiting valley-polarized QAH states.
The states located at different edges are indicated by different colors. Source: Niu et al.
[72]/with permission of American Physical Society.

taking the SOC effect into account, the system prefers to have an out-of-plane mag-
netization. Remarkably, as shown in Figure 4.18c, the SOC opens up a gap of 72 meV
for the spin-up bands, implying the nontrivial QAH effect with the band inversion in
spin-up channel of the 2D FM EuCd2As2 QLs. To show this explicitly, Figure 4.18d
displays the edge states of a EuCd2As2 nanoribbon terminated by zigzag chains of Cd
and As atoms. Within the nontrivial gap, it is clear that one chiral edge state bridges
the conduction and valence bands, which is consistent with the calculated Chern
number C = 1.
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Figure 4.18 Band structures of EuCd2As2 QLs (a), (b) without SOC and (c) with SOC. The
(a) spin-up bands are gapless while a gap appears in the (b) spin-down bands. (d) Band
structures of a EuCd2As2 nanoribbon terminated by zigzag chains of Cd and As atoms in the
QAH phase. Source: Niu et al. [131]/with permission of American Physical Society.

4.4 Antiferromagnetic Topological Insulators

Another notable example of the topological states is the AFM TI, which was worked
out in 2010 by Mong et al. [137] and recently proposed theoretically [30, 31] and
observed experimentally in 3D MnBi2Te4 [32, 33]. Although the time-reversal sym-
metry T is broken, a combination of time-reversal and primitive-lattice translational
symmetry T1/2, S = T T1/2, protects the topologically nontrivial phase and gives rise
to the Z2 classification of insulating AFM phases [137]. The research on AFM topo-
logical state is also reached out to two dimensions [138, 139]. For example, the QSH
effect is reported to coexist with the superconductivity in AFM FeSe monolayers, but
the inverted gap lies below the Fermi level [51]. As discussed earlier, it has long been
known that a TI phase can be obtained through a gap opening induced in a topo-
logical semimetal. The most famous example is graphene, where the Dirac point is
protected by symmetry, but only when the SOC is neglected, and a 2D TI is obtained
when switching the SOC on [55]. Similarly, the band inversion (band gap opening)
can be considered as a heuristic scenario for obtaining the 2D magnetic topolog-
ical states. If the band inversion occurs only for one spin channel, it will carry a
nonzero Chern number, i.e. for example C+ = 0 but C− = ±1, and results in the QAH
effect with an integer total Chern number C = C+ +C− = ±1, shown in Figure 4.19.
While the band inversion (band gap opening) emerges in two spin channels, two
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Figure 4.19 Schematics of the band inversion (band gap opening) for (a) QAH effect with
Chern number C = ±1 and (b) 2D magnetic TIs with spin Chern number CS = ±1. Source:
Wang et al. [140]. Reproduced with permission of Royal Society of Chemistry.

opposite spin channels carry nonzero Chern numbers with opposite signs, i.e. +1
and/or −1, yielding the total Chern number C = C+ +C− = 0 and the spin Chern
number CS = (C+ −C−)/2 = ±1.

Following this line of thought, a magnetic topologically insulating phase can
indeed be obtained as manifested in the 2D antiferromagnet [52]. Distinct from
graphene, symmetry-protected Dirac semimetals can be obtained even in the
presence of SOC, in which the appearance of Dirac points strongly depends on
the combination of time-reversal symmetry and nonsymmorphic symmetry [141].
Starting with such a 2D Dirac semimetal, a gap can be opened by introducing
the AFM ordering to break the time-reversal symmetry, as shown in a four-band
tight-binding model with an intralayer out-of-plane AFM ordering [141, 142]:

H =[Re(M)𝜏x − Im(M)𝜏y]𝜎0 − 2tin(cos kx + cos ky)𝜏z𝜎z

+ tSOC𝜏z(𝜎y sin kx − 𝜎x sin ky) + 𝜆mag𝜏z𝜎z

which is sketched in Figure 4.20a. Here, M =
(

t1 + t2eiky
)
×
(
1 + e−ikx

)
. 𝜏

𝛼
and 𝜎

𝛼

(𝛼 = x, y, z) are the Pauli matrices of the sublattices and spin degrees of freedom,
respectively. Clearly, the combined symmetry S =T T1/2 is broken when the hopping
energy t1 ≠ t2 in the first term. The second and third terms indicate the intrinsic and
Rashba SOC, and the fourth term represents the AFM ordering with an out-of-plane
easy axis.

As shown in Figure 4.20b, neglecting the AFM ordering, the tight-binding model
hosts the Dirac semimetal phase with one Dirac point at the X point, where the Dirac
point relies on the nonsymmorphic symmetry {C2x | 1/2 0} where C2x is the twofold
rotation symmetry and (1/2 0) is half of the lattice translation along the x-axis [52,
141]. Switching on the AFM term, as illustrated in Figure 4.20c, the conduction
and valence bands are no longer degenerate at the X point. As expected, the break-
ing of time-reversal symmetry is the effect to lift the fourfold Dirac band crossing
that results in the presence of an insulating state, i.e. band gap opening for both
the spin-up and spin-down channels. The topologically nontrivial nature of the gap
can be explicitly confirmed via calculations of the Wannier charge centers (WCCs),
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Figure 4.20 (a) Sketch of the tight-binding model for a 2D antiferromagnet on a square
lattice. C2x represents a twofold rotation symmetry and (1/2 0) denotes a half of the lattice
translation along the x-axis. Band structures (b) without and (c) with out-of-plane
antiferromagnetism; (d) and (e) display the Wannier charge centers (WCCs) and edge states
with the nonsymmorphic symmetry {C2x | 1/2 0}. (f) A gap opens up in the spectrum of a
one-dimensional nanoribbon without {C2x | 1/2 0}. The color transition from red to blue
represents the weight of atoms located from the middle to one edge of the ribbon
structures. Source: Niu et al. [52]/with permission of American Physical Society.

which result in Z2 = 1, and the emergence of the exotic edge states in the nanorib-
bons with {C2x | 1/2 0} symmetry at the edges, shown in Figure 4.20d and e. Moreover,
a gap opens up in the edge states without the {C2x | 1/2 0}.

First-principles calculations identified that the intrinsic AFM XMnY (X = Sr and
Ba, Y = Sn and Pb) QLs are experimentally feasible examples of the predicted topo-
logical states with a stable crystal structure and giant magnitude of the nontrivial
band gaps [52]. Bulk XMnY crystallizes in the tetragonal crystal structure with space
group P4/nmm and exhibits a layered structure with stacked QLs along the z-axis.
The QLs consist of six atoms with two Mn atoms in the middle. The calculations of
magnetic properties of XMnY QLs show that the magnetic moments on each Mn
are about 5 μB, and therefore the Mn are in a half-filled 3d5 configuration, leading
to intrinsic antiferromagnetism with large values of the energy difference between
FM and AFM orderings. Under AFM ordering without net magnetic moments, the
minority and majority spin bands of XMnY are degenerate in the absence of SOC.
As shown in Figure 4.21a, the Mn-dyz and Mn-dzx orbitals are doubly degenerate as a
result of the D2d symmetry of the crystal group and contribute to the VBM, while the
CBM is dominated by a single Mn-dz2 orbital with a small direct band gap of 12 meV.
Switching on SOC leads to the inversion of the orbital characters around the Γ point,
and, remarkably, the bands remain doubly degenerate with an insulating band gap
of 147 meV. The 2D AFM TI phase is obtained with nonzero spin Chern number
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CS, as displayed in Figure 4.21c, the quantization of 𝜎S
xy, 𝜎S

xy = CSe∕(2𝜋), within the
insulating region, which arises mainly from the spin Berry curvature near the Γ
point, is clearly visible. The nonzero CS is further confirmed by the gapless edge
states shown in Figure 4.21d. In addition, similar to the helical edge states in 2D TIs,
the edge states of 2D AFM TIs are spin polarized, with the spin polarization direc-
tion locked with their momentum. Moreover, after investigations of 57 tetragonal
antiferromagnets in the crystal structure of outstanding AFM CuMnAs, nine exper-
imentally feasible candidates are predicted to be intrinsic 2D AFM TIs characterized
by Z2 = 1 and gapless edge states, although the 2D AFM insulator is scarce [143].

In fact, predicted 2D magnetic TIs can be obtained in both the FM and AFM con-
figurations, as demonstrated in the well-known Kane–Mele model [45, 55, 140, 144]:

H = −t
∑
⟨i,j⟩c

+
i cj + i𝜆SOC

∑
⟨⟨ij⟩⟩𝜈ijc+i szcj + 𝜆mag

∑
i
𝜇ic+i B•sci,

where the first and second terms represent the nearest-neighbor hopping and the
next nearest-neighbor intrinsic SOC, respectively. 𝜇i =±1 has opposite values on the
two sublattices for the AFM configuration, while 𝜇i = 1 for the FM configuration in
the third term. As shown in Figure 4.22, the electronic structures of the tight-binding
model can indeed be insulating regardless of the magnetic orderings. Interestingly,
for both the AFM and FM configurations, SOC-induced band inversions (band
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gap opening) emerge simultaneously at the spin-up and spin-down channels. The
magnetic TI phase is explicitly confirmed by the quantized spin Hall conductivity
𝜎

S
xy and emergence of gapless edge states in the 1D nanoribbons with the armchair

termination.
For material realization, the magnetic TI phase appears in a layered material of

EuCd2Bi2 QLs under both FM and AFM configurations [140]. Bulk EuCd2Bi2 crys-
tallizes in the trigonal structure with space group P3m1, which has a layered crystal
structure that can be visualized as a stacking of QLs, with the Eu layer sandwiched by
two Cd–Bi layers, along the z direction. Owing to the 4f14 orbitals of Eu atoms being
half-filled, the calculated magnetic moment is about 7 μB per Eu2+ with the high-spin
configuration. In the absence of SOC, as illustrated in Figure 4.23a and e for the AFM
and FM EuCd2Bi2 QLs, both the spin-up and spin-down bands are gapless with the
band crossings exactly at the Γ point. The spin-up and spin-down bands are degen-
erate, as the combined time-reversal and inversion symmetry is preserved, for the
AFM ordering, while they are spin polarized for the FM ordering with a splitting of
72.4 meV at the Γ point. Turning on SOC leads to an insulating character for AFM
and FM EuCd2Bi2 QLs with different magnetization directions, and clearly, both the
electronic and topological properties are robust against the magnetic phases, accom-
panied by an integer spin Chern number CS = 1 and a pair of gapless edge states.
Moreover, the giant band gap, which can reach as much as 750 meV, is much larger
than those in known magnetic TIs [30, 31].
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4.5 Mixed Topological Semimetals

Similar to the nontrivial surface states of TIs and TCIs, metallic points with band
crossings also exist in the bulk states called topological semimetals, including mainly
the Dirac point and Weyl point refer to the Dirac semimetal and Weyl semimetal,
respectively [4–6]. If the metallic points form lines, they are referred to as nodal
lines and the system is called as topological nodal-line semimetal. These topological
semimetals have been theoretically proposed and experimentally confirmed in three
dimensions [19–29, 145–147], revealing a plethora of fascinating properties such as
the ultrahigh mobility, nonlinear optical response, and anomalous magnetoresis-
tance [148–151]. However, in two dimensions, the material realization of topological
semimetals has been elusive so far and a gap is usually introduced once the SOC
comes into account.

While magnets have been successfully fabricated in two dimensions [152, 153],
combining the band topology and magnetism holds great opportunities for explor-
ing fundamental topological quantum physics. The concept of a mixed Weyl
semimetal is introduced in the mixed phase space of the crystal momentum
k = (kx, ky) and the magnetization direction m̂ as illustrated in Figure 4.24
[154, 155]. Remarkably, in such topologically nontrivial magnetic states, the
strength of spin–orbit torques and the Dzyaloshinskii–Moriya interaction can
exceed by far that of the conventional metals [155]. The emergence of metallic
points, i.e. mixed Weyl points, in mixed Weyl semimetal correlates with discrete
jumps of the Chern number C with respect to the magnetization direction and
of the mixed Chern number ℤ = 1∕(2𝜋) ∫ Ωm̂k

yx dkxd𝜃 with respect to the crystal
momentum, illustrated in Figure 4.24b. Here, the mixed Berry curvature of all
occupied states ∣ u𝜃kn⟩ is given by Ωm̂k

yi = 2Im
∑occ

n
⟨
𝜕
𝜃
u𝜃kn ∣ 𝜕kiu𝜃kn

⟩
and 𝜃 is the

angle that the magnetization m̂ = (sin 𝜃, 0, cos 𝜃) makes with the z-axis. There are
two different types of such mixed Weyl points: First, the combined time-reversal
and mirror symmetry can enforce topological phase transitions accompanied by a
band gap closing, which is robust against perturbations that preserve the protective
symmetry, as the magnetization direction 𝜃 is fixed. Second, generic band crossings
may arise due to the complex interplay of exchange interaction and SOC in systems
of low symmetry. In addition, nodal points can form closed lines in the mixed
phase space (kx, ky, 𝜃) and is characterized by a nontrivial Berry phase 𝛾 = ∮cA•d𝓁,
where A is the Berry connection defined by A = i

∑occ
n

⟨
u𝜃kn ∣ ∇u𝜃kn

⟩
where ∇ stands

for (𝜕kx
, 𝜕ky

, 𝜕
𝜃
), in analogy to the 3D topological nodal-line semimetals [136–138].

While crystalline mirror symmetry underlies the emergence of nodal line in the
mirror plane illustrated in Figure 4.24c, mixed topological nodal-line semimetals
host additionally a distinct type of nodal lines that can be thought of as series of
nodal points evolve with the magnetization direction 𝜃 as depicted in Figure 4.24d.

The existence of mixed topological semimetals can be established by using an
additional exchange field term B • 𝜎 on top of the nonmagnetic 2D TIs and/or TCIs
[146]. TlSe [104], Na3Bi [110], and GaBi [156] are taken as examples. The TlSe is a
2D TCI if no exchange field is applied [104]. Introducing an exchange field leads to
an exchange splitting between spin-up and spin-down states and brings conduction
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Figure 4.24 (a) The magnetization direction m̂ = (sin 𝜃, 0, cos 𝜃) of a 2D magnet encloses
the angle 𝜃 with the z-axis perpendicular to the film plane. (b) Acting as sources or sinks of
the Berry curvature, emergent band crossings in the mixed phase space of crystal
momentum k = (kx , ky ) and 𝜃 can be identified with jumps of the momentum Chern number
C and the mixed Chern number Z upon passing through the nodal points. (c) If the magnetic
system is symmetric with respect to reflections at z = 0, nodal lines with the Berry phase
𝛾 = 𝜋 may manifest in the corresponding (kx , ky )-plane of the mixed phase space. (d) Mixed
topological semimetals can host additionally a very distinct type of nodal lines that are
one-dimensional manifolds evolving in 𝜃 as well as in k. Source: Niu et al. [154]/Springer
Nature/CC BY 4.0.

and valence bands closer together. Under small exchange fields, as illustrated
in Figure 4.25a, the TCI character survives even if the mirror symmetry M is
broken, referred to as the M-broken TCI in analogy to the T-broken QSH insulator.
Increasing the magnitude B leads to a band gap closure at the critical value Bc.
If the exchange field exceeds this critical value, reopening of the energy gap is
accompanied by the realization of QAH phase for any magnetization direction with
finite out-of-plane component. Interestingly, for the in-plane magnetized system,
𝜃 = 90∘, that exhibits the combined time-reversal and mirror symmetry, the gap
closes over a wide range of fields B>Bc. Figure 4.26a indicates that the gap closing
is mediated by four isolated mixed Weyl points with bands of opposite spin crossing
slightly off the X and Y points. It corresponds to a change of the total Chern number



4.5 Mixed Topological Semimetals 115

0.00 0.15 0.30
Exchange field (eV)

(a) (b)

0.45 0.00

0.1

0.0
0.1
0.0

MNLSM

M
NLSM

MWSM

MWSM

QAHI
C = 1QAHI

C = 2

τ-broken QSHI
CS = 1

M-broken
TCI

0.2

06 06

0.15 0.30
Exchange field (eV)

0.45

4545
θ [°]

θ [°]

00

(c)

0.1

0.0

QAHI
C = 2

MWSM

MWSM

QAHI
C = 1

τ-broken QSHI
CS = 1

06

0.00

0

45
θ [°]

0.15 0.30
Exchange field (eV)

0.45

Figure 4.25 Phase diagrams of (a) TlSe, (b) Na3Bi, and (c) GaBi with respect to the
magnitude B and the direction m̂ = (sin 𝜃, 0, cos 𝜃) of the applied exchange field. Side views
of the unit cells highlight differences in the crystalline symmetries, and colors represent the
value of the global band gap in eV. The emergent metallic states are labeled as either
mixed Weyl semimetal (MWSM) or mixed nodal-line semimetal (MNLSM). Source: Niu et al.
[154]/Springer Nature/CC BY 4.0.

C, such as from +2 to −2 for 𝜃 = 90∘ with positive unit charge and from −2 to +2
for 𝜃 = 270∘ with negative unit charge. In total, the topological charge over the full
phase space vanishes. The topologically nontrivial mixed topology further leads to
exotic edge states in finite ribbons of TlSe as shown in Figure 4.26b. For Na3Bi and
GaBi, where the combined time-reversal and mirror symmetry is absent, the mixed
Weyl points emerge only at the boundaries between the T-broken QSH phase and
QAH phases with different Chern numbers, Figure 4.26b and c.

On the other hand, for TlSe, the mixed Weyl point is realized for a range of 𝜃 but
at a fixed value of exchange field about Bc = 0.29 eV. In the spirit of Figure 4.24d, this
presents a truly mixed nodal line, a 1D manifold of states, which evolves not only in
k-space but also in 𝜃. The occurrence of such mixed nodal lines is purely accidental
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Figure 4.26 (a) Spin-resolved band structure and (b) energy dispersion of a finite ribbon
for TlSe with an in-plane exchange field of magnitude B = 0.5 eV. (c) Around the X point, for
example, the emergence of nodal points with opposite topological charge for reversed
in-plane directions 𝜃 of the magnetization. (d) Spin-resolved band structure of Na3Bi with
an out-of-plane exchange field of magnitude B = 0.5eV. Source: Niu et al. [154]/Springer
Nature/CC BY 4.0.

and thus its material realization sets an exciting challenge. As another distinct type,
mixed nodal line can evolve in the k-space for a fixed magnetization direction 𝜃, see
Figure 4.24c, corresponding to the mirror symmetry. The mirror symmetry survives
when exchange field is perpendicular to the film. As shown in Figures 4.25b and
4.26d, the band gap remains closed for Na3Bi with 𝜃 = 0∘ above the critical magni-
tude Bc, and remarkably, a nodal line is formed with the highest occupied and low-
est unoccupied bands cross each other around the Γ point. The nodal line remains
intact, though with different strengths of exchange field, under various distortions
of the lattice that preserves the mirror symmetry. However, it disappears when the
mirror symmetry is broken upon turning the exchange field away from the z-axis.

The mixed Weyl points can exist in several 2D magnets such as doped graphene
and/or semihydrogenated bismuth [155]. Interestingly, first-principles calculations
demonstrate further the possibility of their realization in vdW crystal of VOI2 mono-
layer with intrinsic FM ordering [154]. Bulk VOI2 has a layered structure charac-
terized by the orthorhombic space group Immm, and its monolayer contains two
I, one O, and one V atoms as shown in the inset of Figure 4.27a. The ground state
of VOI2 monolayer is FM with a spin magnetization of about 1 μB per unit cell. As
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displayed in Figure 4.27a, the band structures with SOC reveal band crossings along
theΓ−X and M−Y paths around the Fermi level. There are four mixed Weyl points in
the 2D Brillouin zone as can be seen from the k-resolved energy difference between
VBM and CBM shown in Figure 4.27b. Further Berry curvature analysis reveals that
all four mixed Weyl points host the same topological charge of +1, similar to the
magnetized TlSe as discussed earlier. Moreover, when constructing a 1D VOI2 rib-
bon along the Γ−Y direction, as shown in Figure 4.27c, four metallic points project
onto two pairs of distinct points that are connected by emergent edge states around
the X and Γ point. In addition, the emergence of mixed nodal lines is theoretically
proposed in Na2CrBi monolayer, replacing one Na atom of Na3Bi with Cr atom, as
illustrated in Figure 4.27d. Including SOC, band crossings emerge in the perpendic-
ularly magnetized Na2CrBi around the Γ point, and, in the full 2D Brillouin zone,
these band crossings forge a nodal loop. As in the previous case of magnetized Na3Bi
monolayer, the nodal line is gapped out as soon as the crystalline mirror symmetry
is broken.
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5

Calculation of Excited-State Properties

5.1 Green’s Function Many-Body Perturbation Theory

It has been already known that electronic excitations constitute the center concept
of most of the commonly measured spectra. In low-dimensional materials, the
many-body effects, i.e. electron–electron correlations and electron–hole interac-
tions, are of paramount importance for understanding the excited properties such
as the absorption and emission. It has been identified that strong excitonic effects
play a crucially important role in the optical response of low-dimensional materials
(such as nanosheets, nanotubes, nanoribbons, and nanowires) due to the strong
electron–hole Coulomb interactions, with tightly bound excitons featured the
absorption spectrum and large binding energy assigned to the bound excitons in
low-dimensional materials [1–19]. In this sense, the excitonic effects are the center
concept to the novel many-particles phenomena in low-dimensional materials such
as exciton–exciton coupling, trions, spatially indirect interlayer excitons, and the
valley excitons [20–22]. In applications such as optoelectronics, photovoltaics, and
photocatalysis [23–25], correctly understanding the excitonic effects is primarily
important, especially for the two-dimensional materials. In Figure 5.1, concept
of the exciton is indicated, and in Figure 5.2 the excitonic effects dominating the
optical absorption in low-dimensional materials are shown.

In this section, only the most important ideals and equations are summarized.
More details for the background of many-body perturbation theory are available in
previous literatures [27–44].

On the basis of a set of Green’s function equations, the many-body perturbation
theory starts with a one-particle propagator. In accordance to the following equation,
one-particle Green’s function can be defined as:

G(r1t1, r2t2) = −i⟨N, 0|T[Ψ̂(r1t1)Ψ̂
†
(r2t2)]|N, 0⟩

where |N, 0⟩ stands for the ground state of the system with N electrons, Ψ̂
†
(rt) and

Ψ̂(rt) are the fermion creation and annihilation operators in the Heisenberg repre-
sentation, respectively; T is the Wick’s time-ordering operator. If t1 > t2,

G(r1t1, r2t2) = −i⟨N, 0|Ψ̂(r1t1)Ψ̂
†
(r2t2)|N, 0⟩

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Figure 5.1 Exciton, i.e. the Coulomb bounded
electron–hole pair, which can be free to move
through the material. Source: Wei Wei.
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Figure 5.2 Typical excitonic absorption in low-dimensional materials; absorption peaks in
low energy correspond to the excitonic states. Source: Wei et al. [26]/with permission of
John Wiley & Sons.

it gives the probability amplitude finding the electron in r1 at time t1 after an electron
is added in r2 at time t2. In case of t1 < t2,

G(r1t1, r2t2) = i⟨N, 0|Ψ̂†
(r2t2)Ψ̂(r1t1)|N, 0⟩

it describes the situation for hole, and the removal of an electron is equivalent to
the creation of a hole. In light of the Fourier transformation, one-particle Green’s
function of Lehmann representation in the energy space can be written as:

G(r1, r2;𝜔) =
∑

i

fi(r1)f ∗i (r2)
𝜔 − Ei + i𝜂 sgn(Ei − 𝜇)

where the energies Ei and Lehmann amplitudes f i(r) can be defined as:

Ei =
{

EN+1,i − EN,0 if Ei > 𝜇

EN,0 − EN−1,i if Ei < 𝜇

fi(r) =

{⟨N, 0|Ψ̂(r)|N + 1, i⟩ if Ei > 𝜇⟨N − 1, i|Ψ̂(r)|N, 0⟩ if Ei < 𝜇
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Figure 5.3 Poles of the Green’s function, with I being the ionization energy, A the electron
affinity, and chemical potential 𝜇 is located in the middle of the band gap. Source: Wei et al.
[26]/with permission of John Wiley & Sons.

here 𝜇 is the chemical potential, and 𝜂 is a positive real infinitesimal. In these
equations, EN, 0 is the ground-state total energy, and EN ∓ 1, i and |N ∓ 1, i⟩ are the
total energy and wave function, respectively. It should be emphasized that Ei is
actually also the pole of G(r1, r2; 𝜔), see Figure 5.3. In the quasi-particle approxi-
mation, one-particle Green’s function can be expressed in terms of quasi-particle
energies and wave functions as:

G(r1, r2;𝜔) =
∑

i

ΨQP
i (r1)Ψ

QP∗
i (r2)

𝜔 − EQP
i

In this case, the quasi-particle equation can be obtained:[
−1

2
∇2 + VH(r) + Vext(r)

]
ΨQP

i (r) + ∫ Σ
(

r, r′;EQP
i

)
ΨQP

i (r′)dr′ = EQP
i ΨQP

i (r)

which finds the similarity with the single-particle equation in density functional
theory:[

−1
2
∇2 + VH(r) + Vext(r)

]
ΨDFT

i (r) + Vxc(𝜌(r))Ψ
DFT
i (r) = EDFT

i ΨDFT
i (r)

In comparison to the equation in density functional theory, physically, quasi-particle
energies and wave functions are more meaningful and, therefore, can be directly
linked to the experimentally measured electronic structures.

In the framework of Green’s function, self-energy reads:

Σ(1,2) = i∫ d34v(1+, 3)[−G2(1,3; 4, 3+) + G(1,4)G(3, 3+)]G−1(4,2)

where 1, 2, 3, and 4 are for combined space and time coordinates, e.g. (1) = (r1, t1), v
is the bare Coulomb potential, G2 is the two-particle Green’s function, and (1+)= (r1,
t1 + 𝜂). In particular, Σ can be expressed by W , the effective electron–electron inter-
action, which is defined as:

W(1,2) = ∫ v(1,3)𝜀−1(3,2)d3

here 𝜀 is the dielectric function, and W is weaker than v. Once the exact one-particle
Green’s function is known, according to Hedin’s equations, exact self-energy can in
principle be calculated. If the contribution from 𝛿Σ/𝛿G in the vertex function Γ is
ignored, the self-energy operator reduces to:

Σ(1,2) = iG(1,2)W(1+, 2)
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v

(r2,t2) (r2,t2)

(r1,t1)(r1,t1)

W

Figure 5.4 (Top) Concept of the
quasi-particle; v is the bare Coulomb
interaction, and W is the dynamically
screened interaction. (Bottom)
One-particle Green’s function. In the
context of second quantized
formulation, one-particle Green’s
function (or propagator) can be
defined. Source: Wei et al. [26]/with
permission of John Wiley & Sons.

v (r2,r3)

r2 r1

W (r1,r2) Quasi-particle
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ninduced (r1,r3)

Figure 5.5 Effective interaction between quasi-particles. W (r1, r2) means the dynamically
screened interaction, which is the “true” interaction between quasi-particles; v(r1, r2) is the
bare Coulomb interaction, while v(r2, r3) is the interaction between r2- and r1-induced
polarized charge (quasi-hole) r3. Source: Wei et al. [26]/with permission of John Wiley &
Sons.

i.e. the well-known GW approximation. In Figure 5.4, the concepts of quasi-particle
and one-electron Green’s function are shown, and effective interactions between two
quasi-particles (i.e. W) are schematically shown in Figure 5.5.

If Σ is expressed by W , self-energy can be deduced from Hedin’s equations.
As shown in Figure 5.6, on the basis of Hedin’s equations and Dyson’s equation,
self-energy and interacting Green’s function can be obtained by the iteration
process. In the first step, first-principles calculations based on density functional
theory should be performed, which is chosen as the starting point to get the
ground-state single-particle eigenvalues and eigenfunctions. In the following,
one-particle Green’s function and dielectric function can be constructed on top of
the results obtained from last step. In the third step, the screened Coulomb potential
and the self-energy are addressed. In closing, quasi-particle energies and wave
functions are obtained. In principle, the simplest GW calculation is considered as
the one-shot G0W0, namely, there is no iteration with the density functional theory
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Figure 5.6 The self-energy Σ and one-particle Green’s
function G can be determined using Hedin’s equations
and Dyson’s equation iteratively. Source: Wei et al.
[26]/with permission of John Wiley & Sons.

P Г

GW

Σ

results being a zero approximation to the quasi-particle eigenvalues and wave
functions.

In general, the two-particle Green’s function takes

G2(1,2; 1′, 2′) = (−i)2⟨N, 0|T[Ψ̂(1)Ψ̂(2)Ψ̂†
(2′)Ψ̂

†
(1′)]|N, 0⟩

It is natural that the two-particle Green’s function describes the propagation of
coupled electron–electron, electron–hole (exciton), and hole–hole pairs. As for the
electron–hole pair of interest, only the orderings t1, t1′ > t2, t2′ and t1, t1′ < t2, t2′ are
taken into account, then the two-particle Green’s function can be expressed as:

Gexciton
2 (1,2; 1′, 2′)

= −𝛩
(
𝜏 − 1

2
|𝜏1| − 1

2
|𝜏2|)

×
∑

S
exp[−i(EN,S − EN,0)𝜏]𝜒S

(
r1, r1′ ; 𝜏1

)
𝜒S

(
r2, r2′ ; 𝜏2

)
− 𝛩

(
−𝜏 − 1

2
|𝜏1| − 1

2
|𝜏2|)

×
∑

S
exp[i(EN,S − EN,0)𝜏]𝜒S

(
r1, r1′ ; 𝜏1

)
𝜒S

(
r2, r2′ ; 𝜏2

)
where EN, S is the total energy of the excited state S, EN, S −EN, 0 is the excitation
energy, and 𝜒S is the exciton wave function. In the framework of Bethe–Salpeter
equation (BSE), the motion of two-particle Green’s function obeys:

L(1,2; 1′, 2′) = G(1, 2′)G(2, 1′)

+ ∫ G(1,3)G(3′, 1′)K(3, 4′; 3′, 4)L(4,2; 4′, 2′)d(3, 3′; 4′, 4)

where L(1, 2; 1′, 2′) is the two-particle correlation function, and K(3, 4′; 3′, 4) is
the two-particle interaction kernel, which is composed of two contributions, i.e. the
exchange and direct terms. In the case of t1, t1′ > t2, t2′ , the BSE turns out to be an
eigenvalue problem:

(Ec − Ev)AS
vc +

∑
v′c′

KAA
vc,v′c′ (ΩS)AS

v′c′ = ΩSAS
vc
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here the first term describes the uncorrelated electron–hole pair, and the second
term accounts for the bound electron–hole interaction. In the equation, KAA

vc,v′c′ takes

KAA
vc,v′c′ (ΩS) = ⟨c, v′|v|v, c′⟩ + (

− i
2𝜋

)
× ∫

+∞

−∞
d𝜔 exp(−i𝜔𝛾)⟨c, v′|W(𝜔)|c′, v⟩

×

[
1

ΩS − 𝜔 −
(

Ec′ − Ev
)
+ i𝜂

+ 1
ΩS + 𝜔 −

(
Ec − Ev′

)
+ i𝜂

]

where ΩS is the exciton energy, c (v) refers to the conduction (valence) band, and 𝛾
is a positive real infinitesimal.

In the practice to obtain quasi-particle energies and optical response within
many-body perturbation theory, GW+BSE scheme is usually chosen. In Figure 5.7,
a flow chart is shown for the GW+BSE calculations.

It has been well known that the many-body perturbation theory is a method root-
ing in the Green’s function for accurately calculating the excited-state phenomena.
In general, the noninteracting Green’s function G0 takes the form:

G0
nk(𝜔) =

fnk

𝜔 − 𝜀nk − i0+
+

1 − fnk

𝜔 − 𝜀nk + i0+

here |nk⟩ is used to label the single-particle levels, and n and k are the band index
and the grid generic vector for sampling the Brillouin zone, respectively. In the
equation, f nk is the occupation factor, and 𝜀nk is the Kohn–Sham energies. In terms
of the Dyson equation, relation between G0 and the exact Green’s function can be
expressed as:

Gnk(𝜔) =
[(

G0
nk(𝜔)

)−1 − Σnk(𝜔) + V XC
nk

]−1

where Σnk(𝜔) = ΣX
nk + ΣC

nk(𝜔), with ΣX
nk and ΣC

nk(𝜔) being the exchange (X) and
correlation (C) part, respectively. It should be pointed out that, additionally, the

DFT
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K
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εi
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Figure 5.7 Flow chart for the GW+BSE calculations starting from the density functional
theory. Source: Wei et al. [26]/with permission of John Wiley & Sons.
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self-energy is a function of G0 and of 𝜖−1(r1, r2; 𝜔) (inverse dynamical dielectric
function). In case of knowing the 𝜖−1, the correlation part of the self-energy can be
immediately written out. In particular, the equation of motion of 𝜖−1 reads from
the reducible response function 𝜒 , and the GW approximation could be written
down as 𝜒 is given by the random phase approximation (RPA). In accordance to the
plasmon–pole approximation (PPA) for GW self-energy, 𝜖−1 can be approximated
by the single-pole function:

𝜖
−1
GG′ (q, 𝜔) ≈ 𝛿GG′ + RGG′ (q)

[(
𝜔 − ΩGG′ (q) + i0+

)−1 −
(
𝜔 + ΩGG′ (q) − i0+

)−1
]

where RGG′ and ΩGG′ can be addressed by using the PPA to get the exact 𝜖−1 at 𝜔 = 0
and𝜔= iEPPA, with EPPA as a suitable artificially defined parameter. In principle, the
macroscopic dielectric function is defined with the microscopic inverse dielectric
function:

𝜖M(𝜔) ≡ lim
q→0

1
[𝜖(q, 𝜔)−1]G=0,G′=0

where 𝜖 is the matrix in the space of reciprocal vectors G. In general, the RPA to the
dielectric function and polarizability is inadequate in describing the electronic corre-
lations for the response function𝜒 . In order to overcome the drawbacks of the RPA, a
more elaborate equation of motion for 𝜒 with the consideration of electron–electron
correlations will be employed, that is, the BSE introduced by using the electron–hole
Green’s function. After defining the noninteracting electron–hole Green’s function
and the corresponding interacting electron–hole Green’s function, the BSE reduces
to an eigenvalue problem of the Hamiltonian:

H nn′k
mm′k′

=
(
𝜀nk − 𝜀nk′

)
𝛿nm𝛿n′m′𝛿kk′ +

(
fn′k − fnk

) ⎡⎢⎢⎢⎣
2V nn′k

mm′k′

− W nn′k
mm′k′

⎤⎥⎥⎥⎦
which is in general non-Hermitian. In practice, however, Tamm–Dancoff approxi-
mation is usually adopted, in which only the electron–hole pairs at positive energy
are considered. As a result, the Hamiltonian turns out to be Hermitian. In the last
step, the dielectric function can be calculated from

𝜖M(𝜔) ≡ lim
q→0

8𝜋|q|2ΩNq

∑
nn′k

∑
mm′k′

𝜌
∗
n′nk(q,G)𝜌m′mk′ (q,G′) ×

∑
𝜆

A𝜆

n′nk

(
A𝜆

m′mk′

)∗

𝜔 − E
𝜆

where A𝜆

n′nk = ⟨n′nk|𝜆⟩ is the eigenvectors of H. In respect to insulators with large
band gap, nevertheless, E

𝜆
may go into the single-particle gap. It can be deduced

that strong band gap renormalization and excitonic effects are characterized in
two-dimensional materials.

It should be pointed out that although real-time time-dependent density func-
tional theory (TDDFT) has also been demonstrated to be useful to calculate the
optical properties of finite systems, exciton interactions due to the periodic bound-
ary conditions cannot be screened in TDDFT, thus not suitable for calculating the
solid-state systems. In periodic boundary conditions, as in most of theoretical cal-
culations, a vital question arises, that is, the charge–charge interactions between
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two nearby cells will play if charge transfer exciton is created in a unit cell. It is
sensible, therefore, to consider such corrections by using a large enough cell to make
the charge–charge interaction effects negligible.

5.2 Excitonic Effects and Band Gap Renormalization
in Two-Dimensional Materials

It has been intensively demonstrated that the GW+BSE strategy shows great
success in calculating the optical absorption of a large number of two-dimensional
materials. It has been already illustrated that the strongly bound excitons dominate
the optical response of MoS2 and the same for other group-VI semiconducting
single-layer transition metal dichalcogenides (TMDCs) (such as MoSe2, WS2,
and WSe2) [45–57]. As an example, MoS2 shows strongly bound excitonic states
with novel k-space characteristics. In other words, excitonic effects are respon-
sible for the absorption with a binding energy of 0.96 eV assigned to the first
bound exciton [57]; see Figure 5.8 for the definition of exciton binding energy.
In particular, characteristic A and B excitons due to the spin–orbit coupling
induced Zeeman-like valence band splitting are observed, which are found to be
located at 1.88 and 2.02 eV, respectively. In this work, the number of k points,
the significantly high energy cutoff for the dielectric matrix, and the number of
Bloch bands are emphasized in importance, which are necessary to reproduce
experimental results. In general, for other two-dimensional TMDCs, the optical
spectra are also characterized by the low-energy A and B excitons, with these bound

CBM

VBM

Exciton

Eb

Eopt

Eg

Figure 5.8 Definition of the exciton binding
energy (Eb), Eg is the quasi-particle band gap,
Eopt corresponds to the optical gap. CBM,
conduction band minimum; VBM, valence
band maximum. Source: Wei Wei.
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excitons (binding energy >0.5 eV) being confined to a (near) two-dimensional
geometry because of the reduced screening in the structures of reduced dimen-
sionality. In the optical absorption spectra of different two-dimensional TMDCs,
differences lie in the position (excitation energy) and binding energy of these
bound excitons. At different levels of many-body perturbation theory, such as
self-consistent GW , results show otherwise obvious different exciton excitation and
binding energies. In addition, more accurate parameters give rise to apparently
different optical absorption. In recent studies, two-dimensional TMDCs materials
are often used in photocatalytic and photovoltaic experiments; the large exci-
ton binding energy should be reduced to harness high light–energy conversion
efficiency.

It should be emphasized that even the same simulation technology can give dra-
matically different results with respect to the band structure and optical spectrum.
On the basis of GW approximation, for example, band gaps for monolayer MoS2
available from literatures are 2.41 [46], 2.97 [47], 2.82 [51], and 2.84 eV [57]. In addi-
tion, the excitation energy and binding energy for the characteristic A exciton of
MoS2 show significant discrepancy. In particular, MoS2 A exciton could be posi-
tioned at 1.80 [47], 1.78 [51], and 1.88 eV [57]. In my opinion, the differences can
be attributed to the exact GW+BSE parameters used in practice calculations, such
as the k-point mesh, the potential for subsequent charge density and wave function,
the empty bands for dielectric function, etc. In addition, the GW scheme plays an
important role in affecting the band gap and thus the absorption profile. In partic-
ular, such as non-self-consistent G0W0 gives rise to different band gap from other
GW schemes like full GW and GW0. In some cases, even direct–indirect band gap
transition can be found when using dissimilar GW methods.

In respect to two-dimensional photocatalysts, phosphorene has also drawn
extensive attention for its unique optical and physical properties. In particular,
phosphorene shows highly anisotropic optical response, that is, light polarization
along armchair direction shows strong absorption, while it indicates transparency
along the zigzag direction. It is chiefly absorbent across the infrared-light range
and part of the visible-light range, making it also an ideal candidate as an optical
linear polarizer with a wide energy window. In case of phosphorene, the puckered
geometry is response for the highly anisotropic electronic structures dictating
unique excitonic effects, and the exotic correlations between photoinduced carriers
indicate unique photoexcitation processes that are closely associated with the
involved photocatalytic behavior. As for monolayer phosphorene, the self-energy
correction enlarges the band gap from 0.8 to 2 eV, and the lowest-energy optical
absorption peak is reduced to 1.2 eV because of a huge exciton binding energy
(0.8 eV) [58]. In addition, the band gap, exciton binding energies, absorption,
and linear polarization energy window of phosphorene can all be broadly tuned
by changing the number of stacked layers. It therefore serves as a convenient
and efficient method for engineering the excited-state properties of materials. In
particular, the interlayer interaction and the corresponding coupling reduce the
perpendicular quantum confinement, resulting in smaller band gaps and weaker
excitonic effects for few-layer black phosphorous.
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In analogy to black phosphorus, Group-IV monochalcogenides assume
anisotropic optical properties. In practice, G0W0 approximation gives rise to
fundamental band gaps of 2.85 and 1.70 eV for GeS and GeSe monolayers, respec-
tively [59]. As can be expected, excitons are strongly bound, especially for GeS.
As the light polarization is along the zigzag direction, the lowest-energy excitons
in GeS and GeSe show binding energies of 1.05 and 0.4 eV, respectively. In case of
GaSe, strong excitonic effects are also confirmed with the binding energies of 0.66
and 0.34 eV assigned to the 1s and 2s excitons, respectively [60].

In a recent work, using first-principles GW+BSE scheme in combination with
the k • p theory, a robust linear scaling law between the quasi-particle band gap
and the exciton binding energy, Eb = Eg/4, was found for two-dimensional semi-
conductors [53]. It is conclusive that this relationship is independent of the lattice
configuration, bonding feature, and the topological property of the semiconductors,
a similar conclusion has also been drawn previously [61]. In view of physics, the
larger the energy gap is, the weaker the screening becomes, which naturally cor-
responds to a smaller exciton radius and hence the higher binding energy. In this
sense, a proportional relationship between the band gap and exciton binding energy
is taken for granted. It is nevertheless clear that the universal parameter-free slope
as well as the formulas of the band gap and exciton binding energy are not valid
for the bulk semiconductors. It is conclusive that such a difference essentially arises
from the nonlocal and local screening effect for two-dimensional and bulk materi-
als. In the two-dimensional case, the electron–hole interaction is long ranged and
thus notably affects the exciton radius. In contrast, for the bulk case, the strong
screening weakens the electron–hole interaction rapidly, generally leading to a larger
exciton radius, and hence a smaller exciton binding energy. In these ways, excitonic
effects thus are closely related to the different photocatalytic mechanisms. In com-
parison to the standard charge transfer processes, effective light–energy conversion
could be reached through exciton exchange and/or dipole−dipole interactions in
exciton-based energy transfer processes [62]. In such processes, net charge carrier
transfer from donor to acceptor is not involved, thus suggesting interesting photo-
catalytic behaviors. In Figure 5.9, the relationship between band gap and exciton
binding energy is shown.

In comparison to standard density functional theory, with many-body perturba-
tion theory a more correct optical absorption of two-dimensional materials can be
obtained. In spite of this, open questions are still there. In general, dark excitons
are generated under light irradiation, which plays a determinative role in deter-
mining the light–matter interactions and the light–energy conversion efficiency.
In general, bright–dark exciton interconversion suggests an exotic approach to
tune the quantum yield efficiency [63–67]. In addition, charged exciton (the trion)
and exciton–exciton (the so-called biexciton) interactions are of importance to
understand the photon absorption and the photoexcited charge carrier behavior
in especially low-dimensional materials. It is of paramount importance that, as
discussed earlier, the formation of interlayer exciton (or charge transfer exciton)
in van der Waals (vdW) homostructures and heterostructures of two-dimensional
TMDCs means an exciting phenomenon, opening up a new avenue in photocatalytic
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Figure 5.9 Relationship between the
energy gap and exciton: for a system
with large band gap, the screening is
weak and the exciton binds strongly,
giving rise to a relatively narrow
spatial extension and large exciton
binding energy. In contrast, for a
system with a small band gap, the
screening is strong and the exciton
binds loosely, leading to a relatively
wide spatial extension and small
exciton binding energy. Source: Jiang
et al. [53]/with permission of
American Physical Society.
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Figure 5.10 Momentum-forbidden dark excitons consist of electrons and holes located at
different valleys in the momentum space. Spin-forbidden dark excitons consist of electrons
and holes with opposite spin. These states cannot be accessed by light due to the lack of
required momentum transfer and spin-flip, respectively. Localized excitons are those
electrons and holes trapped into an impurity-induced potential. Source: Mueller and
Malic [66]/Springer Nature/CC BY 4.0.

and photovoltaic applications. In this context, the light–matter interaction becomes
more complex, and more advanced theory and simulation methods should be
developed. In Figure 5.10, different kinds of dark excitons are shown.

5.3 Electron–Phonon Effects on the Excited-state
Properties

In this section, one can refer to the pioneering works by Marini [68, 69] and
Giustino, Louie, and Cohen [70, 71] and references therein. In general, optical



134 5 Calculation of Excited-State Properties

features are characterized at room temperature, and of course the temperature will
affect the light–energy conversion efficiency. In density functional theory-based
studies without considering the temperature effects, important features will
be overlooked, for example, the intensity of the excitonic absorption and the
broadening, which is directly related to the temperature and to the photoexcited
charge carrier nonradiative relaxation time. In other words, usually the ground-
and even the excited-state calculations from the first-principles are done at 0 K
and, thus, ignore the effects of thermal lattice vibrations on the optical properties.
It should be pointed out that the thermal lattice vibrations show non-negligible
effects on the electronic structures, since they change the spectral function. As
a consequence, sharp discrepancy between theoretical and experimental obser-
vations emerges. In this respect, including the electron–phonon interaction to
take the temperature into account in theoretical simulations is thus of significant
importance.

In general, a first evaluation of the electronic energies could be obtained from
density functional theory, and the phonon modes and electron–phonon coupling
matrix elements are then gained by using density functional perturbation theory.
On the basis of the obtained matrix, change in electronic energies due to lattice
vibrations can be captured. In the third step, temperature-dependent BSE can
be solved to determine the change in the optical response, exciton energies, and
linewidths as temperature changes. In the framework of many-body perturbation
theory, two self-energy diagrams corresponding to the lowest nonvanishing terms
of a perturbative treatment should be estimated. In particular, the Fan self-energy,
as the first-order term, can be written as

ΣFan
n,k (𝜔,T) =

∑
n′q𝜆

|||gq𝜆
nn′k

|||2
Nq

[
Nq(T) + 1 − fn′k−q

𝜔 − 𝜀n′k−q − 𝜔q𝜆 − i0+

]
×

[
Nq(T) + fn′k−q

𝜔 − 𝜀n′k−q + 𝜔q𝜆 − i0+

]

where 𝜀n, k are the eigenvalues from density functional theory, 𝜔q, 𝜆 are the phonon
frequencies, and f n, k and Nq(T) are the Fermi and Bose distributions of electrons
and phonons, respectively. In the case of the Debye–Waller (DW) self-energy, corre-
sponding to the second-order term, it reads:

ΣDW
n,k (T) =

1
Nq

∑
q𝜆

Λq𝜆,−q𝜆
nnk [2Nq𝜆(T) + 1]

In this equation, Λq𝜆,q′
𝜆
′

nn′k stands for the amplitude of the second-order scattering
|nk⟩→ |n′k−q−q′⟩⊗ |q𝜆⟩⊗ |q′

𝜆
′⟩. In the expression of the two self-energy

terms, phonon population introduces the temperature. In the following, the
electron–phonon interaction can be related to a fully interacting electron
propagator as:

Gnk(𝜔,T) =
[
𝜔 − 𝜀nk − ΣFan

nk (𝜔,T) − ΣDW
nk (T)

]−1

where the complex poles correspond to the electronic excitations. It is helpful
to get the Eliashberg functions to find the phonon modes contributing to the
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electron–phonon coupling:

g2Fnk(𝜔) =
∑
𝜆q

⎡⎢⎢⎢⎣
∑

n′
|||gq𝜆

nn′k
|||2N−1

q

𝜀nk − 𝜀n′k+q

⎤⎥⎥⎥⎦
𝛿(𝜔 − 𝜔q𝜆) −

∑
𝜆q

[
2
∑

n′Λq𝜆
nn′kN−1

q

𝜀nk − 𝜀n′k

]
𝛿(𝜔 − 𝜔q𝜆)

In this situation, the temperature-dependent BSE can be solved, where the corre-
sponding excitonic Hamiltonian is:

HFA
ee′hh′ = [Ee + ΔEe(T) − Eh − ΔEh(T)]𝛿eh,e′h′ + (fe − fh)Ξee′hh′

in which Ee and Eh are electron and hole energies, respectively; f e and f h are the
occupations, and Ξee′hh′ is the BS kernel. In the equation, ΔEe(T) and ΔEh(T)
represent the renormalization to the electron and hole energies induced by the
electron–phonon interaction, respectively. In closing, the dielectric function
depends explicitly on the temperature:

𝜀(𝜔,T) ∝
∑

X
[SX (T)]2Im

[
1

𝜔 − EX (T)

]
where SX (T) is the exciton oscillator strength.

In a recent work, band gap renormalization and electron–phonon coupling in
two-dimensional WSe2 are comprehensively discussed [72]. In consideration of
the polaronic energies, solving a coupled electron–hole BSE results in the in-plane
torsional acoustic phonon branch mainly accounting for the characteristic A and B
excitons buildup. In particular, the A, B, and C excitons in MoS2 (from the vertical
optical transitions at the Γ point of the Brillouin zone of two-dimensional TMDCs)
behave differently with respect to temperature, i.e. with different nonradiative
linewidths [73]. In detail, the longitudinal acoustic (LA) phonons dominantly
contribute to A and B excitons, while LA and the optical modes near 225 cm−1

couple to the C exciton. It should be pointed out that a zero-point energy renor-
malization of 31 meV mainly due to the polaronic interaction is found, with
negligible contributions from the lattice anharmonicities. It is obvious that results
taking the electron–phonon effects into account are very helpful for studying the
light–energy/current conversion behavior of two-dimensional TMDCs at finite
temperatures, where the exciton physics will govern the conversion efficiency. In
case of two-dimensional MoS2, similar results with that of two-dimensional WSe2
are obtained and discussed in a similar way.

It is already known that even at T → 0 K, zero-point motion effect of atoms will
play a crucial role in affecting the excited-state properties such as the excitation posi-
tion and spectrum width. It has been revealed that this is also true for monolayer
GeS [74]. In particular, at the band edge the longitudinal mode B2u couples efficiently
with the electronic states. In addition, the electronic states that give rise to the exci-
ton E1 couple mostly with the vibrational modes A1g and B2

3g. It therefore suggested
that one should include the electron–phonon interaction effects in order to prop-
erly describe group-VI monochalcogenides. It is of interest that previous work indi-
cates an anomalous temperature dependence of the band gap of two-dimensional
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black phosphorus (BP) [75]. As temperature increases, particularly, the fundamen-
tal band gap increases instead of decreases. It is a result of electron–phonon coupling
with distinct optical modes. It is also evidenced that in semiconductors the thermal
anomalies can be identified from the correlation between harmonic and anharmonic
effects.

5.4 Nonlinear Optical Response

It has been illustrated that many-body perturbation theory cannot be used to
simulate the light emission by laser pulse excitation, a nonequilibrium phe-
nomenon. In 1994, Kadanoff and Baym developed the generalization of many-body
perturbation theory to nonequilibrium conditions, where the Kadanoff–Baym
equations (KBE) make nonequilibrium Green’s function theory accessible [76].
In combination with density functional theory, Marini et al. simplified the KBE,
enabling a parameter-free theory to predict and reproduce ultrafast and nonlinear
phenomena: the time-dependent BSE [77]. In case of weak perturbations, it reduces
to the standard BSE. At the same time, however, it can naturally describe the
optical excitations beyond the linear regime. In Figure 5.11, perturbation (by
a strong laser field) induced elemental processes are schematically illustrated.
In the year of 2016, progress has been made by Marini et al. [78] In particular,
electron–electron, electron–phonon, and electron–photon interactions could be
considered in the complete BKE on the basis of the nonequilibrium Green’s function
theory.

In this context, light emission thus can be simulated, in principle, on the basis of
Coulomb hole and screened exchange (COHSEX) self-energy and the collision inte-
gral Sdyn. In practice, Sdyn is split into three terms according to the different carrier
interactions:

d
dT
𝜌(T) + i[hext(T), 𝜌(T)] = −Scoh[𝜌](T) − Sdyn

e−e [𝜌](T) − Sdyn
e−p[𝜌](T) − Sdyn

e−𝛾 [𝜌](T)

(a) (b) (c)

ωγ

ωqλ

ωqλ

ωe–h

ωe–h ωγ'

Figure 5.11 Short and intense laser pulse induced different processes in a semiconductor.
(a) Electron–hole pairs generation. (b) Carrier collisions. (c) Carrier relaxation to photon (c).
𝜔
𝛾
∕𝜔′

𝛾
, 𝜔q𝜆 , and 𝜔e− h are photon energy, phonon energy, and electron–hole pair energy,

respectively. Source: Wei et al. [26]/with permission of John Wiley & Sons.
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In the publications by de Melo and Marini, one can find more about the basic
equations and calculation details for light emission. In addition to the temperature,
from the aspects of theoretical simulation, the photoluminescence signal varies
with the feature of the laser and the pulse duration. In fact, however, there is no
comparison between the light emission based on the aforementioned method and
that of experimental result. It should be emphasized here that lattice relaxation
occurs in excited states and then photon emits. In general, therefore, emission
energy should not be the same as the absorption energy only if one can relax the
excited state.

5.5 Optical Properties of van der Waals
Heterostructures of Two-Dimensional Materials

In two-dimensional TMDCs, the exciton binding energies are usually hundreds of
millielectronvolts, two orders of magnitude larger than those in bulk semiconduc-
tors such as Si and GaAs [79]. On one hand, large exciton binding energy guaran-
tees that the exciton states can survive at room temperature. On the other hand,
however, large exciton binding energy is not in favor of electron–hole pair dissoci-
ation into free carrier to participate in the photochemical or photoelectrochemical
interactions. In vdW heterostructures of two-dimensional TMDCs, the excited-state
dynamics will be profoundly affected, thus providing a useful method to modulate
and optimize the dynamic response of the individual monolayers.

In recent years, advances have been made in vdW heterostructures of two-
dimensional TMDCs, many of them have been realized and characterized. In
particular, two-dimensional TMDCs are semiconductors with direct band gap with
two degenerate copies of energy gaps located at the K and K′ points (or valleys)
of the Brillouin zone. It is conclusive that extremely strong excitonic effects and
contrasting properties for different valleys are the two hallmarks of this class of
materials, thus providing a fruitful material platform to study interlayer exciton
phenomena. It can be envisaged that rich exciton physics and unique optoelectronic,
photocatalytic, and photovoltaic applications in these materials are waiting for
investigation. It should be pointed out that different kinds of stacking patterns for
bilayers have been observed both experimentally and theoretically, and the bilayers
are strain-free due to the weak vdW interactions.

In general, stacking two distinct two-dimensional monolayers gives rise to the
type-II band alignment, with the valence band maximum (VBM) and conduction
band maximum (CBM) located on opposite layers. In particular, when two monolay-
ers of TMDCs are coupled vertically by the vdW interaction, the band alignment is
determined by the work function of the individual layers, the interlayer interaction,
and the alignment of the crystal axes of the two layers. It is natural that the elec-
tronic structure of TMDCs heterobilayers will show a dependence on the relative
angle of rotation between the two layers, which presents a huge opportunity for
rotational control of interlayer excitons and their response to external electric and
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magnetic fields [80–86]. In this context, therefore, manipulating interlayer excitons
by structural tuning could become another powerful tool. In fact, photocatalytic and
photovoltaic devices based on the vdW heterostructures of two-dimensional TMDCs
benefit the typical type-II band alignment and large band offset, which could be
the driving force for exciton dissociation, significantly affecting the band-to-band
interlayer charge transfer, the intralayer exciton formation, and the photogenerated
charge carrier ultrafast dynamics. In vdW heterostructures of two-dimensional
materials, interlayer coupling causes vertical dipole (or the build-in electric field)
and thus affects the exciton binding energy through dipole–dipole interaction. In
general, if such a vertical field promotes the separation of exciton, the binding
energy thus will be reduced and vice versa. In turn, small binding energy is in favor
of the exciton dissociation into free charge carriers to participate in photocatalytic
and photovoltaic reactions.

In experiments, ultrafast optical measurements by using pump–probe spec-
troscopy make it possible to access the charge and energy transfer processes with
femtosecond time resolution [87–89]. It has been experimentally demonstrated that
interlayer exciton forms following the formation of intralayer exciton. Under light
radiation with photon energy larger than the band gap of one or both monolayers,
intralayer transitions occur. In analogues to the optical absorption of isolated
monolayer TMDCs, characteristic peaks will be observed, while the interlayer exci-
tonic absorption is characterized by the oscillation in lower energy than intralayer
excitons. However, the oscillation strength is very small due to the momentum
mismatching. In case of a type-II band alignment, hole charge transfer from one
monolayer to the other is responsible for the transient response [87]. In the charge
transfer process, however, the effects of electron–hole attractive interactions are
not fully considered. In addition, error arises due to the current resolution of the
instrument to probe the photoexcited charge carrier transfer in stacked monolayers
forming Moiré patterns, while the optical measurements make the results vague.

It should be pointed out that band-to-band interlayer excitons, which are differ-
ent in nature from the experimentally observed charge transfer interlayer excitons,
could be obtained from simulation point of view such as GW+BSE calculations.
As a result of the spatially indirect geometry, however, their near-zero intensities
make no contributions to the absorption profile. In case of MoS2/WS2 heterobilayer,
the lowest A/B transitions in constituent monolayers are 1.93/2.12 eV for MoS2 and
1.96/2.44 eV for WS2 [90]. It is of interest that interlayer direct transitions can be
observed from simulation results, for example, in MoS2/WS2 such transitions are
about 50 meV below the low-energy A exciton. It is possible that the interlayer direct
transitions undergo bright–dark exciton crossover. In another work, however, such
interlayer transitions cannot be found [91]. On the basis of GW+BSE scheme, an
interlayer transition was found to be 0.14 eV lower than the first intralayer exciton in
MoS2/WS2 heterostructures [92]. It is therefore indicative that much more attention
should be paid to the technical details when dealing with such systems by GW+BSE
method, and the k-point mesh, cutoff energy, and empty bands should be carefully
tested for convergence. It is of importance that electron–phonon effects on the band
gap renormalization and absorption profile should also be considered.
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6

Charge Carrier Dynamics from Simulations

6.1 Time-Dependent Density Functional Theory
and Nonadiabatic Molecular Dynamics

In nanoscale materials, charge separation and recombination lay the foundation in
photovoltaic and photocatalytic devices, Figure 6.1. In the light–energy conversion
process, excitons (Coulomb bound electron–hole pairs) have to dissociate into free
carriers to realize high conversion efficiency. It has been discussed in Chapter 5,
however, significantly large binding energies are always assigned to the excitons
in low-dimensional materials including the emerging two-dimensional candidates
for applications in photovoltaics and photocatalysts. It will lead with large possibil-
ity to inefficient charge separation and, hence, inefficient light–energy conversion.
In two-dimensional materials-based van der Waals (vdW) heterostructures, type-II
band alignment as the driving force for charge transfer and the formation of inter-
layer excitons implies efficient charge separation. In case the large electron–hole
Coulomb interaction exceeds the driving force, consequently, the charge separation
will be impeded. However, sometimes, this is not the reality. In order to unravel the
photoexcitation charge carrier dynamics in pristine and even defective materials,
nonadiabatic molecular dynamics (NAMD) in combination with ab initio real-time
time-dependent density functional theory (TDDFT) provides a possibility to mimic
the time-resolved laser experiments at atomic scale [1–13].

In recent years, NAMD has been implemented with real-time TDDFT and used
in simulations of photovoltaic and photocatalytic processes, i.e. carrier separa-
tion/recombination, energy relaxation/transfer, and electron–hole elastic/inelastic
scattering. In the framework of Kohn–Sham method, the dynamics of interfacial
charge carrier transfer including nonadiabatic effects can be described by real-time
TDDFT. In detail, the electron density, 𝜌(r, t), is repressed in the way of DFT as
a summation of the densities of the single-particle Kohn–Sham orbitals, 𝜑i(r, t),
occupied by Ne electrons:

𝜌(r, t) =
Ne∑
i=1

|𝜑i(r, t)|2

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Figure 6.1 Photoinduced processes competing with electron transfer between a donor and
an acceptor, including thermal relaxation, energy transfer, and charge recombination. The
energy levels of the donor (acceptor) are shown as solid horizontal lines on the left (right).
The electron and hole are represented by solid and open circles, respectively. Source: Wei
et al. [1]/with permission of John Wiley & Sons.

As used in the Kohn–Sham energy, time-dependent variational principle determines
the electron density evolution:

E{𝜑i} =
Ne∑

p=1
⟨𝜑i|K(r)|𝜑i⟩ + Ne∑

p=1
⟨𝜑i|V(r;R)|𝜑i⟩

+ e2

2 ∫ ∫
𝜌(r′, t)𝜌(r, t)|r − r′| d3rd3r′ + EXC{𝜌}

In this case, the evolution of Kohn–Sham orbitals takes

iℏ
𝜕𝜑i(r, t)
𝜕t

= H(r,R, t)𝜑i(r, t)

In consideration that the Hamiltonian H(r, R, t) is determined by the overall elec-
tron density, the equations are correlated. In the manner of atom-induced external
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potential, the electron–vibrational coupling can be included in the Hamiltonian
H(r, R, t), and expansion of the time-dependent Kohn–Sham orbitals is in adiabatic
Kohn–Sham basis 𝜑i(r, t), which can be calculated by the atomic position R:

𝜑i(r, t) =
Ne∑
i=1

cij(t) ∣ 𝜑̃j(r,R(t))

In the following, the evolution of the expansion coefficients can be obtained from

iℏ 𝜕
𝜕t

cij(t) =
Ne∑
k

cij(t)(𝜀̃k𝛿jk + djk•Ṙ)

where 𝜀̃k is the energy of the adiabatic state k, and djk•Ṙ is the nonadiabatic coupling
between orbital j and k, which is created by atomic motions.

In respect to the classical path approximation (CPA), the fewest-switches surface
hopping (FSSH) and the decoherence-corrected surface hopping are used in the
real-time TDDFT method [10, 12]. In the method Long et al. used, the most
important approximation is the CPA, which indicates that the nuclear motion is
not affected by the electron excitation. In this case, only the ground-state molecular
dynamics is run to obtain the energies, gradients, and nonadiabatic couplings.
In addition, CPA also means that the dynamics is not really performed in the
real excited states of the solid state. In this sense, the modified trajectory surface
hopping (TSH) is really different from the original version of TSH by Tully [14]. It
should be clearly declared that CPA cannot give the truly correct description of the
excited states for solid state and cannot describe the chemical bond formation and
breaking.

It has been identified that the real-time TDDFT method could be an exotic ab
initio quantum strategy to explore the strong field physics beyond linear response
theory such as ultrafast photoelectron emission. In these approaches, electron
density is treated as propagator in real time through numerical integration for the
time-dependent Kohn–Sham equations, giving rise to the evolution of electronic
wave functions in time domain together with the movement of ion. As a result,
the real-time TDDFT represents in perturbative or non-perturbative regimes a way
for real-time tracking of ultrafast dynamics. In this field, Meng et al. developed the
real-time ab initio approach (time-dependent ab initio package, TDAP) for simu-
lating electron–nuclear dynamics under laser excitations, which has been proved
successful in some systems [15–19]. In a model of MoS2/WS2 vdW heterostructure,
for example, laser-induced ultrafast carrier dynamics can be explained by using this
approach [15]. In accordance to the results, the interlayer geometry and therefore
the charge transfer quantum dynamics could be modulated. In addition, another
possible alternative way for simulating the photoinduced charge carrier dynamics
of the extended two-dimensional monolayers and the quasi-two-dimensional vdW
heterostructures is the multilayer multiconfiguration time-dependent Hartree
(ML-MCTDH) method, in which the description of correlation effects could be
more effective [20–23].
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6.2 Applications of TDDFT and NAMD in
Two-Dimensional Materials

In the light of TDDFT and NAMD strategy, simulation works focusing on the
photoexcitation dynamic show great success, particularly in two-dimensional
TMDCs materials. In Figure 6.2, electronic energy levels involved in the photoin-
duced nonequilibrium processes in a type-II donor–acceptor heterostructure is
shown.

In general, the performance of materials depends strongly on the morphology and
quality of the samples. In MoS2, S adatom and S vacancy are the most energetically
favorable point defects, introducing trap states and destroying the stability and
leading to charge carrier loss [2, 24–28]. It is therefore conclusive that defects will
accelerate the nonradiative electron–hole recombination. It should be pointed
out that, nevertheless, the acceleration mechanisms are different with regard to
the adatom and vacancy in MoS2. As a result of the adatom, the hole trap states
are strongly localized and couple weakly with charge carriers and are scarcely
populated, and the acceleration mechanism for adatom is also related to the
new phonon modes that couple to the electronic subsystem due to the distorted
symmetry of MoS2, as well as the increased nonadiabatic charge–phonon coupling.
In contrast, chalcogen vacancy gives rise to deep and relatively localized electron
trap, while shallow and less localized hole trapping center. In general, the impurity
states within the band gap are assumed to be populated, and that the relaxation
is faster as it is related to transitions over smaller energy gaps. In this situation,
carrier recombination across the hole trap dominates in MoS2 with S vacancy. In
consideration that it will substantially reduce the lifetimes of charge carriers in
MoS2 than S vacancy, the S adatom should be avoided to guarantee the high perfor-
mance of TMDCs-based devices. In light–energy conversion processes, nonradiative
electron–hole recombination suggests the dominating channel for carrier loss and
energy dissipation. In pristine MoS2, TDDFT and NAMD calculations indicate a
timescale of 388 ps for direct recombination of a conduction band electron and

1 4
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3

1 4
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2

2
2

Figure 6.2 Absorption of a
photon (1) by either electron
donor or electron acceptor
leads to charge separation
(3) due to electron or hole
transfer, respectively.
Competing with the
separation, the electron and
hole can undergo
recombination (4) or
relaxation (2) inside either
material. Following the
separation, the charges can
recombine at the interface
(5). Source: Wei Wei.
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a valence band hole. In accordance to the Fourier transform of the energy gap
fluctuations, the 400 cm–1 phonon corresponding to the out-of-plane A1g phonon
mode of MoS2 (with the frequency being 404.1 cm–1) promotes this band edge
electron–hole recombination. In spite of the not significantly populated shallow
hole trap states induced by S adatom, the electron–hole recombination is eight
orders of magnitude faster (49 ps), even faster than the case of S vacancy (225 ps).
In such an anomalous case, the acceleration by S adatom can be explained by the
strong nonadiabatic coupling. In comparison to the root-mean-square value of the
nonadiabatic coupling of perfect MoS2 (2.78 meV), the presence of S adatom leads
to the larger value between VBM and CBM (8.44 meV). It can be rationalized by
the fact that S adatom breaks the symmetry of two-dimensional MoS2 plane and
involves multiple phonon modes that can be coupled to the electronic subsystem.
In this regard, structure and symmetry perturbation duo to the defects come to
play and should be paid careful attention, since the induced vibration modes will
couple strongly to the electronic system and affect the relaxation dynamics. In other
words, defects in two-dimensional TMDCs including vacancies, antisite atoms, and
adatoms definitely enhance the electron–hole recombination. In respect to the per-
formance of TMDCs-based devices, which is closely related to the efficient charge
separation, defects are strongly suggested to be avoided during the preparation of
samples.

It is a consensus that vdW heterostructures of two-dimensional TMDCs present
a new class of material systems, providing an exciting platform for new physics
and novel applications. In light of the type-II band alignment, which facilitates
efficient separation of photoexcited electrons and holes, vdW heterostructures of
two-dimensional TMDCs show great potential in light–energy conversion appli-
cations such as photovoltaics and photocatalytic devices. It has been concluded
that the interlayer charge transfer is at the center of the photoresponse of these
heterostructures. In particular, the overlap of interlayer states is responsible
for the charge carrier transfer, thus the photoexcitation charge carrier transfer
dynamics certainly shows dependence on the interlayer stacking orders (twist-
ing, translation, and spacing) and interactions. In recent results from TDDFT, it
has been demonstrated that specific interlayer registry between MoS2 and WS2
monolayers can significantly modulate the interlayer charge transfer, in particular,
it changes the timescale from 100 to 1000 fs. It was further unraveled that the
transfer rate is governed by the coupling between specific interlayer states, instead
of the overall interlayer coupling strength. In particular, the VBM states of MoS2
and WS2 (at the K point in the Brillouin zone) are referred to as the interlayer
states and are not sensitive to the interlayer interaction. In can be expected that
shorter interlayer distance, or stronger interlayer electronic coupling, will lead to
faster charge transfer. It seems that, nevertheless, there is no obvious correlation
between the charge carrier transfer dynamics and the interlayer coupling strength,
which is against the normal expectation. In terms of formation energy and/or
interlayer distance, the mechanical or electronic coupling strength is actually a
total 1. It should be pointed out that the charge carrier transfer is just related to
the coupling strength of the states where charge carrier transfer takes place. It can
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be confirmed by evaluating the coupling strength using dipole transition matrix
element (M):

M = ⟨𝜑1|Ẑ|𝜑2⟩
here Ẑ is the position operator along the vertical direction, and 𝜑1, 2 is the interlayer
state (the VBM of individual monolayer in MoS2/WS2 vdW heterostructures). It was
further found that 1/𝜏 shows exponential dependence on M, or 1/𝜏 ∝ eM , which is
universal in controlling the interlayer charge transfer dynamics in MoS2/WS2 vdW
heterostructures of different stacking orders and interlayer distance.

In MoS2/WS2 heterostructures, photoexcited ultrafast charge transfer can be
demonstrated through photoluminescence mapping and femtosecond pump–probe
spectroscopy. It has been found that within a timescale of 50 fs after optical
excitation hole transfer from the MoS2 layer to the WS2 layer occurs, which is a
remarkable rate for two-dimensional vdW bilayers. It is of interest that ultrafast
charge transfer can enable two-dimensional vdW heterostructures-based devices
more promise for light harvesting and optoelectronics.

In addition, in MoSe2/WSe2 heterostructures interlayer excitons were also
observed by photoluminescence and photoluminescence excitation spectroscopy.
It was found that the interlayer exciton lifetime reaches about 1.8 ns, one order
of magnitude longer than intralayer excitons in a monolayer. It was also revealed
that the luminescence intensity and energy of the interlayer excitons are highly
adjustable by an applied vertical gate voltage. It is of interest that, according to
these results, optically exciting the interlayer polarization opens up a new avenue
for new physical phenomena such as interlayer exciton condensation and novel
applications such as laser, photovoltaic devices, and light-emitting diodes based on
two-dimensional materials.

In the case of type-II band alignment, long excited charge carrier lifetimes and
suppressed electron–hole recombination across the interface can be expected. In
MoS2/MoSe2 heterobilayer, for example, the VBM and CBM band offsets between
MoS2 and MoSe2 are 0.37 and 0.63 eV, respectively, and, however, the band edge
offsets reduce to 0.06 and 0.5 eV if the interlayer coupling is considered. In accor-
dance to the results from many-body perturbation theory, exciton binding energies
for two-dimensional TMDCs monolayers range from 0.5 to 1.1 eV, larger than
the offsets being the driving force for carrier separation. It is an indication that
the efficient dissociation of excitons into free carriers in constituents within the
vdW heterobilayers should be prevented. In experiments, however, the efficient
charge separation in heterostructures of two-dimensional TMDCs in terms of pho-
toinduced electron/hole transfer can observed. In MoS2/MoSe2 heterostructures,
the timescales for photoexcitation charge carrier transfer as well as electron–hole
recombination are subpicosecond. In particular, the lifetimes of spatially indirect
excitons (up to 240 ps) are longer than the intralayer excitons in constituent MoS2
(100 ps) and MoSe2 (125 ps), and the photoluminescence quenching in MoS2/WSe2
heterostructures also supports the photoinduced charge transfer. It is obvious that
conflict exists and needs to be resolved. As for MoS2/MoSe2 vdW heterostructures,
TDDFT and NAMD simulations can provide fundamental insights into excitation
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dynamics [4]. In this respect, quantum coherence at the interface is demonstrated to
play an important role in correctly describing the photoexcitation dynamics in such
vdW heterostructures. In case of heating the MoS2/MoSe2 vdW heterostructures
to room temperature, the average interlayer distance will decrease, indicating
enhanced donor–acceptor coupling because of the thermal fluctuations. As the
finite-temperature atomic motions will distort the geometry of the two-dimensional
sheet, thus additional interaction chances will be provided.

In accordance to the band offsets in MoS2/MoSe2 vdW heterostructures, one
can acknowledge that MoS2 will be the hole donor and electron acceptor, while
MoSe2 reverses. Although the delocalization of photoexcited states corresponds
to the strong donor–acceptor interaction, it does not insure the ultrafast charge
transfer. In the presence of coherent superposition, long lifetimes of these states
will facilitate fast dynamics, which is a requirement of quantum dynamics. In
this regard, pure-dephasing functions with timescales from Gaussian fitting are
useful to characterize the photoinduced loss of electronic coherence. In particular,
nonadiabatic coupling are predicted to be 0.440, 0.257, and 0.135 meV for MoSe2,
MoS2, and MoS2/MoSe2 vdW heterostructures, respectively, and the corresponding
recombination timescales are 63, 41, and 480 ps, respectively. It can be seen that
strong nonadiabatic coupling and long coherence mean fast charge transfer. It is
worth noting that electron–hole at MoS2/MoSe2 interface is much slower than
the corresponding rates in individual components, which is associated with fast
decoherence. In a way by influencing the relative energies and the localization
of the donor/acceptor states and by creating nonadiabatic coupling, vibrational
motions are strongly suggested to be taken into account to describe the charge
carrier transfer and lead to energy loss to heat. It concludes that the high-frequency
phonon modes resulting in large nonadiabatic coupling couple to charge carrier
separation and will facilitate the charge transfer. In particular, delocalization of
photogenerated states promotes the quantum coherence, and, therefore, helps
to conquer the electron–hole attractive interaction. As a consequence, efficient
charge separation can be recognized. In conclusion, only taking these factors into
account the nonadiabatic dynamics for charge carrier separation, energy relaxation,
and electron–hole recombination in light–energy conversion processes can be
correctly described, thus providing insights into the design principles for effective
photovoltaic and photocatalytic systems.

In solar cell and photocatalytic applications, significantly longer electron–hole
recombination than charge reparation is demanded. In vdW heterostructures
of two-dimensional TMDCs, the monolayer pristine properties are maintained
and, importantly, many novel properties arise. In type-II MoS2/WSe2 vertical
heterostructures, ultrafast electron transfer from WSe2 into MoS2 (within 470 fs)
has been recently illustrated via time-resolved photoluminescence spectroscopy.
In other experiments, the ultrafast charge carrier transfer and significantly slow
recombination are also demonstrated, giving rise to the grounds for designing
efficient light–energy conversion devices based on two-dimensional TMDCs mate-
rials. In respect to the photoexcitation dynamics in TMDCs vdW heterostructures,
therefore, the importance of donor–acceptor coupling and fundamental band
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Figure 6.3 Scheme of the photoinduced electron transfer mechanism. Adiabatic electron
transfer occurs by passing over a transition-state barrier. Nonadiabatic electron transfer
occurs via a hop between donor and acceptor states. Photoexcitation can promote the
electron directly from the donor material to a state that is localized on the acceptor,
creating a charge-separated state. Source: Wei Wei.

should be emphasized. In order to mimic the time-resolved ultrafast pump–probe
spectroscopy experiment, quantum–classical NAMD simulations in combination
with TDDFT are usually the choice [5].

In general, the strong, finite temperature-induced interactions facilitate a num-
ber of pathways for the electron to be transferred, including direct inter-component
excitation, adiabatic, and nonadiabatic mechanisms, Figure 6.3. In respect to the
perovskite solar cells, the ultrafast interfacial injection guarantees efficient photoin-
duced charge separation that creates favorable conditions for operation.

In the case of MoS2/WSe2 vdW heterostructures, electron donor state is expanded
into two components, and electron acceptor state is confined within MoS2. As a
result of wave functions overlap, such a situation enhances nonadiabatic coupling
and facilitates charge carrier separation. In contrast, hole donor and acceptor states
are, respectively, localized in each monolayer, thus decoupling each other and reduc-
ing nonadiabatic coupling. It should be kept in mind that strong donor–acceptor
coupling leads not necessarily to ultrafast charge separation, but quantum coherence
is also an important factor that affects the photoexcitation charge carrier dynamics.
In principle, faster and more phonon modes participating in charge carrier transfer
result in larger nonadiabatic coupling and accelerate charge carrier separation, since
nonadiabatic coupling is proportional to the wave function overlap ⟨𝜑̃m ∣ ∇R ∣ 𝜑̃k⟩
and to the velocities of nuclei dR/dt. In calculations of TDDFT and NAMD, this can
be evaluated by the spectral density calculated from Fourier transform of the fluctu-
ations of the relative energy difference. In the case of MoS2/WSe2 vdW heterostruc-
tures, electron transfer (304 fs) is faster than hole transfer (443 fs) due to the reasons
discussed earlier. In general, for MoS2/WSe2 vdW heterostructures, the weak cou-
pling between electron and hole wave functions reduces the initial and final states
interaction and inclines to suppress the recombination. In spite of the smaller band
gap than individual monolayers, in vdW heterostructures the small nonadiabatic
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coupling due to the delocalized initial and final states as well as the fast decoherence
due to phonon modes of high frequency will delay the electron–hole recombination.
In particular, the electron–hole recombination timescale for MoS2/WSe2 vdW het-
erostructures is 496 ps, with a decoherence timescale being 6.8 fs.

It is of importance that, inspired by the new channel for hot electron relaxation
in MoS2/WSe2 vertical bilayer, a new concept for design of light–energy conversion
devices can be imagined. In vdW multilayers of distinct two-dimensional materials,
photoexcited electrons diffuse vertically rather than decay thermally in one layer,
with the hot holes transferring in an opposite direction to the hot electrons. In this
regard, charge loss could be significantly inhibited, and high light–energy conver-
sion efficiency could be expected. In Figure 6.4, such a new view for device design
is schematically shown.

In 2014, in-plane heterostructures of two-dimensional TMDCs were first identi-
fied by the one-step or two-step chemical vapor deposition (CVD) method, which
permits modification of the atomic composition of a single monolayer to manifest
in-plane heterostructures [29–40]. In-plane heterostructures of two-dimensional
TMDCs, such as MoS2/WS2, MoSe2/WSe2, MoS2/MoSe2, and MoS2/WSe2 mark
the ultimate thickness limit for junctions between semiconducting materials. In
a CVD growth for these in-plane heterostructures, the second TMDCs material is
epitaxially grown from the edge of the first one with the formation of a seamless
in-plane heterojunction, see Figure 6.5. In as-grown in-plane heterostructures,
detailed atomic structure indicates a single hexagonal monolayer lattice and the

Figure 6.4 The vdW-coupled multilayers for photocatalytic and photovoltaic applications.
The small ellipse suggests the intralayer exciton. In such an architecture, electrons and
holes can be continuously transferred from one material to the most separated one,
strongly reducing the undesirable recombination. Source: Wei Wei.
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Figure 6.5 In experiments, in-plane heterostructures of two-dimensional TMDCs can be
realized by CVD method; the second TMDCs material is epitaxially grown from the edge of
the first one. The one-dimensional interface is denoted by a solid line. Source: Wei Wei.

same crystal orientation, confirming the atomic-sharp heterointerfaces. As the
heterostructures are formed between two-dimensional materials, interface reduces
to actually one-dimensional, referred to as interline. In the in-plane heterostructures
composed of two-dimensional TMDCs, two TMDCs are linked by covalent bonds
rather than the weak vdW forces in vertical vdW bilayers, ensuring the epitaxial
quality and boosts the optical and electronic performance [41–50]. In particular, the
intrinsic p–n junction behavior has been demonstrated in in-plane heterostructures
of two-dimensional TMDCs. It can be expected that, as a consequence, they would
comprise a significant platform for electronic engineering in two dimensions and
open up new realms in materials science and nanodevices applications.

In in-plane MoS2/WSe2 heterostructures, electron states are mainly localized at
the interface, while hole states are dominantly localized on WSe2 side close to the
interface. In this case, an exciton-like state forms due to the electron–hole Coulomb
interactions, which is in favor of light emission for designing novel light-emitting
devices. As a result of the strong electron–hole Coulomb attraction, strong nona-
diabatic electron–phonon coupling appears because of the formation of new W–S
chemical bonds along the interface, together with the increased quantum coher-
ence. In light of this, the electron–hole recombination timescale is a factor of 2.5
faster (191 ps) than the vdW case (496 ps) [4].

In combination the real-time TDDFT with FSSH scheme, Zhao et al. developed
the time-dependent ab initio NAMD code, that is, the Hefei-NAMD [51–55]. In par-
ticular, the photoexcited charge carrier dynamics in condensed matter systems can



References 155

also be simulated. In accordance to this method, the charge carrier transfer dynamics
across the interface, the excited spin-polarized hole dynamics, and the electron–hole
recombination dynamics in different structures have been studied. In the framework
of this method, photoexcitation charge carrier time-dependent dynamics could be
investigated in energy, real, and reciprocal spaces. At the atomic level, studies based
on the NAMD give rise to new insights into the ultrafast photoexcitation charge car-
rier dynamics in different condensed matter structures.
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7

Simulations for Photocatalytic Materials

7.1 Photocatalysis and Photocatalytic Reactions

It is estimated that 80% of the worldwide primary energy consumption is obtained
from fossil fuels such as petroleum, oil, and natural gas. It is well known that solar
energy is the most abundant and cleanest renewable energy source, and the sun-
light reaching the Earth’s surface on an hourly basis actually exceeds the annual
global energy consumption [1–3], and thus the efficient harvesting and conversion
of solar energy has been a worldwide priority target in the past years. As a result
of an increasing focus on dwindling energy resources and environmental deterio-
ration, solar power has emerged as a promising alternative to fossil fuels. However,
due to variations in the degree of sunlight reaching the planet depending on geo-
graphical location, seasons, and time of day, the efficient utilization of solar energy
requires that this energy be converted and stored in a cost-effective and environmen-
tally benign fashion [1–4]. In this context, the use of sunlight to drive light–energy
conversion via photocatalytic (photoelectrochemical) and photovoltaic applications
is of paramount importance toward a sustainable future [5–19].

In photocatalytic H2O splitting and CO2 reduction, for example, the energy of
solar photons can be stored in chemical bonds by using semiconductor photocata-
lysts like TiO2. In particular, the direct semiconductor/electrolyte junction provides
an effective driving force for photocatalytic (photoelectrochemical) reactions under
irradiation, offering a more straightforward, cost-effective, and convenient way to
achieve light–energy conversion of high efficiency [20–24]. It is however indicative
that most photocatalysts present low solar energy utilization, as solar light is
composed of ultraviolet, visible, and infrared components (accounting for 5, 43,
and 52%, respectively). In addition, the long-term stability, high charge separation
efficiency, low electron–hole recombination, and strong redox ability are still in
need in current photocatalytic materials. As an example, overall water splitting
using particulate photocatalysts has been considered as a low-cost technology
with the potential to enable large-scale solar hydrogen production, because of
the ready synthesis of the associated photocatalysts as well as the simple reactor
and facility designs [25–27]. A technical/economic analysis has determined that
a solar-to-hydrogen energy conversion efficiency of 5–10%, or even lower under
some operational conditions, could allow photocatalytic overall water splitting to

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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be economically viable for solar hydrogen production [25, 26]. It concludes that,
however, the current solar-to-hydrogen values for overall water splitting using
particulate photocatalysts on the laboratory scale are only approximately 1% [28].
In current stage, successful photocatalytic systems for the decomposition of H2O
into H2 and O2 are based on one of two approaches, with one of them involving split-
ting water with a single particulate photocatalyst via one-step excitation [29, 30].
It is now a consensus that, therefore, developing highly efficient photocatalytic
overall water splitting systems is vital to achieving the solar-to-hydrogen required
for scalability. In other fields of photocatalytic reactions, efficient photocatalysts are
also needed to be explored.

It is therefore still very challenging to design novel photocatalysts that are
abundant, stable, facile to fabrication, and present high light–energy conversion
efficiency. It is a consensus that single-component photocatalysts cannot simulta-
neously take on wide light absorption range and strong redox ability partially due
to, for instance, the fast recombination between conduction band electrons and
valence band holes, which can be overcome by designing proper heterogeneous
photocatalytic systems [31–33]. In case of heterogeneous photocatalytic materials,
photoexcited electrons and holes are transferred to opposite components due to
the type-II band alignment (Figure 7.1), reducing the charge carrier recombination
and thus improving the light–energy conversion efficiency. In order to realize high
light–energy conversion efficiency, a variety of strategies have been developed to
improve the photoelectrochemical performance of semiconductor materials via
addition of electron donor (hole scavenger), controlled incorporation of oxygen
vacancies, noble metal loading, metal ion doping, anion doping, dye sensitization,
and formation of composite semiconductors [34–36].

In last decades, photocatalysis has made a great advancement, as more and
more materials are demonstrated to be photocatalytically active, and the efficiency
has increased year after year. In 2004, graphene was born, and since then more
and more two-dimensional materials are synthesized, transferred, and predicted.
In the great application potentials for two-dimensional materials, such as transition

Eg1

Eg2

ΔECBM

ΔEVBM

h

e

Figure 7.1 Type-II band
alignment in heterogeneous
catalysts; arrows indicate the
transfer direction of
electrons (e) and holes (h).
Source: Wei Wei.
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metal dichalcogenides (TMDCs), transition metal carbides and nitrides (MXenes),
group-III and group-IV metal monochalcogenides, black phosphorus (phospho-
rene), and so on [37–51], photocatalysis is one of the most important aspects.
In respect to potential photocatalytic applications, two-dimensional monolayer
materials find their advantages like high specific surface area, strong light absorp-
tion, high charge carrier mobility, unique electronic structures, and chemical stabil-
ity. In particular, the two-dimensional nature of materials minimizes the distance
that photogenerated electrons and holes have to migrate before reaching the material
surface, reducing the possibility of electron–hole recombination. As a result, pho-
toelectrochemistry in two-dimensional materials has been extensively investigated,
and novel light–energy conversion devices have been designed and/or proposed.

In respect to the two-dimensional materials, for example, graphitic carbon
nitride (i.e. g-C3N4, see Figure 7.2) has been illustrated to be active for various
photocatalytic reactions including water splitting, due to the strong light–matter
interaction, appropriate band structure, high carrier mobility, large specific surface
area, etc. [52–65] In application in photocatalysis, in particular, g-C3N4 has attracted
great attention in the field of energy conversion and storage due to its unique lay-
ered structure, tunable band gap, metal-free characteristic, high physicochemical
stability, and easy accessibility. It has been demonstrated that two-dimensional
g-C3N4 nanosheets have the features of short charge/mass transfer path, abundant
reactive sites, and easy functionalization, which are beneficial to optimizing
their performance in different fields. In recent publications, the diversified
applications of g-C3N4 in energy conversion and storage, including photocatalytic

Figure 7.2 Two-dimensional g-C3N4 monolayer. Source: Wei Wei.
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Figure 7.3 Band energy positions are shown for g-C3N4 and corresponding redox
potentials for reactions.

H2 evolution, CO2 reduction, electrocatalytic H2 evolution, O2 evolution, O2 reduc-
tion, alkali-metal ion batteries, lithium-metal batteries, lithium–sulfur batteries,
metal-air batteries, and supercapacitors, have been discussed [66]. In Figure 7.3,
band energy positions are shown for g-C3N4.

It is a consensus that solar energy bears great potential in the replacement of
conventional fossil fuels to enable a more sustainable world. In order to harness
the solar energy, on the other hand, solar cells made of semiconductor materials
have been developed to convert sunlight into electricity based on the photovoltaic
effects [67–76]. In this field, several new generation thin film solar cells, including
organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum
dot-sensitized solar cells, and perovskite solar cells, have been developed and con-
siderable advances have already been made. In general, an efficient photovoltaic
energy conversion process requires three basic attributes [10]: (i) solar light absorp-
tion with energy exceeding the band gap of semiconductor that results in the gen-
eration of charge carriers (electron–hole pairs or excitons); (ii) the charge carriers
diffuse through the semiconductor and reach an energy barrier that permits one kind
of charge carrier to pass but blocks the opposite charge carrier; and (iii) the separated
charge carriers move through the semiconductor to an external circuit. In particular,
among these the efficient charge separation plays a key role in solar energy capture
and conversion. It is an indication that, therefore, efficient charge carrier separa-
tion requires the development of spatial variations in an electronic environment to
provide the essential driving force. In conventional inorganic photovoltaic cells, the
electric field at the interface plays the role of the driving force. As for the organic
photovoltaic cells (excitonic solar cells) [77–80], sunlight absorption leads to the
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production of strongly bound excitons, and the band offset between donor and accep-
tor materials provides the pathway for dissociation of excitons at the heterostruc-
tures’ interface. In this view, the generation, separation, and transport of charge
carriers in a photovoltaic process give rise to a photocurrent in short-circuit oper-
ation and a photovoltage in open-circuit operation. However, difficult requirements
of the currently employed epitaxial technique and the limitation of abundance of
some elements have impeded the economic viability and the widespread applica-
tion of the photovoltaic technology. In view of designing lightweight, flexible, and
highly efficient photovoltaic devices, van der Waals (vdW) heterostructures of dis-
similar two-dimensional materials arise [81–93]. In the light of strong light–matter
interaction, spatial indirect geometry, and large driving force, vdW heterostructures
based photovoltaic systems with high power conversion efficiency (PCE) have been
attracting extensive attention. It should be emphasized again that understanding the
photoexcitation dynamics of charge carriers is the foundation for designing more
promising photovoltaic devices.

In Figure 7.4, photoelectric events such as photon absorption, electrons and holes
separation and recombination are schematically shown. As a photocatalytic semi-
conductor is excited by photons with energy equal to or larger than the band gap,
electrons in the valence band will be promoted to the conduction band, leaving
holes in the valence band. In the following, photogenerated electrons and holes will
separate and migrate to surface reaction sites, while electron–hole recombination
occurs in the bulk or on the surface during the separation and migration. In particu-
lar, parameters to characterize this type of transport are the charge carrier diffusion
length and the recombination rate. In general, especially for low-dimensional mate-
rials, Coulomb interaction can bind electron and hole together, that is, the formation
of exciton. It can be deduced that, thus, small exciton binding energy is desirable for
photocatalytic materials. In excitonic solar cells, the building block is a heterostruc-
ture formed by two different materials or the same materials but distinct phases, and

Metal NPs

Volume
recombination

Surface
recombination

Oxidation reaction
(H2O → 1/2O2 + 2H+ + 2e–)

Reduction reaction
(2H+ + 2e– → H2)

Electron

Hole

Figure 7.4 Photoelectric events in photocatalysts. Excited electrons and holes can
recombine in bulk and on surface. Under light irradiation, metal nanoparticles, which can
be used to enhance light absorption, show localized surface plasmon resonance. Source:
Wei Wei.
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photogenerated excitons will be dissociated in an ultrafast time scale at the heteroin-
terface due to the discontinuities of the electron affinity and ionization potential
across the interfaces, which generates free charge carriers and results in photoelec-
tric conversion. It appears that the interfacial dissociation of excitons at a heteroin-
terface into free electrons in one material and free hole on the other side of the
interface is also the fundamentally important process in heterogeneous photocat-
alysts. In particular, electrons (holes) generated in donors will transfer to acceptors,
creating a powerful photoinduced interfacial chemical potential energy gradient that
drives the photoelectrochemical effects, even in the absence of a build-in electric
potential. In general, such a charge carrier separation process is generally faster than
the subsequently occurred electron–hole recombination. In practice, the resultant
photocurrent can be collected from electrodes.

In principle, the photoinduced charge carrier behaviors constitute the founda-
tion of photoelectronchemistry in photocatalytic and photovoltaic applications.
It is of paramount importance to clearly understand these behaviors in improv-
ing and designing unprecedented photocatalytic and photovoltaic systems with
commercially high light–energy conversion efficiency.

7.2 Photoresponsivity and Photocurrent from
Simulations

It has been widely recognized that the first-principles calculations based on the den-
sity functional theory is successful in materials science, condensed matter physics,
quantum chemistry, and theoretical biology. In these fields of simulation, the sys-
tem is at equilibrium. It has been known that at nanoscale transport properties are
sensitive to the chemical and atomic details of the materials and also to the exter-
nal fields and quantum effects. In this sense, the electronic device operation is often
under nonlinear and nonequilibrium conditions, and is beyond the scope of density
functional theory from simulation point of view.

In order to include the microscopic physics for making quantitative predictions
for charge/spin quantum transport, some theoretical methods have been developed.
It becomes possible to predict a wide range of quantum transport properties
of nanostructures from atomic first-principles without any phenomenological
parameters. In combination of a real space self-consistent field (SCF) theory with
the Keldysh nonequilibrium Green’s function (NEGF) formalism, the Hamiltonian
and electronic structures of the devices can be self-consistently calculated, and the
nonequilibrium quantum statistical properties and density matrix can be calculated
by NEGF, accounting for the open device transport boundary conditions and
electrostatic boundary conditions by real space numerical techniques.

In practice, NEGF calculations can be performed based on an exact device model,
which has two or more electrodes extending to electron reservoirs at infinity where
bias voltage V b is applied and current collected. In Figure 7.5, device model in NEGF
calculations is schematically shown. It consists of three parts, the central scattering
region and two electrodes. In a model of the two-probe open transport junction, the
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Figure 7.5 Schematic of a two-probe device model, with 𝜇L and 𝜇R being the
electrochemical potentials of the left and right electrodes, respectively; 𝜇L −𝜇R = Vb,
where Vb is the bias voltage and e the electron charge. The dash-lined ellipse indicates
the device scattering region that has some quantum levels, and the tunnel barriers indicate
coupling of the scattering region to the semi-infinitely long electrodes. Source: Wei et al.
[94]/Reproduced with permission of John Wiley and Sons.

scattering region must include several layers of the electrode atoms, while device
electrodes or leads extend to z= ±∞where bias voltages are applied and electric cur-
rent collected. It is obvious that the electrode is half-infinite, providing the transport
boundary conditions. In practice, the electrodes are usually metallic materials and
hence maintain equal potential all the way near to the device scattering region, and
V b is dropped across the scattering region. On account of its own chemical poten-
tial 𝜇 of each electrode, the entire system is at nonequilibrium, and the potential or
Hamiltonian of the scattering region has to be calculated by means of using the SCF
method. Once the Hamiltonian is obtained, in equilibrium, the energy level can be
calculated by Fermi–Dirac distribution function to construct the density matrix. In
nonequilibrium, the density matrix can be constructed through NEGF. In the fol-
lowing, a self-energy term can be added to the Hamiltonian of the scattering region,
and thus contributions from infinitely large number of electrons in electrodes can
be integrated out. It can be known that calculations on infinitely large device model
actually reduce to the one focusing on the scattering region, and inclusion of the
dissipative self-energy terms makes the Hamiltonian to be non-Hermitian.

In combination of the Keldysh NEGF and an SCF theory, quantum transport cal-
culations could be done. It should be kept in mind that NEGF–SCF theory is not a
ground state theory because it is determined by a nonvibrational and nonequilib-
rium density matrix [95–110].

In this section, important equations and the main idea to perform NEGF–SCF cal-
culations are presented. In general, the Green’s function in NEGF–SCF theory takes

GR,A = [ES − H − ΣR,A]−1
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where R and A stand for the retarded and advanced quantities, respectively. In the
consideration of GA = (GR)†, only GR needs to be calculated by inverting the matrix
of the right side of the equation. On top of the obtained GR, A, the Keldysh NEGF
G< can be obtained from the Keldysh equation:

G< = GRΣ<GA

where

Σ< = i
∑
𝛼

f
𝛼
Γ
𝛼

is justified for mean field theory in the central scattering region of the device, and

Γ
𝛼
= i[ΣR − ΣA]

with f
𝛼

being the Fermi function of lead-𝛼, and Γ
𝛼

is the linewidth function of the
same lead.

In the linear combination of atomic orbital (LCAO) space, the nonequilibrium
density matrix 𝜌̂ reads:

𝜌̂ = 1
2𝜋

[
∫

+∞

−∞
dEG<(E)

]
In case of using LCAO basis functions, the real space 𝜌̂ can be expressed as:

𝜌̂(r, r′) =
∑
𝜇𝜈

⟨
𝜁
𝜇
(r) ∣ G<

𝜇𝜈
∣ 𝜁

𝜈
(r′)

⟩
here r is associated with orbital 𝜁

𝜇
and r′ with 𝜁

𝜈
. In the following, the charge density

𝜌(r) is the diagonal elements of the 𝜌̂, i.e.

𝜌(r) = 𝜌̂(r, r)

In practice, 𝜌̂ reduces to

𝜌̂ = 1
𝜋

Im
[
∫

𝜇l

−∞
dEGR(E)

]
+ 1

2𝜋

[
∫

𝜇r

𝜇l

dEG<(E)
]

if the upper limit is truncated to the chemical potential of the right electrode 𝜇r
(assuming that it is larger than the chemical potential of the left electrode 𝜇l) and for
E<𝜇l all the energy levels of the scattering region are occupied at low temperature.
In this context, the integrals can be calculated discretized and numerically.

In an open system with several electrodes, electrons at energy 𝜀 coming from all
channels of an electrode 𝛼 will be scattered into channels of another electrode 𝛽.
In terms of a transmission coefficient T

𝛼𝛽
(𝜀), the total scattering probability can be

calculated through Green’s function:

T
𝛼𝛽
(𝜀) = tr[Gr(𝜀)Γ

𝛼
(𝜀)G𝛼(𝜀)Γ

𝛽
(𝜀)]

where tr[· · ·] stands for the trace of [· · ·], and the linewidth function of the electrode
𝛼 is defined as:

Γ
𝛼
(𝜀) ≡ i

[
Σr
𝛼
(𝜀) − Σa

𝛼
(𝜀)

]
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with Σr
𝛼
(𝜀) and Σa

𝛼
(𝜀) being the retarded and advanced self-energy of electrode 𝛼.

In a common manner, the number of transmission channels is calculated by count-
ing the number of the Bloch waves existing in the system, which propagate along a
given direction.

In consideration of an open system with several electrodes, spin nonpolarized
electric current in electrode 𝛽 can by evaluated by Landauer formula:

I
𝛽
= 2e

h
∑
𝛼

∫ d𝜀[f
𝛼
(𝜀)T

𝛼𝛽
(𝜀) − f

𝛽
(𝜀)T

𝛽𝛼
(𝜀)] = 2e

h
∑
𝛼

∫ d𝜀[f
𝛼
(𝜀) − f

𝛽
(𝜀)]T

𝛼𝛽
(𝜀)

where f
𝛼
(𝜀) is the distribution function of the electrons in electrode 𝛼, and the factor

2 comes from the spin degeneracy. In case of defining the conductance as:

G
𝛼𝛽

= 2e2

h ∫ d𝜀
f
𝛼
(𝜀) − f

𝛽
(𝜀)

eV
𝛽
− eV

𝛼

T
𝛼𝛽
(𝜀)

with V
𝛽

being the bias voltage applied on electrode 𝛽, the electric current in electrode
𝛽 can be rewritten as:

I
𝛽
=
∑
𝛼

G
𝛼𝛽
(V

𝛽
− V

𝛼
)

In the case of spin-polarized transport, the spin current (spin-polarized charge cur-
rent) for a two-probe system can be obtained as follows:

I
𝜎
= e

h ∫ d𝜀T
𝜎
(𝜀,Vb)[fL(𝜀) − fR(𝜀)]

In this equation, T
𝜎

represents the spin resolved transmission coefficient, where
𝜎 ≡ ↑ , ↓ is the spin index. It then gives the total charge current:

I = I↑ + I↓

and the total spin current reads:

IS = I↑ − I↓

In the case for the device being under irradiation of a beam of light, interactions
between the electric field of the light and the electrons in the device can be treated
as a small perturbation to the original Hamiltonian of the device without light. The
whole Hamiltonian can therefore be expressed as:

H = H0 + H1 = H0 +
e

m0
A ⋅ p̂

here, H0 is the unperturbed Hamiltonian, H1 is the perturbation from the light, A is
the electromagnetic vector potential of the light, and p̂ is the electronic momentum
operator. In consideration of a single-mode monochromatic light, vector potential
A, which is second quantized in a volume V , can be written as:

A = C0

(
be−i𝜔tep + b†ei𝜔te†

p

)
where ep is a complex unit vector characterizing the light polarization, b and b† are
the bosonic annihilation and creation operators acting on photons, respectively, and
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C0 =
√
ℏ∕2𝜔𝜀̃V with 𝜀̃ the dielectric constant of the device material. In terms of

atomic orbital basis 𝜁
𝜈
(r), electronic momentum operator p̂ is expressed as:

p
𝜇𝜈

= ∫ dr𝜁∗
𝜇
(r)p̂𝜁

𝜈
(r)

As a consequence, Hamiltonian of the electron–photon interaction H1 can be
obtained:

(H1)𝜇𝜈 = be−i𝜔tM
𝜇𝜈

+ b†ei𝜔tM†
𝜇𝜈

where

M
𝜇𝜈

= (e∕m0)C0ep ⋅ p
𝜇𝜈

As the (H1)
𝜇𝜈

is defined, self-energies due to the interactions with photon can be
written within Born approximation as:

Σ<(ph)(E) = MNG<

0 (E − ℏ𝜔)M† + M†(N + 1)G<

0 (E + ℏ𝜔)M

Σ>(ph)(E) = M†NG>

0 (E + ℏ𝜔)M + M(N + 1)G>

0 (E − ℏ𝜔)M†

with N being the total number of photons within the volume V , and G<,>,r,a
0 is the

unperturbed Green’s function. In this situation, the linear component of Green’s
function due to the electron–photon interactions can be calculated as:

G<(ph)(E) = Gr
0(E)Σ

<(ph)(E)Ga
0(E)

G>(ph)(E) = Gr
0(E)Σ

>(ph)(E)Ga
0(E)

then the photocurrent moving into electrode L then can be obtained:

J(ph)
L = ie

h
Tr∫ ΓL

[
G<(ph)(E) + fL(E)

(
G>(ph) − G<(ph))] dE

which is the linear part of the response to light, namely, it is proportional to number
of photon or the flux of the photon. In closing, the photocurrent response function
thus can be defined as:

R(ph)
L =

J(ph)
L

eI
𝜔

and its decomposed form takes

R(ph)
L = R(ph.ex.elec)

L + R(ph.de.elec)
L + R(ph.ex.hole)

L + R(ph.de.hole)
L

In general, only the photoexcited current is of interest and, therefore, only the
first terms in the expression of self-energies are taken into account in the practical
calculations.

It is a consensus that solar energy is the most abundant and cleanest renewable
energy source. In recent few years, vdW heterostructures composed of distinct
two-dimensional materials are usually constructed to harness the solar energy,
suggesting a new class of photocatalytic and photovoltaic devices. It should be
pointed out here that charge transfer is the fundamental process that determines the
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Figure 7.6 Schematics of the device structure for intuitive. Source: Deng et al. [111]/with
permission of American Chemical Society.

performance of solar cells and photocatalytic devices. In Figure 7.6, experimentally
constructed device is shown.

In recent publications, the NEGF–SCF method has been demonstrated to be suc-
cessful in simulating the transport properties of two-dimensional materials-based
devices. In particular, for InSe/InTe vdW heterostructures charge carrier can follow
either the regular scheme (R-scheme) or the Z-scheme transfer path, depending on
the coupling between the interlayer states at the band-edge positions [112]. It is of
interest that the proposed R-scheme and Z-scheme transfer mechanism can be ver-
ified by quantum transport calculations based on the NEGF–SCF method, solidly
evidencing the charge transfer mechanism.

In case of applying a tensile strain of 3%, coupling states appear within the
InSe/InTe vdW heterostructures, providing an additional electron–hole recom-
bination channel. In this case, the electron–hole recombination time is 1.2 ps,
which is 3 orders of magnitude faster than the case of under a compressive strain
of −3% (1.4 ns) and comparable to the case of strain free (5.8 ps). After generating
electron–hole pairs by photoexcitation, charge carrier transfer can follow either the
R-scheme or the Z-scheme. In the case of the former one, the work done by the
build-in electric field force has to be overcome. In contrast, for the latter situation,
charge carrier transfer is much easier since it is along the direction of electric field.
In the presence of interlayer coupling states, band offsets between band edges are
vanishing. As a result, photogenerated electrons from InSe recombine with holes
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Figure 7.7 Photocurrent maps (Iph), and output power density (Pout) with various bias
voltages (Vds) and incident light power densities (Pin) under different strains. Source: Jin
et al. [112]/Reproduced with permission of American Chemical Society.

from InTe following the Z-scheme, whereas electrons (holes) from InTe (InSe)
are swept to the right (left) electrodes guided by the build-in electric field. Thus,
photocurrent from InTe to InSe could be collected. On the basis of NEGF–SCF
simulations, the quantum transport process can be confirmed.

As shown in Figure 7.7, with linearly polarized light irradiating the scattering
region, photocurrent (Iph) direction for −3% compressively strained InSe/InTe vdW
heterostructures is opposite to those of 3% tensely strained and strain-free structures.
It therefore concludes that the R-scheme dominates the charge carrier transfer pro-
cess for the model with −3% compressive strain, while Z-scheme plays a leading role
for the models of strain free and 3% tensile strain.

In Figure 7.7, the photocurrent contour map for InSe/InTe vdW heterostructures
with the incident light power density (Pin) varying from 0 to 1 mW mm−2 (i.e. AM1.5
illumination) is also shown. In accordance to

Pout = IphVds

the output power density Pout can be calculated, with V ds being the bias voltage. It
can be found that system of 3% tensile strain outputs higher power density, peaking
at a maximum value Pmax

out = 21 μW mm−2 when Pin = 1 mW mm−2, which is approx-
imate 1 order of magnitude larger than the compressive system. In the mass, the
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photovoltaic performance can be evaluated by the photoresponse Rph, the external
quantum efficiency (EQE) and the energy conversion efficiency 𝜂

Rph =
Iph

eFph

EQE =
Isc

Pin

hc
𝜆

𝜂 = Pout∕Pin

In these equations, e is the electron charge, Fph is the photon flux defined as the
number of photon per unit time per unit area, and h, c, 𝜆 are the Planck’s constant,
the speed of light, and the wavelength of light, respectively. In conclusion, results
reveal that Z-scheme shows much better performance than R-scheme. In particular,
InSe/InTe vdW heterostructures of 3% tensile strain exhibit 𝜂= 2.08%, which is about
1 order of magnitude larger than MoS2/WSe2 vdW heterostructures (𝜂 = 0.2%).

In vdW heterostructures of two-dimensional materials, build-in electric field will
be established once the charge redistribution reaches equilibrium, causing band
bending depending on the electron and hole transfer direction and affecting the
photoexcited charge carrier separation. In case of R-scheme, a tunneling barrier is
present at the interface and, thus, barrier height and tunneling probability come to
play. It is an indication that if the photoinduced charge carrier transfer is impeded
by the build-in electric field, the device performance will be poor.

In respect to photocatalytic water splitting into H2 and O2, metal-free graphitic
carbon nitride (g-C3N4) has triggered intensive scientific interest because of its suit-
able band gap (2.7 eV), nontoxicity, high stability, and easy preparation [113–128].
It is proven however to suffer from fast electron–hole recombination, showing
undesirable photocatalytic efficiency. In order to achieve high light-harvesting and
light–energy conversion efficiency, g-C3N4 is usually combined with other materials
to inhibit the recombination of photogenerated electron–hole pairs, such as CdS,
BiVO4, SnS2, C60, MoS2, and InSe. In these heterostructures, build-in electric field
due to charge redistribution and/or potential drop in the direction perpendicular
to the interface shows influence on the photoexcited charge carrier separation.
In the case of g-C3N4/InSe vdW heterobilayers, generated build-in electric field
points from g-C3N4 to InSe. In contrast to the weak photocurrent Iph in isolated
g-C3N4, remarkable Iph can be detected in g-C3N4/InSe vdW heterobilayers under
visible light, maximizing 2.9 μA mm−2, which is 2 orders of magnitude higher than
g-C3N4/TiO2 nanocomposites (3.42× 10−2 μA mm−2) and 3 orders of magnitude
higher than g-C3N4/carbon systems (1.7× 10−3 μA mm−2) [129].

It is indicative that heterostructures with type-II band alignment and build-in elec-
tric field enhance the light–electricity conversion efficiency. In this view, thus, by
selecting appropriate cocatalysts to improve the quantum yield is an appealing strat-
egy for design light–energy devices. In general, the generated photocurrent can be a
reference for target cocatalysts.

In addition, rectangular TiN monolayers are theoretically predicted to show
enhanced auxeticity and ferroelasticity, and their metallic features can be modulated
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to semi-conductive via halogenation. In particular, halogenated TiNX (X = F, Cl,
Br, I) monolayers present moderate direct band gap (1.2–1.6 eV), strong light absorp-
tion, small effective mass, and small exciton binding energy, hiding the potential
in photovoltaic applications. In a recent publication, the photoresponsivities for
TiNF, TiNCl, and TiNBr are calculated to be 0.31, 0.12, and 0.22 AW−1, respectively
[130], about 1 order of magnitude larger than phosphorene (0.068 AW−1) and
MoS2 (0.016 AW−1), manifesting themselves advanced in solar cells applications.
In aspects of photocatalytic and photovoltaic applications, fast charge carrier
separation plays a central role in the device performance. As a result, charge carrier
mobility m* and exciton binding energy Eb are usually calculated to evaluate
the application potential of materials. In accordance to the following equation,
the effective masses of electrons at CBM (me*) and holes at VBM (mh*) can be
calculated:

m∗ = ℏ
2∕(𝜕2Ek∕𝜕k2)

with k and Ek being the wave vector and the energy corresponding to the wave vector
k, respectively. Then, the charge carrier mobility for two-dimensional materials 𝜇2D
could be evaluated by [131–133]:

𝜇2D = 2eℏ3C
3kBT|m∗|2E2

d

where e is the electron charge, and kB, T, and m* are the Boltzmann constant, tem-
perature, and carrier effective mass, respectively. In this equation,

C = [𝜕2E∕𝜕𝜀2]∕S0

is the elastic constant of the two-dimensional systems with E and S0 representing
the total energy and surface area of the equilibrium system, respectively, and Ed is
the deformation potential constant describing the strain-induced band edge shift. In
line with the hydrogenic model, exciton binding energy can be estimated:

Eb = 𝜇

m0𝜀
2
r

RH

here 𝜇, m0, and RH are the exciton effective reduced mass, free electron mass, and
Rydberg constant of a hydrogen atom (13.6 eV), respectively. In particular, the
macroscopic static dielectric tensor 𝜀r equals the sum of electron contribution 𝜀∞
and ionic contribution 𝜀vib. It should be kept in mind that the hydrogenic model is
a convenient approximation, and exact exciton binding energy in low-dimensional
materials can be quantitatively obtained from GW+BSE approach. In regard
to TiNX monolayers, charge carrier mobility is relatively high. In addition, the
exciton binding energies for TiNF, TiNCl, and TiNBr are as small as 42, 19, and
17 meV, respectively, which are significantly smaller than MoS2 (280 meV), g-C3N4
(728 meV), and phosphorene (78 meV) obtained at the same level of theory [130]. It
is thus an indication that photogenerated excitons in TiNX monolayers are easy to
dissociate into free charge carriers.

On the basis of quantum transport simulations, photocatalytic and photovoltaic
device performance can be evaluated, providing insights into the design principle
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for light–energy and light–electricity conversion systems. As for excitonic solar cells,
light absorption and charge carrier transfer being the main physical processes are
dominated by the donor materials [134, 135]. It concludes that the promising donor
should have suitable band gap (1.2–1.6 eV) and small exciton binding energy, or, in
other words, strong light absorption and reduced charge carrier recombination. In
this regard, group-IV monochalcogenides MX (M=Ge, Sn; X= S, Se) show potential
as photovoltaic donor materials. It is similar to phosphorene; MX monolayers belong
to Pnma space group, with each X (M) atom connecting to two M (X) atoms. Under
0.1 W cm−2 power density illumination, MX monolayers show large photocurrent.
As for GeS and SnS, the photocurrent along armchair direction maximizes 3.0 and
7.0 mA mm−2, respectively. In cases of GeSe and SnSe, the induced photocurrent can
be 12.0 and 14.0 mA mm−2, respectively [131]. In respect to the photoresponsivities,
0.035, 0.075, 0.13, and 0.16 A W−1 are obtained for GeS, SnS, GeSe, and SnSe at the
wavelength of 400–500 nm, respectively. In comparison to MoS2 (1.6× 10−2 A W−1)
and graphene (5× 10−2 A W−1), photoresponsivities in MX are strikingly large, and
the EQE for MX correspondingly ranges from 10.27 to 30.32%.

In current stage, silicon-based solar cells show weak light absorption in the solar
spectrum due to the indirect band gap of silicon (1.1 eV), and relatively low carrier
mobility (1400 cm2 V−1 s−1) also limits the efficient charge extraction. Thus, one of
the most urgent tasks in photovoltaic market is searching for new materials to realize
high photocurrent and PCE. In general, the quality of photovoltaic devices can be
estimated by the maximum PCE [130, 136, 137]:

𝜂 =
𝛽FFVocJsc

Psolar
=
𝛽FF(Eg − ΔEc − 0.3) ∫ ∞

Eg

P(ℏ𝜔)
ℏ𝜔

d(ℏ𝜔)

∫ ∞
0 P(ℏ𝜔)d(ℏ𝜔)

here 𝛽FF = 0.65 is the band-fill factor, Eg is the donor band gap,ΔEc is the conduction
band offset between donor and acceptor, and (Eg −ΔEc − 0.3) is an estimation of the
maximum open circuit voltage V oc in eV. In addition, P(ℏ𝜔) stands for the AM1.5
solar energy flux (in W m−2 eV−1) at the photon energy ℏ𝜔. In the dominator, the
integral in numerator represents the short circuit current Jsc performed applying
the limit EQE of 100%, and the integral in denominator denotes the incident solar
irradiation Psolar (103 W m−2).

In case of combining different TiNX monolayers, type-II donor–acceptor inter-
faces for excitonic solar cells with ultrahigh photovoltaic power energy conversion
(PEC) form. In particular, the PEC is 18% for TiNF/TiNBr, 19% for TiNCl/TiNBr,
and 22% for TiNF/TiNCl, which are far superior to the conventional polymer
and fabricated two-dimensional solar cells. In fact, excitonic solar cells based
on two-dimensional materials such as MoS2, WS2, graphene, h-BN, SiC2, bilayer
phosphorene, and organic–inorganic hybrid perovskites are potentially seen as the
next generation of thin film solar cells. In respect to phosphorene that possesses
a band gap in the visible region, potential application in the thin film excitonic
solar cells can be expected. In a recent work, vdW heterostructures composed of
phosphorene and several TMDCs were modeled and the viability as excitonic solar
cells was evaluated. In particular, phosphorene could be the donor when paired
with octahedral TMDCs (TiS2 and ZrS2) and the acceptor when paired with trigonal
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prismatic TMDCs (MX2, where M = Mo, W; X = S, Se, Te). In these vdW het-
erostructures, ZrS2/phosphorene and MoTe2/phosphorene have the highest PCE of
12%, which is comparable to the theoretically proposed bilayer-phosphorene/MoS2,
PCBM/CBN, and g-SiC2/GaN and higher than that achieved by existing excitonic
solar cells (less than 9%) [137]. In addition, the PEC can be improved to 20% by 2%
compressive strain applied on phosphorene, because strain tunes the CBM position
of phosphorene.

In principle, efficient donor material for excitonic solar cells of high PEC should
have both suitable direct band gap and high carrier mobility. In comparison to
experiments, theoretical simulations can predict promising candidates with higher
efficiency. As an example, among the five phases of arsenic–phosphorous (𝛼, 𝛽,
𝛾 , 𝛿, 𝜀), 𝛼-AsP shows a direct band gap of 1.54 eV and high carrier mobility of
14380 cm2 V−1 s−1, making itself a promising choice as a donor for excitonic solar
cells. In case of employing GaN monolayer as the electron acceptor, PCE of the
designed 𝛼-AsP/GaN type-II heterobilayer excitonic solar cells can be as high as
22.1%, which is competitive with the reported PCE to data for two-dimensional thin
film solar cells [136].

In other fields, simulations based on NEGF–SCF theory make successes, proving
itself a powerful tool in studies of electronics, spintronics, and optoelectronics. In
triangulene-based spin-photovoltaic devices, for example, quantum transport calcu-
lations reveal that pure spin current can be generated without charge current. It is
similar to a fragment of graphene; triangulene is made up of six hexagons of carbon
jointed along their edges to form a triangle. As the triangulene molecule is irradiated
with photon energy ranging from 1.8 to 2.5 eV, pure spin current can be observed.
In case of applying a gate voltage of −1 V, the spin current can up to 59.3 nA mm−2

[138]. In addition, the vanishing charge current suggests Joule heat free and low
energy consuming for optoelectronic devices. In application of field effect transis-
tors (FETs), NEGF–SCF method also succeeds [139, 140]. In particular, MoS2 has
been widely investigated as a channel material in FETs, and, however, high Schot-
tky barrier and Fermi level pinning effects hamper the performance of MoS2-based
FETs. It is of interest that MXenes and their modified derivatives, Ta2C, Ta2CF2, and
Ta2C(OH)2, are found to be suitable electrodes for the MoS2 channel with F and OH
atomic layers playing a role as buffer layer to tune the interlayer coupling. In respect
to the heterostructures composed of MoS2 and these MXenes, Ohmic contacts form
with vanishing Schottky barrier height. In a modeled FET device, however, Schot-
tky barrier of 0.2 eV appears exclusively due to the lateral interface effects [133]. It
thus sheds some light into the development of appropriate electrode materials and
correct evaluation of the performance of FET devices.

7.3 Simulation for Localized Surface Plasmon Resonance

In recent years, people have seen the great progress in direct conversion of solar
light to chemical energy using photocatalysts. It is an important approach using
the light-trapping properties of plasmonic metal nanoparticles (NPs) (e.g. Ag and
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Au) to improve the light–energy conversion efficiency in optoelectronics, photo-
voltaics, and photocatalyst. In the light of the coupling with the incident light at the
frequency of local surface plasmon resonance (LSPR), metal NPs trigger the redis-
tribution, localization, and enhancement of the electromagnetic field, thus the light
absorption of semiconductor can be improved via both near-field electromagnetic
field enhancement and the increase of optical path length by light scattering of the
metal NPs. In regard to the plasmonic photocatalysts, both experiment and theoret-
ical works are available, from where one can find more details [141–160].

In Figure 7.8, plasmon resonance absorption of metal NPs loaded on photocatalyst
surface is simply shown. In case of light radiation, the electric field will displace
the conduction electrons relative to the nuclei, inducing a large electric dipole; at
the same time, a restoring force arises because of the Coulomb attraction between
electrons and nuclei, which leads to a resonant oscillation of the conduction
electrons at a certain frequency. In general, LSPR occurs when the plasmonic
NPs are considerably smaller than the wavelength of the incident light, and the
resultant electric dipole can create an intense electric field near the plasmonic
NPs, with the magnitude ten to thousand times greater than that of incident light.
It has been widely demonstrated that both the LSPR wavelength and absorption
efficiency can be tuned by adjusting the sizes, shapes, compositions, and dielectric
environments of plasmonic NPs and the corresponding intensity and distribu-
tion range of the near-field change. It should be pointed out that LSPR leads to
energy transfer from NPs to semiconductors, providing versatile means for tuning
the light–energy conversion efficiency. In principle, two competitive ways are
responsible for the dephasing of the resonant oscillation, i.e. radiative emission of
photons and nonradiative relaxation through electron–electron, electron–phonon,

Figure 7.8 Schematic of plasmon resonance absorption of metal nanoparticles. Source:
Wei Wei.
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electron–surface, and electron–adsorbate scattering. In case of having larger energy
than the Schottky barrier at the interface between the metal and semiconductor,
energetic hot electrons migrate to the adjacent semiconductor, and hot electron
injection mechanism is very similar to that of dye-sensitized solar cells [161–163].

In order to model the absorption and scattering, solving the Maxwell’s equations
for the target system is an effective method. It has already been known that, never-
theless, exact solutions to Maxwell’s equations are only for special geometries such
as spheres, spheroids, or infinite cylinder, so approximation methods are in general
needed. In recent publications, the discrete dipole approximation (DDA) has been
illustrated to be one of the powerful methods developed for calculating the absorp-
tion and electromagnetic scattering of isolated particles with complex geometry
[164–170]. In particular, the DDA can treat inhomogeneous targets and anisotropic
materials and has been extended to treat targets near substrates. On the basis of
DDA, then, near-field calculations of light field intensity inside and in the vicinity of
a scattering particle can be performed. In DDA, conceptually, the target of interest
is approximated by an array of polarizable points. Once the polarizability tensors 𝛼j
are specified, Maxwell’s equations can be solved accurately for the dipole array.

In case of illumination by monochromatic incident plane wave,

Einc(r, t) = E0 exp(ik0 ⋅ r − i𝜔t)

the polarization Pj of the dipoles in the target will oscillate coherently. In this situ-
ation, each dipole i will be affected by the incident wave together with the electric
field at location i generated by all of the other point dipoles:

Ei = Einc,i −
∑
j≠i

ÃijPj

here, the vector of polarizations Pj must satisfy the system of equations:

Pi = 𝛼i

[
Einc(ri) −

∑
j≠i

ÃijPj

]

In case of N dipoles, this equation corresponds to a system of 3N linear equations.
In consideration of Aij ≡ Ãij + 𝛼i

−1
𝛿ij, the incident plane wave induced electric field

can be rewritten as:

Einc,i =
∑

j∈target
AijPj

As Pj are obtained, the electric field located at i can be calculated as follows:

Ei = Einc,i −
∑

j∈target
ÃijPj

In this equation, the interaction matrix Ãij is spatially invariant and depends only
on the displacement between i and j. In many applications, one is often interested
in the near field outside the target, which can be directly evaluated from the last
equation [165–170].

In practice, the LSPR of noble metal NPs has long been the subject of importance
in surface-enhanced Raman spectroscopy, photovoltaics, and biosensing [171–174].
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In particular, the incident light induced collective oscillation of conduction electrons
in metal NPs arises largely from the dipole plasmon resonance (DPR) and a small
contribution is from a higher-energy mode such as the quadrupole plasmon reso-
nance (QDR). It has been demonstrated that the metal NPs LSPR frequencies can
be easily tuned to cover the whole range of the visible light spectrum by controlling
the size/shape and local dielectric environment [175–180], and the LSPR is char-
acterized in high light absorption and strong electric field enhancement [181–189].
In general, energy transfer from metal NPs to semiconductors generating electrons
and holes takes place in two possible ways: (i) direct electron transfer and (ii) via the
electric field enhancement near the semiconductor surface.

In this section, Ag/AgCl system should be highlighted, which is the mostly stud-
ied system of the plasmonic metal/semiconductor photocatalysts from both experi-
ments and simulations. In this system, the wide range of visible light absorption is
ascribed to the plasmon absorption of Ag NPs, while the energy transfer is medi-
ated by the mid-gap defect states in AgCl. It has been revealed that for spherical
Ag NPs the LSPR wavelength (between 350 and 450 nm) is nearly independent of
the sphere radius [152]. In another case, embedding of Ag NPs into AgCl lattice
can however extend the visible light adsorption range. In case of Ag nanocubes of
different sizes, high LSPR modes, i.e. QDR, are excited. In essence, LSPR absorp-
tion covers the range between 400 and 650 nm, and, notably, a several of absorption
peaks of low wavelength appear. As the size of the nanocubes increases (up to such
as 60 nm), absorption efficiency drops dramatically due to the resonant scattering.
It therefore concludes from simulation results that Ag nanocubes of large size are
not in favor of intense LSPR absorption. It has been argued that the LSPR absorp-
tion of Ag and Au nanorods can extend to visible (longer than 650 nm) and even
infrared region by tuning the aspect ratio. As the aspect ratio increases from 1.5 to
4 for Ag nanorods on AgCl, the magnitude of absorption peak decreases gradually
and the LSPR wavelength red shifts slightly for transversal LSPR mode. In general,
the transversal LSPR is not very sensitive to the aspect ratio and the wavelength
is nearly independent of the width of the nanorods. In respect to Au nanorods on
TiO2, simulation results are in agreement with experimental observations. In con-
trast, the longitudinal LSPR absorption depends strongly on the aspect ratio. As the
aspect ratio increases, the LSPR wavelength of Ag nanorods substantially red shifts,
ranging from 450 to 900 nm, and the peak magnitude increases nearly exponentially
until the aspect ratio reaches 3.5, keeping constant when the aspect ratio increases
further. It is of importance that the LSPR absorption efficiency for Ag nanorods is
almost an order of magnitude greater than those of Ag nanospheres and nanocubes.
It means that the dominating Ag NPs in experiments should be nanorods.

In the absence of LSPR, electric field effect on a semiconductor can be approxi-
mated by a periodic perturbation with the frequency as that of the incident electro-
magnetic wave. As the simplest example of the incident electromagnetic wave (with
magnetic field neglected), the plane wave propagates in the z direction, the electric
field (polarized in x direction) can be described as [153]:

E(z, t) = E0x̂ cos(𝜔z∕c − 𝜔t)
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where x̂ is the unit vector along x direction, and E0 and 𝜔 are the amplitude and
angular frequency of the incident light electric field, respectively. In this case, an
electron is perturbed by:

H′ = er ⋅ E(z, t)

with r(x, y, z) being the coordinate of the electron, and the center of the atom
bounding the electron is regarded as the origin of the coordinate system. As the
atomic radius (10−10 m) is far smaller than the wavelength of the incident visible
light (10−7 m), H′ can be approximated as:

H′ = eE0x cos𝜔t

that is, the well-known electric dipole approximation. In consequence, the transition
probability per second from the occupied state to the empty state is given by:

w0
k→m = (2𝜋e2∕ℏ)E0

2|xmk|2𝛿(Em − Ek − ℏ𝜔)

where

xmk = ∫ 𝜑
∗
m(r)x𝜑k(r)d𝜏

and Ek and Em are the eigenenergies of 𝜑k and 𝜑m states, respectively. In a same
way, the effect of an LSPR induced electric field ELSPR

0 can also be described by using
the electric dipole approximation. In regard to electrons of the semiconductor in the
regions covered by the ELSPR

0 , the transition probability can be expressed as:

wLSPR
k→m = (2𝜋e2∕ℏ)

(
ELSPR

0 (x, y, z)
)2|xmk|2𝛿(Em − Ek − ℏ𝜔)

In general,(
ELSPR

0 (x, y, z)
)2∕E0

2 = 10 − 1000

leading to wLSPR
k→m greater than w0

k→m by the same factor. It also operates for the non-
polarized natural visible light, just by replacing |xmk|2 with(|xmk|2 + |ymk|2 + |zmk|2) ∕3

where

ymk = ∫ 𝜑
∗
m(r)y𝜑k(r)d𝜏

and

zmk = ∫ 𝜑
∗
m(r)z𝜑k(r)d𝜏

In the case of Ag/AgCl plasmonic photocatalytic models, simulation results con-
firm the significant LSPR induced electric field enhancement. In addition, the obvi-
ous dependence of the electric field enhancement on the size/shape of metal NPs
can be expected. In particular, when increasing the size of Ag nanocubes, the elec-
tric field enhancement in AgCl increases in range and intensity by hundreds or even
thousands of times.
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In metal/semiconductor plasmonic photocatalysts, light absorption efficiency
of the semiconductor can be strongly enhanced due to the LSPR of metal NPs. In
addition, a new paradigm in light harvesting can be established, because the LSPR
absorption of metal NPs can be manipulated. It has been widely accepted that hot
electrons generated by the decay of the LSPR of metal NPs could be injected into the
conduction band of the semiconductor, leaving holes in metal NPs. In general, the
hot electron injection efficiency (HEIE) is low due to the charge transfer induced
Schottky barrier, to large extent impairing the overall photocatalytic performance. It
should be pointed out that conflict exists, for instance, in Au/TiO2 composites [153].
In accordance to the Schottky model, the Schottky barrier between n-type TiO2 and
Au NPs is estimated to be 0.6 eV, significantly lower than the energy of hot electrons
of 2 eV above the Fermi level. It is therefore reasonable that the relatively small
Schottky barrier cannot account for the low HEIE. In a recent article, new insights
were proposed to explain the low HEIE in Au/TiO2 model plasmonic photocatalytic
system. In such a model, Au atoms are assumed to occupy the surface oxygen
vacancies. On one hand, electrons donated by bulk oxygen vacancies will populate
TiO2 surface to keep the Fermi level uniform, creating negatively charged surface
layer. On the other hand, electrons from host conduction band will be trapped in
unoccupied Au–Ti antibonding states, further increasing the negatively charged
surface layer. In turn, the negatively charged surface layer can decrease HEIE
because of the increased hot electron transfer barrier and extended space charge
region. In combination with the upward band bending, large transfer barrier for
hot electron and large space charge region appear, which can be used to explain
the low HEIE. As a result, experimentally the surface oxygen vacancies should be
strongly avoided.

In the determination of HEIE, the hot electron generation efficiency (HEGE),
which is associated with the LSPR absorption efficiency and near-field enhance-
ment, also plays an important role. It should be kept in mind that the LSPR
absorption efficiency and near-field enhancement show dependence on the shape
and size of metal NPs. In line with this, adjusting the morphology of metal NPs
can improve the photocatalytic performance. In this view, simulations by solving
the Maxwell’s electrodynamics equations based on the DDA can provide guidelines
for experiments. In respect to Au/TiO2 system, incident light perpendicular to the
metal/semiconductor interface cannot move the generated hot electrons toward
the semiconductor due to the momentum conservation. If the size of metal NPs is
considerably smaller than that of the semiconductor, the light absorption efficiency
and near-field enhancement will be weak, not beneficial to the generation of a
large number of hot electrons. It is therefore an indication that the sizes of metal
NPs and semiconductor should be comparable, then more hot electrons can be
generated. In addition, the intensity and distribution region of near field increase as
the incident light varies from z to x direction, thus the near field enhanced energy
transfer is increased. In Figure 7.9, Au/TiO2 model and the near-field enhancement
effect are shown.

In optoelectronics and photonics applications, the inherent monolayer thickness
of two-dimensional materials poses a significant challenge for the interaction of
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Figure 7.9 Near-field enhancement of Au@TiO2 for
incident light with the intersection angle of 0∘. Source:
Ma et al. [153]/Reproduced with permission of
American Chemical Society.

light with the material, which therefore leads to poor light emission and absorption
behavior, which is also applicable for two-dimensional TMDCs. It is fortunate
to see that the light absorption can greatly benefit from the resonant electric
field enhancement. In particular, plasmonic nanostructures are quite promising
for boosting light absorption/emission as they enable very high electric field
confinement and are easy to integrate with the merging two-dimensional TDMCs.
In previous works, facilitated strong light–matter interactions by using plasmonic
materials were confirmed in MoS2. It has been illustrated that, for example, the
surface plasmon enhanced photocurrent and photoluminescence can be realized
in Au and core–shell NPs. In a recent work, the enhanced photoluminescence in
large area (cm-sized) as-grown MoS2 by chemical vapor deposition with designed
plasmonic Ag NPs arrays was observed. In particular, as Ag nanodisc arrays
with varying diameter sizes are fabricated onto monolayer MoS2 film, spectral
photoluminescence of plasmonic array/MoS2 region is acquired. It shows a 12
times enhanced photoluminescence emission, which can be ascribed to both the
excitation field enhancement at the pump wavelength and the efficient scattering
at photoluminescence emission wavelengths [190]. It is therefore an indication that
efficient light coupling to low-dimensional materials at nanoscale can break new
ground in highly efficient optoelectronic devices.

It is confirmative that plasmonic materials provide a promising approach for
light–energy conversion applications, due to the enhanced light–matter interac-
tions, additional charge traps, and efficient charge transfer pathways. In a recent
work, the importance of the intimate interface between plasmonic nanostructure
semiconductor was demonstrated and emphasized based on the Au/MoS2 model
system [191]. As a prototype of photo-sensing devices, the Au/MoS2 heterostructure
constitutes Au NPs core that is encapsulated by a chemical vapor deposition-grown
multilayer MoS2 shell (Figure 7.10). In particular, the intimate and direct interfacing
of Au and MoS2 can be perfectly realized, which is important to the concept of
plasmon-induced interfacial charge transfer transition, i.e. enabling the plasmon
decay by directly exciting an electron into a strongly coupled semiconductor
acceptor. It can be expected that such as Au/MoS2 plasmonic system will show
significantly enhanced visible light absorption due to the presence of LSPR, due
to the enhanced local electric field induced by the LSPR of Au NPs. It can be
found that the normalized electric field is mainly dispersed within the MoS2 shell,
with the field strength significantly enhanced compared to the bare shell. It is of
paramount importance that the Au/MoS2 model involves two types of plasmonic
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Figure 7.10 Schematic showing the Au core–multilayer MoS2 shell structure, and atomic
connection of the core–shell as highlighted. DDA-simulated electric field distribution on an
individual Au@MoS2 core–shell (as shown in the inset), and schematic demonstrating the
possible photocarrier generation pathways in the Au@MoS2 heterostructures. Source: Li
et al. [191]/with permission of American Chemical Society.

photodetectors, i.e. an Au/MoS2 field effect phototransistor and a Si-supported
Au/MoS2 p–n junction photodiode. As a phototransistor, Au/MoS2 shows a pho-
toresponsivity of 10 times higher than that of planar MoS2 transistors. As a
photodiode, Au/MoS2 shows superior photoresponse and recovery ability with the
photoresponsivity as high as 22.3 A W−1, which is beyond the most distinguished
values of previously reported similar gateless photodetectors.

It is known that excitons in two-dimensional TMDCs are highly confined in
the in-plane direction, thus it is convenient to make the orientation of excitons
align with the one of surface plasmons for effective dipole–dipole interactions. As
a consequence, hybrid systems of two-dimensional TMDCs and plasmonic NPs
could be ideal platforms for Fano resonances and plasmon–exciton coupling. In
plasmonic systems incorporating dye molecules and quantum dots, both Fano
resonances and Rabi splitting have been observed. As a result of the lack of
efficient ways to tune the excitonic properties of dye molecules and quantum dots,
two-dimensional TMDCs provide new choices and present superiorities. On the
basis of the model system composing of single Au nanotriangles and monolayer
WS2, tunable Fano resonances and plasmon–exciton coupling in the monolayer was
previously demonstrated [192]. In the light of tuning the exciton binding energy or
the LSPR strength through the dielectric constant of surrounding solvents or the
dimension of Au NPs, Fano resonances can be controlled. In addition, a transition
from weak to strong plasmon–exciton coupling has been achieved. It appears that
the strong field localization of the Au NPs and large transition dipole moment of
the WS2 exciton account for the large coupling strength of 50–170 meV occurring at
room temperature.

It should be pointed out that open questions are still there, fundamental mecha-
nism studies are required, and the effects of shape/size of these metal NPs on the
LSPR absorption and the energy transfer process are still missing. It will provide
insights into how to improve the device performance by unraveling these issues. In
addition, photocarrier generation mechanisms could also be estimated.
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8

Simulations for Electrochemical Reactions

8.1 Single-atom Catalysts

In the field of electrochemical catalysis, single-atom catalysts (SACs) can be regarded
a crucial concept for current catalyst study [1, 2], emerging as a new frontier of
catalysis science. As for SACs, distributed metal atoms are anchored on support
materials, indicative of ultrahigh atomic utilization ratio and high catalytic activ-
ity [3–18]. In applications of energy conversion and energy storage, developing effi-
cient catalysts therefore becomes the key factor; the performance and the cost should
be primarily considered. In spite of the experimental challenge in how to achieve
the stabilization of single-metal atoms against migration and agglomeration, SACs
receive great attention from the perspective of theoretical simulations, manifesting
promising application potential in clean energy conversion reactions such as oxygen
reduction reaction (ORR), hydrogen evolution reaction (HER), N2 reduction reac-
tion (NRR), and CO2 reduction reaction (CO2RR). It is beneficial for the decrease of
catalyst cost due to the maximum atom utilization efficiency of SACs, which, at the
same time, exhibits excellent performance.

In traditional heterogeneous catalysts that contain a mixture of metal particles of
broad size distribution, only the metal particles with a suitable size distribution can
serve as catalytic active sites, with the rests being either inert or triggering unde-
sired side reactions. As a consequence, the metal utilization efficiency is low and
the selectivity turns out to be poor, leading to high metal consumption along with
cumbersome and expensive product purification and waste disposal. In contrast,
catalysts with well-defined active sites and tunable coordination present excellent
activity and exclusive selectivity for a specific reaction, which, however, show poor
stability and bad recyclability. It is happy to see that SACs inherit the advantages
of both heterogeneous and homogeneous catalysts, enabling the reasonable use of
metal resources. In addition, for SACs the unique electronic structure and unsatu-
rated active centers have been demonstrated to play a crucial role in catalytic activity
for a variety of reactions. In a sense, SACs possess similarities to the homogeneous
catalysts because of the homogeneity in active sites and the similar spatial and elec-
tronic interaction with reactive species. It concludes that electrocatalysts should
meet two requirements: (1) a large number of active sites and (2) enhanced intrinsic

Calculations and Simulations of Low-Dimensional Materials: Tailoring Properties for Applications,
First Edition. Ying Dai, Wei Wei, Yandong Ma, and Chengwang Niu.
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activity of each active site. In this regard, SACs have the active atoms fully exposed
thus effectively increasing the number of active sites. It has been well illustrated
that the metal–support interaction determines the intrinsic activity of active sites,
and there is an optimal metal–support match for a specific reaction.

In accordance with the preceding discussion, an appropriate support material is
of importance for efficient SACs. In case of two-dimensional materials of large spe-
cific surface area, single metal or nonmetal atom will be stabilized by the lattice or
the coordination environment. In both cases, strong covalent bonds form, and the
single atom is doped into the lattice or anchored on the surface. In this context, the
electronic properties of the single atom will be changed due to the interaction with
the host, leading to the formation of new electronic states and thus possessing elec-
trocatalytic activity. In Figure 8.1, change in electronic properties, for example, the
density of states (DOS), is shown for single metal atom anchored on graphene. It
can be seen that the DOS at the Fermi level continuously decreases as the num-
ber of layer reaches a monolayer (i.e. the graphene), while the DOS changes from
a continuous one to be discrete when the bulk metal reduces to a single atom. In
consideration of the metal–graphene interaction, new electronic states appear and
dominate the catalytic activity. As summarized in the literature, two-dimensional
materials confirmed SACs show several unique features: (1) exposed single atoms
that adsorbed on or embedded in the two-dimensional supports serve directly as
active sites, modulating the electronic properties of the coordination environment
in intrinsically inactive two-dimensional materials; (2) single atoms confined in the
two-dimensional structures are coordinatively unsaturated due to the vacuum on
both sides of the two-dimensional structure, and thus achieve high catalytic activity;
(3) the open structure on both sides of the two-dimensional plane enables expedited
mass-transfer process, and theoretically ensures 100% exposure of single atoms to
reactants and maximizes the catalytic reaction rates; (4) the local atomic and elec-
tronic structures can be accurately probed by advanced characterization techniques,
which allow for further prediction of molecular reaction dynamics through theoret-
ical calculation or even in situ observation in real space; (5) the well-defined motif
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Figure 8.1 Electronic structure of single-atom catalysts supported on two-dimensional
materials (here taking graphene as an example). Source: Wang et al. [2]/with permission of
American Chemical Society.
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Figure 8.2 Transtion metal–N4 active center in
graphene. Source: Wang et al. [19]/with
permission of American Chemical Society.
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of the confined single atoms on two-dimensional materials provides a good platform
suitable for model study on the interplay among geometric effect, electronic effect,
and catalytic performance.

It is therefore conclusive that SACs based on two-dimensional materials have
great significance in both theoretical and experimental studies of catalysis. In both
experiments and simulations, transition metal–N4–graphene being the active center
(see Figure 8.2) has been attracting intensive attention, and its electrocatalytic
activity has been demonstrated in series of electrochemical reactions [19]. In
advanced calculations, the most stable configuration of the catalyst system can
be accurately addressed, the thermodynamic and dynamic processes and corre-
sponding energy profile can be obtained, and the physical and chemical origin of
the electrocatalytic activity can be unraveled. In principle, theoretical simulations
can definitely facilitate the comprehensive understanding on the structure–activity
relationship, advancing the rational catalyst design of efficient catalysts for specific
electrochemical reaction at atomic scale.

8.2 Stability of Catalyst

Prior to the electrochemical calculations, the model for catalyst should be carefully
relaxed and the total energy can be obtained by the first-principles calculation on
the basis of density functional theory. In particular, the stability and experimental
accessibility should be demonstrated or discussed if the catalysts are theoretically
predicted. In view of this, therefore, dynamic, thermodynamic, thermal, mechani-
cal, and electrochemical stability should be first checked from calculations. It turns
out to be dynamically stable if the phonon spectrum for a primitive cell of the catalyst
shows no imaginary frequency over the whole Brillouin zone, which is a common
strategy in many articles. In spite of the dynamic stability of a catalyst, it is hard to
say that the material for catalyst can be realized experimentally. As for the thermody-
namic stability, recent publications used ab initio molecular dynamics (AIMD) sim-
ulations to confirm it. It was concluded that the designed or predicted catalysts are
thermodynamically stable if the free energy fluctuates within a small range (<1.0 eV)
and the structure shows small distortion under certain temperature (such as 300 K
or elevated 500 K).
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In particular, for the so-called single-atom catalysts (SACs) with usually isolated
transition metal (TM) atom adsorbed on a substrate (for example, graphene-like car-
bon nitride), binding energy verifies the stability of the catalysts

Eb = Em@sub − Esub − Em

with Em @ sub, Esub, and Em being the total energies of the whole system, the substrate,
and the single TM atom, respectively. In accordance with the definition, negative Eb
suggests that catalysts are thermodynamically stable.

In the case of addressing the thermal stability, one can calculate the cohesive
energy [20]:

Ecoh =
Ebulk

n
− Eatom

where Ebulk and Eatom are the total energies of the unit cell in bulk phase and the
total energy of an isolated atom, respectively, which can be obtained from the
result of density functional theory, while n corresponds to atom number in a unit
cell. In order to give an intuitive description, models for platinum in bulk phase
(face-centered cubic, space group m3m) and a single platinum atom for calculation
are shown in Figure 8.3. In case of ΔE = Eb −Ecoh < 0, metal atoms tend to be fairly
anchored on catalyst surface rather than aggregation, which is a severe problem
for SACs.

In respect to the mechanical properties, elastic constants C11, C12, C22, and C66 are
always calculated to confirm whether the material (here in two dimensions) satisfies
the Born criteria of mechanical stability, i.e. C11C12 > C2

12 and C11, C22, and C66 > 0
[21]. On account of the obtained elastic constants, additionally, Young’s modulus

Figure 8.3 Models for obtaining the total energies of bulk metal (Ebulk) and single metal
atom (Eatom) in practice calculations for the cohesive energy. It should be pointed out that
the cell length for a single atom has to be sufficiently large to avoid the interactions due to
the boundary condition. Source: Wei Wei.
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Y (𝜃) and Poisson’s ratio 𝜐(𝜃) can be calculated according to:

Y (𝜃) =
C11C22 − C2

12

C22cos4𝜃 +
((

C11C22 − C2
12∕C66

)
− 2C12

)
cos2𝜃sin2

𝜃 + C11sin4
𝜃

𝜐(𝜃) =
C12(cos4

𝜃 + sin4
𝜃) −

(
C11 + C22 −

(
C11C22 − C2

12∕C66
))

cos2
𝜃sin2

𝜃

C22cos4𝜃 +
((

C11C22 − C2
12∕C66

)
− 2C12

)
cos2𝜃sin2

𝜃 + C11sin4
𝜃

with 𝜃 being the angle with respect to the in-plane x axis. The Young’s modulus of
graphene of 340 N m−1 [22] could be a reference used to illustrate the flexibility of
two-dimensional materials, and the Poisson’s ratio of most of the two-dimensional
materials is in the range from 0 to 0.5 [23].

In consideration that surface fluctuation of catalysts will largely affect the
long-range order of the two-dimensional crystals, which results in significant
change in electronic properties and the activity for a specific electrochemical
reaction, in-plane stiffness can also be evaluated to see the mechanical stability:

C2D =
(𝜕2Etotal∕𝜕𝜀2)

S0

where Etotal represents the total energy per unit cell, 𝜀 stands for the applied uniaxial
strain, and S0 is the area of the optimized unit cell. As examples, in-plane stiffness
of MoS2 monolayer is 125 N m−1 [24] and for phosphorene is 21–92 N m−1 [25, 26],
and large result indicates more favorable mechanical stability.

In electrolyte environment, dissolution potential can be calculated to check the
electrochemical stability of catalysts:

Udiss = U0
Mz+∕M −

Eb − Eb

ZF
with U0

Mz+∕M being the standard electrode potential of metal, Eb and Eb stand for the
binding energy and cohesive energy, respectively; Z is the electron number involved
in the dissolution, and F is the Faraday’s constant.

The dissolution potential can be alternatively calculated as follows:

Udiss = U0
Mz+∕M −

Ef

ZF
here Ef is the formation energy. In accordance with the equations, negative dissolu-
tion potential suggests that the catalyst is eletrochemically stable.

8.3 Electrochemical Reactions

8.3.1 Hydrogen Evolution Reaction (HER)

In recent years, global energy consumption and environmental problems are
becoming more and more severe, which can be mainly ascribed to the burning
of non-renewable fossil fuels. In order to overcome these problems, developing



200 8 Simulations for Electrochemical Reactions

renewable energy has attracted increasingly extensive interest, and it has become
one of the most urgent target in worldwide research community. In light of
the advantages of high energy density, abundant source, and free of harmful
by-products, hydrogen is regarded as a promising energy source to replace fossil
fuels [27–29]. In modern society, electrochemical water splitting turns out to be
the most effective and environmentally friendly method for hydrogen generation
[30, 31]. In current stage, precious metal platinum-based materials are considered
to be the best candidate catalysts for HER [32, 33]. It is however obvious that
large-scale application is limited due to the natural scarcity and high cost, and
it is therefore significant and urgent to explore alternatives to platinum-based
electrocatalysts of high performance and low cost to meet the needs of the practical
applications. As a result, finding the most effective catalysts is at the heart for
electrochemical HER and the realization of industrial hydrogen generation, storage,
and transfer.

In principle, HER is the elemental reaction for electrochemical reactions, gener-
ating H2 gas and, importantly, is the basis for the proton–electron transfer process.
In the process of experimentally electrochemical HER, which occurs at the cath-
ode, usually the oxygen evolution reaction (OER) accompanies at the anode, see
Figure 8.4.

In acidic condition, reactions at cathode and anode follow, respectively:

2H+ + 2e− → H2

H2O →
1
2

O2 + 2H+ + 2e−

with the former reaction being a typical HER process and the latter an OER
half-reaction, while in alkaline condition, HER and OER reactions occur as:

2H2O + 2e− → 2OH− + H2

2OH− →
1
2

O2 + H2O + 2e−

at cathode and anode, respectively. It is obvious that there is an electrochemical over-
all water splitting reaction:

H2O → H2 +
1
2

O2

H2

H+, H2O OH–, H2O

e–

M
em
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Figure 8.4 In a typical HER process,
H2 gas generation pathway differs
depending on the electrolyte
condition (acidic or alkaline), and at
anode OER accompanies,
corresponding to an overall water
splitting reaction. In both cases,
electron transfer involves. It is obvious
that design of efficient catalysts is one
of the most important targets for
large-scale H2 gas production. Source:
Wei Wei.



8.3 Electrochemical Reactions 201

(a) (b)H2 H2

Figure 8.5 Schematic for a complete HER process. (a) Heyrovsky mechanism; (b) Tafel
mechanism. In (a), an absorbed hydrogen atom (*H) is attached by another hydrogen atom,
and then a H2 molecule releases from the catalyst surface, while in (b), two absorbed
hydrogen atoms react and form H2 molecule. In both pathways, electron transfer involves,
and the whole process is thermodynamic and dynamic. Source: Wei Wei.

In a typical electrochemical HER, three steps are involved: (1) atomic H adsorption
on the catalyst surface (Volmer reaction); (2) formation of absorbed *H2; (3) release
of H2 molecule, with step (a) being extremely important since the energy of the inter-
mediate H* plays a decisive role in the reaction barrier during the following reaction:

H+ + e− + ∗ → H∗

here * stands for the active site on catalyst surface and H* is the intermediate. In
respect to step (2), two pathways are possible, i.e. Tafel and Heyrovsky pathways, see
Figure 8.5.

In most literatures, for catalysts the HER activity is commonly evaluated by cal-
culating the Gibbs free energy change [34]:

ΔGH∗ = ΔEH∗ + ΔEZPE − TΔSH∗ − neU + ΔGpH

where ΔEH∗ stands for the hydrogen adsorption energy that can be obtained from
density functional theory calculations; ΔEZPE and ΔSH∗ are the corresponding
changes in zero-point energy (ZPE) and entropy between the adsorbed hydrogen
(H*) and free-standing hydrogen in gas phase (H2), respectively, which can be
obtained from frequency calculation at T = 298.15 K. In this equation, n is the
number of transferred electrons and U is the electrode potential. In our calculations,
ΔGpH is related to the pH by

ΔGpH = ln 10 × KBT × pH

with being the Boltzmann constant. In particular, ZPE and vibrational entropy of
gas molecules could be looked up from the NIST database (https://janaf.nist.gov),
while those of the adsorption intermediates can be obtained by [35]

EZPE = 1
2
∑

i
hvi

S(T) =
3N∑
i=1

[
−R ln

(
1 − e−hvi∕kBT) + NAhvi

T
e−hvi∕kBT

1 − e−hvi∕kBT

]

here R is the ideal gas constant, h is Planck’s constant, kB is Boltzmann constant,
T is the absolute temperature, vi is the vibrational frequency, N is the amount of
adsorbed atoms, and NA is Avogadro’s number. In Table 8.1, entropies for common
molecules are summarized.

https://janaf.nist.gov
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Table 8.1 Entropies for common molecules under standard condition
p0 = 0.1 MPa and T = 298.15 K, and the unit is J K−1 mol−1.

H2 H2O H2O2 CO CO2

S0 130.680 188.834 232.991 197.653 213.795
CH4 N2 NH3 NH2 NO

S0 186.251 191.609 192.774 194.707 210.758

In case of calculating the ΔGH∗ for HER, the zero-point energy can be obtained by

ΔEZPE = EH
ZPE − 1

2
EH2

ZPE

where EH
ZPE is the zero-point energy of the atomic hydrogen on the catalyst surface,

and EH2
ZPE is the zero-point energy of H2 in gas phase.

In this context, ΔGH∗ can be expressed as:

ΔGH∗ = ΔEH∗ + 0.24 eV

ΔEH∗ is the differential hydrogen adsorption energy, which is defined by

ΔEH∗ = EH∗ − Ecatalyst −
1
2

EH2

where EH∗ , Ecatalyst, and EH2
represent the total energies of the hydrogen adsorbed

system, catalyst, and H2 in gas phase, respectively.
In the volcano curve, the exchange current is based on the Nørskov’s assump-

tion [36], that is, if ΔGH∗ ≤ 0, the following expression for the i0 at pH = 0 is used:

i0 = −ek0
1

1 + exp(−ΔGH∗∕kBT)

If ΔGH∗ ≥ 0, the exchange current is calculated by [37]

i0 = −ek0
1

1 + exp(ΔGH∗∕kBT)

where k0 is the rate constant; however, there are no experimental data available, thus
k0 is usually set to 1.

In calculations, the HER polarization curve can be simulated using the turnover
frequency (TOF) and the number of active sites, where [38]

TOF =
NH2

Ns

In this equation, NH2
is the total number of H2 molecules per second, and Ns is the

total number of active sites per unit area. As suggested in previous report [36, 39],
the TOF of catalyst can be benchmarked with an Arrhenius-type equation using
the hydrogen adsorption energy and an active site density of Nas, then the current
density j can be obtained by

j = 2qNas × TOF
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where q = 1.6× 10−19 C is the elementary charge and factor 2 originates from the
number of atoms per H2.

In accordance to the computational hydrogen electrode (CHE) model [40], the
chemical potential of one proton and electron pair (H+ + e–) is equivalent to one-half
of the chemical potential of H2 molecule under standard conditions (pH = 0 and
U = 0) [41]. It should be kept in mind that the calculation gives only the hydrogen
generation reaction energy thermodynamically, and ΔGH∗ is always used to evalu-
ate the catalyst activity. It has been concluded that, importantly, for an ideal HER
catalyst the ΔGH∗ should be close to zero, known as the Sabatier principle [42].
In accordance to the Sabatier principle, strong hydrogen adsorption is, however, not
conducive to the hydrogen desorption.

In regard to the diffusion barrier and the corresponding minimum energy path-
way, the climbing image nudged elastic band (CINEB) method can be used to deter-
mine the dynamic process for reactions on catalyst surface.

8.3.2 Oxygen Evolution Reaction (OER)

In general, the OER performance can be described by the reaction-free energy (ΔG1,
ΔG2, ΔG3, ΔG4) for four elementary steps:

H2O(l) + * → *OH + H + e–

*OH → *O + H + e–

H2O(l) + *O → *OOH + H + e–

*OOH → * + O2(g) + H + e–

In practice calculations, the CHE is applied to calculate the Gibbs free energy
change (ΔG) for each elemental step in the OER process, which can be obtained
from the following equation:

ΔG = ΔE + ΔEZPE–TΔS + Ue + ΔGpH

where ΔE is the electronic energy difference between the product and reactant of
each elemental step in OER process. ΔEZPE and ΔS are the differences in zero-point
energy and entropy, respectively; e is the number of transferred electrons and U
stands for the applied electrode potential. ΔGpH is the correction to pH, which can
be expressed by

ΔGpH = In10 × KBT × pH

with KB being the Boltzmann constant and the value of pH was set to zero in this
work. In consideration that the external potential should be equal to the equilibrium
potential (i.e. Ueq = 1.23 V), therefore, the theoretical overpotential of OER can be
obtained from the following equation [43]:

𝜂OER = max {ΔG1,ΔG2,ΔG3,ΔG4}∕e–1.23
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8.3.3 Oxygen Reduction Reaction (ORR)

In respect to ORR, the elementary reaction steps are described as follows:
∗ + O2(g) + H + e–→∗OOH
∗OOH + H + e– → H2O(l)+∗O
∗O + H + e–→∗OH
∗OH + H + e– → H2O(l) + *

with the corresponding reaction-free energy of each elementary step expressed as
ΔGI, ΔGII, ΔGIII, ΔGIV, where ΔGI = −ΔG4, ΔGII = −ΔG3, ΔGIII = −ΔG2, and
ΔGIV = −ΔG1. In analogy to OER, the theoretical overpotential of ORR can be
written as:

𝜂ORR = max {ΔGI,ΔGII,ΔGIII,ΔGIV}∕e + 1.23

8.3.4 Nitrogen Reduction Reaction (NRR)

As one of the most highly produced inorganic chemicals, ammonia (NH3) has been
widely used to produce fertilizer, plastics, fibers, and intermediates for pharma-
ceuticals. Nowadays, large-scale industrial synthesis of NH3 mainly depends on
the Haber–Bosch (H–B) process [44], for which, however, energy-extensive con-
sumption, emissions of massive greenhouse gas, and extreme reaction conditions
have always been the huge challenges in this process [45–49]. It is therefore highly
demanded to develop new alternative technology or search for environmentally
friendly and cost-effective catalysts to replace the H–B process. In the past few
years, inspired by biological nitrogen (N2) fixation, electrochemical N2 conversion
to NH3 at ambient conditions has currently become a research hotspot in the field
of electrochemistry, with the alluring merits of energy efficiency, greenness, and
sustainability [50–52]. In the process of electrochemical NRR for NH3, catalysts
absolutely play the pivotal role. In current stage, NRR catalysts usually have the
TM atoms being the active centers, such as Ru(0001) [53, 54]; metal oxides MoO3
[55], MnO [56], and VO2 [57]; as well as the SACs [58–61]. As for NRR electro-
catalysts, the high overpotential and low Faraday efficiency (FE) are inevitably
huge challenges [62–64], and, therefore, exploring and constructing highly active,
efficient, and durable NRR catalysts are becoming increasingly important. As for
SACs, it has been illustrated that the optimal TM–ligand match and local electronic
property are closely related to the N2 adsorption and activation [65–67]. In fact,
however, achieving 100% individual atom dispersion is less realistic and thus the
limited active sites, and the poor stability is not conducive to the recycling of the
SACs. In this sense, TM-based catalysts with intrinsic TM-terminated surfaces of
high stability and high activity are more promising.

In a photocatalytic process, photons are absorbed as the driving force to propel
the N2 activation and reduction; however, the efficiency is still far from satisfactory
because of the weak binding strength of N2 and inefficient electron transfer from
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Figure 8.6 The
donation–backdonation mechanism
for N2 electrochemical activation.
Source: Zhang et al. [73]. Reproduced
with permission of The Royal Society
of Chemistry.
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photocatalyst to N2 (N2 + e− → N2
•−), therefore the N≡N bond is difficult to be acti-

vated [68]. In order to improve the NRR activity, photocatalysts should facilitate the
chemisorption of N2 to guarantee the sufficient activation of the inert N≡N triple
bond. On account of the coexisted empty and occupied d orbitals, TM atoms can
not only accept the lone-pair electrons of N2 to strength the TM–nitrogen bond but
also donate electrons into the antibonding orbitals of N2 to weaken the N≡N bond
[69–72], see Figure 8.6. In Figure 8.7, orbitals of N2 molecule are shown. In accor-
dance with such a concept, nonmetal elements that can also function as TM atoms
to activate N2 are theoretically filtered.

In general, the elementary reactions of ammonia synthesis are:

N2(g) + 2∗ ↔ ∗∗N2

H2(g) + 2∗ ↔ 2H∗

∗∗N2 + H∗↔∗∗N2H + ∗

∗∗N2H + H∗ ↔ ∗∗N2H2 + ∗

∗∗N2H2 + H∗↔∗∗N2H3 + ∗

∗∗N2H3 + H∗ ↔ 2∗NH2 + ∗

∗NH2 + H∗↔∗NH3 + ∗

∗NH3 ↔ NH3(g) + ∗

where * represents a metal active site.
It has been accepted that N2 can be electrochemically reduced to NH3 by six

successive proton-coupled electron transfer reactions, following three typical
reaction mechanisms, i.e. distal, alternating, and enzymatic pathways [74–77], see
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Figure 8.7 Orbitals of N2 molecule by calculating projected density of states (PDOS).
Source: Zhang et al. [73]. Reproduced with permission of The Royal Society of Chemistry.
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Figure 8.8 Schematic depiction of distal, alternating, enzymatic, and mixed mechanisms
for N2 reduction to NH3. Source: Zhang et al. [73]. Reproduced with permission of The Royal
Society of Chemistry.

Figure 8.8. In particular, if N2 is initially adsorbed in the end-on mode, it will be
reduced to NH3 by two pathways (distal and alternating). As for the side-on mode,
N2 molecule is mainly reduced to ammonia by enzymatic mechanism. In the distal
pathway, the proton–electron pair (H+ + e–) will first attack the terminal N atom
of N2 molecule with end-on configuration. After three protonation cycles, the first
NH3 molecule is released, and then by completing the next three-step protonation
cycle N2 will be reduced to NH3 and released. In case of the alternating mechanism,
six proton-electron pair (H+ + e–) alternately occur between two N atoms. In the
enzymatic pathway, similar to the alternation mechanism, six proton-electron
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pair (H+ + e–) attack the two N atoms alternatively but occur in the side-on N2
adsorption model. In order to screen out the optimal reduction pathway, all these
possible routes for the selected candidates with high catalytic performance should
be systematically evaluated.

In order to evaluate the reaction rate, each elementary step can be written as:

r1 = k1pN2
𝜃

2
∗ − k−1𝜃∗∗N2

r2 = k2pH2
𝜃

2
∗ − k−2𝜃

2
∗H

r3 = k3𝜃∗∗N2
𝜃∗H

− k−3𝜃∗∗N2H
𝜃∗

r4 = k4𝜃∗∗N2H
𝜃∗H

− k−4𝜃∗∗N2H2
𝜃∗

r5 = k5𝜃∗∗N2H2
𝜃∗H

− k−5𝜃∗∗N2H3
𝜃∗

r6 = k6𝜃∗∗N2H3
𝜃∗H

− k−6𝜃
2
∗NH2

𝜃∗

r7 = k7𝜃∗NH2
𝜃∗H

− k−7𝜃∗NH3
𝜃∗

r8 = k8𝜃∗NH3
− k−8p

NH3
𝜃∗

where ki is the rate constant for step i, p denotes the partial pressure of gas N2
and NH3, and 𝜃 denotes the coverage of the adsorbed species (NxHy). With the
assumption that r4 is the rate-determining step (RDS), under the quasi-equilibrium
approximation (QEA) [78–80], the rates of all the other steps equal to zero
(r1 = r2 = r3 = r5 = r6 = r7 = 0), and therefore the coverage of reaction species can
be obtained:

𝜃∗∗N2
= K1pN2

𝜃
2
∗

𝜃∗H
=
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K2pH2
𝜃

2
∗
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= K3K1

√
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pN2
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2
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where Ki = ki/k−i is the equilibrium constant for step i, which can be expressed by

Ki = e−ΔGi∕kBT

ki =
kBT

h
e−ΔGTS∕kBT

where ΔGi and ΔGTS are free energies of reaction and activation, respectively; kB
is Boltzmann constant, and h is the Planck’s constant. In this situation, the sum of
coverage of all the reaction species equals to one:∑

i
𝜃i = 1

In combination of these equations, a quadratic equation on 𝜃* can be solved analyt-
ically with the conversion ratio of NH3 fixed at 10% [77], and then the rate of slow
step r3 can be obtained.

In general, the limiting potential defined as the lowest negative potential at which
the reaction became exergonic is used to evaluate the intrinsic activity of NRR cat-
alysts [81–88]. As the NRR is a complicated process, efficient screening descriptors
are therefore desirable. As Figure 8.9 shows, for this purpose, a “Five-Step” strat-
egy is proposed [89]: (1) the catalysts should possess high thermodynamic stability
(ΔEb < 0 eV) and feasibility (Ef < 0 eV); (2) N2 should be sufficiently activated with
the ΔG∗N2

< −0.3 eV; (3) and (4) to guarantee low energy cost, the ΔG of the first
and last hydrogenation step (the most likely limiting steps) should be as low as pos-
sible with ΔG∗N2H and ΔG∗NH3

< 0.55 eV (the best catalyst Ru); (5) to guarantee the
high selectivity of NRR, the maximum ΔG for NRR should be much lower than that
for the competing HER. In these screening criteria, ΔEb is the difference between
binding energy of TM atoms on substrate and cohesive energy of TM atoms, Ef is

Stability

ΔEb < 0, Ef < 0

ΔG*N2
 < –0.3 eV

ΔG*N2H < 0.55 eV

ΔG*NH3
 < 0.55 eV

ΔGNRR < ΔGHER

N2 activation

Energy cost

Energy cost

Selectivity

Figure 8.9 The proposed “Five-Step”
strategy for screening NRR candidate
catalysts. Source: Lv et al. [65]/with
permission of American Chemical
Society.
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the formation energy, and ΔG∗N2
, ΔG∗N2H, and ΔG∗NH3

are the Gibbs free energy
changes of intermediates of N2, N2H, and NH3, respectively.

8.3.5 Electrocatalytic Activity Evaluated from the First-principles
Calculations

In a recent report, a new allotrope of graphyne, referred to as H4,4,4-graphyne, was
proposed, which is composed of rectangular carbon rings and acetylenic rings in a
hexagonal lattice [90]. In light of its porous structure, metal atoms can be anchored
within the hole, serving as SACs. In addition to the dynamic, thermodynamic,
and thermal stability, H4,4,4-graphyne shows unique electronic properties, i.e.
the double Dirac points, indicative of superhigh carrier mobility and favorable
electric conductivity for electrochemical charge transfer [90]. In this section, we
will show how to evaluate the electrochemical HER, OER and ORR activities
of SACs supported on H4,4,4-graphyne from simulations. In practice, a series
of TM atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Mo, Pd, Ir, and Pt) supported on the
two-dimensional H4,4,4-graphyne monolayer were screened to identify the bifunc-
tional catalytic activity for HER/OER and OER/ORR. In this section, background
of electrochemical HER, OER, and ORR is briefly introduced, and the parameters
for the first-principles calculations based on density functional theory are provided.

In recent years, as clean and sustainable energy hydrogen economy has been
attracting increasing attention, which alleviates the global environmental problem
and energy crisis. In many critical processes such as petroleum, spaceflight, metal-
lurgy, and light industry, hydrogen is widely used [91–94], and, as discussed earlier,
water electrolysis is an environmentally friendly manner to generate hydrogen.
In respect to electrochemical HER, high-performance catalysts are playing a vital
role. It has been well recognized that noble metals and noble-metal oxides based
catalysts (e.g. Pt, RuO2, and IrO2) as the state-of-the-art electrocatalysts are up till
now dominating in the water splitting reactions [95–98], which are however too
expensive and scarce to be used on a large scale for hydrogen production. In order
to seek out low-cost, high performance, and durable catalysts, therefore, a variety of
emerging materials are extensively studied for water splitting, for example, Mxenes
[99], TM oxides [100, 101], phosphides [102, 103], and some sulfides [104, 105].

It has already been known that the electrochemical water splitting constitutes two
half-cell reactions (i.e. HER and OER). It is difficult for the unifunctional catalysts to
present catalytic performance of HER and OER simultaneously under the same con-
ditions [106, 107]. In comparison with unifunctional catalysts, bifunctional catalysts
with simplified preparation process for water splitting are highly appealing [108].

In 2019 graphyne was successfully synthesized experimentally [109], in which the
porosity of graphyne with sp- and sp2-hybridized carbon atoms provides space to
locate the single metal atoms, behaving as the SACs [110, 111]. It has been demon-
strated that graphyne can support single metal atoms strongly at the center of the
acetylenic ring, being an efficient catalyst, for example, for OER [112]. In addition,
single metal atoms supported on nitrogen doped graphyne show catalytic activity for
NRR [113], and single metal atoms supported graphdiyne suggest desirable catalytic
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performance for CO2RR [114]. It is therefore conclusive that porous carbon-based
monolayer can be a platform for studying the relationship of structure–electronic
property–activity of electrocatalysts, thus advancing the design principle for cata-
lysts. It is of interest that more and more carbon-based materials in two dimensions
beyond graphene have been realized experimentally, providing new possibilities for
model study on electrocatalysts.

In experiments, cyclobutadiene (C4H4) and acetylene (C2H2) as reactants can pro-
duce H4,4,4-graphyne by dehydrogenation. In particular, the dehydrogenation pro-
cess of C4H4 and C2H2

3C4H4 + 6C2H2 → H4,4, 4 − graphyne + 12H2

is an exothermic reaction, which indicates that the reaction is thermodynam-
ically allowed [90]. In addition, a number of experiments have shown that
two-dimensional carbon materials of porosity such as graphdiyne [115], γ-graphyne
[116], and graphtetrayne [117] could be synthesized, enriching the graphyne
family. It should be highlighted that, additionally, the successful synthesis of 4–6
carbophene [118] (4-carbon and 6-carbon rings in ratio of 1 : 1) further consolidates
the feasibility of synthesizing H4,4,4-graphyne with rectangular carbon rings and
triple bonds of carbon. It should be emphasized here that the holes of large size in
graphdiyne provide stable anchoring sites also for metal dimer, metal trimer, and
even metal clusters, which show probably better catalytic activity and selectivity
than the single atom counterparts, deserving further investigations [114].

In principle, for SACs the TM–substrate coordination and local electronic proper-
ties are determinative in activating the adsorbed intermediates for various electro-
chemical reactions, such as HER, OER, ORR, and NRR [119, 120]. In the process
of binding, charge transfer occurs between TM atoms and the substrate, accompa-
nied with changes in local structure and electronic properties. It is thus conclusive
that a key in the design principle for SACs with high stability and excellent catalytic
activity is to find a suitable match between the metal and support for a specific
reaction. In respect to the supports for SACs, two-dimensional materials such as
graphene, graphene-like carbon nitrides (such as g-CN and g-C3N4), and borophene
are increasingly drawing interest, which is ascribed to the large specific surface area
and large number of sites for anchoring metal atoms [121, 122]. As examples, SACs
such as Ni/g-CN [96], Co@GY/GY [123], Pt@MoS2 [124], and Ni@𝛽12-BM [125]
have been theoretically predicted to be HER and OER catalysts of high performance.

In case of H4,4,4-graphyne, transition atoms Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Mo,
Pd, Ir, and Pt are taken into account to evaluate their catalytic activity by the
first-principles calculations. In the following, calculation parameters are pro-
vided. In practical calculations, geometry optimization should be first conducted,
then the material stability and the electronic properties. In consideration of the
magnetic atoms, spin-polarized density functional theory as implemented by
Vienna ab initio simulation package (VASP) is employed [126, 127], with the
Perdew–Burke–Ernzerhof (PBE) in framework of generalized gradient approx-
imation (GGA) describing the exchange–correlation functional [128, 129]. In
order to describe the electron–ion interactions, the projector-augmented wave
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(PAW) method [130, 131] is used. In terms of van der Waals (vdW) interactions,
the vdW–D2 corrections are carried out in all calculations [132]. In addition,
cut-off energy for the plane-wave basis is set to be 550 eV and all structures will
cease to be optimized when the convergence of total energy and force were less
than 10−5 eV and 0.01 eV Å−1, respectively. In cases of geometry optimization and
electronic self-consistent calculations, Monkhorst–Pack k-point meshes of 3× 3× 1
and 5× 5× 1 are adopted, respectively. In consideration of the periodicity of the
structure, a vacuum space of 20 Å was applied normally to the surface plane to avoid
the interactions between periodic images. In addition, AIMD simulations [133] at
500 K for 5 ps with a time step of 1 fs were performed to evaluate the thermodynamic
stability of the catalysts. In particular, a canonical ensemble is simulated using the
algorithm of Nosé, controlling the frequency of the temperature oscillations during
the simulations.

In regard to HER, the activity is usually assessed by means of the reaction-free
energy

(
ΔGH∗

)
in accordance with

ΔGH∗ = ΔEH∗ + ΔEZPE − TΔSH∗

where ΔEH∗ stands for the hydrogen adsorption energy obtained from calcula-
tions based on density functional theory, ΔEZPE and ΔSH∗ are the corresponding
changes in zero-point energy and entropy between the adsorbed hydrogen (H*) and
hydrogen in gas phase (H2), respectively, calculated from frequency calculation at
T = 298.15 K.

In analogy to HER, for OER the Gibbs free energy change for each element step is:

ΔGH∗ = ΔE + ΔEZPE − TΔS − neU + ΔGpH

with ΔE being the electronic energy difference between the product and reactant
of each element step in OER process, and ΔEZPE and ΔS are the differences in
zero-point energy and entropy, respectively; e is the electron number transferred
and U stands for the applied electrode potential; ΔGpH corresponds to the correction
to pH value. In general, for calculations the pH value is usually set to zero.

As shown in Figure 8.10, the hexagonal framework of H4,4,4-graphyne (from
top view) is composed of rectangular carbon rings and acetylenic rings, with the
unit cell denoted by a rhombus. In a unit cell of H4,4,4-graphyne, 24 carbon atoms
are connected via —C—C— single bonds and –C≡C– triple bonds. In accordance
with the ground-state calculation, the optimized lattice constant of hexagonal
H4,4,4-graphyne is 11.82 Å, and the corresponding bond lengths are l1 = 1.247,
l2 = 1.351, l3 = 1.453, and l4 = 1.489 Å, which are in good agreement with the
first-principles results by others [90].

In Figure 8.10, five possible anchoring sites for TM atoms (here Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Mo, Pd, Ir, and Pt) on H4,4,4-graphyne are considered: center of the
acetylenic ring (H1), center of the rectangular ring (H2), center of the 24-membered
carbon ring (H3), corner of the acetylenic ring (C1), and corner of 24-membered
carbon ring (C2). It can be found that after full structure optimization the system
undergoes severe distortion as TM atoms anchored at H2, H3, and C2 sites. In addi-
tion, TM atoms located at C1 site would be spontaneously converged to the H1 site.
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Figure 8.10 Structure of H4,4,4-graphyne from top view; bond lengths are denoted. The
possible adsorption sites for transition metal atoms are marked. Source: Zhang et al. [30].
Reproduced with permission of The Royal Society of Chemistry.

In cases for V, Cr, and Mo, adsorption of these atoms on H4,4,4-graphyne at all pos-
sible sites will cause considerable deformation, and thus will not be discussed later.

In order to address the binding strength of TM atoms on H4,4,4-graphyne, binding
energy is first calculated according to

Eb = ETM@H4,4,4-GY − EH4,4,4-GY − ETM

where ETM @ H4,4,4-GY, EH4,4,4-GY, and ETM are the total energies of TM atom adsorbed
H4,4,4-graphyne, H4,4,4-graphyne, and TM atom, respectively. In order to calculate
the energy for a single transition atom, i.e. the ETM, a cubic cell of 20× 20× 20 Å
is used.

In Table 8.2, binding energies for the rest of TM atoms are summarized, indicat-
ing that they prefer to be stably fixed at the H1 site and the binding energies are
smaller than −1.0 eV (except for Ti). In accordance with the definition of the bind-
ing energy, negative value illustrates strong interaction between the TM atom and
the sp-hybridized carbon atoms of the acetylenic ring, and thus it concludes that
the TM atoms are energetically favorable to be firmly anchored on the substrate.

Table 8.2 Binding energy (Eb) for transition metal atoms of
consideration adsorbed on H4,4,4-graphyne.

TM atoms Sc Ti Mn Fe Co

Eb −3.70 0.34 −1.47 −2.30 −3.43
TM atoms Ni Pd Ir Pt Co2

Eb −3.56 −1.88 −3.51 −3.05 −3.45

Source: Zhang et al. [30]. Reproduced with permission of The Royal Society of
Chemistry.
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Figure 8.11 Orbital-projected band
structure for H4,4,4-graphyne with two
Dirac points along Γ–K and Γ–M
directions, indicative of ultrahigh carrier
mobility and desirable electric
conductivity for charge transfer. The
Fermi level is set to zero; contributions
from carbon px, y and pz orbitals are
denoted. Source: Zhang et al. [30].
Reproduced with permission of
The Royal Society of Chemistry.
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In addition, like the graphdiyne, the uniform large holes provide more high active
sites to strongly anchor metal atoms and effectively inhibit the formation of clusters.
In order to see whether the single metal atoms will aggregate into metal clusters, the
migration energy can be calculated by the CINEB method. As an example, the dif-
fusion barrier for one Co atom moving to another stable site is as high as 1.10 eV,
which will prevent the Co atoms from agglomerating into clusters, indicating the
kinetic stability of the supported Co atoms on the H4,4,4-graphyne surface.

In addition to firmly bind the TM atoms, desirable electronic properties are
important for the activity of SACs. In Figure 8.11, the band structure of pristine
H4,4,4-graphyne exhibits double Dirac points along Γ–K and Γ–M directions,
indicative of ultrahigh carrier mobility and desirable electric conductivity for
charge transfer. In order to have a more intuitive view on the interaction between
TM atoms and the substrate, band structures are also calculated for the TM adsorbed
H4,4,4-graphye. In most cases, the system preserves at least one Dirac point, and
some of them change from semimetallic to be metallic. It is an indication that
the desirable electric conductivity for electrocatalytic reactions could be main-
tained, and thus can enhance the activity. In the case of Co@H4,4,4-graphyne (see
Figure 8.12), for example, inversion symmetry breaking results in gap opening at one
Dirac point, and it rationalizes the intact double Dirac points Co2@H4,4,4-graphyne
of inversion symmetry. It is therefore indicative that the coordination between
metal atoms and substrate could effectively adjust the electronic structure, which
plays a crucial role in the catalytic performance of SACs.

In Figure 8.13a, the Gibbs free energy change of adsorbed H* (ΔGH*) for different
TM atoms is presented, with that of pristine H4,4,4-graphyne also shown for
comparison. In the case of pristine H4,4,4-graphyne, hydrogen adsorption prefers
the sp-hybridized carbon sites with an unsatisfied ΔGH* = 0.40 eV. As for hydrogen
adsorption on TM atoms, hydrogen atom tends to be located just above the metal
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Figure 8.12 Transition metal (the bigger spheres) adsorption on H4,4,4-graphyne within a
hollow site. It can be found that introduction of transition metal atoms shrinks the lattice.
Source: Zhang et al. [30]. Reproduced with permission of The Royal Society of Chemistry.
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atom. In cases of Sc/Fe/Ir@H4,4,4-graphyne, the excessive negative ΔGH* values
(−0.83/−0.34/−0.87 eV, respectively) are not conducive to the desorption of H2
molecule from the catalyst surface. On the contrary, the large positive ΔGH*
values for Mn/Ni/Pd@H4,4,4-graphyne indicate that a large amount of energy
should be injected in the process of protonation. It has already been known that
the ideal change of Gibbs free energy for HER should be close to zero (Sabatier
principle) [134, 135]. In accordance with this, thus Co@H4,4,4-graphyne and
Pt@H4,4,4-graphyne could be promising HER catalysts of high catalytic perfor-
mance, with the ΔGH* being as low as 0.04 and 0.17 eV, respectively. In comparison
with currently commercialized Pt (0.09 V) [136], the corresponding overpotential
of Co@H4,4,4-graphyne is even lower.

In the premise of the desirable catalytic HER activity of Co@H4,4,4-graphyne,
its efficiency is further explored by increasing the active sites (within the same
lattice, two Co atoms are considered, Co2@H4,4,4-graphyne, see Figure 8.12).
It can be found that Co2@H4,4,4-graphyne still shows acceptable catalytic per-
formance with a low overpotential of 0.1 V. In my opinion, the difference in the
overpotentials for systems constituting one and two Co atoms originates partially
from the change in electronic properties. In addition, AIMD simulation results at
500 K lasting for 5 ps confirm that Co@H4,4,4-graphyne, Co2@H4,4,4-graphyne,
and Pt@H4,4,4-graphyne are thermodynamically stable, since the structures
do not show obvious distortion and the TM atoms are still firmly anchored on
H4,4,4-graphyne. It can be concluded that, therefore, these SACs could be used as
catalysts for HER with high activity and high stability.

In addition, the exchange current density (i0) can be used as a descriptor to
evaluate the performance of the catalysts. In accordance with the Nørskov’s assump-
tion [136], a linear relationship between i0 and the Gibbs free energy change ΔGH*
can be obtained, as shown in Figure 8.13b. It can be seen from the volcano curve
that Sc@H4,4,4-graphyne, Fe@H4,4,4-graphyne, and Ir@H4,4,4-graphyne on the
left branch show too strong hydrogen adsorption and thus difficult for H2 molecule
desorption. On the other hand, Mn@H4,4,4-graphyne, Ni@H4,4,4-graphyne,
and Pd@H4,4,4-graphyne on the right branch are not conducive to the hydrogen
adsorption. It is obvious that Co@H4,4,4-graphyne, Co2@H4,4,4-graphyne, and
Pt@H4,4,4-graphyne are positioned near the peak of the volcano curve, indicative
of promising HER performance.

It is well known that H2O molecule can be converted to O2 by four-step elementary
reactions, that is, the well-accepted OER process. In the first step, as Figure 8.14
shows, H2O molecule is dissociated into H+ and *OH with the help of catalyst. In
the second step, *OH is further decomposed into H+ and *O, and the third step is *O
reaction with another H2O molecule and generates *OOH species. In the last step,
the final product O2 molecule is formed and desorbs from the surface of catalyst. In
Figure 8.15, the Gibbs free energy change (ΔG) for each elemental step for TM atoms
deposited on H4,4,4-graphyne in OER process is presented, with the corresponding
potential-determining step (PDS) and overpotential denoted.

In respect to Sc@H4,4,4-graphyne, Mn@H4,4,4-graphyne, Fe@H4,4,4-graphyne,
and Ir@H4,4,4-graphyne, the negative ΔG*OH illustrate too strong binding between
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H2O

* **OH *O *OOH

H2OH+ + e– H+ + e– H+ + e– O2 + H+ + e–

Figure 8.14 Schematic of the four-step elementary reactions for the OER process, where *
represents the metal active site on transition metal atoms supported H4,4,4-graphyne.
Source: Zhang et al. [30]. Reproduced with permission of The Royal Society of Chemistry.
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Chemistry.
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the reaction intermediate (*OH) and the substrate, which is unfavorable to the
decomposition of *OH in next reaction. In this case, the PDS usually occurs in the
process of *OOH production (ΔG3) or O2 desorption (ΔG4).

In Figure 8.15, the overpotentials are labeled. In particular, the values are 3.41,
0.98, 1.15, and 1.38 V for Sc, Mn, Fe, and Ir on H4,4,4-graphyne, which indicate
that a large amount of energy is needed to drive the OER process. In regard to
Co@H4,4,4-graphyne, Ni@H4,4,4-graphyne, and Pt@H4,4,4-graphyne, the Gibbs
free energy change for the four-step chemical reaction is uphill with low overpo-
tentials. It is noteworthy that the overpotentials of Co@H4,4,4-graphyne (0.45 V),
Ni@H4,4,4-graphyne (0.34 V), and Pt@H4,4,4-graphyne (0.69 V) are comparable to
or even lower than that of commercially available OER catalyst IrO2 (0.55 V) [137],
indicating that these systems could be considered as potential catalysts for OER.

In general, the catalytic OER performance can usually be described by the Gibbs
free energy change for three intermediates, i.e. ΔG*OH, ΔG*O, and ΔG*OOH. In order
to efficiently screen out the highly active SACs for OER, a relationship for the Gibbs
free energy change of the intermediates was established. As shown in Figure 8.16a,
the scaling relationship between ΔG*OOH and ΔG*OH can be described according to

ΔG∗OOH = 1.07ΔG∗OH + 3.71

It can be found that a quite fine linear relationship between ΔG*OOH and ΔG*OH is
obtained with a coefficient of determination (R2) of 0.99.

In the four-step elementary reactions of OER, the difference in Gibbs free energy
can be expressed simply by two descriptors based on the scaling relationship:

ΔG1 = ΔG∗OH

ΔG2 = ΔG∗O − ΔG∗OH

ΔG3 = ΔG∗OOH − ΔG1 − ΔG2

ΔG4 = 4.92 − ΔG∗OOH

In accordance with the relationships mentioned earlier, remarkably, the overpo-
tential can be presented visually by the relationship between three descriptors
in the OER volcano plot. In Figure 8.16b, the volcano curve is shown, which is
composed of four regions and each region corresponds to the Gibbs free energy
difference between products and reactants. It can be found that for Sc/Mn/Fe/
Ir@H4,4,4-graphyne the negative ΔG*OH cause zone 4 or zone 3 to be the PDS in
the process of accelerating OER. It is clear that Co@H4,4,4-graphyne, Ni@H4,4,
4-graphyne, and Pt@H4,4,4-graphyne with relatively low overpotential (0.45,
0.34, and 0.69 V, respectively) are located near the volcano peak. In particular,
Co@H4,4,4-graphyne and Ni@H4,4,4-graphyne might exhibit higher catalytic
activity compared with other 2D electrocatalytic materials such as Co@g-CN [96],
NiIT [138], and Ni/B36 [139].

In order to have an intensive view on the catalytic performance of SACs toward
OER, the electronic properties of the catalysts should be examined to find the
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physical origin. In general, d band center of metal atom is usually used as a descrip-
tor to evaluate the catalytic activity. In particular, the d band centers of TM atoms
could be calculated by analyzing the projected density of states (PDOS). In case of
TM atom considered in this work, the d band centers of TM atoms move to low
energy side with respect to the Fermi level with increased d electron occupation.
In order to evaluate the correlation between the d band center and the catalytic
performance for OER process, the relationship between the Gibbs free energy
change of reaction intermediates and the d band center is constructed. As indicated
in Figure 8.17a, the negative relationship suggests that the binding strength
between the intermediates and the metal decreases with the increase of the d band
center. In this case, Sc/Mn/Fe@H4,4,4-graphyne with the d band center closing
to the Fermi level demonstrates relatively strong interaction with intermediates,
resulting in high overpotentials for OER. On contrary, Co/Ni/Pt@H4,4,4-graphyne
with more negative d band center imply that the binding strength between TM
atoms and intermediates become weaker, thus exhibiting lower overpotentials. It
should be emphasized that Co@H4,4,4-graphyne not only shows efficient catalytic
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Figure 8.17 (a) Scaling
relationships between Gibbs
free energy change of each
intermediate (*OH, *O, and
*OOH) and d band center of
transition metal atoms
supported on H4,4,4-graphyne.
(b) Potential of OER as a
function of the d band center;
the shaded area represents the
overpotential. Source: Zhang
et al. [30]. Reproduced with
permission of The Royal
Society of Chemistry.
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performance for HER but also has desirable activity for OER. In other words,
Co@H4,4,4-graphyne could be the appealing candidate as bifunctional catalyst for
electrochemical water splitting.

In consideration of the perfect linear relationship between the Gibbs free energy
change of reaction intermediates and the d band center of the TM atoms of interest,
the relationship between d band center and Gibbs free energy change corresponding
to each step of elementary reaction should be further studied to visualize the impact
of d band center on the OER electrocatalytic activity. As shown in Figure 8.17b, it
can be found that low and high d band centers signify weak and strong interactions
between metal atoms and intermediates, respectively; too weak or too strong inter-
action usually leads to high overpotentials. In the former case, the first step is the
PDS because few proton–electron pairs are transferred from TM atoms to the inter-
mediates. In the latter case, while the interaction between the intermediate (*OOH)
and the active sites is so strong that it is difficult for O2 molecule desorption. As a
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result, the fourth step is generally the PDS. As an example, Sc@H4,4,4-graphyne
with relatively high d band center shows large overpotential in the last elementary
reaction step. It is of interest to find that when d band center is in a moderate
range (from −3.30 to −2.69 eV), the binding strength between the intermediate
(*OOH) and TM atoms will be neither too weak nor too strong. It can be seen that
Co@H4,4,4-graphyne (−2.84 eV), Co2@H4,4,4-graphyne (−3.18 eV), Ni@H4,4,
4-graphyne (−2.96 eV), and Pt@H4,4,4-graphyne (−2.92 eV) with d band center
located within this range demonstrate better catalytic performance for OER. It is
worth noting that the d band center of TM atoms is adjustable experimentally by
constructing SACs with different TM atom ratio. As a rational descriptor, thus d
band center could be reasonably regulated to improve the catalytic performance
of OER.

As the inverse process of OER, ORR plays a crucial role in fuel cells and metal–air
batteries, which can also be described by the four-step elementary reactions. In
this case, the corresponding relation of the four-step elementary reactions can be
expressed by two descriptors ΔG*O and ΔG*O − ΔG*OH, and the overpotential can
be calculated by 𝜂 = 1.23 − min {ΔG4, ΔG3, ΔG2, ΔG1}/e. In the SACs considered in
this work, Ni@H4,4,4-graphyne demonstrates desirable catalytic performance with
a lower overpotential of 0.29 V in the process of ORR.

In conclusion, porous H4,4,4-graphyne shows potential to be a metal-free
substrate for SACs. In particular, Co@H4,4,4-graphyne and Pt@H4,4,4-graphyne
could be efficient bifunctional catalysts for water splitting with low overpo-
tentials of 0.04/0.45 and 0.17/0.69 V for HER/OER, respectively. In addition,
Ni@H4,4,4-graphyne as bifunctional catalyst also exhibits desirable catalytic
activity for OER/ORR with low overpotentials of 0.34/0.29 V, even superior to com-
mercial IrO2 and RuO2. It is of paramount importance that the TM atom–substrate
coordination and local electronic properties play a crucial role in the electrocatalysis
processes. In line with literatures, d band center as an effective descriptor could be
adopted to optimize the catalytic performance of the catalysts, and OER catalytic
performance can be significantly improved by adjusting the d band center to an
appropriate value (−3.03 eV in this work).

8.3.6 Simulations for Nitrogen Reduction Reaction

In past few years, emerging two-dimensional TM borides (MBenes), as the boron
analog of MXenes, has aroused extensive concern due to their structural diversity
and fascinating properties [140–143]. As potential electrocatalysts of high perfor-
mance, these TM borides with large specific surface area and high active center
density exhibit intrinsic basal-plane activity and selectivity for electrochemical
reactions [144–148]. In addition, TM borides also promise good stability since
electron-donating metal atoms will be bonded with electron-deficient boron atom
via covalent bonds. In order to achieve the optimal efficiency for diverse TM borides
as electrochemical catalysts for NRR, it is necessary to explore their composition
space and establish a rational design principle to satisfy the demand for high activity
and high selectivity.
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In this work, new structures of TM atom decorated honeycomb hexagonal
borophene that are different from previous results are predicted. In particular, TM
atoms are deposited over the B–B bonds of the hexagonal boron ring from both
sides, forming the TM-shrouded borophene. It is of interest to find that the new
structures are energetically more stable than those reported previously, giving
large significance for the unrevealed properties and holding great promise in
applications. On account of the charge transfer (from the metal to the boron), TM
atoms are firmly anchored on the surface and the electronic properties are altered
significantly by boron. In view of this, TM atom terminated borides with large
specific surface area and high active center density may hide the great potential as
effective catalysts toward electrochemical reactions.

In this work, 13 two-dimensional TM borides in formula of TMB2 (TM = Ti, V, Cr,
Mn, Fe, Co, Nb, Mo, Tc, Ru, W, Re, and Os) with high stability and great experimental
accessibility are explored, and the potential of these TMB2 as NRR catalysts is exam-
ined by the extensive first-principles calculations. In order to address the feasibility
of these TMB2 as NRR catalysts, three key factors are taken into account: (1) the acti-
vation of N2, (2) the energy barrier of PDS, and (3) the selectivity toward HER and
NRR [149–156]. In accordance with the preceding screening criteria, ReB2 is identi-
fied as a highly appealing catalyst toward NRR with high activity and high selectivity,
with a record-low limiting potential of −0.05 V and FE of 100%. In this work, we not
only identify an efficient NRR electrocatalyst in particular, paving a way for sus-
tainable NH3 production, but also explain the chemical and physical origin of the
activity, advancing the design principle for catalysts for various reactions in general.

In previous studies, layered OsB2 and RuB2 in bulk phase were synthesized exper-
imentally, confirming the crystal structure and lattice constants by means of the
powder X-ray diffraction [157, 158]. In this work, the predicted TMB2 structrues
are actually identical to the free-standing OsB2 and RuB2 monolayers. In analogy
to MXenes and MBenes, TMB2 could probably be exfoliated from the correspond-
ing bulk counterparts. In particular, the exfoliation of non-van der Waals materials
has been developed experimentally [159], providing new choice for obtaining new
two-dimensional structures. As shown in Figure 8.18a of the new TMB2 monolayer,
the smallest repeating unit cell is a rectangle one, containing four B and two TM
atoms. In particular, the inner borophene wrinkles like phosphorene and the tran-
sition atoms are coordinated by six boron atoms. In this work, 29 transition atoms
(3d, 4d, and 5d) were then taken into account to see the possibility to stabilize the
honeycomb hexagonal borophene, see Figure 8.19, and 13 among them were con-
firmed to be stable and form the new family of two-dimensional materials, the TMB2
(TM=Ti, V, Cr, Mn, Fe, Co, Nb, Mo, Tc, Ru, W, Re, and Os). In respect to the material
stability, it will be discussed later.

As Figure 8.18b shows, the band structure of representative ReB2 indicates that
TM borides are metallic, and the others are also metallic. It should be highlighted
that the metallicity signifies the high electric conductivity, which is necessary for the
charge transfer in electrochemical reactions. In addition, charge density difference
indicates that electrons transfer from TM atom to electron-deficient B, achieving the
stabilization of TMB2 via covalent bonds.
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Figure 8.18 (a) Optimized structure of TMB2, with the rectangle denoting the unit cell.
(b) Band structure and (c) phonon spectrum of ReB2. Source: Zhang et al. [73]. Reproduced
with permission of The Royal Society of Chemistry.
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Zhang et al. [73]. Reproduced with permission of The Royal Society of Chemistry.

In respect to the stability, phonon dispersions of these TMB2 show no imaginary
frequency over the Brillouin zone, thus confirming the dynamic stability, see
Figure 8.18c for the phonon spectrum for the representative ReB2. In Figure 8.20a,
cohesive energies are provided for 13 TMB2 calculated according to

Ecoh =
(4nEB + 2nETM − 2nETMB2

)
6n
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Figure 8.20 (a) Calculated
cohesive energy of 13 TMB2
monolayers. (b) In-plane
stiffness of the 13 stable
TMB2 monolayers. Source:
Zhang et al. [73]. Reproduced
with permission of The Royal
Society of Chemistry.
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where EB, ETM, and ETMB2
are the total energies of B atom, TM atom, and TMB2,

respectively. It can be seen that all the TMB2 structures possess larger cohe-
sive energy than MnB (4.80 eV atom−1), Mn2C (4.42 eV atom−1), and MnN2
(3.45 eV atom−1) [45], suggesting good thermodynamic stability. In consider-
ation that surface fluctuation can significantly affect the long-range order of
two-dimensional crystals, the mechanical stability of the TMB2 can be evaluated by
calculating the in-plane stiffness:

C2D =
(𝜕2Etotal∕𝜕𝜀2)

S0

where Etotal represents the total energy of TMB2, 𝜀 stands for the applied uniax-
ial strain, and S0 is the area of the optimized unit cell. In Figure 8.20b, results are
summarized. It can be found that the values (100.1–199.9 N m−1) are comparable
or even higher than that of MoS2 monolayer (125 N m−1) [24] and phosphorene
(21–92 N m−1) [25, 26], indicating that our TMB2 structures are mechanically more
stable.

As a consequence of the interaction between TM atom-d and B-p orbitals, the elec-
tronic structures of exposed metal atoms will be adjusted and then will possibly serve
as active centers for various electrochemical reactions such as HER, OER, and NRR.
It is of interest that the characteristic geometry of the TMB2 guarantees the large
reaction area and high active center density. In comparison with the defect-based
active sites, TMB2 as electrocatalysts thus indicates irresistible superiority.
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In principle, the activity of exposed metal atoms can be qualitatively evaluated by
the Fukui functions:

F+(r) = 𝜌
N+1(r) − 𝜌N (r)

F−(r) = 𝜌
N (r) − 𝜌N−1(r)

In the equations, 𝜌N + 1(r) and 𝜌N − 1(r) are the total charge densities of the system
with one extra electron and hole doped, respectively; 𝜌N (r) is that of the neutral sys-
tem. As shown in Figure 8.21a and b, Fukui functions indicate that F+(r) and F−(r)
are dominantly localized over the TM atoms, which means that the TM atoms are
ready to obtain charge from electron donors and donate charge to acceptor species,
and thus intrinsically active for NRR. It has already been identified that N2 capture,
*N2H formation, and the protonation *NH2 →*NH3 are the usuall critical steps for
an NRR process [160–164]. As the starting point for NRR, especially, N2 adsorption
and activation initiate the subsequent reduction reactions. On the catalyst surface,
N2 adsorption takes two patterns, i.e. end-on and side-on adsorption. In compari-
son to the gas-phase N2 molecule (1.11 Å), N−N bond length is elongated when N2
is adsorbed on these TMB2, indication of the effective activation. As Figure 8.21c
and d shows, charge density difference for N2 adsorption on ReB2 clearly indicates

Positive

(a) (b)

(c) (d)

Negative Positive Negative

Figure 8.21 Fukui function of (a) F+(r) and (b) F−(r) of representative ReB2; the isosurface
value is 0.001 e/Å3. Charge density difference of N2 adsorption on ReB2 in (c) end-on and
(d) side-on pattern; the isosurface value is set to 0.004 e/Å3. Electron accumulation and
depletion are shown in yellow and cyan, respectively. B, N, and Re atoms are represented by
light blue, blue, and red spheres, respectively. Source: Zhang et al. [73]. Reproduced with
permission of The Royal Society of Chemistry.
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the simultaneous charge accumulation and depletion on both N2 and TM atoms. In
particular, N2 lone-pair electrons will be donated to TM atom-d orbitals, and at the
same time TM atoms are going to transfer d electrons to N2 antibonding orbital. In
the case of ReB2, for example, Bader charge calculation indicates that about 0.32 e
and 0.62 e accumulate around N2 for end-on and side-on adsorption configurations,
respectively.

As a prerequisite for driving the NRR, N2 activation plays a crucial role in the sub-
sequent reactions (N2 → NH3). As shown in Figure 8.22a, both side-on and end-on
N2 adsorptions on all of these 13 TMB2 suggest negative Gibbs free energy change
(ΔG∗N2

< 0), demonstrating the spontaneous N2 adsorption and the effective acti-
vation of N2. It should be pointed out that moderate ΔG∗N2

is beneficial for the
overall process of electrochemical NRR. In general, the PDS usually occurs in the
first (*N2 +H+ + e– → *N2H) and the last protonation (*NH2 +H+ + e– → *NH3) of
the six hydrogenation steps. In the former case, the strong N≡N triple bond will be
broken by hydrogenation, which means that this thermodynamic process needs a
mass of energy injection. In this view, the change of Gibbs free energy in the first
protonation can be used as a descriptor to screen high-performance catalysts. In
the latter case, the conversion of stably adsorbed *NH2 to much less stable *NH3
is thermodynamically unfavorable, along with positive Gibbs free energy change. In
*NH2, the sp3 hybrid orbitals are partially occupied while fully filled in *NH3. As a
result, *NH2 tends to combine TM atom-d orbitals strongly, whereas the interaction
between *NH3 and TM atom turns out to be relatively weak. On the basis of this,
therefore, Gibbs free energy change in the last protonation can also be recognized as
a descriptor for catalytic NRR properties.

In the present work, ΔGPDS smaller than the benchmark Ru(0001) surface
(0.98 eV) [165–167] is identified as a criterion to screen out the candidates of
high-performance NRR catalysts. As shown in Figure 8.22b and c, in the case of
end-on mode, the ΔGPDS of CrB2, ReB2, and OsB2 are smaller than that of stepped
Ru(0001), while for VB2, MnB2, FeB2, CoB2, NbB2, MoB2, TcB2, RuB2, and WB2,
the ΔGPDS exceed 0.98 eV. In the case of side-on pattern, for CrB2, MnB2, FeB2,
TcB2, RuB2, ReB2, and OsB2, the ΔGPDS of the first and last protonation are smaller
than 0.98 eV, while the rest show larger ΔGPDS. It is therefore conclusive that (1)
CrB2, ReB2, and OsB2 with N2 end-on adsorption and (2) CrB2, MnB2, FeB2, TcB2,
RuB2, ReB2, and OsB2 with N2 side-on adsorption can be initially selected to further
evaluate the NRR activity.

In general, the six successive proton-coupled electron transfer reactions during the
N2 conversion to NH3 follow three typical reaction mechanisms, i.e. distal, alternat-
ing, and enzymatic [168–171]. In order to address the optimal reduction pathway, all
these possible routes are evaluated for the selected catalysts. In addition to the three
typical mechanisms, two mixed mechanisms for NRR on TMB2 are also found. It
should be emphasized that *NH3 is easily converted to NH4

+ under acidic condi-
tions and desorbs from the surface of the catalyst, which is not an electrochemical
process [172–174]. In this case, calculations for this process will not be involved.

In case of N2 end-on adsorption, one will see that the largest ΔGmax occurs in
the first protonation step (*N2 +H+ + e– → *N2H), 1.17, 0.34, and 0.89 eV for CrB2,
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Figure 8.22 (a) Gibbs free energy change of N2 adsorption on TMB2 in end-on and side-on patterns. In respect to N2 adsorption on TiB2, it transforms
spontaneously from end-on to side-on mode, while for CoB2, N2 energetically favors the end-on adsorption. Gibbs free energy change in the first
(*N2 +H+ + e– → *N2H) and the sixth protonation (*NH2 +H+ + e– → *NH3) in the NRR process for N2 (b) end-on and (c) side-on adsorption. (d) Gibbs free
energy diagram of HER on TMB2. (e) ΔG∗N2

− ΔG*H of TMB2. (f) Limiting potential for NRR (UL (NRR)) and HER (UL (HER)). Source: Zhang et al. [73].
Reproduced with permission of The Royal Society of Chemistry.
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ReB2, and OsB2, respectively. In respect to the N2 side-on pattern, it can be found
that the largest Gibbs free energy changes are 1.18, 1.30, 0.59, 0.63, 0.77, and 0.18 eV,
respectively. As for N2 side-on adsorption on ReB2, it will be discussed latter.

As a competitive reaction of NRR, HER should be effectively suppressed to achieve
high FE toward NRR [175, 176]. As shown in Figure 8.22d, the Gibbs free energy
change for HER on TMB2 indicates excessive hydrogen adsorption with more nega-
tive ΔG*H, except for FeB2 (−0.09 eV). It is interesting to note FeB2 with low overpo-
tential of 0.09 V, suggesting the promising potential as high-efficiency HER catalyst.
In the consideration that hydrogen adsorption may block the active sites, the Gibbs
free energy difference between N2 and hydrogen adsorption (ΔG =ΔG∗N2

−ΔG*H) is
compared in Figure 8.22e. In cases for RuB2 and OsB2 (side-on), postiveΔG indicates
that hydrogen adsorption is dominant, while negative ΔG for the others illustrate
good selectivity for NRR with supressed hydrogen adsorption. In Figure 8.22f, the
limiting potentials of HER and NRR are compared, with UL(NRR) > UL(HER) sug-
gesting the selectivity of TMB2 for NRR with high FE. As the applied electrode poten-
tial increases, proton and electron transfer will dramatically facilitate the hydrogen
adsorption; however, the free energy of *N2 cannot be significantly influenced due
to the absence of the proton and electron transfer in this process. In order to effec-
tively prevent the “H poisoning effect,” it is very important to accelerate the first
protonization (*N2 → *N2H) to improve the coverage of *N2. On account of this, the
Gibbs free energy difference between *H and *N2H (ΔG*H −ΔG∗N2H) is calculated to
assess the catalytic selectivity, and positive value indicates preferential hydrogena-
tion of *N2 (*N2 → *N2H) and thus good selectivity. In accordance to these screening
criteria, ReB2 can be chosen as a promising candidate electrocatalyst for NRR, with
N2 molecule adopting a side-on adsorption pattern.

In order to have an in-depth understanding on the origin of the catalytic activ-
ity of TMB2, electronic properties are evaluated. It is conclusive that TM atom-d
orbitals play a decisive role in the adsorption and activation of N2, thus the PDOS
and the crystal orbital Hamilton population (COHP) of *N2 are calculated to fur-
ther reveal the d−2𝜋* interaction, see Figure 8.23. In comparison with the free N2,
after adsorption the N2 2𝜋* orbital moves toward the Fermi level. As for CrB2, MnB2,
TcB2, ReB2, and OsB2, the antibonding orbital 2𝜋* of N2 is partially filled, indicating
weaker N≡N bonding and more efficient N2 activation. In cases of FeB2 and RuB2,
the nearly unoccupied antibonding orbital 2𝜋* reveals poor N2 activation. In addi-
tion, integrated COHP (ICOHP) as a quantitative descriptor for the activation degree
is further discussed. It is of interest to find that the activation degree of N2 decreases
as ICOHP decreases, i.e. the more negative ICOHP, the less activated N2 molecule
[177]. In agreement with above discussion, the more effective N2 activation on ReB2
can be correlated with the less nagative ICOHP of −3.02.

In addition, two linear relationships exist, the positive/negative correlation
between the excess electrons on *N2 and ICOHP/adsorption energy of *N2, with
coefficients of determination (R2) being 0.78/0.82, Figure 8.24. As the extra electrons
on *N2 increase, adsorption strength increases and N−N bonding becomes weak.
Thus, the filling of extra electrons can be used as another descriptor to describe N2
activation.
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Figure 8.23 Crystal orbital Hamilton population (COHP), integrated COHP (ICOHP), and
PDOS for *N2 on (a) CrB2, (b) MnB2, (c) FeB2, (d) TcB2, (e) RuB2, (f) ReB2, and (g) OsB2. The
vertical dashed line represents the Fermi level. Source: Zhang et al. [73]. Reproduced with
permission of The Royal Society of Chemistry.
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In this section, NRR on ReB2 following distal and mix routes have been demon-
strated, both giving rise to limiting potential of UL =−0.34 V, see Figure 8.25. In
Figure 8.26, Gibbs free energy change diagram and relevant intermediates are,
respectively, shown for NRR on ReB2 following the enzymatic pathway. It is stirring
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to find a record-low limiting potential of UL =−0.05 V, which could be a new
theoretical benchmark for NRR. In comparison with TM catalyst Re(111) surface
(with a UL =−0.50 V for NRR) [178], ReB2 shows significantly improved catalytic
activity with UL =−0.05 V, which can be attributed to the synergistic effect between
metal Re and nonmetal B species. In previous works, the bimetallic synergistic
effect was intensively discussed [179–182]. It is demonstrated in this work that the
metal–nonmetal synergistic effect also works well to significantly promote the NRR
catalytic performance in terms of controlling the adsorption configurations and
intermediate energies. In order to address the kinetic barrier, CINEB method is
employed for every protonation step, with the intermediate images being relaxed
until the perpendicular force is smaller than 0.02 eV Å−1. As shown in Figure 8.26c,
the maximum kinetic barrier is 2.17 eV for ReB2 along the enzymatic pathway,
which is obviously lower than that of previously reported Cu(111) surface of
2.57 eV [71]. It therefore confirms the thermodynamic and kinetic feasibility for
ReB2 toward N2 reduction to ammonia, in terms of low limiting potential and
moderate kinetic barrier.

In order to evaluate the selectivity, in this case, the FE is calculated to quantita-
tively describe the catalytic performance:

fNRR = 1
1 + e−𝛿G∕kBT

× 100%

where kB is the Boltzmann constant, T = 300 K, and 𝛿G is the Gibbs free energy differ-
ence between the PDS in HER and NRR. In accordance to this equation, a theoretical
FE of 100% can be obtained for ReB2, indicating the perfect selectivity for NRR.

In consideration of the effects of temperature and pressure on the catalytic perfor-
mance under realistic conditions, microkinetic modeling is employed to compute
the TOF of the NRR on ReB2. In Figure 8.27, the kinetic barriers and corresponding
transition states are shown. It can be found that the RDS occurring on ReB2 is the
hydrogenation of *N2H to *N2H2 (TS2), with a maximum kinetic barrier of 0.95 eV.
As Figure 8.26d shows, the TOF as the reaction rate of the RDS can be obtained
under the QEA [183, 184]. On the basis of the harmonic transition state theory, the
rate constant of each elementary step can be calculated by using the kinetic barriers

Figure 8.27 Kinetic barriers
for N2 conversion to NH3 on
ReB2; insets show the
transition states. Source:
Zhang et al. [73]. Reproduced
with permission of The Royal
Society of Chemistry.
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and thermodynamic Gibbs free reaction energies. As the temperature and pressure
increase, the TOF increases significantly, since high pressure/temperature is favor-
able to N2 adsorption and kinetic barrier minimization. At 700 K and 100 bar, the
TOF is calculated to be 1.24× 10−2 s−1 site−1, which is comparable to that of bench-
mark Fe3/Al2O3 catalysts [172]. In addition, AIMD simulations at 700 K lasting for
5 ps were performed to further examine the thermal stability of ReB2, and results
show that the framework of ReB2 maintains its pristine structure with negligible
distortion and the total energy fluctuates within a small range at an elevated temper-
ature of 700 K, indicative of the thermal stability. It is therefore conclusive that ReB2
with extremely fast reaction rate could be regarded as the potential NRR catalyst of
high efficiency for NH3 synthesis.

In summary, 13 TM atoms shrouded borophene of new structure with high sta-
bility and great experimental accessibility are explored through the first-principles
high-throughput screening. It is of interest that the new TMB2 monolayers with
TM atoms exposed on the surface show excellent intrinsic catalytic activity for
NRR. In line with the proposed screening strategy, ReB2 with efficient N2 activation
(ΔG∗N2

< 0), record-low energy cost (UL =−0.05 V), and high selectivity (FE=
100%) is picked out as the promising catalyst candidate for NRR. In consideration
of the effects of temperature and pressure on the catalytic performance of ReB2,
the maximal TOF calculated at 700 K and 100 bar is 1.24 × 10−2 s−1 site−1, which is
comparable to that of benchmark Fe3/Al2O3 catalysts. It can be highlighted from
this work that the intrinsic origin of N2 activation is related to the d−2𝜋* interaction,
explaining the excellent NRR activity of ReB2 in terms of ICOHP and 2𝜋* occupancy.
In comparison to defect/doping induced activity in materials, TM borides with
exposed metal atom, large specific surface area, and high active site density show
advantages as durable and efficient catalysts for specific electrochemical reactions.
It is obvious that the results not only identify an efficient NRR electrocatalyst
in particular, paving a way for sustainable NH3 production, but also explain the
chemical and physical origin of the activity, advancing the design principle for
catalysts for various reactions in general.
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