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Preface

Quantum chemistry strives to solve the molecule’s nonrelativistic

Schrödinger equation or relativistic Dirac equation for the purpose of accu-

rately understanding and predicting its diverse chemical and physical proper-

ties, including the structure, spectroscopy, and reactivity as well as the

optoelectronic and magnetic responses. Because numerous and complicated

interactions between the electrons and nuclei are involved in a molecular

system, accurately solving the quantum many-body problem is still the major

difficulty for quantum chemistry. In the past years, the developments of a

variety of post-Hartree-Fock (HF) methods [e.g., truncated configuration

interaction (CI), many-body perturbation theory (PT), and coupled cluster

(CC) approaches] built on HF mean-field single-determinant reference wave-

function have enabled electronic structure calculations with chemical accu-

racy (B1 kcal/mol) for chemical systems with hundreds of weakly correlated

electrons. Challenges arise however, when the traditional weak correlation

assumption breaks down. In many chemical problems such as bond breaking/

formation in chemical reactions and transition metal catalysis in biological

photosynthesis, there are many energetically near-degenerate frontier molec-

ular orbitals, making it impossible to approximate the electronic wavefunc-

tion by using only one leading component. In such cases, in order to

describe the strong correlations therein, all possible important determinants

or configuration state functions (CSFs) have to be first identified. For exam-

ple, the widely used complete active space (CAS) methods expand the wave-

function using all possible determinants or CSFs within an active space

constructed from a preselected set of active orbitals. Unfortunately, it is

almost impossible to obtain the exact solution for large active spaces, as the

dimension of the configuration space grows exponentially with the increase

of the system size. Nowadays, the largest exactly solvable active space is 20

electrons in 20 orbitals (20e, 20o). This greatly hindered the simulation of

many realistic chemical systems of large conjugated molecules or polynu-

clear transition metal complexes. For example, calculating the electronic

structure of the Mn4CaO5 cluster in photosystem II of photosynthetic reac-

tion or Mn12 single-molecule magnet requires at least 35 or 60 active orbi-

tals, even if only Mn 3d valence orbitals and bridging oxygen 2p orbitals are

included in the active space.
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To tackle this so-called curse of dimensionality, since its invention in

1992 by White, the density matrix renormalization group (DMRG) has been

widely known by the quantum physics community as the currently most

powerful numerical method in the study of one-dimensional (1D) strongly

correlated quantum lattices. DMRG’s extraordinarily high performance can

be ascribed to its efficient compression and localized representation of quan-

tum states in its wavefunction’s entangled matrix product state (MPS) formu-

lation or the equivalent tensor train structure in mathematics language. In

1997 DMRG was for the first time introduced into theoretical chemistry

community by Shuai et al., being utilized to solve the semiempirical quan-

tum chemical Hamiltonian for studying the excited states in conjugated poly-

mers. Later in 1999 DMRG was further applied to help the solution of ab

initio quantum chemical Hamiltonians by White and Martin. It should be

noted that the DMRG implementation in quantum chemistry is quite differ-

ent from that in condensed matter physics. The orbitals in chemical molecu-

lar systems don’t have spatial translation symmetry which is usually present

in the quantum lattice sites within the condensed matter physics models.

Another aspect is that the ab initio quantum chemical Hamiltonian has four-

center and long-range interaction terms, whereas condensed matter physics

models (like Heisenberg and Hubbard models) often have only two-center

and nearest-neighbor ones. In addition, in many cases a DMRG quantum

chemical calculation has to be done in momentum or energy space instead of

real space, because usually there is no evident 1D spatial topology for the

molecule’s active orbitals. All these issues made the application of DMRG

into quantum chemistry become highly nontrivial.

Fortunately, contributed by the continuous efforts of many quantum

chemistry groups (including Xiang, Shuai, White, Chan, Reiher, Legeza,

Zgid, Yanai, Kurashige, Wouters, Ma, et al.), DMRG has become one of the

biggest breakthroughs in quantum chemistry in the last quarter century to

tackle the challenge of simulating strongly correlated systems. DMRG is

now widely used as a benchmark reference when testing new quantum chem-

ical methods for strong electron correlation problems. It evolves from a

purely approximate full CI solver to being fully adapted to a variety of CAS

and multireference (MR) methods. Nowadays, the advanced implementation

of DMRG quantum chemistry code has greatly extended the solvable active

space size, from 20 orbitals by conventional CAS method to around 100

orbitals by DMRG. The development of post-DMRG methods by combining

DMRG with MR-CI, MR-PT, and MR-CC as well as density functional the-

ory can further include the dynamic electron correlation energy outside the

active space, making the calculation more quantitatively accurate for realistic

molecules. The incorporation of gradient and response theory also greatly

expands the application toolbox for chemical problems, capable of describing

various geometrical and spectroscopy properties. Encouragingly, in the past

few years, time-dependent DMRG (TD-DMRG) was also successfully used
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and further developed by quantum chemists to simulate the real-time nonadi-

abatic quantum dynamics in many chemical problems, ranging from model-

ing exciton dynamics in photovoltaic and photosynthetic systems to

simulating vibrationally resolved 1D and two-dimensional electronic spec-

troscopy in molecular aggregates and to handling complex problem such as

carrier and spin transport in molecular materials. Of course, DMRG quantum

chemistry still has plenty of room for development before being a robust,

user-friendly, and multifunctional method for popularizing its applications.

These include, but are not limited to, designing new post-DMRG approaches

to account dynamic correlations without using high-order n-electron reduced

density matrices, embedding DMRG, or TD-DMRG in larger chemical envir-

onments and implementing massively parallel DMRG calculations.

Aiming to present a comprehensive review and summary of the out-

standing progress in the rapidly developing DMRG quantum chemistry

field in the last quarter century and inspire new ideas for describing

strongly correlated systems, this book explores the fundamental theories

and algorithms of DMRG-based quantum chemistry approaches, detailing

recent ideas and key developments and providing an up-to-date view of the

current understanding. We notice that DMRG method was originated in

solid-state physics and only later has been transferred to quantum chemis-

try. For research scientists by conventional quantum chemistry training,

language and concepts of DMRG are usually not familiar, so there is cer-

tain learning barrier. Therefore, we try to organize the book in a pedagogi-

cal manner to facilitate the study by graduate students, to grasp the

important concepts like the relationship between DMRG algorithm and

MPS formulation, etc. We expect this book will be useful for graduate stu-

dents and researchers who are interested in developing DMRG-based meth-

ods for quantum many-body problems in chemistry or those who are

interested in using the state-of-the-art DMRG method to deal with chal-

lenging chemical problems of electronic structure and dynamics.

In this book, Chapters 1 and 2 introduce the fundamentals and concepts

of DMRG, MPS, matrix product operator (MPO), and tensor network state

as well as their relationship with quantum information theory. Most of the

techniques have been developed by quantum physicists with the special pro-

blems of quantum many-body theory in mind, which differ from those in

quantum chemistry. We point out and highlight the differences for quantum

chemists, paving the way for the more chemistry-oriented expositions in later

chapters.

In Chapters 3 and 4 the implementation schemes of DMRG for semiem-

pirical and ab initio quantum chemical Hamiltonians, the related technical

details for treating MPO constructions, implementation of symmetry, as well

as selecting and ordering active orbitals are described. As a preparation for

later chapters, we also discuss how to perform wavefunction component

analysis and compute one- and many-body RDMs.
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In Chapter 5 we introduce the methods of DMRG self-consistent field, in

which the DMRG basis (i.e., molecular orbitals) is further iteratively and

variationally optimized in a molecular environment. The algorithms for cal-

culating the gradients and the geometry and spectroscopy properties as well

as the excited states are also unraveled. Chapter 6 covers the descriptions for

various ab initio post-DMRG (DMRG-MR-CI, DMRG-MR-PT, DMRG-MR-

CC, etc.) approaches to further account for dynamic electron correlations.

The techniques to incorporate environmental effects are also briefly

discussed.

Chapters 7 and 8 discuss the DMRG methods for dynamical and real-

time properties in the frequency domain and time domain. In Chapter 7 we

will introduce the frequency-domain DMRG methods for the dynamical

response properties, including the Lanczos-DMRG, correction vector

DMRG, dynamical DMRG, and Chebyshev matrix product state. In

Chapter 8 the time-domain TD-DMRG methods for nonadiabatic quantum

dynamics are introduced. The commonly used time evolution schemes are

described. The algorithms to incorporate temperature effect, including ther-

mo field dynamics and minimally entangled typical thermal state, are also

presented. In both chapters, several applications ranging from pure electron

dynamics to vibronic dynamics are covered.

We owe a great debt of gratitude to numerous collaborators, colleagues,

and students who have helped to shape our thinking and who have provided

advices in the preparation of this book. We cannot list all their names here

because they are numerous and we are sure to miss some. But we are truly

grateful to them as some of their sights have percolated their way into this

book. A special thank should be given to Dr. Jiajun Ren, Dr. Zhen Luo, Dr.

Luis Carlos Vasquez Cardenas, Tong Jiang, Weitang Li, and Yifan Cheng

for having read various parts of the book and providing inputs. We would be

grateful to receive errata and will maintain an up-to-date list of errata on our

websites. Please feel free to contact any of the authors: haibo@nju.edu.cn

(HM), schollwoeck@lmu.de (US), or zgshuai@tsinghua.edu.cn (ZS).

Haibo Ma

Ulrich Schollwöck

Zhigang Shuai
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Chapter 1

Density matrix renormalization
group

1.1 Introduction

The density matrix renormalization group (DMRG) has its origin in the field

of strongly correlated quantum systems as they appear in condensed-matter

physics. We will set out by discussing its general framework from this per-

spective; this will allow us to understand more clearly, what makes “origi-

nal” DMRG somewhat different from DMRG as adapted to be useful for

problems in quantum chemistry. This should make the language of most

seminal DMRG papers in physics more accessible to the reader with a chem-

istry background; numerous parallel developments seem to have happened in

condensed-matter physics and quantum chemistry that could have been more

mutually fruitful if a common language existed.

In the case of DMRG, there has been a change in the way it is represented

and thought about within physics itself; roughly speaking, a point of view

anchored in statistical physics and renormalization group theory (as indicated

by the name) has given way to thinking of DMRG as predominantly (but not

exclusively) a variational method. In condensed-matter physics, the associated

change of notations and codes is comparatively easy and has been largely

achieved. It has opened the way to important new algorithmic developments,

with DMRG being (only) one of a group of algorithms. In quantum chemistry,

this transition turns out to be more complicated. The reformulation is under-

way, but a lot of the relevant literature is in the old language. The foundations

of this new approach will be covered in Chapter 2.

We set out from the N-particle time-independent Schrödinger equation

Ĥψ5Eψ. In first quantization and real-space representation, the wave func-

tion depends on 3N coordinates in space, ψðr1; . . .; rNÞ, and the Hamiltonian

reads

Ĥ52
XN
i51

h̄2

2mi

r2
i 1

1

2

XN
i 6¼j

Vðri; rjÞ: ð1:1Þ

The first term, where the operator ri acts on coordinate ri, contains kinetic
energy, which we take to be nonrelativistic. We assume that the particles
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interact through a two-body interaction V that only depends on positions. The

N particles are supposed to be electrons, identical fermions, such that the

wave function must meet the fermionic antisymmetrization requirement

ψð. . .; ri; . . .; rj; . . .Þ52ψð. . .; rj; . . .; ri; . . .Þ: ð1:2Þ
Note that we ignore spin for the moment where we are just interested in

the general structure of the problem. In order to solve the Schrödinger equa-

tion for Hamiltonian (Eq. 1.1), we start from the single-particle Hilbert-space

ℋ1
. The N-particle Hilbert-space ℋN

is then the tensor product of N single-

particle Hilbert-spaces ℋ1
,

ℋN
5 �N

i51 ℋ
1
i : ð1:3Þ

In order to proceed, we have to give bases to these spaces. In the real-

space representation, we choose a single-particle basis fφkðrÞg of ℋ1
, a

countably infinite set of square-integrable functions. No numerical approach

can handle this infinity, and we have to invoke a basis set truncation to B

basis states (B$N for N fermionic particles). The truncated basis then

induces a basis of ℋN
as the products fφk1

ðr1Þφk2
ðr2Þ. . .φkN

ðrNÞg. The most

general N-particle wave function takes the form

ψðr1; . . .; rNÞ5
X
k1...kN

ck1...kNφk1
ðr1Þ. . .φkN

ðrNÞ ð1:4Þ

which, in general, will not be antisymmetric. Antisymmetrization is imposed in

the first quantization by the introduction of Slater determinants: we choose N

out of B basis functions, indexed ðk1; . . .; kNÞ where k1 , k2 , . . ., kN . Then

Sðk1;...;kN Þðr1; . . .; rNÞ5
φk1
ðr1Þ . . . φk1

ðrNÞ
^ ^

φkN
ðr1Þ . . . φkN

ðrNÞ

������
������ ð1:5Þ

and the N-particle wave function takes the form

ψðr1; . . .; rNÞ5
X
ðk1...kN Þ

cðk1...kN ÞSðk1;...;kN Þðr1; . . .; rNÞ ð1:6Þ

where the sum now only runs over the ordered N-tuples ðk1; . . .; kNÞ. This
approach, also extended to include spins, is covered extensively in all quan-

tum chemistry literature, for instance, Szabo and Ostlund (1996). It is useful

as long as N is small and we can truncate the basis to some small B.

Ultimately, the limitation rests in the number of Slater determinants that

have nonnegligible coefficients in Eq. (1.6).

In condensed-matter physics, first quantization is often replaced by the lan-

guage of second quantization, and most of, if not all of, the literature on

DMRG uses it. This is simply because in the bulk matter NB1023, and second

quantization is often a very convenient way to work around this problem.
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We still have single-particle and N-particle Hilbert-spaces, but now we also

introduced the Fock space, the direct sum of all N-particle Hilbert-spaces,

ℱ5"N
N50ℋ

N : ð1:7Þ
(We will discuss ℋ0

in a second.) Again, we start from a single-particle

basis φkσðrÞ, where now we have introduced a spin-degree of freedom σ. In
the physics of strongly correlated systems, where DMRG originated, the

usual choice is Wannier functions φinσðrÞ5φnσðr2 riÞ: assume we have a

(say, cubic) lattice with lattice sites i, then one can construct orthonormal

functions φnσ, which are repeated identically on each lattice site. The con-

struction, whose details will not be used here, ensures thatð
d3 rφ⁎

inσðrÞφi0n0σðrÞ5 δii0δnn0 : ð1:8Þ

A basis truncation is again required, and n is limited to some small num-

ber. In many DMRG applications, like for the single-band Hubbard model,

we have a single φðrÞ, the same for spin-up and spin-down, to which we

attach spin and repeat it on lattice sites, leading to φim and φik on-site i,

which formally corresponds to an orbital in chemistry, which can accommo-

date one spin-up and one spin-down electron.

We now construct the basis of the Fock space ℱ from this single-particle

basis. Assume we have L lattice sites, so if we take one spin-up and one

spin-down Wannier function, we have 2L orthonormal basis functions and

can, therefore, accommodate up to 2L particles. We now introduce (going to

the abstract ket-notation) occupation number basis states jn1mn1k. . .nLmnLki,
indexing site (orbital) number and spin orientation; the n give the number of

electrons in these orbitals, so all niσA0; 1. The corresponding first-quantized

representation would be a Slater determinant. The most general quantum

state then reads

jψi5
X

n1mn1k...nLmnLk

cn1mn1k...nLmnLk jn1mn1k. . .nLmnLki ð1:9Þ

without fixing particle number N at the moment. Antisymmetrization is now

introduced at the level of operators, namely the creation and annihilation

operators ĉ
y
i;σ and ĉi;σ: they create or annihilate an electron with spin orienta-

tion σ at site i. Antisymmetrization is ensured by ordering the orbitals (sites)

arbitrarily and defining the action of the operators as

ĉ
y
i;σ

��n1m; n1k; . . . ; niσ; . . . ; nNm; nNk⟩
5 ð21Þn,

��n1m; n1k; . . . ; niσ 1 1; . . . ; nNm; nNk⟩
ð1:10Þ

ĉi;σ
��n1m; n1k; . . . ; niσ; . . . ; nNm; nNk⟩
5 ð21Þn,

��n1m; n1k; . . . ; niσ 2 1; . . . ; nNm; nNk⟩
ð1:11Þ
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where n, is the sum over all n “before” niσ in the ordered occupation number

state. The result is taken to be 0 if the new occupation number niσ=2f0; 1g. (We

will not prove the claims made here, but refer to any number of excellent text-

books such as Fetter and Walecka (2003) or Bruus and Flensberg (2004)).

If we define a vacuum state j[i5 j0; 0; 0;. . .i, which is in fact the only

element of ℋ0
, any state jn1mn1k. . .nLmnLki is created from it as

jn1mn1k . . . nLmnLk⟩
5 ĉ

y
1m

� �n1m
ĉ
y
1k

� �n1k
. . . ĉ

y
Lm

� �nLm
ĉ
y
Lk

� �nLk j[⟩
ð1:12Þ

(In fact, one could also start from the filled Fermi sea as reference state.

It only matters to have the signs correct and relative to each other, as global

phases do not matter.) The reason why second quantization is very attractive

is that the Hamiltonians, expressed in creation and annihilation operators,

become quite simple and fermionic antisymmetrization is taken care of auto-

matically: the kinetic energy term becomes a sum of terms where an electron

hops from site (orbital) j to site (orbital) i with some amplitude Tij; in the

language of operators, it is annihilated on site j and created on site i.

Similarly, two-body interactions, which we may think of as two electrons

being scattered out of their original states into two new ones, become sums

over two creation and two annihilation operators,

Ĥ5
X
ij;σ

Tijĉ
y
i;σĉj;σ 1

1

2

X
ijkl;σσ0

Vijklĉ
y
i;σĉ
y
jσ0 ĉlσ0 ĉk;σ; ð1:13Þ

where Vijkl is also a paramater for describing interaction strengths (assuming

that the single-particle wave functions do not depend on spin, but the gener-

alization is simple).

As interaction, we assumed the Coulomb interaction, but this is of course

more general. In addition, note the reversed order of indices in the two anni-

hilation operators in (13).

DMRG deals with states and operators in this form. Many of its applica-

tions concern variants of the Heisenberg model (only localized spin degrees

of freedom where the problem of antisymmetrization disappears) and the

Hubbard model, but many other Hamiltonians have been studied. Let us,

therefore, introduce a more generic notation: We consider a system of L sites

(orbitals) (Fig. 1.1), which have d local degrees of freedom; the states are

FIGURE 1.1 Our toy model: a chain of length L with open ends, where a spin-1
2
sits on each

site and interacts with its nearest neighbors.
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denoted jσi (in general, σ will, therefore, label more than just spin). For a

chain of L spins 1
2
, d5 2, and jσiAfjmi; jkig. The prototypical Heisenberg

Hamiltonian reads

ĤHeisenberg 5
XL21

i51

J

2
Ŝ
1

i Ŝ
2

i11 1 Ŝ
2

i Ŝ
1

i11

� �
1 JzŜ

z

i Ŝ
z

i11 ð1:14Þ

in one dimension. In a single-band Hubbard model with nearest-neighbor

hopping and on-site Coulomb repulsion, we consider (instead of one spin-up

and one spin-down orbital) a single spatial orbital that can accommodate up

to 2 electrons. Its d5 4 states are denoted by j0i, jmi, jki, jmki, empty,

with one spin-up or spin-down electron, or with one each for both spin orien-

tations. The Hamiltonian reads

ĤHubbard 52 t
XL21

i51

X
σ

ĉ
y
i;σĉi11;σ 1H:c:

� �
1U

XL
i51

n̂imn̂ik: ð1:15Þ

In general, with the exception of bosonic (in physics, mainly phononic;

in chemistry, mainly vibrational) modes, d is a small number; the bosonic

case requires special attention; ultimately, the bosonic occupation numbers

have to be limited to some maximum and convergence of results under

changes of this maximum checked. Our computational basis is then formed

by the tensor product of the L local bases of dimension d each,

jσ1σ2. . .σLi5 jσ1i � jσ2i � . . .� jσLi: ð1:16Þ
It is an orthonormal basis,

hσ01. . .σ0Ljσ1. . .σLi5 δσ0
1
;σ1
U. . .Uδσ0

N
;σN

ð1:17Þ
where the local basis states are orthogonal between sites, hσijσji5 0 for

i 6¼ j. The most general quantum state now reads

jψi5
X

σ1σ2...σL

cσ1σ2...σL
jσ1i � jσ2i � . . .� jσLi: ð1:18Þ

As antisymmetrization is taken care of at the level of operators, except

for global normalization there is no constraint on the coefficients cσ1σ2...σL
.

The obvious problem (both in first and second quantization, which is just

smart book-keeping) is the exponentially large number of expansion coeffi-

cients cσ1σ2...σL
; here dL. One idea of tackling this issue is to decimate the

basis in such a way that only those degrees of freedom that are relevant to

the problem at hand are kept. This is the fundamental idea of the renormali-

zation group method, which achieves this choice iteratively. During these

iterations, a sequence of effective Hamiltonians is generated by projecting

onto the reduced state space. The basis states of the reduced state spaces will

in general be complicated superpositions of the original computational basis
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states such that operators (local operators, n-point correlators, and so forth)

have to be transformed and projected as well. Rescaling and renormalizing

are further important steps which are, however, not important in our context.

But how do we choose the degrees of freedom to be retained?

A key renormalization group method is the numerical renormalization

group (NRG) of Wilson (1975), which is very performant in the study of the

Kondo effect for magnetic impurities in conductors and more generally of the

physics very close to the Fermi surface of solids. (The application to electronic

problems is introduced in Krishna-murthy et al. (1980) and an excellent more

recent review is Bulla et al. (2008)). Without going into the details, NRG dis-

cretizes the electronic conduction band, which contains the Fermi surface loga-

rithmically in energy space by grouping together all of the (dense) energy

levels of the band within some energy interval with an exponentially fine reso-

lution close to the Fermi energy: the width of the intervals becomes exponen-

tially small. Each of the band intervals is then associated with exactly one

Hubbard-like orbital, which can contain up to two electrons and represents all

the energy levels of the band interval within appropriate approximations: After

a sequence of astute simplifications, one finally arrives at an infinitely long

chain of Hubbard-like orbitals with exponentially decreasing nearest-neighbor

single-particle hopping as in the Hubbard model, where the hopping is, how-

ever, constant. Those close to the left end are close to the Fermi energy, and

further away if we move right. The electrons in the orbitals on sites i. 1 do

not interact: they represent the effectively free electrons of a conductor. There

is, however, a Hubbard-type U-interaction on-site i5 1, which represents the

magnetic impurity because electrons at this impurity are strongly localized

and, therefore, “see” each other.

NRG now considers the Hilbert-space formed by the left-most sites,

which have a joint computational basis jm‘i of dimension D, which we take

to be some small, manageable power of d5 4 (D5 40965 d6 or so is not

untypical) such that we begin with ‘5 logdD sites, 6 in our example. We

call these six sites together with a block. Now we add one (seventh) site,

‘1 1, with basis states jσ‘11i. Now the (old) block plus the added site is

taken to be the (new) block, with a computational basis fjm‘i � jσ‘11ig. In
this vein, we can add site after site, but then the basis explodes exponen-

tially. NRG introduces a truncation prescription to obtain a reduced

D-dimensional basis fjm‘11ig also for the new block, that is, one in d states

is retained. The choice is given by diagonalizing the Hamiltonian on the

block of ‘1 1 sites and retaining the D lowest-energy eigenstates (more pre-

cisely: those closest to the Fermi energy; in suitable mappings, these are

those lowest in energy). In the new basis, creation and annihilation operators

take new forms, so the Hamiltonian has to be transformed (and projected) as

well; as we have discarded basis state, the projection onto the new basis

involves a loss of information. (NRG has important additional scaling steps,

which need not concern us here.)
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NRG solved the Kondo problem, which had been one of the big myster-

ies of condensed-matter physics (with hindsight, not surprisingly so: it is

inaccessible to perturbative approaches) and was one of the reasons for

Wilson’s Nobel prize in 1982. Not surprisingly, it was attempted to apply

the same procedure of iterative growth of blocks of sites and decimation by

a low-energy prescription to find the ground states of one-dimensional quan-

tum systems such as the Heisenberg or Hubbard chains. This did not work

despite the superficial similarity. The logarithmic discretization procedure of

NRG, which results in exponentially decaying scales in the hopping ele-

ments, leads to an exponential separation of energy scales as one increases

the block, which makes the iterative approach possible. Both the Hubbard

and Heisenberg chain are translationally invariant, and contributions from

“further down the chain” will continue to be of the same size. DMRG grew

out of this dilemma and provided a very powerful solution.

This prehistory explains some aspects of the original formulation of

DMRG (White, 1992), which consists of two subsequent steps, the infinite-

system DMRG, which is formally quite similar to NRG (though conceptually

very different), and the finite-system DMRG, which was considered a required

add-on to improve numerical precision, but somehow not the essence of the

method (for more details see, e.g., White (1993) or Schollwöck (2005)). In the

later formulations of Chapter 2, the emphasis is completely reversed: infinite-

system DMRG is one of several conceivable warm-up procedures, while the

finite-system DMRG, with some minor modifications, is recognized to be a

variational state optimization within a constrained state space. DMRG turns

out to be highly successful for one-dimensional quantum systems, so let us

focus in the following on a one-dimensional Hubbard or Heisenberg model,

that is, electrons or spins on a chain of lattice sites.

1.2 Infinite-system density matrix renormalization group

Infinite-system DMRG starts exactly like NRG by considering an (initially)

small old block of ‘ sites to which one site is added, forming the new block,

truncating the basis. What is changed is the decimation procedure. In NRG,

one could ignore “what comes later” because of the separation of energy

scales. Here, in a typically translationally invariant Hubbard or Heisenberg

chain, we have to imagine that the old block plus one site is part of a

thermodynamically large chain. Note right away that typical problems of

quantum chemistry say the electronic structure of a molecule do not have

this important simplifying aspect. Both Tij and Vijkl are in general very com-

plicated. In thermodynamic language, the entire chain is the universe, the

block plus site the system S, and the rest of the chain the environment E. A

complete description of the system as embedded in the universe is provided

by the reduced density operator ρ̂S 5 trEjψihψj, where jψi is the state of the

universe. Diagonalization of the reduced density operator provides a basis
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for the system. The importance of the basis states is given by the associated

eigenvalues of the reduced density operator, which suggests a truncation

scheme: keep those states as new basis states, which have the largest weight.

The problem is, of course, that we do not know jψi and that the environ-

ment is thermodynamically large. We simulate it now by the best approxima-

tion we have, namely using the block and site also as the environment.

Calling the left and right blocks A and B, we obtain a (small) universe or

superblock A��B, where the bullets stand for the individual sites. It is a

chain of length 2‘1 2 for blocks of length ‘. Of course, we can imagine this

procedure also for chains where the left and right blocks are different, for

instance, because the Hamiltonian is not translationally invariant. We grow

both at the same time, one acting as the environment for the other one.

In general, states of the superblock A��B read

jψ⟩5
X

mAσAσBmB

ψmAσAσBmB
jmA⟩jσA⟩jσB⟩jmB⟩ �

X
iAjB

ψiAjB
jiA⟩ jiB⟩; ð1:19Þ

where fjσAig are the states of the left single-site and fjσBig those of the right

one.

Let us assume that we are looking for the ground state of our universe.

We approximate it by the ground state of the superblock, the nearest we get

to the universe. Ground state jψi minimizes the energy

E5
hψjĤA��Bjψi
hψjψi ð1:20Þ

with respect to the Hamiltonian of the superblock. By implementing the nor-

malization via a Lagrangian multiplier, this minimization problem is turned

into an eigenvalue problem

ĤA��Bjψi2E0jψi5 0; ð1:21Þ
where the Lagrangian multiplier E0 is then the ground state energy of the

superblock.

This is a large eigenvalue problem: in many cases, D � 1000, d5 4, and

the vector dimension is D2d2 5 163 106 in this case. There is no way to

solve it by one of the usual “direct” algorithms, which can deal with, say, up

to dimension 105. In such a case, the only way of finding the ground state

and its energy is via an iterative sparse matrix eigensolver, that is, the

Lanczos or Jacobi-Davidson algorithms. This requires that the Hamiltonian

ĤA��B can indeed be brought into sparse form, that is, if expressed as a

matrix, only a very small fraction of the matrix elements are nonzero and we

know their position. This then allows to carry out the basic and most costly

operation of iterative sparse eigensolvers, the matrix-vector multiplication

ĤA��Bjφi effectively. We will show that this is the case in a moment, and

take it for granted now.

8 DMRG-based Approaches in Computational Chemistry



The reduced D-dimensional basis fjmA�ig of the new block A� is now

determined by minimizing the distance between jψi and j ~ψi, the state jψi
projected onto the new basis, in the 2-norm. One finds a result that can also

be understood intuitively: we form the reduced density operator for A�,
ρ̂A�5 tr�Bjψihψj; ð1:22Þ

which in the untruncated product basis of A� has the matrix elements

ðρA�Þii0 5
P

jψijψ
⁎

i0j. The reduced density matrix is hermitian, and can be diag-

onalized with real nonnegative eigenvalues, which sum to 1 for normalized

jψi; the eigenvectors form an orthonormal basis. The D retained basis vec-

tors for A� are simply those eigenvectors that have the largest eigenvalues;

in other words, we keep the states with the largest statistical weight. From a

statistical physics perspective, this is very natural. B is grown at the same

time by using the same procedure. Operators have to be transformed

(approximately) into the new basis (bases), a point we will return to. This

growth procedure is repeated until the superblock has reached the final size

L, giving us an approximation to the ground state. Of course, L cannot reach

the thermodynamic limit, but usually the relevant information can already be

obtained from quite small L, say a (few) hundred sites.

Take L5 100 Hubbard sites. Then the complete basis has dimension

4100 � 1:63 1060. If D5 1000, our final basis has dimension 1:63 107,

about 1053 smaller. Why is DMRG so successful? One observes that, at least

for one-dimensional translationally invariant chains, even for moderate D

(say, a few hundred) the truncation error ε, the sum of the statistical weights

of the discarded states is only 10210 or even less at each growth step, such

that the final wave function is indeed an excellent approximation to the true

one. This is a consequence of the typically low entanglement of ground

states of one-dimensional quantum systems, which we will briefly discuss in

Chapter 2. In fact, it is numerically advantageous, perhaps a little bit more

complicated to implement, not to use D in order to control the approxima-

tion, but rather to fix a small maximally allowed ε and choose D dynami-

cally to meet this requirement. This ensures a more evenly distributed

quality of local quantities and simplifies extrapolations in ε-0, the exact

limit, if we run several DMRG runs at different ε. Most quantities can be

extrapolated easily in ε-0 but not in D (where D-N would be exact).

Let us now look at the implementation of operators, in particular, also the

Hamiltonian. For the moment, we ignore that the fermionic creation and annihi-

lation operators carry a nontrivial sign that depends on the occupation of other

sites and consider an operator Ô acting purely locally on site ‘, with matrix

elements Oσ‘ ;σ0‘ 5 hσ‘jÔ‘jσ0‘i. ‘ is the site just being added into block A. When

block A grows from ‘2 1-‘ its matrix elements read in the new block basis

hm‘jÔjm0‘i5
X

m‘21;σ‘ ;σ0‘

hm‘jm‘21σ‘ihσ‘jÔjσ0‘ihm‘21σ0‘jm0‘i: ð1:23Þ
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Here, fjm‘ig and fjm‘21ig are orthonormal bases of the blocks of length ‘
and ‘2 1. Operators that were already part of block A, also need to be

transformed:

hm‘11jÔjm0‘11⟩5
X

m‘ ;m0‘σ‘11

hm‘11jm‘σ‘11⟩ð

3 hm‘jÔjm0‘⟩hm0‘σ‘11jm0‘11⟩Þ:
ð1:24Þ

It is important to realize that the sum in Eq. (1.24) must be split as

X
m‘σ‘11

m‘11jm‘σ‘11h i3
X
m0‘

m‘jÔjm0‘
� �

m0‘σ‘11jm0‘11

� �0@ 1A24 35; ð1:25Þ

reducing the calculational load from OðD4dÞ to 2OðD3dÞ. This is also typical

of many other calculations in DMRG.

While the operators already in some block can be highly delocalized (in

fact, the block basis is delocalized and the notion of locality becomes mean-

ingless), the initial step presupposed a local operator acting on just one site

(the site being added).

In Hamiltonians, operator products ÔP̂ occur, for instance, ĉ
y
miĉi11m for

the nearest-neighbor hopping of an up-spin electron. We can also imagine a

longer-range term. Let us assume that i and i1 1 will ultimately both be in

block A. Let us ignore the fermionic sign for the moment. Then the correct

way is to obtain a block expression for ĉ
y
mi as for the Ô discussed previously.

When block A has incorporated site i, we have in the current block basis the

matrix elements

hmijĉymijm0ii ð1:26Þ
We now reach site i1 1 at the next step (or after some steps in the case

of a longer-ranged interaction). In the block-site basis ĉ
y
imĉi11m is a product

of matrix elements, which become, in the (new) block basis

hmi11jĉyimĉi11mjm0i11 i5
X

mi ;m0i ;σi11;σ0i11

hmi11jmiσi11ð ihmijĉyimjm0i⟩

3 hσi11jĉi11mjσ0i11⟩hm0iσ0i11jm0i11⟩Þ:
ð1:27Þ

In all further steps, this compound operator looks like a single-site operator.

All this looks quite cumbersome, and the notation in the MPS language of

Chapter 2 will be much simpler when being used to it.

For typical nearest-neighbor hopping/interaction Hamiltonians of

condensed-matter physics, the Hamiltonian will then always be of the form

Ĥ5 ĤA 1 ĤA�1 Ĥ��1 Ĥ�B 1 ĤB: ð1:28Þ
We see a first simplication, highly important for the use of the sparse

matrix algorithms. Naively, with a vector dimension D2d2, a matrix-vector
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multiplication would scale as the dimension squared, that is, D4d4. If we

apply Ĥ in the form just given, it is in fact largely diagonal. The most expen-

sive terms are the terms ĤA� and Ĥ�B, which, however, are diagonal in the

other block and site, respectively, such that the multiplication cost is only

D3d3. Given that Dd is often a few thousand, this speed-up is already drastic.

Even for next-nearest-neighbor hoppings/interactions, the cost remains the

same. But we can do even better, by suitable bracketing of the multiplica-

tions as before, to turn this into two operations of cost D3d2 (which usually

dominates) and D2d3.

In quantum chemistry (and of course in some applications in condensed-

matter physics), we have much longer-ranged hoppings, for instance, due to

two-operator terms Tijĉ
y
isĉjs, where s gives the magnetization (spin). In this

case, the matrix element can still be done as

hmAσAσBmBjbhABjψ⟩5 Tij
X
m0

A

½hmAjbcyisjm0A⟩
3

X
m0

B

hmBjbcjsjm0B⟩hm0AσAσBm
0
Bjψ⟩

!0@ 35; ð1:29Þ
which is a sequence of two OðD3d2Þ multiplications (instead of one naive

OðD4d2Þ calculation).
More complicatedly, we also have to consider terms like Vijlkĉ

y
isĉ
y
js0 ĉks0 ĉls,

which in condensed-matter physics usually show up when going to momentum

space (with a suitable interpretation of the labels). In quantum chemistry, these

terms are frequent and numerous (of the order L4). There are, therefore, two

questions: What is the cost of the “worst” contribution? Can we reduce the

number of terms? Again, suitable bracketing of the sums along the lines given

above reduces the cost to operations, which at worst scale as D3d2 (assuming

Dcd). The issue of reducing their number is somewhat trickier. The key idea

was developed by Xiang (1996) in the context of momentum-space DMRG,

but from a purely formal point of view (and ignoring the simplifications in a

momentum-space Hamiltonian that come from momentum conservation) the

challenge is the same as in quantum chemistry. We will postpone its discus-

sion to the finite-system DMRG algorithm to put it into the most general per-

spective, but it will turn out that a factor L2 can be gained.

In any case, the ultimate evaluation of expectation values is given at the

end of the growth procedure as

hψjÔjψ⟩5
X

mAm
0
A
σAσBmB

hψjmAσAσBmB⟩3 hmAjÔjm0A⟩hm0AσAσBmBjψ⟩
� �

: ð1:30Þ

Bracketing turns this into an operation of order OðD3d2Þ. Local operators
that happen to be on one of the sites � can be evaluated even more effi-

ciently (cost D2d3, with Dcd).
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Two very important aspects of practical implementations are still unre-

solved, but they are actually closely related: the use of quantum symmetries

and the correct implementation of the fermionic signs. Typical symmetries

are, apart from the spatial point groups (not so important in condensed-matter

applications of DMRG) and mirror symmetries, mainly the Abelian Uð1Þ sym-

metries reflecting the conservation of total particle number and magnetization.

In some cases, there is also non-Abelian SU(2) spin symmetry, but its imple-

mentation is comparatively complicated; consult the specialist literature,

such as Sierra and Nishino (1997), McCulloch and Gulacsi (2000, 2001,

2002), and Weichselbaum (2012). A huge range of these symmetries has been

used successfully in numerous applications, with the most common ones being

the two Uð1Þ symmetries of charge and magnetization conservation. In any

case, the outcome is that the Hamiltonian matrixes will decompose into blocks

with nonzero elements; the remaining parts can then be ignored in matrix-

vector multiplications. The typical speed-up is another order of magnitude or

even more; in the case of non-Abelian symmetries there are also important

savings in the value of D (think about a ð2l1 1Þ-fold degenerate angular

momentum l, where instead of 2l1 1 states jl;mi only one representative will

suffice; in practice we find that D shrinks by a factor of 4 or 5 for systems

with spin-1=2 electrons).

Let us discuss particle numbers, because they will lead us directly to the

implementation of the fermionic sign. Because of their conservation, the total

particle number, N̂5
P

in̂i, commutes with the Hamiltonian, Ĥ; N̂
	 


5 0,

such that eigenstates of Ĥ can be chosen to be eigenstates of N̂. Assume we

have N‘ particles in the chain when blocks are of size ‘. If we manage to

have that the block and site basis states have well-defined particle numbers

(which we we show how to do further below), then ψmAσAσBmB
6¼ 0 only if

NðjmAiÞ1NðjσAiÞ1NðjσBiÞ1NðjmBiÞ5N‘, as promised above, also lead-

ing to savings in memory.

Can this be achieved? In fact, this can be shown by recursion. Our

computational basis states are eigenstates of particle number; hence we can

build initial blocks A with basis states that are also such eigenstates. The

block-site basis of A� has the same property, and we have to show that this

also holds for the reduced basis formed from the eigenstates of the reduced

density operator ρ̂A�. If this is so, this property will hold throughout our cal-

culations. We can show this by demonstrating that the reduced density

matrix decomposes into blocks where all states in a block have the same par-

ticle number. As the blocks are diagonalized separately, the eigenstates will

also have the (same) well-defined particle number. To see this, we consider

ðρA�Þii0 5
P

jψijψ
⁎

i0j. The states jiAi and jjBi are particle number eigenstates,

hence NðjiAiÞ1NðjjBiÞ5N‘ 5Nðji0AiÞ1NðjjBiÞ or NðjiAiÞ5Nðji0AiÞ. Note

that it may be convenient to let N‘ grow with ‘, to maintain (for instance)

half-filling.

12 DMRG-based Approaches in Computational Chemistry



So, when adding a site � to a block A, we can immediately give the cor-

rect fermionic sign to any local creation and annihilation operators, because

for each state jmAσAi we can say how many fermions come “before” the

position on which the operators act, thus fix the sign. (Of course, if we have

spin-up and spin-down locally on a single-site, we have to define an order of

spin-up and spin-down as well, also influencing the fermionic sign).

1.3 Finite-system density matrix renormalization group

It is obvious that the idea of a small block modeling a thermodynamic

embedding has its limitations, in particular, if the Hamiltonian is not transla-

tionally invariant (so that the superblock cannot “know” what will happen

when it grows and “unexpected” new terms show up in the Hamiltonian, as

will be the case in quantum chemistry) and/or if there is a competition

between energetically close states such that there is a possibility that we start

out with the wrong state and remain trapped there. Finite-system DMRG

allows to improve the outcome of infinite-system DMRG iteratively, where

the environment is now in all cases the true environment, if we take the

chain of final size L to be the universe.

Finite-system DMRG (Fig. 1.2) continues the growth process of one of

the two blocks (say block B) at the expense of the other block (here, then,

block A) based on the same procedure: the ground state of the superblock

(now asymmetric) gives the reduced density operator for �B, such that we

can determine the truncated basis for the new block B by retaining the domi-

nant eigenstates. At the same time, one site is peeled off block A (at its right

end), such that block A becomes shorter. In the infinite-system algorithm,

we have already determined a truncated basis for this smaller block, which

FIGURE 1.2 The left (A) and right (B) half of the figure present the iterations taken in the

infinite-system and finite-system DMRG procedures respectively. In both cases, new blocks are

formed from integrating a site into a block, with a state space truncation according to the density

matrix prescription of DMRG. Whereas in the infinite-system version this growth happens on

both sides of the chain, leading to chain growth, in the finite-system algorithm it happens only

for one side at the expense of the other, leading to constant chain length.
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we reuse. B grows at the expense of A until the left end of the chain is

reached, where the growth direction is reversed: A now grows at the expense

of B, and we reuse the earlier bases of the shrinking block B. When we reach

the right end, the direction is reversed again. One pass through the chain is

called a sweep. During the sweeping, we monitor convergence and stop

when the energy converges or the changes in the wave function drop below

some threshold. The reason why energy converges to a better value is that

during sweeps we determine the bases of blocks A and B embedded in con-

tinuously improving environments (in fact, convergence analysis becomes

much clearer in the MPS language).

In practice, the number of growth steps in the sweeps will always sub-

stantially exceed the number of growth steps in the infinite-system part, such

that any improvement in performance is rewarding. As the large sparse

eigensolver is particularly time-consuming, but iterative in nature, it is

advantageous to have a good initial guess for the new ground state, following

White (1996). In the finite-system algorithm, the ground states change during

the sweeps, but not that much, in particular in the last sweeps before conver-

gence. We can, therefore, use the result of the last step in a sweep as input

for the next step. Of course, due to the shifted block-site-site-block structure,

the last ground state must first be brought into the new basis. This is approxi-

mate in two ways: on the one hand, block plus site on the growing side are

replaced by a block, on the other hand, on the shrinking side, we only have

the states spanned by the old block, less than the site-block states after undo-

ing a truncation. The approximate transformation of the result of the last step

into the shifted A��B configuration is given for a sweep to the right A�-A

and B-�B by the following transformations: With

jψ⟩5
X

m‘σ‘11σ‘12m‘12

ψm‘σ‘11σ‘12m‘12
3 jm‘⟩Ajσ‘11⟩jσ‘12⟩jm‘12⟩B

� �
; ð1:31Þ

where jm‘iA and jm‘12iB are the block states for block A comprising sites 1

through ‘ and block B comprising sites ‘1 3 through L (the label of the block

states is taken from the label of the bond their ends cut, labeling the bonds 1

through L2 1 from left to right) and a double insertion of an approximate iden-

tity Î5
P

m‘11
jm‘11⟩A Ahm‘11j and Î5

P
σ‘13m‘13

jσ‘13ijm‘13iB Bhm‘13jhσ‘13j
we get

jψ⟩5
X

m‘11σ‘12σ‘13m‘13

ψm‘11σ‘12σ‘13m‘13
3 jm‘11⟩Ajσ‘12⟩jσ‘13⟩jm‘13⟩B

� �
; ð1:32Þ

with

ψm‘11σ‘12σ‘13m‘13
5

X
m‘σ‘11m‘12

ψm‘σ‘11σ‘12m‘12
3 hm‘11ja‘σ‘11⟩hm‘13σ‘13jm‘12⟩

� �
:

ð1:33Þ
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The basis transformations required in the last equation are all available

from previous steps in the DMRG procedure. A similar operation can be car-

ried out for a sweep to the left.

Another possible speed-up, which combines nicely with the prediction

presented here, is to start with a relatively small basis dimension D and

increase it during sweeps (or similarly, reduce the tolerated truncated weight

ε). Then the algorithm does not spend too much time in those sweeps where

the state is not yet very good and changes a lot, and goes to large bond

dimensions for the almost converged states. When this prediction was

invented, it took some ingenuity; as we will see, it is already present within

the MPS formalism of Chapter 2. This is one example where a more ade-

quate notation does a lot of work for us.

At this point, let us return to the issue of an efficient construction of an

Hamiltonian. We already discussed how two-site operators such as in hop-

ping terms can be built “on the fly” and also updated during the building of

new blocks. During the finite-system DMRG, we also shrink blocks; as we

do not want to (and need not to) reconstruct the expressions for the two-site

operators for the shrunken blocks, we store them when they are built for a

given block, to be reused later when a block shrinks back to that size. This

means that we will store OðLÞ versions of each (two-site) operator. In the

most general case of long-range hopping (as is the case in quantum chemis-

try), where there are OðL2Þ two-site operators, this means storing OðL3Þ
operators. This problem becomes even more pressing in the case of four-site

operators as they appear in quantum chemistry: we have to store OðLÞ ver-
sions of OðL4Þ such operators, that is, a staggering OðL5Þ such operators. For

a matrix dimension D, total memory consumption would be OðL5D2Þ on disk

for all blocks and OðL4D2Þ in RAM for the current block. At the same time,

for each of the L steps of a sweep, calculation time would be of order

OðL4D3Þ, or OðL5D3Þ for the entire calculation, as each of these operators

has to be applied to the state when calculating Hjψi. This sounds forbidding.
Memory consumption as well as the associated calculation time can, how-

ever, be reduced drastically using a book-keeping first put forward by Xiang

(1996) in the context of momentum-space DMRG where, formally, a short-

ranged Hamiltonian in real-space becomes “long-ranged” in momentum

space and contains numerous four-“site” operators. Let us consider the three

possible operator distributions on blocks A and B (ignoring the somewhat

simpler cases where up to two of the four operators sit on the sites ��, but
the procedure described below generalizes and becomes simpler in those

cases):

(a) Four operators in one block (say 4 in A): Terms Vijklĉ
y
i ĉ
y
j ĉlĉk (spin

indices are absorbed into the notation, they do not change anything to the

argument) are absorbed into a single block Hamiltonian operator during

block growth. Assuming i, j, l are in the previous block and site k is added

to form the current block, a representation of ĉ
y
i ĉ
y
j ĉl in the previous block
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basis allows to form Vijkl 3 ĉ
y
i ĉ
y
j ĉl 3 ĉk in the block plus site product basis,

which is then transformed into the basis of the current block and added into

the single block Hamiltonian operator. For L blocks, OðL3Þ representations
each of ĉ

y
i ĉ
y
j ĉl are necessary. These, in turn (and this is the important step)

can be compounded into complementary operators

Ôk 5
X
ijl

Vijklĉ
y
i ĉ
y
j ĉl; ð1:34Þ

so that X
ijkl

Vijklĉ
y
i ĉ
y
j ĉlĉk-

X
k

Ôkĉk: ð1:35Þ

The complementary operators (effectively three-site operators) can be

constructed as discussed for two-site operators, assuming the knowledge of

two-operator terms ĉ
y
i ĉ
y
j . For L blocks, OðL2Þ of those exist, leading to mem-

ory consumption OðL3D2Þ on disk and OðL2D2Þ in RAM at each step.

(b) Three operators in one block, one in the other (say 3 in A, 1 in B):

One applies the strategy of Eqs. (1.34) and (1.35), with Ôl and ĉl acting on

different blocks.

(c) Two operators in a block, two in the other one: Again, the comple-

mentary operator technique can be applied, with the modification that each

complementary operator living on block A has now two matching operators

in B. A further class of complementary operators

Ôkl 5
X
ij

Vijklĉ
y
i ĉ
y
j ð1:36Þ

allows the simplificationX
ijkl

Vijklĉ
y
i ĉ
y
j ĉlĉk-

X
kl

Ôklĉlĉk: ð1:37Þ

Memory consumption for the second type of complementary operator is

OðL3D2Þ on disk and OðL2D2Þ in RAM. Taking all operator combinations

together, global memory consumption is to leading order OðL3D2Þ on disk

and OðL2D2Þ in RAM, which is a reduction by L2 compared to the naive esti-

mate in the beginning.

Using the complementary operator technique, calculation times are domi-

nated by the terms under (c). In analogy to the construction of (a)-terms

“on the fly” by generating the new terms of the sum, transforming them and

adding them into the operator, the Okl can be constructed at a computational

expense of OðL3D2Þ for generating the L new terms to be added to each of

the L2 complementary operators with M2 matrix elements each and OðL2D3Þ
for transforming the L2 operators into the current basis. Multiplying the
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Hamiltonian to the state vector costs OðL2D3Þ time at each step (by arranging

it as a sequence of two multiplications as in Eq. (1.29)) or OðL3D3Þ per
sweep. Global calculation time per sweep is thus OðL3D3Þ1OðL4D2Þ, a

reduction by L2 for the dominant first term (typically, DcL for the relevant

DMRG applications). These reductions are absolutely crucial in making

DMRG work for quantum chemistry problems; even with them, they present

the major bottleneck in DMRG applications: L, the number of orbitals,

will due to this bottleneck typically only be in the two-digit range, whereas

L can easily be taken to 1000 or so for the short-ranged Hamiltonians of

condensed-matter physics.

Let us conclude by reconsidering the growth and sweeping procedures.

It is, of course, suggestive to use the maximum environment (a block plus a

site), as we did (adding further single sites is numerically just very costly

and takes us down the exponential road toward exact diagonalization)—but

why should we not go the other way and reduce the number of sites from

two to one (so we get A�B both in the growth and sweeping part)? In terms

of statistical physics, the environment would be somewhat smaller, but on

the other hand the numerical cost would go down by a factor of d (mainly in

the large sparse eigensolver; for example, the application of ĥ to a state in

Eq. (1.29) would then lead to OðD3dÞ operations), which for the Hubbard

model would be 4. Algorithmically, this so-called single-site DMRG algo-

rithm requires only minor modifications to the procedures just described. In

fact, the single-site DMRG algorithm is the natural algorithm to emerge in

the following Chapter, which presents algorithms based on matrix-product

states. There are, however, obvious disadvantages to it, which is why it is

not used in an unmodified form in the case of matrix-product states, either.

In the infinite-system algorithm an obvious disadvantage is that superblock

lengths oscillate between odd and even, which affects ground state properties

in many translationally invariant condensed-matter Hamiltonians (but this

would not matter so much in quantum chemistry); in the finite-system algo-

rithm the question of the relative merits is much more interesting and will be

discussed in the next Chapter. It will turn out that, if unmodified, the single-

site algorithm prevents DMRG from finding the optimal distribution of the D

block eigenstates among the total magnetization or number of particles of

block states, such that the ground state search will not end up in the global

minimum.

The preceding discussion has highlighted the fundamental ideas of

DMRG, set up the basic algorithms for the search of ground states, and dis-

cussed where condensed-matter and quantum chemistry applications differ

most in how they use DMRG. Of course, there are many details left out and

the experience gained from by now certainly many thousands of papers using

DMRG. For more on this, we refer to the comprehensive reviews of

Schollwöck (2005) and Schollwöck (2011).
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Schollwöck, U., 2011. The density-matrix renormalization-group in the age of matrix-product

states. Ann. Phys. 326, 96. Available from: https://doi.org/10.1016/j.aop.2010.09.012.

Sierra, G., Nishino, T., 1997. The density matrix renormalization-group method applied to inter-

action round a face Hamiltonians. Nucl. Phys. B 495, 505. Available from: https://doi.org/

10.1016/S0550-3213(97)00217-4.

Szabo, A., Ostlund, N.S., 1996. Modern quantum chemistry. Place: Dover, Mineola, NY.

Weichselbaum, A., 2012. Non-abelian symmetries in tensor networks: A quantum symmetry space

approach. Ann. Phys. 327, 2972. Available from: https://doi.org/10.1016/j.aop.2012.07.009.

White, S.R., 1992. Density matrix formulation for quantum renormalization-groups. Phys. Rev.

Lett. 69, 2863. Available from: https://doi.org/10.1103/PhysRevLett.69.2863.

White, S.R., 1993. Density-matrix algorithms for quantum renormalization-groups. Phys. Rev. B

48, 10345. Available from: https://doi.org/10.1103/PhysRevB.48.10345.

White, S.R., 1996. Spin Gaps in a Frustrated Heisenberg Model for CaV4O9. Phys. Rev. Lett.

77, 3633. Available from: https://doi.org/10.1103/PhysRevLett.77.3633.

Wilson, K.G., 1975. The renormalization group: Critical phenomena and the Kondo problem.

Rev. Mod. Phys. 47, 773. Available from: https://doi.org/10.1103/RevModPhys.47.773.

Xiang, T., 1996. Density-matrix renormalization-group in momentum space. Phys. Rev. B 53,

10445. Available from: https://doi.org/10.1103/PhysRevB.53.R10445.

18 DMRG-based Approaches in Computational Chemistry

http://refhub.elsevier.com/B978-0-323-85694-2.00007-3/sbref1
http://refhub.elsevier.com/B978-0-323-85694-2.00007-3/sbref1
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1071/PH00023
https://doi.org/10.1080/09500830110040009
https://doi.org/10.1209/epl/i2002-00393-0
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/S0550-3213(97)00217-4
https://doi.org/10.1016/S0550-3213(97)00217-4
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevLett.77.3633
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevB.53.R10445


Chapter 2

Tensor network states: matrix
product states and relatives

As in the previous chapter, let us look at wavefunctions of the type

jψ⟩5
X

σ1σ2...σL

cσ1σ2...σL
jσ1⟩� jσ2⟩� . . .� jσL⟩ ð2:1Þ

in second quantization. At the moment, we make no assumption about an

underlying structure, such as a specific lattice, we just have degrees of free-

dom. These might be localized electronic states on a lattice in condensed

matter physics or delocalized orbitals in quantum chemistry. Again, we

assume that jσii is one of d different states (so we have d degrees of free-

dom). The exponential complexity of the many-body quantum state is hidden

in the coefficients cσ1σ2...σL
; of which there are dL. One approach to make

this problem tractable is to read the coefficients cσ1σ2...σL
as the entries of a a

tensor of rank L, represented as in Fig. 2.1, and to decompose this high-rank

tensor into low-rank tensors. (Historically this approach has been taken up

much more in quantum chemisty than in physics.) The point of a decomposi-

tion into lower-rank tensors is that contraction schemes scale with the tensor

ranks. For instance, the contraction of two vectors (rank 1) scales as d, when

the indices run from 1 through d. The contraction of two matrices (rank 2)

scales as d3, if we contract over one index (i.e., perform a matrix multiplica-

tion). Ultimately, we want to replace a high-rank tensor by a number of

(cheaper) contractions over many low-rank tensors. Yet, as such, this

FIGURE 2.1 A high-rank tensor cσ1σ2 ...σL
.
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approach does not yet offer any computational advantage because such

decompositions involves contractions over new indices which connect the

various tensors, and these indices may run over very large ranges; it has to

be combined with suitable approximation schemes, which curtail these

ranges. We will proceed in two steps, first, we will discuss the possible

decomposition schemes and second, we discuss the possible approximation

schemes, which we work out for the most widely used (and least complex)

decomposition scheme.

2.1 Tensor decompositions

A very simple approach is to think of the coefficients cσ1σ2...σL
as the entries

of a (rectangular, not necessarily quadratic) matrix Ψ. Assuming that the

ðσ1. . .σ‘Þ and ðσ‘11. . .σLÞ are the multiindices of the rows and columns of Ψ,
we can invoke a singular value decomposition (SVD) to replace the initial

tensor by two tensors of lower rank.

2.1.1 Singular value decomposition

Singular value decompositions (SVDs) are among the most versatile tools of

linear algebra. For an arbitrary matrix M of dimensions ðNA 3NBÞ SVD pro-

vides us with a decomposition

M5USVy; ð2:2Þ
where

� U is of dimension ðNA 3min ðNA;NBÞÞ and has orthonormal columns (the

left singular vectors), that is, UyU5 I; if NA #NB, U is unitary, hence

also UUy5 I.

� S is of dimension ðmin ðNA;NBÞ3min ðNA;NBÞÞ, diagonal with non-

negative entries Saa � sa. These are the so-called singular values. The

number r of nonzero singular values is the (Schmidt) rank of M. In the

following, we assume descending order: s1 $ s2 $ . . .$ sr . 0:
� Vy is of dimension ðmin ðNA;NBÞ3NBÞ and has orthonormal rows (the

right singular vectors), that is, VyV 5 I. If NA $NB, V is unitary and also

VVy5 I.

This is schematically shown in Fig. 2.2.

= =

FIGURE 2.2 Resulting matrix shapes from a singular value decomposition (SVD), correspond-

ing to the two rectangular shapes that can occur. The singular value diagonal serves as a

reminder that in M5USVy S is purely non-negative diagonal.
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Applied to ψ, we obtain

ψðσ1...σ‘Þ;ðσ‘11...σLÞ5
X
a‘

Aσ1...σ‘
a‘

sa‘
~B
σ‘11...σL

a‘
� Aσ1...σ‘

a‘
Bσ‘11...σL

a‘
; ð2:3Þ

that is, two tensors of rank ‘1 1 and L1 12 ‘ each, which are contracted

over the “bond index” or “auxiliary index” a‘. We have arbitrarily multiplied

the singular values into the right tensor, but this is not mandatory. Note that

the superscript vs. subscript notation does not imply contra- or covariant

transformation properties. We just keep auxiliary “bond” indices as sub-

scripts and physical indices as superscripts to keep them distinct.

Graphically, we can represent the decomposition as in Fig. 2.3.

If we look at Eq. (2.3), we see that we have not really gained anything,

as was already hinted at above: as the result of an SVD, a‘ runs over the

same number of values as the smaller of the two multiindices. If we set

‘5 L=2, we see that a‘ runs over dL=2, that is, exponentially many values.

For a tensor decomposition to be useful, there must be a physical argument

why we can restrict ourselves to a much smaller number of values and a

method for identifying them.

2.1.2 Frequently encountered tensor decompositions

Before we look at this problem, let us consider further tensor decompositions

for a quantum state. Generically, they (or the states represented in this form)

are called tensor network states (TNSs). In practice, they are not obtained

by SVDs or higher-order generalizations. One rather writes down (often

graphically) a structure that one believes to be relevant, uses this as an ansatz

employed in some algorithm (like a ground-state search for a given

Hamiltonian, or a time-evolution based on some Hamiltonian), which then

determines the tensors.

A first class of such decompositions is shown in Fig. 2.4 (top); the first

one (which can be obtained by a sequence of SVDs, chopping off one index

after another starting with σ1) provides us with a sequence of matrices

Mσi
ai21ai

(in reality rank-3 tensors, but we read the physical index as a matrix

1 2 ℓ

ℓ

1 2… ℓ

…

ℓ+1

ℓ

ℓ+1…

…

ℓ

FIGURE 2.3 Decomposition of the high-rank tensor cσ1σ2 ...σL
into two lower-rank tensors

Aσ1σ2 ...σ‘
a‘

and Bσ‘11σ‘12 ...σL
a‘

, which are contracted over the index a‘. The decomposition is achieved

by an SVD.
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label), which are contracted over the bond indices ai to give the coefficients

of a quantum state. The convention is to draw the bonds horizontally and the

physical indices vertically. This decomposition is called a matrix product

state (MPS) and is the simplest and most widely used one. While the tensor

networks discussed in the following all share the same type of operations

carried out on them, they find there simplest and least cumbersome imple-

mentation for the MPS, which is why will focus on them later. The generali-

zations are usually conceptually straightforward, but much harder to

implement from a purely practical perspective. MPS has a very long history

in physics; after a long prehistory in statistical physics (Baxter (1982)’s well-

known book on exactly solved models in statistical mechanics is essentially

couched in terms of MPS-like structures; for early work see also, for

instance, Baxter (1968)), they entered quantum physics through the work on

the Affleck�Kennedy�Lieb�Tasaki model (Affleck et al., 1987, 1988) and

its extensions (for important early work see, for instance, Fannes et al., 1989,

1992; Klümper et al., 1993). Their relationship to DMRG as invented by

White (1992, 1993) was recognized early on by Ostlund and Rommer

(1995), Nishino (1995), Dukelsky et al. (1998) and Takasaki et al. (1999).

The insight that MPS opens the way to more powerful algorithms than

DMRG because of some conceptual differences and clear notational advan-

tages took hold around 2004, mainly in the context of the development of

time-evolution methods (Vidal, 2003, 2004; Daley et al., 2004; Verstraete

et al., 2004), see also Schollwöck (2005), and by the end of the first decade

1 2 …

…
1 2 −1

1 2

FIGURE 2.4 Frequently used decompositions of wave function coefficients I. Top: matrix

product state (MPS), bottom: projected entangled-pair state (PEPS). Vertical legs correspond to

physical degrees of freedom.
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of this millennium a panoply of algorithms for ground state searches, time

evolution, and thermal physics had been developed, see Schollwöck (2011)

and Paeckel et al. (2019) for reviews. The same mathematical structure was

reinvented under the name of tensor trains (TTs) by Oseledets (2011) by

which it seems to be more widely known in quantum chemistry.

The MPS decomposition is very reminiscent of a one-dimensional lattice

where each Mσi
ai21ai

corresponds to a local description of the wave function.

This immediately suggests higher-dimensional generalizations adapted to the

lattice structure. The second decomposition in Fig. 2.4 shows a PEPS (pro-

jected entangled-pair state) for a two-dimensional square lattice as intro-

duced by Verstraete and Cirac (2004) (see also earlier work by Nishino et al.

(2001), which at its time found not as much resonance). Further generaliza-

tions are immediately obvious; the rank of the tensors is z1 1, where z is the

coordination number of the lattice; for the square lattice it is 41 1. In quan-

tum chemisty, PEPS-like decompositions are of reduced importance, because

quantum chemistry problems usually are not blessed by the simple neighbor-

hood notions of condensed matter problems.

Of more relevance in quantum chemistry is another decomposition, a

TTNS (tree tensor network state), shown in Fig. 2.5 (top). Each tensor has

1

2

3

4

1

2

3

4

FIGURE 2.5 Frequently used decompositions of wave function coefficients II. Top: tree tensor

network state (TTNS), bottom: three-legged tree tensor network state (T3NS). Vertical legs cor-

respond to physical degrees of freedom.
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one physical and three non-physical legs, formally a coodination number

z5 3, which is between a one-dimensional and a two-dimensional system,

but there is no clear interpretation of the structure as a lattice. These struc-

tures were pioneered by Shi et al. (2006) and Murg et al. (2010). We will

return to discuss why this might be an interesting tensor network.

One can consider even more general tensor network states where some ten-

sors contain no physical leg, as shown in Fig. 2.5 (bottom). This network is an

extension of the TTNS: at the price of (roughly) doubling the number of ten-

sors, the number of legs per tensor has gone down to three, either three auxil-

iary ones for auxiliary tensors (empty circles) or two auxiliary and a physical

one for physical tensors (full circles), as before. This is, of course, motivated

by the hope to trade expenses in contraction (which goes with the number of

legs) for the number of tensors. This ansatz introduced by Gunst et al. (2018)

is referred to as a three-legged tree tensor network state (T3NS).

We may wonder: (1) MPSs provide the simplest structure and are per-

fectly capable of representing any quantum state. Indeed, they are the most

widely used TNSs; one can even identify the optimal contraction scheme.

Why not just use them for any problem? The answer to this question is inti-

mately related to quantum entanglement, which will also point us to a trun-

cation scheme to reduce the index range of the bond indices. (2) Also, why

might it make sense to propose a TTNS or T3NS which does not even match

a lattice structure? The answer to this question points to subtle issues of

numerical stability and conditioning (and algorithmic scaling).

2.2 Schmidt decomposition and quantum entanglement

We reconsider the application of a SVD to a pure quantum state jψi of the
beginning of this Chapter. Let us group the sites (or orbitals) into two groups

A and B. Typically, the sites of a group will be chosen to be adjacent in some

sense, but there is no need for that. State jψi on AB can then be written as

jψ⟩5
X
ij

ψijji⟩Ajj⟩B; ð2:4Þ

where fjiiAg and fjjiBg are arbitrary orthonormal bases of A and B with dimen-

sion NA and NB respectively. We call them block bases to distinguish them

from the specific bases formed by the tensor products of the local bases. Again,

we read the coefficients as entries of a matrix Ψ. From this representation we

can derive the reduced density operators ρ̂A 5 trBjψihψj and ρ̂B 5 trAjψihψj,
which expressed with respect to the block bases take the matrix form

ρA 5ΨΨy; ρB 5ΨyΨ : ð2:5Þ
They can be diagonalized. Their eigenvalues are the weights given to the

projectors on the associated eigenstates in the mixed state that describes the
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state of A and B; in fact, this takes us directly back to the density matrix

renormalization group. If we carry out instead an SVD of matrix Ψ 5USVy

in Eq. (2.4), we obtain

jψ⟩5
X
ij

Xmin ðNA;NBÞ

a51

UiaSaaV
⁎

jaji⟩Ajj⟩B

5
Xmin ðNA;NBÞ

a51

X
i

Uiaji⟩A
 !

sa
X
j

V⁎

jajj⟩B
 !

5
XminðNA;NBÞ

a51

saja⟩Aja⟩B:

ð2:6Þ

Due to the orthonormality properties of U and Vy, the sets fjaiAg and
fjaiBg are orthonormal and can be extended to be (new) orthonormal bases

of A and B. Without any approximation, we can restrict the sum to run only

over the r#min ðNA;NBÞ positive nonzero singular values. This yields the

Schmidt decomposition

jψ⟩5
Xr
a51

saja⟩Aja⟩B ð2:7Þ

which can be formulated for any state; no assumption was made. The sa are

then called the Schmidt coefficients. The Schmidt decomposition allows

to read off explicit expressions for the reduced density operators for A

and B introduced above very conveniently: carrying out the partial traces,

one finds

ρ̂A 5
Xr
a51

s2aja⟩A A⟨aj; ρ̂B5
Xr
a51

s2aja⟩B B⟨aj; ð2:8Þ

showing that they share the non-vanishing part of the spectrum, but not the

eigenstates (which makes sense, A and B are different parts of the system).

The density matrix eigenvalues are the squares of the singular values,

wa 5 s2a, the respective eigenvectors are the left and right singular vectors.

We now look at the Schmidt decomposition in two different ways. It is

a simple property of an SVD that the optimal approximation of a matrix

M5USVy (rank r) by a matrix M0 (with rank r0, r) in the Frobenius

norm OMO2F 5
P

ijjMijj2 (induced by the inner product hMjNi5 trMyN) is

given by

M05US0Vy with S05 diag ðs1; s2; . . .; sr0 ; 0;. . .Þ; ð2:9Þ
that is, one sets all but the first r0 singular values in the SVD of M to be zero

(and in numerical practice, will shrink the column dimension of U and the

row dimension of Vy accordingly to r0). Now the distance between two

matrices in the Frobenius norm corresponds to the distance between two
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quantum states jψi, jψ0i in the 2-norm if we organize the state coefficients

into matrices Ψ , Ψ 0 as before:

Ojψ⟩O22 5
X
ij

jΨ ijj2 5 OΨO2F : ð2:10Þ

(Note that this holds if and only if the sets fjiig and fjjig are orthonormal,

which is the case here.) The optimal approximation to a quantum state jψi
with r Schmidt coefficients by an (unnormalized) quantum state jψ0i with r0

Schmidt coefficients is therefore given by taking the Schmidt decomposition

of jψi, and only keep the r0 largest singular values, setting the rest to zero,

j ψB ⟩5
Xr0
a51

saja⟩Aja⟩B; ð2:11Þ

j ~ψi is then normalized to yield jψ0i. The corresponding restriction of

the basis sizes for A and B makes this a numerically useful approximation.

This truncation prescription (keep the largest singular values) is exactly

equivalent to the DMRG truncation prescription (keep the largest density

matrix eigenvalues).

An alternative way of looking at the Schmidt decomposition is to observe

that the von Neumann entropy of the mixed states on A and B, well-known

from statistical physics, can be read off directly from it,

SAðjψ⟩Þ52 tr ρ̂Alog2ρ̂A

52
Xr
a51

s2alog2s
2
a

52 tr ρ̂Blog2ρ̂B 5 SBðjψ⟩Þ:
ð2:12Þ

Note that they are the same, whatever A and B are, because the von

Neumann entropy only uses the squared singular values (density matrix

eigenvalues). One possible way of quantifying quantum entanglement is now

given by the “von Neumann entropy of entanglement”, which is defined

to be the usual statistical entropy of the subsystems A and B entangled with

each other,

SAjBðjψiÞ52 tr ρ̂Alog2ρ̂A 52
Xr
a51

s2alog2s
2
a: ð2:13Þ

It is obvious that r5 1 corresponds to product states jiiAjjiB (which also

results from a single-determinant Hartree-Fock calculation) and r. 1 to

entangled states. Entangled states, in the quantum chemistry language, are

“beyond Hartree-Fock” and therefore of decisive interest.

A state can be well approximated if the spectrum fsag decays rapidly, that
is, if there are only very few singular values of appreciable size, so that the

rest can be dismissed. This information is not so easily obtained and depends
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on details. On the other hand, the von Neumann entropy of entanglement will

also be low if the spectrum fsag decays rapidly; so we can take entanglement

as a proxy for the approximability of a quantum state in a restricted basis.

(While this is not an exact statement, see Schuch et al. (2008), it is true for

practical purposes; in quantum chemistry, only few of the mathematical state-

ments derived rigorously in quantum physics are relevant, as they are not suf-

ficiently generic.) In physics, a large number of results have been obtained on

the entanglement in typical states. If we consider a bipartitioning A j B where

AB is in the thermodynamic limit and A of size LD, with D the spatial dimen-

sion, the so-called area laws (see Bekenstein, 1973; Srednicki, 1993; Callan

and Wilczek, 1994; Plenio et al., 2005; Eisert et al., 2010) predict that for

ground states of short-ranged Hamiltonians with a gap to excitations entangle-

ment entropy is not extensive, but proportional to the surface, that is,

SðAjBÞBLD21, as opposed to thermal entropy. This implies SB cst. in one

dimension and SBL in two dimensions. At criticality, a much richer structure

emerges: in one dimension, S5 c1 c
6
log2L1 k; where c and c are the (an)holo-

nomic central charges from conformal field theory (Vidal et al., 2003; Latorre

et al., 2004); in two dimensions, bosonic systems seem to be insensitive to

criticality (i.e., S~ L), see Srednicki (1993) and Barthel et al. (2006), whereas

fermionic systems get a logarithmic correction S~ Llog2L for a one-

dimensional Fermi surface (with a prefactor proportional to its size), but seem

to grow only sublogarithmically if the Fermi surface consists of points

(Barthel et al., 2006; Gioev and Klich, 2006). It should be emphasized that

these properties of ground states are highly unusual: in the thermodynamic

limit, a random state out of Hilbert space will indeed show extensive entangle-

ment entropy with probability 1. Between two D-dimensional state spaces for

A and B, the maximal entanglement is log2D in the case where all eigenvalues

of ρA are identical and D21 (such that ρA is maximally mixed); meaning that

one needs a state of dimension 2S and more to encode entanglement S prop-

erly. This implies that for gapped systems in one dimension an increase in

system size will not lead to a strong increase in the required D; in two dimen-

sions, DB2L, such that the compression of a quantum state as indicated by an

SVD will fail even for relatively small system sizes, as resources have to grow

exponentially (this however does not exclude very precise results for small

two-dimensional clusters or quite large stripes). Obviously, this argument

implicitly makes the cavalier assumption that the eigenvalue spectrum is close

to flat, which leads to maximal entanglement, such that an approximate esti-

mation of D can be made. In practice, the spectrum is dictated by the problem

and indeed far from flat: it is in fact usually exponentially decaying. But

numerically, it turns out that for standard problems in physics the scaling of

the resource D is predicted correctly on the qualitative level.

From the perspective of quantum chemistry, the discussion of entanglement

presents itself in a different way. First, quantum chemistry Hamiltonians are

usually inherently long-ranged in the sense that the underlying basis states of
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chemistry are often highly delocalized which means that the Coulomb interac-

tion makes all orbitals “talk” to all other ones. Unlike in a crystalline solid,

there is no obvious notion of neighborhood. This means that most of the physi-

cists’ insights about entanglement are not very relevant as they rely on short-

rangedness. Second, there is a different notion of neighborhood which is

somehow implicit in physics and which was first put to use by Legeza and

Solyom (2003) [for many illustrative examples, see also Szalay et al. (2015)]:

one considers single orbitals i, j as A (and all L2 1 other orbitals as B), such

that one can define entanglement entropies Si and Sj. Considering both orbitals

i and j together as A (and all L2 2 other orbitals as B), gives an entanglement

entropy Sij. The mutual information Iij:5 Si 1 Sj 2 Sij is then a measure

how close neighbors i and j are in terms of the quantum state considered.

Numerically, it turns out to be advantageous to keep such orbitals close to each

other, so that no cut AjB leads to more entanglement than necessary. In phys-

ics, this is simply done by mapping the lattice to the graph of the tensor net-

work. In quantum chemistry, the mutual information between pairs of orbitals

usually generates a much more complex pattern of connectivity, and one can

use elaborate schemes, for instance the analysis of the Fiedler vector, to reorder

orbitals such that it is as localized as possible (see Legeza and Solyom, 2003).

This approach of course requires that a low-accuracy calculation (in a sense

to be explained below) at low cost gives us the necessary information to carry

out the expensive high-accuracy calculation with optimally arranged orbitals.

Finally, the fact that quantum chemistry Hamiltonians are usually much more

complex than those of condensed matter physics means that quite a lot of

algorithmic complication comes from the expensive representation of the

Hamiltonian in tensor network language, rather than the state itself.

2.3 Matrix product state

2.3.1 Building matrix product state

The generic form of a matrix product state, as shown in Fig. 2.4, is

jψ⟩5
X
σ1...σL

Mσ1

1;a1
. . .MσL

aL-1;1jσ1⟩� . . .� jσL⟩ ð2:14Þ

The tensors are contracted over all auxiliary legs.

Even an approximate MPS is still a linear combination of all states of the

Hilbert space, no product basis state has been discarded. The limiting con-

straint is rather on the form of the linear combinations: instead of dL coeffi-

cients, dL matrices of dimension ðD3DÞ with a matrix-valued normalization

constraint that gives LD2 scalar constraints have ðd2 1ÞLD2 independent

parameters only, generating interdependencies of the coefficients of the state.

(Note that we ignore that the first and last matrix are in fact vectors, as they

have only one auxiliary leg to the right or left.) The quality of the optimal
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approximation of any quantum state by an MPS with fixed matrix dimen-

sions ðD3DÞ will improve monotonically with D: take D,D0, then the best

approximation possible for D can be written as an MPS with D0 with

ðD3DÞ submatrices in the ðD03D0Þ matrices and all additional rows and

columns zero. They give further parameters for improvement of the state

approximation.

Given jψi via coefficients cσ1σ2...σL , the exact representation of jψi by an

MPS is not unique. There are multiple gauge degrees of freedom in this repre-

sentation, for each pair of sets of adjacent matrices independently. Consider

two such sets fMσig and fMσi11g. They must have the same number D of col-

umns (for site i) and rows (for site i1 1) respectively. Take now any invertible

ðD3DÞ-dimensional matrix X and insert 15XX21 at the link between sites i

and i1 1. The state is unchanged, and you can absorb X into the matrices as

Mσi-MσiX; Mσi11-X21Mσi11 ð2:15Þ
The gauge degrees of freedom are crucially important, mainly for two

reasons. (1) Certain iterative procedures to build MPS automatically choose

a particular choice of gauge (or, in fact, one out of two), which we will call

left-canonical and right-canonical. (2) These particular gauges present huge

numerical advantages in actual computations so are always enforced.

Imagine you are considering a polymer, modeled by a Pariser-Parr-Pople

(PPP) model. We have a one-dimensional sequence of building units (which

we call sites); each of them has the same d electronic degrees of freedom.

If we increase the polymer length by one site, ‘2 1-‘, as illustrated in

Fig. 2.6, the Hilbert space grows by a factor of d, which leads to the well-

known exponential growth. Imagine now that some insight has provided you

with a Hilbert space of dimension D which contains the relevant degrees

of freedom for describing the polymer of length ‘2 1 - we call this polymer

“left block A” to connect to our language used above. The orthonormal basis

states are fja‘21iAg; hence there is a Dd-dimensional basis of the polymer of

length ‘, fja‘21iA � jσ‘ig. Now imagine once again that there is some insight

which allows you to truncate this basis to only D states fja‘iAg. Entirely
independent of the insight, we have

ja‘⟩A 5
X
a‘-1σ‘

A⟨a‘-1σ‘ja‘⟩Aja‘-1⟩Ajσ‘⟩ ð2:16Þ

ℓ−1

ℓ − 1 ℓ1

ℓ ℓ

ℓ1

FIGURE 2.6 A block of length ‘2 1 is grown towards the right to a block of length ‘ by

adding a site ‘.
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for these states. To make contact to the MPS notation, we introduce at site ‘
d matrices Aσ‘ of dimension ðD3DÞ each, one for each possible local state

jσ‘i, such that Eq. (2.16) becomes

ja‘⟩A 5
X
a‘-1σ‘

Aσ‘
a‘-1;a‘ ja‘-1⟩Ajσ‘⟩ ð2:17Þ

where the elements of the matrices Aσ‘ are given by (see Fig. 2.7).

Aσ‘
a‘21;a‘

� Aha‘21σ‘ja‘iA: ð2:18Þ
Now the fja‘21iAg can be expressed in the same way by the fja‘22iAg and

jσ‘21i. Going all the way back to a polymer of length 1, we have

ja‘⟩A 5
X

a1;a2;...;a‘-1

X
σ1;σ2;...;σ‘

Aσ1

1;a1
Aσ2

a1;a2
. . .Aσ‘

a‘-1;a‘ jσ1⟩jσ2⟩ . . . jσ‘⟩

5
X
σiAA

ðAσ1Aσ2 . . .Aσ‘ Þ1;a‘ jσ1⟩jσ2⟩ . . . jσ‘⟩; ð2:19Þ

where i runs through all the sites of block A. This construction looks as in

Fig. 2.8 with the rule that all connected legs are summed over (contracted).

Similarly, we can build blocks (which we call B) to grow towards the left

instead of to the right (Fig. 2.9). Ultimately we get

ja‘⟩B 5
X
σiAB

ðBσ‘11 . . .BσLÞa‘11;1jσ‘11⟩ . . . jσL⟩; ð2:20Þ

where i runs from ‘1 1 to L, the sites of block B. (Note that we label block

states according to the bond at which they terminate: bond ‘ connects sites ‘
and ‘1 1, where block B contains site ‘1 1.)

ℓ

ℓ−1 ℓ
ℓ

ℓ−1 ℓ

FIGURE 2.7 Graphical representation of general MPS-matrices M: the left diagram represents

Mσ‘
a‘21 ;a‘

, the right diagram the conjugate Mσ‘⁎
a‘21 ;a‘

. The solid circle represents the lattice sites, the

vertical line the physical index, the horizontal lines the matrix indices.

1 ℓ

ℓ

FIGURE 2.8 Graphical representation of the recursive construction of a state ja ‘i by contrac-

tion (multiplication) of A-matrices. Contractions run over all connected legs.
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As we demand that all bases are orthonormal bases, the construction

imposes conditions on the A- and B-matrices, namelyX
σ

AσyAσ 5 I ðleft2 normalizedÞ ð2:21Þ

and X
σ

BσBσy5 I ðright2 normalizedÞ ð2:22Þ

This follows from Eq. (2.17)

δa0‘ ;a‘5A⟨a
0
‘ja‘⟩A

5
X
σ0‘ ;σ‘

X
a0‘21;a‘21

Aσ0‘⁎
a0‘21;a0‘A

σ‘
a‘21;a‘ A⟨a

0
‘21σ0‘ja‘21σ‘⟩A

5
X
σ‘

X
a‘-1

A
σ‘y
a0‘ ;a‘-1A

σ‘
a‘-1;a‘

5
X
σ‘

ðAσ‘yAσ‘ Þa0‘ ;a‘ :

ð2:23Þ

A graphical representation is provided in Fig. 2.10. The multiplication

can also be interpreted as the contraction of A (B) and A� (B�) over both σ
and their left (right) index.

If we put together a polymer of length L from a block A of length ‘ (units
1 to ‘) and a block B of length L2 ‘ (units ‘1 1 to L), within our basis

ℓ+1

ℓ + 1 ℓ + 2

ℓ+1ℓ

ℓ + 1

FIGURE 2.9 A block B of length L2 ‘2 1 is grown towards the left to a block B of length

L2 ‘ by adding site ‘1 1.

ℓ

ℓ
′

=

FIGURE 2.10 If two left-normalized A-matrices are contracted over their left index and the

physical indices, a δa0‘ ;a‘ line results. Similarly, if two right-normalized B-matrices are contracted

over their right index and the physical indices, a δa0‘ ;a‘ line results (no picture).
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truncations the most general state reads

jψ⟩5
X
a‘ ;a0‘

ψa‘ ;a0‘ ja‘⟩Aja0‘⟩B

5
X
σ
ðAσ1 . . .Aσ‘ Þ1;a‘ψa‘ ;a0‘ ðBσ‘11 . . .BσLÞa0‘ ;1jσ⟩

ð2:24Þ

with jσ i � jσ1;σ2; . . .;σLi or even simpler

jψ⟩5
X
σ

Aσ1 . . .Aσ‘ΨBσ‘11 . . .BσL jσ ⟩: ð2:25Þ

If we multiply Ψ either into the adjacent A- or B-matrices, we arrive at an

MPS as introduced before, but in a somewhat peculiar form, a so-called

mixed-canonical MPS,

jψi5
X
σ

Aσ1 . . .Aσ‘Mσ‘11Bσ‘12 . . .BσL jσ i: ð2:26Þ

where here Ψ has been multiplied to the adjacent B-matrices. In a mixed-

canonical MPS, we have a sequence of A-matrices, then on one site, which is

called the orthogonality center, a general M-matrix, followed by a sequence of

B-matrices. This concoction looks a bit weird (why not make all matrices of

the A- or B-type?) but in fact is the numerically useful and practical one.

One advantage of this representation is that we can immediately relate to

our earlier discussion of the Schmidt decomposition. In Eq. (2.25), carrying

out the sums over all σi and multiplying all matrices together, except the two

multiplications involving Ψ , gives a state

jψ⟩5
X
a‘ ;a0‘

Ψa‘ ;a0‘ ja‘⟩Aja0‘⟩B; ð2:27Þ

where the states on the right form orthonormal sets. An SVD on

Ψa‘ ;a0‘ 5USVy puts this into the form of a Schmidt decomposition; multiplying

U and Vy into the adjacent A and B-matrices does not change orthonormality.

We can therefore immediately identify the best truncation of matrix dimen-

sions at bond ‘ from S, and also identify the size of the error incurred.

This argument can in fact be generalized from the approximation incurred by

a single truncation to that incurred by L2 1 truncations, one at each bond, to

reveal that the error is at worst (Verstraete and Cirac, 2006).

Ojψi2 jψtrunciO22 # 2
XL
i51

εiðDÞ; ð2:28Þ

where εiðDÞ is the truncation error (sum of discarded squared singular

values) at bond i incurred by truncating down to the leading D singular

values from an exact representation of the state.
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2.3.2 Overlaps, expectation values and matrix elements

Let us now turn to operations with MPS, beginning with the calculation of

overlaps and expectation values. We consider an overlap between states jψi
and jφi, described by matrices M and ~M, and focus on open boundary

conditions.

Taking the adjoint of jφi, and considering that the wave function coeffi-

cients are scalars, the overlap reads

hφjψi5
X
σ

~M
σ1⁎. . . ~M

σL⁎

Mσ1 . . .MσL : ð2:29Þ

Transposing the scalar formed from the ~M. . . ~M (which is the identity

operation), we arrive at adjoints with reversed ordering:

hφjψi5
X
σ

~M
σLy. . . ~M

σ1y
Mσ1 . . .MσL : ð2:30Þ

In a pictorial representation (Fig. 2.11), this calculation becomes much

simpler, if we follow the rule that all bond lines are summed over. To evalu-

ate the above expressions most efficiently we arrange them as

⟨φjψ⟩5
X
σL

~M
σLy . . .

X
σ1

~M
σ1y

Mσ1

 !
. . .

 !
MσL ð2:31Þ

which we evaluate from inside to outside. From the second step onwards the

complexity does not grow anymore. Matrix multiplications ABC are done

efficiently as ðABÞC or AðBCÞ. Then we are carrying out ð2L2 1Þd multipli-

cations, each of which is of complexity OðD3Þ. The total operation count is

weakly polynomially complex, namely OðLD3dÞ. One can show that fully

left- or right-normalized states are automatically normalized to 1.

Consider hφj�iÔ
½i�jψi, tensored operators acting on individual sites i. In

practice, all except one or two of these operators will be identity operators,

1 4 7 10

2 5 8

3 6 9

FIGURE 2.11 Overlap between two states jφi and jψi with indication of the optimal sequence

of contractions, running like a zipper through the chain.
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as one is mainly concerned with the calculation of local expectation values

or two-site correlators. We adapt the previous calculation of overlaps of

inserting the operators at the appropriate places and turn the single sums

over σi into double sums over σi;σ0i where there is no identity:X
σ ;σ 0

~M
σ1⁎. . . ~M

σL⁎

Oσ1;σ01?OσL;σ0LMσ01 . . .Mσ0L

5
X
σL ;σ0L

OσL ;σ0L ~M
σLy . . .

X
σ1;σ01

Oσ1;σ01 ~M
σ1y

Mσ01

 !
. . .

 !
Mσ0L

This amounts to the same calculation as for the overlap, with the exception

that formally the single sum over the physical index turns into a double sum

(Fig. 2.12). The operational count is then roughly OðLD3dÞ again, because

operations Oðd2Þ occur only on the one or two sites with a non-trivial operator.

2.3.3 Adding two matrix product states

For MPSs

jψ⟩5
X
σ

Mσ1 . . .MσL jσ⟩; jφ⟩5
X
σ

~M
σ1 . . . ~M

σL jσ ⟩ ð2:32Þ

we can write down

jψi1 jφi5
X
σ

Nσ1 . . . NσL jσ i ð2:33Þ

where

Nσi 5Mσi" ~M
σi : ð2:34Þ

except on sites 1 and L, where the matrices degenerate into row and column

vectors. They are correctly treated by forming a row vector ½M ~M� and a col-

umn vector ½M ~M�T on the last sites, from the row and column vectors of the

original states. Addition of MPS leads to new matrices with dimension

DN 5DM 1D ~M , such that MPS of a certain dimension are not closed under

addition. Often the increase in matrix size is wasteful, as the states may share

local basis states. So after additions it is worthwhile to consider compressing the

MPS again to some lower dimension, at possibly very little loss of information.

O O

FIGURE 2.12 Matrix elements between two states jφi and jψi are calculated like the overlap,

with the operators inserted at the right places, generating a double sum of physical indices there,

as indicated by the arrows.
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2.3.4 Bringing a matrix product state into canonical form

For a general matrix product state, no particular demands are placed on the

matrices Mσi except that their dimensions must match appropriately. Certain

classes of matrices are to be preferred, namely left- and right-normalized

matrices, leading to left- and right-canonical MPS: certain contractions

become trivial, orthonormal reduced bases are generated automatically.

In order to bring an arbitrary MPS to canonical form we exploit that

SVD generates either unitary matrices or matrices with orthonormal rows

and columns which can be shown to obey the left- or right normalization

condition.

2.3.4.1 Generation of a left-canonical MPS

Setting out from a general MPS, without normalization assumption, making

the contractions explicit,

jψi5
X
σ

X
a1;...

Mσ1

1;a1
Mσ2

a1;a2
Mσ3

a2;a3
. . .jσ i ð2:35Þ

we reshape Mσ1

1;a1
by grouping physical and left (row) index to carry out an

SVD on the new M, yielding M5ASVy:X
σ

X
a1;...

Mðσ1;1Þ;a1M
σ2

a1;a2
Mσ3

a2;a3
. . . jσ⟩

5
X
σ

X
a1;...

X
s1

Aðσ1;1Þ;s1Ss1;s1V
y
s1;a1

Mσ2

a1;a2
. . . jσ ⟩

5
X
σ

X
a2;...

X
s1

Aσ1

1;s1

X
a1

Ss1;s1V
y
s1;a1

Mσ2

a1;a2

 !
Mσ3

a2;a3
. . . jσ ⟩

5
X
σ

X
a2;...

X
s1

Aσ1

1;s1
~M
σ2

s1;a2
Mσ3

a2;a3
. . . jσ ⟩: ð2:36Þ

As AyA5 I due to SVD, after reshaping to Aσ1 , left-normalization holds

for Aσ1 . The remaining two matrices of the SVD are multiplied into Mσ2 ,

such that a new MPS with ~M
σ2

s1;a2
5
P

a1
Ss1;s1V

y
s1;a1

Mσ2
a1;a2

is generated.

Now the procedure can be iterated: ~M
σ2

s1;a2
is reshaped to ~Mðσ2;s1Þ;a2 (Fig. 2.13),

singular value decomposed as ASVy, generating Aðσ2;s1Þ;s2 , reshaped to a left-

normalized Aσ2
s1;s2

. The right two matrices of the SVD are again multiplied into the

{ }, ,
1 2 3

1

2

3

FIGURE 2.13 For canonization, sets of matrices on a given site are brought together in a single

matrix.

Tensor network states: matrix product states and relatives Chapter | 2 35



next ansatz matrix, and so forth. After the last step, left-normalized matrices

Aσi
si21;si

live on all sites. S1;1ðVyÞ1;1, a scalar as AσL is a column vector, survive at

the last site, but this scalar is nothing but the norm of jψi. We may keep it sepa-

rately if we want to work with non-normalized states.

The same argumentation holds also for the generation of a right-canonical

MPS, where we start from the right. We observe that if we have, say, a right-

canonical MPS BBBBBBBBB and start to turn it into a left-canonical one

starting from the left end, we have at all times a mixed-canonical MPS

AAAAMBBBB, depending on how far we have progressed. Each iteration of

the procedure shifts the orthogonality center by one, which will be a very use-

ful building block for the ground state search algorithm.

2.3.5 Approximate compression of an MPS

Many operations on MPS (like applying operators) may lead to a (substan-

tial) increase in MPS matrix dimensions, so it becomes necessary to

approximate optimally a given MPS with matrix dimensions ðD0i 3D0i11Þ by
another MPS with matrix dimensions ðDi 3Di11Þ, where Di ,D0i. (In prac-

tice, one often rather keeps the Di variable and imposes an acceptable loss

of accuracy which determines their value, and has to terminate the calcula-

tion if this implies matrix dimensions that can no longer be handled effi-

ciently.) Two standard procedures are available, compression by SVD and

variational compression. Compression by SVD is very simple: while bring-

ing a state into canonical form, as described above, we move through a

sequence of Schmidt decompositions of the quantum state, which allows us

to truncate matrices by retaining only the Di largest singular values. For

small degrees of compression, DBD0, SVD is fast, but it is never optimal;

it becomes very slow if D0cD, as follows from a detailed count of opera-

tions. It is non-optimal because a one-sided interdependence of truncations

occurs: as we walk through the chain, for each SVD decomposition trunca-

tions of the A- and B-matrices affect the orthonormal systems, but the

dependence is one-sided and “unbalanced”: if we move through the state

from right to left, for instance, truncations further to the left depend on

those to the right, but not vice versa. If the truncation is small, the intro-

duced additional inaccuracy is minor; problems arise for cases where large

truncations may occur.

Variational compression is optimal, but depends on a reasonably good

trial compressed state to be efficient. Generally, issues of getting stuck in a

non-optimal compression may arise in the variational ansatz. For details,

see Schollwöck (2011) and references therein; the fundamental idea is to

minimize Ojψ⟩-j ~ψ⟩O2 5 ⟨ψjψ⟩-⟨ ~ψjψ⟩-⟨ψj ~ψ⟩1 ⟨ ~ψj ~ψ⟩ with respect to j ~ψi,
the trial compressed state. This is done iteratively by moving through the

matrices ~M
σi

site by site, optimizing them (to minimize the distance) while
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keeping all others constant. Minimizing the distance becomes quite easy

when the states are always kept in the mixed-canonical form with the orthog-

onality center being the site on which one currently optimizes the matrices;

this effectively avoids the solution of a large sparse linear equation system

which would otherwise arise.

After moving back and forth through all matrices several times, the proce-

dure converges to the optimal compressed state. In order to assess conver-

gence, we can monitor at each step Ojψi2 j ~ψiO2, and observe the

convergence of this value; if necessary, D has to be increased. The calculation

of the norm distance may seem costly, but isn’t. If we keep j ~ψi in proper

mixed canonical form, one finds, due to the left- and right-normalization prop-

erties of A- and B-matrices, that

Ojψi2 j ~ψiO2 5 12
X
σi

tr ð ~Mσiy ~M
σi Þ; ð2:37Þ

which is easy to calculate. The subtracted sum is just h ~ψj ~ψi; at the end, this

allows us to normalize the state j ~ψi by simple rescaling. The danger that var-

iational compression gets stuck in a non-global minimum is often (but not

always) successfully dealt with by considering two sites (and the associated

matrices) at the same time, by analogy to two-site DMRG, for optimization.

This is somewhat slower and not absolutely optimal, but exactly for that rea-

son the algorithm is less likely to get stuck.

2.3.6 Good quantum numbers

Finally, let us discuss how a matrix product state can exploit good quantum

numbers. Let us focus on magnetization and assume that the global state has

magnetization M. This Abelian quantum number is additive, M5
P

iMi. We

choose local bases fσig whose states are eigenstates of local magnetization.

Consider now the growth process from the left. If we choose the states ja1i
to be eigenstates of local magnetization (e.g., by taking just the jσ1i), then
Eq. (2.16) allows us to construct by induction states ja‘i that are eigenstates

of magnetization, provided the matrices Aσ‘
a‘21;a‘

obtain a block structure such

that for each nonzero matrix element

Mðja‘21iÞ1Mðjσ‘iÞ5Mðja‘iÞ ð2:38Þ
holds. This can be represented graphically easily by giving directions to the

lines of the graphical representation (Fig. 2.14), with ingoing and outgoing

arrows. The rule is then simply that the sum of the magnetizations on the

ingoing lines equals that on the outgoing lines. In order to enforce some

global magnetization M, we may simply give magnetization values 0 and M

to the ingoing and outgoing dummy bonds before the first and after the

last site. We may envisage that the indices of the MPS matrices are multiin-

dices for a given magnetization allowing degeneracy, leading to elegant
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coding representation. An inversion of the bond arrows would directly tie in

with the structure of B-matrices from the growth from the right, but proper

book-keeping gives us lots of freedom for the arrows: an inversion means

that the sign has to be reversed.

In order to use good quantum numbers in practice, they have to survive

under the typical operations we carry out on matrix product states. It turns

out that all operations that are not obviously unproblematic and maintain

good quantum numbers can be expressed by SVDs. An SVD will be applied

to matrices like Aðai21σiÞ;ai . If we group states jai21σii and jaii according to

their good quantum number, A will consist of blocks; if we rearrange labels

appropriately, we can write A5A1"A2". . .5U1S1V
y
1"U2S2V

y
2". . . or

A5USVy where U5U1"U2". . . and so forth. But this means that the

new states generated from jai21σii via U will also have good quantum num-

bers. When the need for truncation arises, this property of course still holds

for the retained states.

This discussion can be extended to the substantially more difficult non-

Abelian case, where the SU(2) group is the most relevant one. Pioneered in

the DMRG case by Sierra and Nishino (1997) and McCulloch and Gulacsi

(2000, 2001, 2002), it was extended to the MPS formalism by several

groups, for instance McCulloch (2007) and Weichselbaum (2012).

2.4 Matrix product operator

If we consider the form of an MPS, it is a natural generalization to write

general operators as

Ô5
X
σ ;σ0

Wσ1σ01Wσ2σ02 . . .WσLσ0L jσ ⟩⟨σ0j; ð2:39Þ

where we now have ingoing and outgoing physical legs. We represent

MPOs like MPSs, but we now have two vertical lines, one down, one up,

for the ingoing and outgoing physical state in W (Fig. 2.15). The complete

MPO itself then looks as in Fig. 2.16. If we want to use good quantum

numbers, the methods for MPS translate directly. As for MPS, that the

total sum of ingoing and outgoing quantum numbers must be equal, or

1

0

FIGURE 2.14 Representation of an open boundary condition MPS with good (additive) quan-

tum numbers. Physical states and bonds become directed, such that the quantum numbers on the

ingoing lines equal those on the outgoing lines. For the dummy bonds before the first and after

the last site we set suitable values to fix the global good quantum number.
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MðjσiiÞ1Mðjbi21iÞ5Mðjσ0iiÞ1MðjbiiÞ, where we interpret the bond labels

as states for the notation.

By analogy to states, any operator can be brought into the form of

Eq. (2.39), because it can be written as

Ô5
X

σ1; . . . ;σL

σ01; . . . ;σ0L

cðσ1...σLÞðσ01...σ0LÞjσ1; . . . ;σL⟩⟨σ01; . . . ;σ0Lj

5
X

σ1; . . . ;σL

σ01; . . . ;σ0L

cðσ1σ01Þ...ðσLσ0LÞjσ1; . . . ;σL⟩⟨σ01; . . . ;σ0Lj
ð2:40Þ

which is like a state, but with a double index σiσ0i instead of σi.

As for MPS, we have to ask how we operate with them and how they can

be constructed in practice. As it turns out, most operations run in perfect

analogy to the MPS case. The construction will be exemplified by the

Hamiltonian, which represents the most complex case.

ℓ

ℓ−1 ℓ

ℓ
′

1

1

1
′

−1

′

(i) (ii) (iii)

FIGURE 2.15 Elements of a matrix product operator: (i) a corner matrix operator W
σ1σ01
1;b1

at the

left end of the chain; (ii) a bulk matrix operator W
σ‘σ0‘
b‘21 ;b‘

; (iii) a corner operator W
σLσ0L
bL21 ;1

at the

right end: the physical indices points up and down, the matrix indices are represented by hori-

zontal lines.

ℓ

ℓ
′

1

1
′ ′

FIGURE 2.16 A matrix product operator acting on an entire chain: the horizontal matrix indi-

ces are contracted, and the MPO is ready to be applied to an MPS by simple contraction of verti-

cal (physical) indices.
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2.4.1 Applying an MPO to an MPS

The application of a matrix product operator to a matrix product state runs as

Ôjψ⟩5
X
σ ;σ 0
ðWσ1;σ01Wσ2;σ02 . . .ÞðMσ01Mσ02 . . .Þjσ ⟩ 5

X
σ

Nσ1Nσ2 . . .jσ ⟩

where

Nσi

ðbi21;ai21Þ;ðbi ;aiÞ5
X
σi0

W
σiσi0
bi21bi

Mσi0
ai21ai

: ð2:41Þ

This can be shown by making the matrix-matrix multiplication explicit

and rearranging the sums. The application of an MPO to an MPS leaves the

form of the MPS invariant, at the prize of an increase in matrix size: the new

MPS dimension is the product of that of the original MPS and that of the

MPO (Fig. 2.17). This typically requires a subsequent compression, using the

methods previously discussed. As shown by Stoudenmire and White (2010),

some practical advantages can be gained by compressing at the same time as

applying the MPO.

2.4.2 Adding and multiplying MPOs

Operations with MPOs follow very much the lines of MPS. If we consider

the addition of two operators, Ô and P̂, that have MPO representations Wσiσ0i

and ~W
σiσ0i , then the resulting MPO is formed exactly as in the case of MPS,

by the direct sum Wσiσ0i" ~W
σiσ0i for all sites 1, i, L, with the same special

rules for sites 1 and L. In essence, we (again) just have to consider σi and σ0i
as one “big” physical index.

1

1

FIGURE 2.17 A matrix product operator acting on a matrix product state: matching physical

(vertical) indices are contracted, a new matrix product state emerges, with multiplied matrix

dimensions and product structure in its matrices.
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The “multiplication” of two operators, Q̂5 P̂Ô, can be read off directly

from the graphical representation: we contract over the outgoing leg of Ô

and the ingoing leg of P̂; as in the case of the application of an MPO to an

MPS, the dimension of the auxiliary legs (the matrix dimensions) multiply:

if we label the matrices of the operators by Q, P and O, the rule is

Q
σiσ0i
ð ~bi21bi21Þ;ð ~bibiÞ5

X
σ0 0

i

P
σiσ0 0i
~bi21 ~bi

O
σ0 0iσ

0
i

bi21bi
: ð2:42Þ

Hence, MPO dimensions simply multiply as for tensors. If we consider

an MPS as an MPO with dummy indices in one physical direction, the rule

for applying an MPO to an MPS follow as a special case.

2.5 Ground state calculations with MPS

2.5.1 The basic algorithm

The ground state jψ0i of some Hamiltonian Ĥ minimizes

E5
hψjĤjψi
hψjψi ð2:43Þ

with ground state energy E0. The required energy minimization (44) can be turned

into a Lagrangian multiplier problem, where the expression to be minimized is

hψjĤjψi2λhψjψi; ð2:44Þ
the Lagrangian multiplier λ enforces normalization. Minimization in hψj
leads to

Ĥjψi2λjψi 5! 0; ð2:45Þ
an eigenvalue problem where the lowest eigenvalue λ is the ground state

energy E0 and the associated eigenstate the ground state jψ0i. We want to

find the optimal approximation to this state in the form of an MPS where the

largest allowed matrix dimension is D (and of course we want to know E0).

This is most efficiently done by a variational optimization of a trial MPS.

This requires the representation of Ĥ as an MPO; let us assume for the

moment we have it in the form

Ĥ5
X
σ ;σ 0

Wσ1σ01Wσ2σ02 . . .WσLσ0L jσ ⟩⟨σ 0j: ð2:46Þ

We start with an initial guess for the MPS representation of the ground

state (for the moment think about it as a normalized random MPS with

suitable matrix dimensions. The expression in Eq. (2.44) can be represented

graphically as in Fig. 2.18. Minimization with respect to hψj is replaced by

minimization with respect to the MMMMMMM structure of the MPS. Now
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the matrices (and their unknown elements) are multiplied together, yielding a

multi-linear optimization problem. It is a standard procedure to formulate

this as a sequence of linear optimization problems. We keep the matrices on

all sites but one (‘) constant and consider only the matrix entries Mσ‘
a‘21a‘

on

site ‘ as variables. Then the variables appear in Eq. (2.44) only in quadratic

form; the determination of the extremum becomes a linear algebra problem.

The new choice of the Mσ‘
a‘21a‘

will lower the energy, and yield a variationally

better state, but of course not the optimal one. Now one continues to vary

the matrix elements on another site for finding a state again lower in energy,

moving through all sites multiple times, until the energy does not improve

anymore. The question is, of course: do we pick the matrices randomly?

How often do we have to revisit each matrix until we have found the varia-

tional optimum, that is, the MPS ground state approximation?

The answer to the first question is: we move back and forth through the

sequence of matrices, and throughout the procedure always keep the MPS in

a mixed-canonical representation, where the orthogonality center is chosen

to be the site ‘ where the matrix sits, which is currently being optimized.

Let us work out the contractions of Eq. (2.44) expressed by MPS and first

consider the calculation of the overlap, while keeping the chosen Mσ‘ in the

MPS explicit. We find

hψjψi5
X
σ‘

X
a‘21a‘

X
a0‘21a

0
‘

ΨA
a‘21;a0‘21

Mσ‘⁎

a‘21;a‘
Mσ‘

a0‘21
;a0‘
ΨB
a‘ ;a‘0

; ð2:47Þ

where

ΨA
a‘21;a0‘21 5

X
σ1...σ‘21

ðMσ‘21y. . .Mσ1yMσ1 . . .Mσ‘21Þa‘21;a0‘21 ð2:48Þ

ΨB
a‘ ;a0‘ 5

X
σ‘11...σL

ðMσ‘11 . . .MσLMσLy. . .Mσ‘11yÞa0‘ ;a‘ : ð2:49Þ

In the case where sites 1 through ‘2 1 are left-normalized and sites ‘1 1

through L right-normalized, which is the case if we maintain the appropriate

mixed-canonical representation with the orthogonality center at site ‘ the

normalization conditions lead to a further simplification, namely

ΨA
a‘21;a0‘21 5 δa‘21;a0‘21 ; ΨB

a‘a0‘ 5 δa‘a0‘ ð2:50Þ

− ×

FIGURE 2.18 Network to be contracted to obtain the functional to be extremized to find the

ground state and its energy. The left-hand side represents the term hψjĤjψi, the right-hand side

the squared norm hψjψi.
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and the overlap calculation collapses to

hψjψi5
X
σ‘

X
a‘21a‘

Mσ‘⁎

a‘21;a‘
Mσ‘

a‘21;a‘
: ð2:51Þ

Let us now consider hψjĤjψi, with Ĥ in MPO language. We can immedi-

ately write

hψjĤjψi5
X
σ‘ ;σ0‘

X
a0‘21a

0
‘

X
a‘21a‘

X
b‘21;b‘

L
a‘21;a0‘21

b‘21
W

σ‘ ;σ0‘
b‘21;b‘

R
a‘ ;a0‘
b‘

Mσ‘⁎

a‘21;a‘
M

σ0‘
a0‘21;a

0
‘
ð2:52Þ

where L and R are the contractions over the objects shown in Fig. 2.19.

These contractions can be evaluated efficiently just as for any expectation

value of a product of operators acting on all sites, moving through the graph

vertical slice by vertical slice from left to right for L and from right to left

for R. The contraction of three tensors is, as always, most efficiently orga-

nized as a sequence of two contractions. Now we can of course rebuild L

and R for each choice of site ‘. This involves an enormous amount of unnec-

essary work if we choose the sites ‘ randomly. If, instead, we move through

the chain of sites one by one from right to left or vice versa, we can use (let

us concentrate on the case where we move from left to right) that the

M-matrices changed in the following way when we were at site ‘2 1 in the

step before:

� The matrices on sites 1 through ‘2 2 do not change at all.

� The matrices on site ‘2 1 change.

� The matrices on sites ‘ through L do not change at all.

If, from a previous sweep through the chain from right to left, we have

stored all the R for the contractions on the right, we can reuse them now.

The underlying objects have not changed in the intermediate steps up to

now. As far as L is concerned, the L for site ‘ is the L for site ‘2 1,

ℓ−1
′

ℓ
′

ℓ−1 ℓ

ℓ

ℓ
′

FIGURE 2.19 Network to be contracted for hψjĤjψi. The network decomposes into parts L, R,

W , and two M-matrices.
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involving sites 1 through ‘2 2, contracted with an additional vertical slice of

three tensors at site ‘2 1; this will be a comparatively cheap contraction, see

Fig. 2.20. We store all the L contractions, because they will retrieved once

the direction of the sweep changes to right to left.

If we now take the extremum of Eq. (2.44), expressed in MPS language,

with respect to Mσ‘⁎
a‘21;a‘

we findX
σ0‘

X
a0‘21a

0
‘

X
b‘21;b‘

L
a‘21;a0‘21
b‘21

W
σ‘ ;σ0‘
b‘21;b‘

R
a‘ ;a0‘
b‘

M
σ0‘
a0‘21;a

0
‘
2λMσ‘

a‘21;a‘
5 0: ð2:53Þ

which in graphical representation looks as in Fig. 2.21. This is in fact a

very simple eigenvalue equation; if we introduce matrix H by reshaping

Hðσ‘a‘21a‘Þ;ðσ0‘a0‘21
a0‘Þ5

P
b‘21;b‘

L
a‘21;a0‘21
b‘21

W
σ‘ ;σ0‘
b‘21;b‘

R
a‘ ;a0‘
b‘

and a vector v with vσ‘a‘21a‘ 5

Mσ‘
a‘21;a‘

, we arrive at an eigenvalue problem of matrix dimension ðdD2 3 dD2Þ,
Hv2λv5 0; ð2:54Þ

Solving for the lowest eigenvalue λ0 gives us a v0σ‘a‘21a‘
, which is reshaped

back to Mσ‘
a‘21a‘

, λ0 being the current ground state energy estimate. Note that

if we had not achieved the simplified overlap due to the mixed-canonical

representation, we would have (a potentially much harder, because potentially

ill-conditioned) generalized eigenvalue problem, Hv2λNv5 0. Staying in a

mixed-canonical representation with orthogonality center site ‘ is easiest if we

sweep, as this means that only a single step of the procedure that brings a state

into mixed-canonical form has to be carried out, which shifts the orthogonality

center by one site. This is as cheap as it can possibly be. This is another

−1

−1
′

−1

′ ′

FIGURE 2.20 Update of L by contracting L of the previous step with Aσi⁎, Wσi ;σ0i and Aσ0i .

− = 0

FIGURE 2.21 Eigenvalue problem for the optimization of Mσ‘
a‘-1 ;a‘ . The unknown matrix is cir-

cled on the left network.
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instance where we see the importance of the mixed-canonical representation

of a state. But this requires a notion of left and right, which exists for MPS,

TTNS, and T3NS, but not for PEPS. For PEPS, therefore, we do not have a

simple equivalent notion, making calculations at many places less stable and

more tedious. This is another reason why quantum chemists have a strong

preference for MPS and tree states, because they are usually not concerned

with regular lattices.

In general, dD2 is too large for an exact diagonalization, but as we are

only interested in the lowest eigenvalue and eigenstate, an iterative eigensol-

ver that aims for the ends of the spectrum will do. Typical methods are the

Lanczos or Jacobi-Davidson large sparse matrix solvers. The speed of con-

vergence of such methods ultimately rests on the quality of the initial starting

or guess vector. As this eigenproblem is part of an iterative approach to the

ground state, the current Mσ‘ is a valid guess that will dramatically speed up

calculations close to convergence.

We summarize the resulting algorithm:

� Start from some initial guess for jψi, which is right-normalized, that is,

consists of B-matrices only.

� Calculate the R-expressions iteratively for all site positions L2 1 through

1 iteratively.

� Right sweep: Starting from site ‘5 1 through site L2 1, sweep through

the lattice to the right as follows: solve the standard eigenproblem by an

iterative eigensolver for Mσ‘ , taking its current value as starting point.

Once the solution is obtained, left-normalize Mσ‘ into Aσ‘ by SVD to

maintain the desired normalization structure. The remaining matrices of

the SVD are multiplied to the Mσ‘11 to the right, which will be the starting

guess for the eigensolver for the next site. Build iteratively the L expres-

sion by adding one more site. Move on by one site, ‘-‘1 1, and repeat.

� Left sweep: Starting from site ‘5 L through site 2, sweep through the lat-

tice to the left as follows: solve the standard eigenproblem by an iterative

eigensolver for Mσ‘ , taking its current value as starting point. Once the

solution is obtained, right-normalize Mσ‘ into Bσ‘ by SVD to maintain

the desired normalization structure. The remaining matrices of the SVD

are multiplied to the Mσ‘21 to the left, which will be the starting guess for

the eigensolver for the next site. Build iteratively the R expression by

adding one more site. Move on by one site, ‘-‘2 1, and repeat.

� Repeat right and left sweeps, until convergence is achieved. Convergence

is achieved if energy converges, but the best test is (using MPO) to con-

sider hψjĤ2jψi2 ðhψjĤjψiÞ2 to see whether an eigenstate has been

reached; this expression should approach 0 as closely as possible.

The convergence control of the algorithm by means of the variance is

actually not easy in quantum chemistry or any other situation where the

dimenision of the Hamiltonian MPO is large. As each application of Ĥ
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multiplies the MPS dimensions by the MPO dimension, the MPS dimensions

grow by a factor identical to the square of the MPO dimension. This means

that in between some truncation has to be introduced which of course invali-

dates the variance as a convergence control. A possible way out has been

introduced by Hubig et al. (2018): it replaces the true variance by a so-called

two-site variance. It can be calculated easily, without truncation, but captures

the variance only of Hamiltonians with up to nearest-neighbor terms. While

this is of course not the situtation relevant in quantum chemistry, the two-

site variance empirically scales with the true variance and therefore allows

extrapolations into the exact limit.

In this iterative process, the energy can only go down, as we continuously

improve by varying the parameters. Two problems occur: starting from a

random state, the guesses for the Mσ‘ in the iterative eigensolvers will be

very bad in the initial sweeps, leading to large iteration numbers and bad

performance. Moreover, we cannot guarantee that the global minimum is

actually reached by this procedure instead of being stuck in a non-global

minimum (and the variance will not be indicative of a problem, if we simply

get stuck in an excited eigenstate).

One way of addressing the first issue is to start out with infinite-system

DMRG to produce an initial guess; an optimal MPS version of infinite-system

DMRG is discussed in Schollwöck (2011). While this initial guess may be far

from the true solution, it will usually fare much better than a random starting

state. Moreover, one can try to balance the number of iterations (high in the

first sweeps) by starting with small D, converge in that ansatz class, enlarge D

and add zeros in the new matrix entries, converge again, and so on. When D

gets large, the guess states will hopefully be so close to the final state that

only very few iterations will be needed. It turns out, however, that starting

with too small D may land us in a non-global minimum that we will not get

out of upon increasing D. Quite generally, as in DMRG, one should never cal-

culate results for just a single D, but increase it in various runs until results

converge (they are guaranteed to be exact in the D-N limit).

2.5.2 Excitations

If we are looking for low-lying excited states instead of a ground state, two

typical situations occur: (1) The excited state is known to be the ground state

of another sector of the Hilbert space decomposed according to some good

quantum number. Then the calculation is just a ground state calculation in that

different sector. (2) The excited state is the first, second, or higher excitation

in the sector of the ground state. Then we have to calculate these excitations

iteratively, and orthonormalize the state with respect to the lower-lying states

already identified; this clearly limits the approach to a few low-lying excita-

tions. The place where the algorithm is to be modified is in the iterative

eigensolver; for example, in the Lanczos iterations, the next Lanczos state
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generated is orthonormalized not only with respect to the previous Lanczos

states, but also already constructed eigenstates of the Hamiltonian. This is a

standard extension of the Lanczos algorithm.

2.5.3 “Single site” vs “two site”

The variational MPS algorithm just introduced is quite prone to getting

stuck. Let us consider the (typical) case of a Hamiltonian with good quantum

numbers that are incorporated into the algorithm, such that the state is

characterized by specific quantum numbers. Let us think of the total magne-

tization, which takes a value ~M. For any Schmidt decomposition

jψi5Pa‘
sa‘ ja‘iAja‘iB, each of the states on block A and B will have a good

quantum number, namely mA
a and mB

a such that mA
a 1mB

a 5
~M. Because mag-

netization fluctuates on the blocks (due to hopping electrons, if we think of a

PPP model), the values of, say, mB
a will be distributed over some range, say

1 state with magnetization m, 3 states with magnetization m0, 5 states with

magnetization m00 and so forth. This distribution depends on how we gener-

ated the initial state, because, as I will show next, this distribution stays fixed

in further sweeps. This means that if it does not correspond to the distribu-

tion that the variationally optimal state would yield, it can never reach that

state! As the initial states of variational MPS algorithms are usually quite far

from the unknown variationally optimal state, the likelihood to hit the right

distribution is very small, and we have a serious problem.

The reason why the distribution stays fixed can be seen from the SVD of

Mσ‘
a‘21;a‘

to carry out one (for example) left-normalization step: reshaping

matrices Mσ‘ into some Ψ and applying an SVD gives at most D non-

vanishing singular values; the right-singular vectors in Vy are nothing but the

eigenvectors of ΨyΨ, which is block-diagonal because the states ja‘iB have

good quantum numbers. The right singular vectors (eigenvectors) therefore

encode a basis transformation within blocks of the same quantum number,

hence the number of states with a given quantum number remains the same,

and so does the number of states with a given quantum number in the other

part of the system because of the matching of quantum numbers required in

the Schmidt decomposition.

Various ways of getting out of this potential trap have been proposed.

The first one is to modify the algorithm to consider and optimize the MPS

matrices on two adjacent sites at the same time, just as in conventional (two-

site) DMRG. While this approach is slower (roughly by a factor of d), it

offers a slightly enlarged ansatz space with a subsequent truncation that

allows the algorithm to be more robust against the danger of getting stuck in

local energy minima in ground state searches. In particular, the enlarged

ansatz space of the two-site algorithm allows a reshuffling of the quantum

number distribution due to the truncation. Once this is converged, one may

switch to the faster single-site algorithm, as proposed by Takasaki et al.
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(1999), although it is not at all clear that this leads strictly to the optimal out-

come. Alternatively, there is a procedure by White (2005) that protects rea-

sonably against trapping and ensures reshuffling while staying in the

variational MPS (or single-site DMRG, which is the same, see below)

approach. It starts from the observation that quantum numbers of a subsys-

tem A are changed by quantum fluctuations due to those parts of the

Hamiltonian that connect A to the rest of the system, and accounts for them

in the determination of improved M-matrices. The arguably most performant

and stable approach to this problem is at the moment provided by the sub-

space expansion method proposed by Hubig et al. (2015).

2.5.4 MPO representation of Hamiltonians

This task turns out to be not so trivial for the Hamiltonians of quantum

chemistry with their numerous four-operator terms. In the DMRG case, the

Hamiltonians were built iteratively by adding in parts of the Hamiltonian

sequentially and only keep sums of operator terms, always expressed in the

current block bases. It turned out that the OðL4Þ four-operator terms could be

organized into OðL2Þ terms with some book-keeping. In the MPS/MPO for-

mulation, all this is somewhat more complicated and quite subtle. We there-

fore discuss here only the construction of the MPO of a relatively simple

Hamiltonian (PPP model), which will exemplify the idea of a finite state

machine, one of the approaches that can be generalized to quantum chemical

Hamiltonians.

We consider

Ĥ52 t
XL21

i51

X
τ
ðĉyi;τ ĉi11;τ 1 ĉ

y
i11;τ ĉi;τ Þ1U

X
i

n̂i;mn̂i;k: ð2:55Þ

τ runs over the two magnetization values of an electronic spin; this

unusual notation is to avoid confusion with σ in the MPOs and MPSs. In

order to express this sum of tensor products in MPO form, we consider the

building block Wσσ0
bb0 combined with its associated projector jσihσ0j to become

an operator-valued matrix Ŵbb0 5
P

σσ0W
σσ0
bb0 jσihσ0j (McCulloch, 2007) such

that the MPO takes the simple form

Ĥ5 Ŵ
½1�
Ŵ
½2�
. . .Ŵ

½L�
: ð2:56Þ

Each Ŵ
½i�
acts on a different local Hilbert space at site i.

To build the Ŵ
½i�
, we move through an arbitrary operator string appearing

in Ĥ: starting from the right end, the string contains unit operators, until at

one point we encounter one of (in our example) 5 non-trivial operators (there

are 4 different hopping terms because of the spin degree of freedom). For

the interaction operator, the string part further to the left may only contain

unit operators; for the hopping operator pairs, the complementary operator
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must follow immediately to complete the hopping term, to be continued by

unit operators further to the left. For book-keeping, we introduce 6 corre-

sponding internal states of the string at some given bond. They are not to be

confused with any quantum state! Internal state 1: there are only units to the

right, internal states 2,3,4,5: one ĉm, ĉ
y
m, ĉk, ĉ

y
k just to the right, internal state

6: completed interaction or hopping term somewhere to the right. Comparing

the state of a string left and right of one site, only a few state transitions

are allowed: 1-1 by the unit operator Î, 1-2 by ĉm, 1-3 by ĉ
y
m, 1-4 by

ĉk, 1-5 by ĉ
y
k and finally 1-6 by Un̂mn̂k. Furthermore 2-6 by 2tĉ

y
m,

3-6 by 2tĉm, 4-6 by 2tĉ
y
k, 5-6 by 2tĉk, to complete the hopping

term, and 6-6 for a completed interaction by the unit operator Î.

Furthermore all string states must start at 1 to the right of the last site and

end at 6 (i.e., the dimension DW of the MPO to be) to the left of the first

site. This can now be encoded by the following operator-valued matrices:

Ŵ
½i�
5

Î 0 0 0 0 0

ĉm 0 0 0 0 0

ĉ
y
m 0 0 0 0 0

ĉk 0 0 0 0 0

ĉ
y
k 0 0 0 0 0

Un̂mn̂k 2tĉ
y
m 2tĉm 2tĉ

y
k 2tĉk Î

2666666664

3777777775
ð2:57Þ

and on the first and last sites

W ½̂1�5 Un̂mn̂k 2 tĉ
y
m 2 tĉm 2 tĉ

y
k 2 tĉk Î

h i
; Ŵ

L½ �
5

Î

ĉm

ĉ
y
m

ĉk

ĉ
y
k

Un̂mn̂k

266666664

377777775: ð2:58Þ

Note that the creation and annihilation operators have to be implemented

such that the correct fermionic sign emerges; as they act on neighboring sites

here, this can be done easily by proper choices of signs by hand; for longer-

ranged hoppings, one can use parity operators ð21Þn̂i instead of identity

operators between the pairs of creation and annihilation operators. Other

equally viable book-keeping options exist.

A simple multiplication shows how the Hamiltonian emerges; a graphical

representation is provided in Fig. 2.22. Inserting the explicit operator repre-

sentations gives the desired Wσσ0 -matrices for the MPO. This construction

can be extended quite easily to include, say, next-nearest neighbor hopping,

by the introduction of additional internal states. It is therefore possible to

express Hamiltonians exactly in a very compact MPO form; a similar set of

rules leading to the same result has been given by Crosswhite et al. (2008).
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Extensions to efficiently building the more complicated Hamiltonians of

quantum chemistry can be found in (Keller et al., 2015; Chan et al., 2016;

Hubig et al., 2017).

2.5.5 Comparing DMRG to variational MPS ground state searches

Expressed simply, the variational MPS ground state search is identical to the

finite-system part of DMRG, up to one big modification, namely that we

either switch from a two-site to a single-site DMRG algorithm, that is, con-

sider a block-site-block configuration A�B instead of a block-site-site-block

configuration A��B. Alternatively, we can take the variational MPS ground

state search and optimize the contraction of the M-matrices on two neighbor-

ing sites (and decompose the result by an SVD into suitably normalized

matrices on two sites).

Before we show and discuss this, let us first consider the role of the

infinite-system part of DMRG: if finite-system DMRG (up to the two-site

vs. single-site modification) is a variational method, the role of the infinite-

system part is merely to provide a not too bad trial state. For a translation-

ally invariant system, as mostly studied in condensed matter physics, this

is certainly much better than a random initialization. In applications for

quantum chemistry, building the Hamiltonian iteratively by adding orbital

after orbital in an imitation of the infinite-system system is probably almost

always not leading to a good initial state; a random state might be almost

as good.

A useful procedure (which can actually be used both in the DMRG and

the MPS framework), which is used extensively, is to observe that the cost

FIGURE 2.22 Graphical representation of the finite state machine that builds exactly all

allowed terms in a PPP Hamiltonian.
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of sweeps scales as D3. At the same time, if the initial guess states in the

iterative eigensolvers are bad they are slowly converging and therefore par-

ticularly expensive. If the ground state is approaching convergence, the cur-

rent ground state is already a very good initial guess, so the iterative

eigensolvers will be quite performant. The idea is now to combine badly

converging eigensolvers with cheap calculations and start with very small D,

perhaps a random initial guess or a Hartree-Fock like product state or some

improvement of it, to sweep a few times, then increase D (simply by not

truncating as much), continue sweeping, increase D again and so forth.

It takes some experience to find a good protocol: sweeping too often at low

D will not improve the state a lot, increasing D too rapidly will leave us

with a costly bad approximation of the ground state in the expensive sweeps.

The fundamental observation in comparing DMRG and variational MPS

is contained in the observation that the A-matrices (and B-matrices) of an

MPS in mixed-canonical representation can be obtained from the operation

of building a truncated orthonormal block plus site basis from an effective

block basis and a single-site basis as done in DMRG. That the MPS matrices

are indeed exactly the same, follows from the observation that both DMRG

and MPS look at the same optimization procedure: minimize the energy of

the state given the Hamiltonian. As the eigenvalues of the reduced density

matrices which give the DMRG selection criterion are nothing but the

squares of the singular values appearing in MPS, which give the selection

criterion for MPS, the two selection principles are identical. What we call

number of states in DMRG, is the matrix dimension in MPS. The translation

rule between the DMRG state and the MPS reads

jψi5
X

a‘21σ‘σ‘11a‘11

Ψσ‘σ‘11
a‘21;a‘11

ja‘21iAjσ‘ijσ‘11ija‘11iB

5
X
σ

Aσ1 . . . Aσ‘21Ψσ‘σ‘11Bσ‘12 . . .BσL jσ i;
ð2:59Þ

where the “standard” MPS would be achieved by a further SVD on Ψσ‘σ‘11 ,

which generates an A-matrix, a B-matrix, and a singular value matrix S in

between, which can be multiplied into either the A- or B-matrix, putting the

orthogonality center on site ‘ or ‘1 1.

If we consider operators in the DMRG and MPS framework, they are

identical, too: in DMRG they are expressed explicitly when the site where

they act is explicit and not part of a block, and then subjected to (incom-

plete) basis transformations when the block grows and absorbs the site. In

the MPS framework, they are kept explicitly all the time and only evaluated

when sandwiched between two MPS. As long as the two MPS are the same

(as is the case for expectation values), the contraction of an operator with a

number of A (or B)-matrices is nothing but the execution of the sequence of

block basis transformations of DMRG. Ultimately, therefore, the large sparse

eigenproblems of DMRG and MPS are identical.
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The growth and shrinking of left and right blocks in DMRG is the one-

to-one equivalent of the shift of the orthogonality center in the mixed-

canonical representation of MPS.

It remains to show that the Hamiltonians are identical, too. Strictly speaking,

this is not the case: The MPO representation of Ĥ we just used is clearly exact.

On the other hand, the representation of Ĥ in DMRG contains a series of

reduced basis transformations, hence is inherently inexact. So, the two represen-

tations seem unrelated, with an advantage on the MPO side because it is exact.

But a more careful analysis reveals that on the level of calculating expectation

values hψjĤjψi as they appear in MPS and DMRG ground state searches both

representations give identical results (they are not identical for higher moments,

such as hψjĤ2jψi, where the MPO representation is demonstrably more accurate

at a numerical cost, see below).

Minimization of ground state energy is, as we have seen, a costly large

sparse matrix problem. As the methods are iterative, a good initial guess is

desirable. White (1996) has provided a powerful “state prediction” for

DMRG. In fact, it turns out that the result of the prediction is just what one

gets naturally in variational MPS language without the intellectual effort

involved to find state prediction.

While this clarifies the relationship between variational MPS, single-site

DMRG (the same) and two-site DMRG (different), it is important to note

that the different ways of storing information more implicitly or more explic-

itly implies differences even if the algorithms are strictly speaking identical

athe fact that in one formulation prediction is trivial and in the other is not

gives us an example. But there is more.

(1) In DMRG, the effective bases for representing the states and the

Hamiltonian or other operators are tied up. This is why concepts such as tar-

getting multiple states arise, if we consider several different states like the

ground state and the first excited state at the same time. One then considers

mixed reduced density operators

ρ̂A 5
X
i

αitrBjψiihψij ð2:60Þ

with jψii the target states and 0,αi # 1,
P

iαi 5 1, to give a joint set of

basis states for all states of interest. This can of course only be done at a cer-

tain loss of accuracy for given numerical resources and for a few states only.

At the price of calculating the contractions anew for each state, in the MPO/

MPS formulation, the state bases are only tied up at the level of the exact

full basis. MPO/MPS formulations therefore acquire their full potential vs

conventional DMRG language once multiple states get involved.

(2) Another instance where the MPO/MPS formulation is superior, albeit at

elevated numerical cost, is the calculation of the expression hψjĤ2jψi, which
is interesting, for example, in the context of estimating how accurately a

ground state has been obtained. In the MPO formalism, it can be done exactly

52 DMRG-based Approaches in Computational Chemistry



up to the inherent approximations to jψi by sandwiching the Hamiltonian

MPO twice between the bra and ket. It would of course be most economical

for the programmer to calculate Ĥjψi and take the norm, two operations

which at this stage he has at hand. The operational cost of this would be

OðLD2D2
Wd

2Þ for the action of the MPO and OðLD3D3
WdÞ for the norm calcu-

lation. The latter is very costly, hence it is more efficient to do an iterative

construction as done for hψjĤjψi. Let me make the important remark that

dimension D2
W is only the worst case for Ĥ

2
(see Fröwis et al., 2010): Writing

out the square and introducing rules for the expression leads to more efficient

MPOs, whose optimality can be checked numerically by doing an SVD

compression and looking for singular values that are zero. Our anisotropic

Heisenberg Hamiltonian takes DW 5 9 instead of 25 for Ĥ
2
. For higher

powers, the gains are even more impressive, and can be obtained numerically

by compressing an explicit MPO for Ĥ
n
with discarding only zeros among the

singular values. (In quantum chemistry applications the Hamiltonian MPO is

usually so big that such tricks do not really work.) In a DMRG calculation,

there would be a sequence ĤðĤjψiÞ in the DMRG block-site basis. The point

is that before the second application of Ĥ, a projection onto the reduced block

bases happens (because of the DMRG-specific truncated form of Ĥ), which is

not the identity and loses information.

What does the comparison of MPS and DMRG imply algorithmically?

First of all, the truncation error of conventional DMRG, which has emerged

as a highly reliable tool for gauging the quality of results, is nothing but an

artefact of the somewhat anomalous two-site setup. In variational MPS or

single-site DMRG it has to be replaced by some other criterion; we proposed

the variance of the energy. Second, while all the approaches are variational

in the sense that they are looking for the lowest energy that can be achieved

in a given type of ansatz, the ansatz varies from site to site in two-site

DMRG (because of the Ψσσ anomaly in the ansatz), the ansatz stays the

same all the time in single-site DMRG, which is conceptually nicer. That

this comes at the expense of potential trapping which needs clever counter-

strategies serves as a reminder that the mathematically most beautiful does

not have to be the most practical.
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Chapter 3

Density matrix renormalization
group for semiempirical
quantum chemistry

3.1 Introduction

Density matrix renormalization group (DMRG) for quantum chemistry has

been quickly developed starting with the investigation of the electronic struc-

ture of conjugated oligomers and polymers in the late 1990s with semiempiri-

cal Hamiltonian, namely, from the original Hubbard model to models with

additional long-range Coulomb potential such as the Pariser�Parr�Pople
(PPP) model Hamiltonian (Anusooya et al., 1997; Fano et al., 1998;

Ramasesha et al., 2000; Shuai et al., 1997b; Yaron et al., 1998). In fact, in the

early 1990s, there existed hot debates over the role of electron correlation

effects in conjugated polymers. The most prominent model for conjugated

polymer has been Su�Schrieffer�Heeger (SSH) Hamiltonian, a one-electron

model featuring electron�phonon interaction (Su et al., 1979, 1980). It was

generally believed the electron correlation in polymer could be treated as weak

perturbation and the overall behavior of electronic structure should be one-

electron bandlike. Under such approximation, (1) there would be no excitonic

effect since electron and hole become free carriers, but experimentalists

reported excitonic binding energy ranging from less than kBT (B0.026 eV) to

1 eV; (2) the cation spin density would distribute only on even sites and

vanishes on odd sites. However, a number of experimental observations indi-

cated that there exists negative spin density on odd sites, which can only be

predicted from a correlated electron model; (3) the existence of bond alterna-

tion in polyacetylene is originated from electron�phonon coupling (Peierls

transition), while correlated electron model would predict Mott-type insulator.

Density functional theory (DFT) at the local density approximation level will

simply predict vanishing bond-alternation. Such a chaotic situation called for

an accurate method for extended systems with correlation effects. In fact, quan-

tum chemistry at the configuration interaction single and double excitation

(CISD) level had long predicted the even parity excited state (2Ag symmetry)

lying below the odd parity 1Bu state, in sharp contrast to the one-electron
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molecular orbital picture (Schulten and Karplus, 1972). Furthermore, one-

electron theory for evaluating the third-harmonic generation spectrum predicted

a vanishing two-photon absorption (TPA) around Eg/2 position due to symme-

try reason. Correlated electron system can give rise to TPA peak (so-called

mAg state) close to mid-gap (Shuai et al., 1998a). Such a picture had changed

the scope for ultrafast spectroscopy for conjugated polymers.

In conjugated polymers, the π-orbitals are energetically well separated

from the σ-orbitals and hence the bonding and antibonding molecular orbitals

composed of the π-orbitals in the large conjugated systems are located close

to the frontier orbitals, leading to rather strong static correlation. Compared to

the ground state, the excited states of conjugated polymer show a more signifi-

cant electron correlation effect. The first conducting polymer, polyacetylene

(Fig. 3.1), is not fluorescent in experiments due to the long-known fact that

the lowest excited state is of even parity Ag state instead of the odd parity Bu

state predicted by the one-electron picture: the explanation from the latter is

due to the dissociative nature for the photoexcited soliton�anitsoliton pair.

The conventional quantum chemistry methods beyond the mean-field approxi-

mation, such as the configuration interaction (CI) and coupled cluster (CC)

methods, both have the limitation in system size to describe the electronic

structure of conjugated oligomers/polymers. Because of the exponential

computational cost, the full CI (FCI) method is limited to 20 electrons/20 orbi-

tals and thus is not scalable to larger systems. The multireference CI (MRCI)

is accurate to describe the excited states of short polyene, but it is hard to cor-

rectly deal with the long polyenes because the truncated CI method (com-

monly with singles and doubles excitation, MRCISD) lacks size-consistency.

In order to predict the properties of long oligomers or even the properties in

the thermodynamic limit which is far beyond the computational capability, in

practice, one often resorts to extrapolating properties computed for short oligo-

mers. The absence of size-consistency of MRCI then would make this extrapo-

lation hazardous even for the low-lying excitations. The single-reference CC

method is also difficult to capture the strong correlation in the excited states of

polyene correctly. It was demonstrated that the equation-of-motion CCSD pre-

dicted wrong excited states ordering of polyenes longer than 20 π-electrons
(Shuai and Brédas, 2000). At that time, the multireference CC method was far

from being mature. Besides the wavefunction theory, the time-dependent DFT

(TDDFT) with common functionals always predicts the lowest excited state to

be of Bu symmetry, similar to the one-electron model (Jiang et al., 2012).

Therefore, during the 1990s, it was urgent to call for a novel electronic struc-

ture theory beyond the conventional quantum chemistry theories to solve the

FIGURE 3.1 The chemical structure of trans-polyacetylene.
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electronic structure of conjugated polymers. It was natural and ideal to apply

DMRG to the conjugated polymer which can be modeled as a one-

dimensional fermion chain.

Ever since White invented DMRG in 1992, DMRG has been proven to

have exceptionally high accuracy to calculate the electronic structure of the

strongly correlated one-dimensional lattice model with only nearest-neighbor

interactions, such as the Hubbard model and Heisenberg model (White, 1993,

1992). The success of DMRG is due to the fact that the entanglement is inde-

pendent of the system size for the one-dimensional gapped system with only

nearest-neighbor interactions, as predicted by the area law (Eisert et al., 2010).

However, it is generally believed that the accuracy of DMRG drastically

decreases for long-range interactions. For example, the accuracy is no more

guaranteed for the two-dimensional Hubbard model, which is mapped to a

one-dimensional chain with artificial long-range hopping terms (Nishimoto

et al., 2002). For the same reason, the accuracy of DMRG for quantum chem-

istry Hamiltonian with long-range Coulomb interaction is unclear. In the late

1990s Shuai, Ramasesha, and Fano et al. firstly applied DMRG to solve the

electronic structure of semiempirical quantum chemistry Hamiltonian, success-

fully demonstrating that in the (quasi-)one-dimensional polymer, even with the

long-range density�density (diagonal) Coulomb interaction, the high accuracy

of DMRG still holds (Fano et al., 1998; Shuai et al., 1997a; Yaron et al.,

1998). Especially, Shuai et al. first applied DMRG for the exciton binding

energy (Shuai et al., 1997c, 1998b). They demonstrated that the famous

Hubbard model always gives rise to zero binding energy, a very much surpris-

ing while fully justified result: exciton binding stems from long-range

Coulomb interaction, and only considering Hubbard U is not enough. Long-

range potential is necessary for exciton to be bound. Then, they looked at the

orderings for the lowest-lying excited states, (Shuai et al., 1997a,b) decisive

for light-emitting property: according to Kasha’s rule, the molecular lumines-

cence is determined by the nature of the lowest-lying excited state, (Kasha,

1950) very sensitive to the level of methodology with electron correlation.

Along this line, linear and nonlinear spectroscopies have been investigated

(Shuai et al., 1998a). These works have been regarded as the start of quantum

chemistry DMRG. Soon after, Daul et al. (2000), Mitrushenkov et al. (2001),

White and Martin (1999) and Chan and Head-Gordon (2002) developed

DMRG algorithms for ab initio quantum chemistry Hamiltonian, where a

numerical renormalization scheme for the auxiliary developed by Xiang for

momentum-space DMRG was employed (Xiang, 1996). Although DMRG for

general molecules with three-dimension nature is not as accurate as for the

one-dimensional models, it is still a state-of-the-art quantum chemistry method

nowadays for systems with a large active space containing more than 20 active

orbitals (Chapter 4). Moreover, it turns out to be especially powerful when

combined with the conventional multireference methods to further account for

the dynamic electron correlation (Chapter 6).

Density matrix renormalization group Chapter | 3 59



Most of the interesting properties of conjugated polymers involve excited

states. With the state-averaged DMRG algorithm, not only the ground state

but also the lowest several excited states can be accurately obtained (White,

1993). The originally proposed DMRG algorithm also considered the symme-

try of the systems, (White, 1993) such as the conservation of the total particle

number Ntot and the z-component of the total spin Sz. By restricting the system

to a specific symmetric subspace, it is easy to target an excited state with the

same algorithm for the ground state. For example, the lowest triplet state can

be targeted in the subspace Sz5 1. However, the excited states of conjugated

polymer are much more complicated in that between the ground state and the

excited state of optical interest, there exist a number of irrelevant intruder

states, which deteriorate the accuracy in the state-averaged calculation. To

overcome this difficulty, the development of symmetrized DMRG algorithm,

including additional electron-hole symmetry, spin-flip symmetry, and C2h

point group symmetry, made a great advance (Ramasesha et al., 1996). With

the symmetrized DMRG algorithm, the exciton binding energy, ordering of

excited states, and linear and nonlinear optical (NLO) response of conjugated

polymer have been successfully investigated by Shuai et al. (Shuai and Peng,

2014, 2017).

The electron�phonon interaction is very important for organic systems

because organic systems are more flexible than inorganic systems. One classic

example is the Peierls instability which predicts that a one-dimensional equally

spaced chain with one electron per site is unstable and thus it prefers to dimer-

ize at half-filling to lower the total energy. Polyene with single/double bond

alternation is a real-world system exhibiting Peierls instability. It was also

found that the bond alternation has a large effect on the ordering of the excited

states of polyene (Soos et al., 1993). In practice, one would add empirical

electron�lattice interaction in the model Hamiltonian (called the Peierls term)

to investigate the effect of chemical structure on the electronic structure.

Besides the static electronic structure, the phonon will also affect the dynam-

ical properties. By combining the time-dependent formulation of DMRG with

molecular dynamics, soliton and polaron transport in the conjugated polymer

has been investigated under the semiempirical model Hamiltonian (Ma and

Schollwöck, 2010, 2009, 2008; Yao et al., 2008; Zhao et al., 2009, 2008).

The remaining of this chapter is arranged as follows: In Section 3.2, we

give a brief introduction to the model Hamiltonians that have been largely

employed in the study of conjugated molecules; in Section 3.3, the symme-

trized DMRG algorithm, including the electron-hole symmetry, spin-flip sym-

metry, and C2h point group symmetry, is described; in Section 3.4, several

applications of DMRG in the study of the electronic structures of conjugated

oligomer and polymer are reviewed, including the electronic structure of

ground state and excited states, the exciton binding energy, the linear and non-

linear optical properties, and the effect of electron�lattice interaction on the

electronic structure.
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3.2 Semiempirical model Hamiltonian

In history, the semiempirical model Hamiltonian has been widely used to

study the electronic structure of conjugated polymers. Since the separability

of σ- and π-orbitals is generally found to be valid for low-energy excitations

in the conjugated systems because the frontier orbitals mainly consist of π
orbitals, the model Hamiltonian introduced in this section is only composed

of π-orbitals. More specifically, each conjugated carbon atom contributes

one 2pz orbital and one electron if the system is neutral. In addition, the real-

space pz atomic orbitals are assumed to be orthonormal.

φi φj

�� �5 δij
� ð3:1Þ

For simplicity, we will only give the one-dimensional model Hamiltonian

for polyacetylene, the simplest conjugated polymer (Fig. 3.1). For neutral

polyacetylene, the number of orbitals and the number of electrons are equal,

that is, the half-filling case. The extension to a more general conjugated

topology is fairly straightforward.

The minimal model considering the effect of electron correlation is the

Hubbard model, which is one of the most famous models in theoretical phys-

ics. Hubbard model has been used extensively in studying the electronic

structure of conjugated polymers.

ĤHubbard 5
X
iσ

αiâ
y
iσâiσ 1

X
iσ

ti â
y
iσâi11σ 1 â

y
i11σâiσ

� �
1
X
i

Uin̂imn̂ik ð3:2Þ

n̂iσ 5 â
y
iσâiσ ð3:3Þ

The first two terms in Hubbard model are one-electron terms and the

third term is a two-electron term. i is the index of pz orbital. σ is the spin

index. αi is the energy of the pz orbital, also called site energy or Coulomb

integral. ti is the hopping integral between the neighboring orbitals, also

called transfer integral or resonance integral. The physical meaning of

Hubbard U is the on-site Coulomb repulsion of two electrons occupying the

same site. The Hubbard model in one dimension is exactly solvable with the

Bethe ansatz (Lieb and Wu, 1968), but not in two dimensions.

For the Hubbard model, it can be discussed in two limiting cases sepa-

rately depending on the parameter U/t. When U/t,, 1 (weak correlation

limit), the first two one-electron terms will dominate. In this case, the

zeroth-order approximation of Hubbard model becomes Hückel model,

which is the earliest π-electron model.

ĤHückel 5
X
iσ

αiâ
y
iσâiσ 1

X
iσ

ti â
y
iσâi11σ 1 â

y
i11σâiσ

� �
ð3:4Þ

Since the Hückel model is a one-electron Hamiltonian with no explicit

electron correlation, it can be solved exactly with molecular orbital theory.
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For an infinite-sized homogeneous chain with αi5α, ti5 t (without loss of

generality, α is set to 0), the molecular orbitals form a free-electron band in

the momentum space with dispersion relation E5 2tcos kð Þ 2π, k, πð Þ.
Therefore, at half-filling, the energy gap predicted by the homogeneous

Hückel model is 0. In the other limit with U/t.. 1 (strong correlation

limit), the third term in Eq. 3.2 can be regarded as the zeroth-order

Hamiltonian. Because of the large U penalty, the electrons prefer to occupy

different orbitals. Therefore, for a homogeneous chain at half-filling, the

lowest zeroth-order wavefunction is a singly occupied spin chain with

E05 0. In addition, the degeneracy is 2N (2 stands for two spin states and N

is the total number of orbitals). According to the Rayleigh Schrödinger

perturbation theory, the first-order energy is zero, which can not lift the

degeneracy. We have to resort to the second order. After considering the

second-order correction, the effective Hamiltonian becomes the spin-1/2

Heisenberg model (Eq. 3.5), which is also called the classical valence bond

model. The coupling constant J is equal to 2t2=U. For more details about the

derivation, please refer to Cleveland and Medina (1976).

ĤHeisenberg 5
X
i

J 2ŜiŜi11 2
1

2

� �
ð3:5Þ

As J. 0, the spins tend to be oriented antiparallel between neighboring

sites, leading to an antiferromagnetic order. This classical valence bond

model and the extended nonempirical valence bond model have been solved

by Jiang et al. using the DMRG method to investigate the electronic struc-

tures of the ground and excited states of polyacenes, polyphenanthrenes, and

a series of high-spin organic π-conjugated polyradicals (Gao et al., 2002; Ma

et al., 2007; Qu et al., 2009).

Since Hubbard model only has local Coulomb interaction, it is not able

to describe the physics of exciton, which is a bound state of an electron and

a hole attracted to each other by the Coulomb interaction. Hence, the mini-

mal model to describe exciton in the conjugated polymer is the extended-

Hubbard model, including the nearest-neighbor density�density Coulomb

interaction.

Ĥextended2Hubbard 5 ĤHubbard 1
X
i

Vi n̂i 2 zið Þ n̂i11 2 zi11ð Þ ð3:6Þ

zi represents the effective nuclear charge of the ith atom, which is 1 for car-

bon. Starting with the configuration in which one electron occupies one

orbital, if one electron at the ith site hops to the next site upon excitation

(ni5 0, ni115 2), the extended-Hubbard model will gain an electron-hole

binding energy Vi, while the standard Hubbard model will not. A more gen-

eral description of the Coulomb interaction is to include the long-range inter-

actions, such as the PPP model. Historically, PPP model is a semiempirical

quantum chemistry model invented even before the Hubbard model in
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physics (Pariser and Parr, 1953; Pople, 1953). It stems from the widely

known complete neglect of differential overlap (CNDO) approximation, but

for conjugated π systems. In CNDO, in addition to the simplification that the

overlap matrix of atomic orbitals is identity as Eq. (3.1), the two-electron

integrals are simplified as

ij klj Þ5 δijδkl ii kkj Þð� ð3:7Þ
Here, we use the chemist’s notation for the two-electron integral.

Therefore the PPP model Hamiltonian can be written as

ĤPPP 5 ĤHubbard 1
X
i. j

Vij n̂i 2 zið Þ n̂j 2 zj
� � ð3:8Þ

The long-range Coulomb interaction Vij is empirically interpolated

smoothly between U for zero intersite separation and e2/r12 for the intersite

separation tending to infinity. There are two widely used interpolation formulas

given by Klopman (1964), Ohno (1964), and Mataga and Nishimoto (1957).

V
Ohno-Klopman
ij 5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4= Ui1Uj
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1R2

ij
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V
Mataga-Nishimoto
ij 5

1

2= Ui 1Uj

� �
1Rij

ð3:10Þ

where Rij is the real-space distance between site i and j. Comparing these

two formulas, the potential given by Mataga�Nishimoto formula decays

more rapidly than that of Ohno�Klopman formula. Compared to the

(extended) Hubbard model with only nearest-neighbor interactions, the

chemical models such as PPP model which have couplings with intermediate

strengths and long-range interactions are much more difficult to handle.

The chemical structure of polyacetylene has alternating single bonds and

double bonds. To incorporate this chemical structure in a model study, the

simplest way is to modify the transfer integral with the bond alternation

parameter δ.

ti 5 t 11 21ð Þiδ� � ð3:11Þ
The δ-related hopping term is called the Peierls term. The importance of

this bond alternation parameter to the electronic structure of polyacetylene

has been emphasized by Soos et al. (1993) and will be shown in Section 3.4.

If the lattice distortion is also considered to be influenced by the electronic

structure, the PPP�Peierls (or called PPP�SSH model) Hamiltonian, includ-

ing the strain energy of lattice distortion, can be solved self-consistently.

ĤPPP-Peierls 5 ĤPPP 1
X
iσ

γidi â
y
iσâi11σ 1 â

y
i11σâiσ
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2

X
i
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Here, di denotes the change of bond length di 5 ui11 2 ui. ui is the dis-

placement of atom i. γ denotes the linear electron�phonon coupling parame-

ter. K is the force constant of each bond. The PPP�Peierls model has been

used to investigate the structure of polaron, soliton, and excited states in con-

jugated polymers under the interplay of electron�electron correlation and

electron�phonon correlation (Barford, 2013; Bursill and Barford, 1999; Ma

et al., 2006, 2005, 2004).

3.3 Symmetrized density matrix renormalization group
algorithm

As introduced in Section 3.1, in conjugated polymers, there are many

optically irrelevant states between the ground state and the lowest optically

accessible excited states. For example, below the optically allowed 1Bu state,

there will be more and more dark states when the system size increases. The

state-averaged DMRG algorithm introduced in Chapter 5 could target the

lowest several energy states together. However, the accuracy will deteriorate

when the number of averaged states becomes larger and larger unless the

bond dimension of DMRG wavefunction is increased at the same time.

(White, 1993) Fortunately, the model to describe the conjugated oligomers

and polymers in Section 3.2 possesses a number of symmetries. With sym-

metry restrictions, a lot of intruder states can be excluded during the renor-

malization procedures.

3.3.1 Particle number Ntot and Sz symmetry

The total particle number Ntot and the z-component of total spin Sz of a non-

relativistic closed system are conserved. These two U(1) symmetries are

easy to implement in DMRG. Each renormalized state in the L- or R-block

possesses good quantum number n and sz. The quantum number of the wave-

function formed by the direct product of the L- and R-block renormalized

states is

Ntot 5 nL 1 nR ð3:13Þ
Sz 5 sz;L 1 sz;R ð3:14Þ

The reduced density matrix of L-block is block-diagonal with respect to

the quantum number nL; sz;L
� �

by tracing out the R-block basis. Hence, the

new renormalized basis is still the eigenstates of N̂ and Ŝz.

3.3.2 Spin-flip symmetry

For the nonrelativistic Hamiltonians, besides that Sz is conserved, the total

spin S is also conserved. However, the SU(2) spin symmetry is not an
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Abelian group. For example, if the renormalized basis of L-block has spin

S1, in order to construct a state of spin S in the superblock, the spin of the

renormalized basis of R-block S2 could be S2 S1j j;?; S1 S1j j. Hence, the
reduced density matrix of R-block is not block-diagonal as the case of Ntot

and Sz symmetry and then the eigenbasis will mix the basis of different S2.

The fully spin-adapted DMRG algorithm was proposed by McCulloch et al.

by using a quasi-reduced density matrix to ensure that the renormalized basis

are eigenfunctions of Ŝ
2
(McCulloch and Gulácsi, 2001; Sharma and Chan,

2012). See Chapter 4 for more details on the implementation of a non-

Abelian group in ab initio quantum chemistry DMRG. Before that, the spin-

flip symmetry was first implemented which can distinguish the even (“e”)

total spin (S5 0,2,4,. . .) and odd (“o”) total spin (S5 1,3,5,. . .) (Ramasesha

et al., 1996). This symmetry can only be employed in Sz5 0 subspace

because flipping the spin will map the Sz space to -Sz space. The spin-flip

operator P̂i acting on the Fock space of a single site is P̂i 0j i5 0j i,
P̂i m
�� �5 k

�� �, P̂i k
�� �5 m

�� �, P̂i mk
�� �

52 mk
�� �

. The full operator of the sys-

tem is the direct product of the single-site operator

P̂5 L
i

P̂i ð3:15Þ

3.3.3 Spatial symmetry

Fig. 3.1 shows that trans-polyacetylene possesses C2h point group symmetry.

The principal axis is a twofold axis through the center and normal to the con-

jugated plane. There are four irreducible representations Ag, Au, Bg, and Bu

in C2h point group, but the π-orbitals all belong to Bg and Au. The product

table of Bg and Au is given in Table 3.1.

Therefore the excited states within the π-space only can be Ag or Bu sym-

metry. In addition, because of the restriction of π-orbitals, we can just use the

subgroup C2 to distinguish these two irreducible representations, denoted as A

and B. If the symmetry adapted atomic orbitals or canonical molecular orbitals

are adopted to rewrite the Hamiltonian, the Abelian point group symmetry can

be treated with the same algorithm as particle number. However, DMRG is

TABLE 3.1 The product table of Bg, Au irreducible representations of C2h

point group.

Bg Au

Bg Ag Bu

Au Bu Ag
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known to be more accurate when working in real space, especially for the

one-dimensional chain. Hence, the model Hamiltonians above are commonly

solved in real space. In the real space, the C2h symmetry is only ensured when

sweeping to the middle of the DMRG chain. For example, sweeping from the

left to the right, the renormalized basis for the L-block is μL;σL

�� �
. Since the

system has C2h symmetry, the renormalized basis for the R-block should be a

copy of the L-block. The matrix representation of Ĉ2 operator is

Ĉ2 μL;σL;μR
0;σR
0⟩5 μR;σR;μL

0;σL
0⟩

����
5 21ð Þ nμ1nσð Þ nμ01nσ0ð Þ μL

0;σL
0;μR;σR⟩

�� ð3:16Þ

where n is the number of electrons in each block.

3.3.4 Electron-hole symmetry

The semiempirical models introduced above have a special symmetry called

electron-hole (or called charge-conjugation) symmetry. Though this symmetry

does not strictly hold in the ab initio Hamiltonian of conjugated polymers, the

deviation is small and thus the electron-hole symmetry could help to under-

stand and explain the experiments and computational results. A system has

electron-hole symmetry if the Hamiltonian is invariant under the transforma-

tion of a particle into a hole (Surján, 2012). The symmetry exists in a system

composed of two sublattices and at half-filling. The transformation relation is

a
y
i- ~ai

y5 21ð Þηi ai ð3:17Þ
ηi is zero for sites of one sublattice and one for sites of the other sublattice.

It is obvious that the transformed operators still fulfill the anticommutation

relation of fermion. After the electron-hole transformation,

~̂HPPP
5
X
iσ

αiâiσâ
y
iσ 1

X
iσ

ti 2 âiσâ
y
i11σ 2 âi11σâ

y
iσ

� �
1
X
i

Uiâimâ
y
imâikâ

y
ik

1
X
i. j

Vij âimâ
y
im 1 âikâ

y
ik 2 1

� �
âjmâ

y
jm 1 âjkâ

y
jk 2 1

� �
5

X
i

2αi 2
X
iσ

αiâ
y
iσâiσ

!
1
X
iσ

ti â
y
iσâi11σ 1 â

y
i11σâiσ

� � 

1

 X
i

Ui 2
X
i

Uin̂i 1
X
i

Uin̂imn̂ik

!
1
X
i. j

Vij 12 n̂ið Þ 12 n̂j
� �
ð3:18Þ

Compared to ĤPPP in Eq. (3.8), the difference is

Δ5
X
i

2αi 2
X
i

2αin̂i 1
X
i

Ui 2
X
i

Uin̂i ð3:19Þ
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Therefore the electron-hole symmetry only exists in the half-filled systems,

in which
P

ini 5N (N is the total number of sites) and thus Δ5 0. It doesn’t

have to be a one-dimensional system to have electron-hole symmetry. The key

is the hopping part of the Hamiltonian. If the hopping terms only exist between

the two sublattices, the hopping term is invariant after the electron-hole trans-

formation in Eq. (3.17). Hence, the molecules in Fig. 3.2A and B have

electron-hole symmetry, while the molecule in Fig. 3.2C does not. The

electron-hole transformation operator acting on the Fock space of a single site

is Ĵi 0j i5 mk
�� �

, Ĵi m
�� �5 21ð Þηi m

�� �, Ĵi k
�� �5 21ð Þηi k

�� �, Ĵi mk
�� �

52 0j i
(Ramasesha et al., 1996). The full electron-hole transformation operator is also

given by the direct product of the single-site operators,

Ĵ5 L
i

Ĵi ð3:20Þ

The symmetry operators P̂; Ĉ2; Ĵ commute with each other and form an

Abelian group, which divides the space into eight irreducible representations—
eA1 ; eA2 ; oA1 ; oA2 ; eB1 ; eB2 ; oB1 ; oB2 . “1 ” and “2 ” denotes the two

subspaces distinguished by the electron-hole symmetry, called “covalent” and

“ionic” subspace. The symmetrization process is especially useful when

discussing the optical excitation because the electric dipole operator

μ52 e
P

ixini is antisymmetric under Ĉ2; Ĵ and thus the selection rule ensures

that the transition is only allowed between eA1 and eB2 (the ground state

commonly belongs to eA1 ). To construct the symmetry adapted basis, the pro-

jector operator is

P̂Γ 5
1

h

X
R̂

χΓ R̂
� �

R̂ ð3:21Þ

where R̂ is the symmetry operator, χΓ R̂
� �

is the character of R̂ of irreducible

representation Γ and h5 8 is the order of the group. After applying the

projector operator to each direct product basis, the basis belonging to a

particular irreducible representation is projected out. However, they are

linear-dependent. To eliminate this linear dependency, the Gram�Schmidt

orthogonalization algorithm is used. After that, the symmetry-adapted trans-

formation matrix S is constructed (Ramasesha et al., 1996). To abandon the

costly Gram�Schmidt algorithm, the transformation matrix S could also be

constructed by tracking the symmetric connections of each renormalized

FIGURE 3.2 The electron-hole symmetry exists in (A) and (B) but not (C). The site with/with-

out asterisk represents two different sublattices.
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basis (Prodhan and Ramasesha, 2018). The effective Hamiltonian projected

into a specific subspace is

~H5 S
y
ΓHSΓ ð3:22Þ

3.4 Applications

3.4.1 The electronic structure of the ground state of cyclic polyene

The ground-state electronic structure of cyclic polyene (CH)N (Fig. 3.3) has

been studied by unrestricted Hartree�Fock (UHF), CC methods, etc.

(Bendazzoli and Evangelisti, 1991; Bendazzoli et al., 1994; Fukutome, 1968;

Paldus and Piecuch, 1992). The UHF solution of PPP model Hamiltonian

predicted that there are spin density wave and charge density wave in the

system. However, since UHF is not accurate for strongly correlated systems,

it is interesting to check the results with DMRG. Fano et al. first applied

DMRG to study the ground-state electronic structure of cyclic polyene

(CH)N under homogeneous PPP model with Mataga�Nishimoto’s formula of

long-range Coulomb interaction (Fano et al., 1998). Table 3.2 shows the

ground-state energy of cyclic polyene with the number of sites N ranging

from 6 to 34 calculated by restricted Hartree-Fock (RHF), UHF, CC doubles

(Bendazzoli et al., 1994), approximate coupled pair theory with quadruples

and with triples and quadruples (Paldus and Piecuch, 1992), DMRG, and

FCI. With N# 18, the FCI calculation is still affordable, which could be

used to assess the accuracy of the other approximate methods. The DMRG

results are very close to FCI with only bond dimension m5 512. The error

of N5 18 is only 5.73 1024 eV. Even compared to the sophisticated CC

methods, DMRG is still much more accurate. The results demonstrate the

high accuracy of DMRG in one-dimensional semiempirical quantum chemis-

try Hamiltonian with long-range Coulomb interaction.

FIGURE 3.3 The topological structure of cyclic polyene (CH)N.
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TABLE 3.2 The energies (in eV) of cyclic polyene (CH)N calculated by restricted Hartree�Fock (RHF), unrestricted Hartree�Fock
(UHF), coupled cluster doubles (CCD) (Bendazzoli et al., 1994), approximate coupled pair theory with quadruples (ACPQ),

approximate coupled pair theory with triples and quadruples (ACPTQ) (Paldus and Piecuch, 1992), density matrix renormalization

group (DMRG), and full configuration interaction (FCI) (Bendazzoli and Evangelisti, 1991; Bendazzoli et al., 1994) are compared for

the different number of sites N.

N RHF UHF CCD ACPQ ACPTQ DMRG FCI

6 2 11.358325 2 11.358325 2 12.703501 212.7011 2 12.7101 2 12.722032 212.722033

10 2 17.441467 2 17.910422 2 19.928697 219.9565 2 20.0185 2 20.060503 220.060503

14 2 23.731302 2 24.924267 2 27.326180 227.4399 2 27.5981 2 27.671333 227.671391

18 2 30.101389 2 32.007998 � 234.9974 2 35.2980 2 35.384861 235.385430

22 2 36.513220 2 39.105943 � 242.5918 2 43.1000 2 43.145027 �
26 2 42.950070 2 46.207715 � � 2� 2 50.928028 �
30 2 49.403281 2 53.310920 � � � 2 58.715323 �
34 2 55.867856 2 60.414852 � � � 2 66.509902 �

Source: Reproduced from Fano, G., Ortolani, F., Ziosi, L., 1998. The density matrix renormalization group method: Aapplication to the PPP model of a cyclic polyene chain.
J. Chem. Phys. 108, 9246�9252. https://doi.org/10.1063/1.476379, with permission from American Institute of Physics.

https://doi.org/10.1063/1.476379


The spin�spin correlation function and the density�density correlation

function R i; jð Þ5 n ið Þn jð Þ� �
2 n ið Þ� �

n jð Þ� �
of the ground state were also calcu-

lated by DMRG. Fig. 3.4A shows that there is indeed spin density wave in the

cyclic polyene, but contrary to the results of UHF, there is only short-range

antiferromagnetic ordering instead of long-range antiferromagnetic ordering.

Fig. 3.4B shows that there is no charge density wave.

3.4.2 The excited states ordering, exciton binding, and optical
properties of polyene

According to Kasha’s rule, photon emission mostly occurs from the lowest

electronic excited state of molecules (Kasha, 1950). Thus molecules or poly-

mers with a dipole-forbidden lowest excited state deem to be nonemissive.

The lowest excited state of short linear polyenes is a dipole-forbidden dark

state with Ag symmetry instead of dipole allowed Bu state as a result of

strong electron correlation (Schulten and Karplus, 1972; Tavan and Schulten,

1987). It is intriguing to reveal the excited state ordering for long polyenes

or even for polyacetylene. In the independent electron limit, the 2Ag state

corresponds to a mix of single excitation from HOMO to LUMO1 1,

HOMO-1 to LUMO, and double excitation from HOMO to LUMO, while

1Bu state is a HOMO to LUMO single excitation. Thus, for short-chain poly-

ene, the 2Ag excited state energy is significantly higher than that of 1Bu

excited state due to the discreteness of the molecular orbital energy spec-

trum. When the electron correlation Hubbard U is turned on, the gap

between the ground state and the 2Ag state narrows (In the infinite U limit,

the 2Ag state becomes a covalent spin excitation), while the gap to the 1Bu

state increases. The energy of states will thus cross at a given Hubbard U,

which is called the “U-crossover”. However, for an infinite chain, the 2Ag

FIGURE 3.4 (A) The spin�spin correlation function S i2 jð Þ5 Sz ið ÞSz jð Þ
� �

and (B) density�
density correlation function R i; jð Þ5 n ið Þn jð Þ� �

2 n ið Þ� �
n jð Þ� �

of cyclic polyene (CH)N calculated

by DMRG. DMRG, Density matrix renormalization group. Reproduced from Fano, G., Ortolani,

F., Ziosi, L., 1998. The density matrix renormalization group method: application to the PPP

model of a cyclic polyene chain. J. Chem. Phys. 108, 9246�9252. https://doi.org/10.1063/

1.476379, with permission from American Institute of Physics.
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and 1Bu states both occur at the same energy in the Hückel limit (U5 0). If

the 2Ag and 1Bu states evolve in the same manner as the short chains, these

states would never cross with increasing U. Thus, for a given U, there must

occur a crossover when the chain length increases, which is called the “N-

crossover.” Soos et al. (1993) found a crossover occurred with a variation of

the bond-alternation parameter δ from exact diagonalization studies of short

chains, which is referred to as the “δ-crossover”. These three different types

of crossover in polyene, U-crossover, N-crossover, and δ-crossover, have

been studied thoroughly by symmetrized DMRG (Shuai et al., 1997b).

As introduced in Section 3.2, the extended-Hubbard�Peierls model is the

minimal model to consider the exciton effect. Fig. 3.5 shows the “U-cross-

over” for short (N5 8) and long (N5 80) chains for fixed alternation

δ5 0.07 and V5 0.4U. The DMRG cutoff has been chosen between m5 100

and m5 150, depending on the necessity of numerical convergence at about

1025. This V/U relation belongs to the meaningful phase corresponding to

the bond-order wave (BOW) regime (V,U/2). The critical correlation

strength, Uc, at which the crossover occurs, is nearly independent of the

chain length N. In both N5 8 and N5 80 cases, U is around 2.5t. It is well

known that the electron correlation tends to increase the energy of the ionic

excitation (the U penalty) and stabilize the covalent excitation. Especially in

the strong correlation limit, the 2Ag state becomes a covalent spin excitation

FIGURE 3.5 Crossover on U for N5 8 and N5 80 of extended-Hubbard model calculated by

DMRG. DMRG, Density matrix renormalization group. Reproduced from Shuai, Z., Bredas, J.-L.,

Pati, S.K., Ramasesha, S., 1997b. Quantum confinement effects on the ordering of the lowest-

lying excited states in conjugated polymers, in: Optical Probes of Conjugated Polymers.

International Society for Optics and Photonics, pp. 293�302. https://doi.org/10.1117/12.279282,
with permission from International Society for Optical Engineering.
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which is gapless when V5 0, δ5 0 and this state is composed of two triplets,

suggested by Tavan and Schulten (1987). Thus an increase in correlation

strength would lead to a decrease in the 2Ag energy. However, in the N5 8

chain, the energy of 2Ag state remains nearly constant before decreasing for

values of U/t larger than 2.0. In longer chains, the 2Ag energy increases even

more rapidly than the 1Bu energy as the correlation strength increases when

U/t, 2. This implies a substantial ionic contribution to the 2Ag state in long

chains when U is small besides the covalent triplet�triplet contribution.
Fig. 3.6 shows the δ-crossover and N-crossover in extended-Hubbard

model. Fig. 3.6B shows that for short-chain at U=t5 4; δ5 0:27, 2Ag is

below 1Bu. Upon elongating the chain length, the 1Bu state becomes lower

than 2Ag state. This is because that 2Ag can be mainly regarded as two trip-

let states, which is repulsive when the chain is too short. But when space is

allowed, the 2Ag state saturates since triplets are much more localized than

1Bu state. This is a direct theoretical observation of quantum confinement-

induced crossover. It should be mentioned that this behavior can only exist

for intermediate correlation strength: for weak correlation, there does not

exist any crossover and 2Ag lies above the 1Bu state for all chain lengths as

seen from the left half of Fig. 3.5; at large values of U/t in the atomic limit,

the crossover is also not expected as 2Ag always lies below the 1Bu state

(the right half of Fig. 3.5). It has been widely accepted that the conjugated

FIGURE 3.6 Crossover on (A) bond length alternation parameter δ (B) chain length N of

extended-Hubbard model calculated by DMRG. DMRG, Density matrix renormalization group.

Reproduced from Shuai, Z., Bredas, J.-L., Pati, S.K., Ramasesha, S., 1997b. Quantum confine-

ment effects on the ordering of the lowest-lying excited states in conjugated polymers, in:

Optical Probes of Conjugated Polymers. International Society for Optics and Photonics,

pp. 293�302. https://doi.org/10.1117/12.279282, with permission from International Society for

Optical Engineering.
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molecules fall in the intermediate correlation regime. Thus the confinement-

induced crossover is realistic. Beyond the extended-Hubbard model with

only nearest-neighbor Coulomb interaction, PPP model with Ohno�
Klopman formula of long-range Coulomb interaction has also been further

investigated (Shuai et al., 1997b). For the chosen set of parameters

(U5 11.26 eV, t5 2.4 eV, δ5 0.07), DMRG can still be considered nearly

accurate in the sense that (1) the total ground-state energy per electron is

reduced by only 1023 eV when increasing the bond dimension m from 100

to 120, and (2) for m5 100, the difference between the sum of the kept

eigenvalues of the density matrices and 1 is less than 1025, which is widely

considered as a criterion for the accuracy of DMRG. Fig. 3.7 shows that

there does not exist any N-crossover (the 2Ag state of N5 2 is an exception

because the state is not of double triplets character). For all chain lengths,

the covalent 2Ag state is always below 1Bu state. In addition, the energy of

2Ag state is almost twice that of T1 state.

Organic materials usually have quite a small dielectric constant (B2�3),
in contrast to inorganic semiconductors (. 10). Thus the Coulomb interaction

cannot be well-screened, which leads to a much more pronounced electron-

hole binding, or excitonic effect (Shuai et al., 1998b, 1997c; Yaron et al.,

1998). However, the value of the exciton binding energy of conjugated poly-

mer is a hotly debated issue——the binding energy ranging from 0.025 to

FIGURE 3.7 Excited states energies of polyenes under PPP model. PPP, Pariser�Parr�Pople.
Reproduced from Shuai, Z., Bredas, J.-L., Pati, S.K., Ramasesha, S., 1997b. Quantum confine-

ment effects on the ordering of the lowest-lying excited states in conjugated polymers, in:

Optical Probes of Conjugated Polymers. International Society for Optics and Photonics,

pp. 293�302. https://doi.org/10.1117/12.279282, with permission from International Society for

Optical Engineering.
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1 eV has been proposed in different studies. Some early results of quantum

chemistry calculations showed that the exciton binding energy is extremely

sensitive to both the level at which electron correlation effects are treated and

the size of basis set, and usually provided too large a binding energy in com-

parison to the experiment. The exciton binding energy is defined as the differ-

ence between the charge excitation gap (bandgap) Eg and optical gap E(1Bu).

The bandgap is defined as Eg 5E N2 1ð Þ1E N1 1ð Þ2 2E Nð Þ which constitu-

tes the continuum band edge and corresponds to a well-separated pair of

quasi-electron and hole (E(N) is the energy of N electron system). Thus the

exciton binding energy is defined as Eb 5Eg 2E 1Buð Þ. For the extended

Hubbard�Peierls model, the excited states were calculated (Shuai et al.,

1998b, 1997c). Fig. 3.8A shows that for δ5 0 and U5 5, V does not induce

any binding in the BOW phase (V,U/2). V lowers both the bandgap and the

1Bu excitation energy, see inset in Fig. 3.8A. For fixed δ5 0.2, small V values

hardly enhance Eb; however, a larger V strongly enhances Eb. Hence, exciton

is bound only when V is large enough relative to U. Fig. 3.8B shows that for

fixed electron correlation strength, Eb increases as δ increases. This implies

that the larger the δ value, the more excitonic like the lowest charge excitation.

From Fig. 3.8C, it is clearly seen that the δ dependence of Eb is strongly sup-

pressed by U. Interestingly, the behavior that the Hubbard U drastically

decreases the 1Bu exciton binding energy is rather counter-intuitive: since

exciton binding is a correlation effect, the Hubbard U would be expected to

increase Eb.

FIGURE 3.8 (A) Dependence of the binding energy Eb of 1Bu state on V/t for U/t5 5. Circles

represent δ5 0:2 and triangles δ5 0. The inset shows the dependence of band gap Eg on V/t for

δ5 0. (B) Dependence of bandgap (circles) and 1Bu exciton energy (triangles) on alternation

parameter δ for U=t5 5; V=t5 2. The inset shows Eb as a function of δ. (C) Dependence of

the 1Bu exciton binding energy on δ with V 5 2t: solid line for U5 25t and dotted line for U5 5t.

Reproduced from Shuai, Z., Pati, S.K., Su, W., Brédas, J., Ramasesha, S., 1997c. Binding energy

of 1 B u singlet excitons in the one-dimensional extended Hubbard-Peierls model. Phys. Rev.

B. 55, 15368. https://doi.org/10.1103/PhysRevB.55.15368; Shuai, Z., Brédas, J.-L., Pati, S.,

Ramasesha, S., 1998b. Exciton binding energy in the strong correlation limit of conjugated

chains. Phys. Rev. B. 58, 15329. https://doi.org/10.1103/PhysRevB.58.15329, with permission from

American Physical Society.
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There is major interest in studying the linear and nonlinear optical

responses of conjugated molecules and polymers. The response properties can

be calculated with the sum-of-states (SOS) approach or the correction vector

(CV) approach (introduced in Chapter 7 in detail). Ramasesha et al. and Shuai

et al. first combined DMRG and these two approaches to investigate the

response properties of conjugated polymers (Pati et al., 1999, p. 199;

Ramasesha et al., 1997; Shuai et al., 1998a). As the dipole moment operator

only couples the Ag and Bu subspace, the third-order polarizability can be

expressed by time-dependent perturbation theory as

γ 2ωσ;ω1;ω2;ω3ð Þ5

P123σ

X
lmn

1Ag μ
�� ��lBu

� �
lBu μ
�� ��mAg

� �
mAg μ

�� ��nBu

� �
nBu μ

�� ��1Ag

� �
ωlBu

2ωσ
� �

ωmAg
2ω1

� �
ωnBu

2ω2

� � ð3:23Þ

where ωσ 5ω1 1ω2 1ω3; P123σ represents a summation over the 24 terms of

the permutations over 2ωσ;ω1;ω2;ω3ð Þ. In the SOS approach, the intermedi-

ate state nBu and mAg are calculated explicitly. The key aspect of SOS

approach is that the summation should be converged with a few lowest

excited states otherwise the approach is inefficient. In the CV approach

(Ramasesha et al., 1997), only the CV φ 1ð Þ
i ω1ð Þ

��� E
and φ 2ð Þ

ij ω1;ω2ð Þ
��� E

should

be calculated as

H2E0 1ω1 1 iεð Þ φ 1ð Þ
i ω1ð Þ

��� E
5μi 1Ag

�� � ð3:24Þ

H2E0 1ω2 1 iεð Þ φ 2ð Þ
ij ω1;ω2ð Þ

��� E
5μi φ

1ð Þ
i ω1ð Þ

��� E
ð3:25Þ

The subscript i, j denote the direction of external field. With the CV, the

linear polarizability αij and the third-order polarizability γijkl could be calcu-

lated as

αij ωð Þ5 ⟨φ 1ð Þ
i ωð Þ μj

�� ��1Ag⟩1 ⟨φ 1ð Þ
i 2ωð Þ μj

�� ��1Ag⟩ ð3:26Þ

γijkl 2ωσ; ω1;ω2;ω3ð Þ5P123σ φ 1ð Þ
i ωσð Þ μj

�� ��φ 2ð Þ
kl ω12; 2ω1ð Þ

D E
ð3:27Þ

Table 3.3 shows the comparison of linear and third-order polarizabilities

of Hubbard model and extended-Hubbard model calculated by CV-DMRG

and exact diagonalization (Ramasesha et al., 1997). The DMRG results agree

very well with the exact ones, demonstrating its high accuracy.

In Fig. 3.9A, the TPA spectra represented by the dipole transitions

between the Ag excited states and the 1Bu state are shown (Shuai et al.,

1998a). Kohler and Terpougov (1996) measured the higher Ag states of

trans-octatetraene by two-photon fluorescence excitation spectroscopy (upper

panel of Fig. 3.9B). There are four distinct features in the experimental two-

photon fluorescence excitation spectrum at 5.54, 5.81, 5.96, and 6.18 eV.
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TABLE 3.3 The linear and third-order polarizability of Hubbard and extended-Hubbard model with 12 sites calculated by

correction vector-Density matrix renormalization group (CV-DMRG) (m5 100) and exact diagonalization. The trans-polyene

geometry is used with all bond length equal to 1 Å. α values are in units of 10224 esu. γ values are in units of 10236 esu.

Polarizability U5 3t; V5 0 U5 3t; V 5 1:5t U5 3t; V5 2:0t

Exact DMRG Exact DMRG Exact DMRG

αxx 42.61 42.57 152.12 152.05 997.90 997.72

αxy 2.95 2.91 35.45 35.38 383.11 382.99

αyy 1.52 1.44 14.20 14.06 154.73 154.41

γxxxx 26571 26566 51380 51374 2 32929131 2 32929014

γxxyy 113.8 109.1 2637.7 2628.6 2 4915213 2 4915102

γyyyy 1.24 1.22 189.9 186.0 2 736663 2 736556

Source: Reproduced from Ramasesha, S., Pati, S.K., Krishnamurthy, H., Shuai, Z., Brédas, J., 1997. Low-lying electronic excitations and nonlinear optic properties of polymers
via symmetrized density matrix renormalization group method. Synthetic. Met. 85, 1019�1022. https://doi.org/10.1016/S0379-6779(97)80136-1. With permission from
Elsevier.

https://doi.org/10.1016/S0379-6779(97)80136-1


The theoretical spectrum in the same energy window gives three features at

5.19 (3Ag), 5.75 (4Ag), and 6.00 eV (5Ag). Both the calculated relative inten-

sities and positions are in good agreement with the experiment. The middle

two peaks in the experiment probably have the same electronic origin——

the 4Ag state and its vibronic band.

3.4.3 Soliton structure of excited states of polyene

The electron�lattice interaction has an important effect on the electronic struc-

ture of conjugated polymers. The famous SSH model, which is a one-electron

model, has been well investigated to study the self-trapping structure of

polaron and soliton on polyene (Su et al., 1979, 1980). In the presence of real-

istic electron correlations, Ramasesha et al. (2000) and Bursill and Barford

(1999) have studied the equilibrium geometries of excitations in the PPP�
Peierls model. The energy of PPP�Peierls model in Eq. 3.12 can be mini-

mized iteratively under the constraint that the total length of the system is

FIGURE 3.9 (A) Two-photon absorption spectra for chain length N5 6�16. (B) The compari-

son of experimental two-photon fluorescence excitation spectrum (upper panel) with DMRG

results (lower panel) for octatetraene (N5 8). DMRG, Density matrix renormalization group.

Reproduced from Shuai, Z., Brédas, J., Saxena, A., Bishop, A., 1998a. Linear and nonlinear

optical response of polyenes: a density matrix renormalization group study. J. Chem. Phys. 109,

2549�2555. https://doi.org/10.1063/1.476827. With permission from American Institute of

Physics.
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unchanged. Thus the objective functional is defined as

ℒ fdig;Ψð Þ5 Ψ Ĥ
�� ��Ψ� �

1 η
X
i

di ð3:28Þ

where η is the Lagrange multiplier.

δℒ
δη

5
X
i

di 5 0 ð3:29Þ

With the Hellmann�Feynman theorem,

δℒ
δdi

5 γi Ψ bTi��� ���ΨD E
1Kidi 1 η5 0 ð3:30Þ

bTi 5 X
σ

a
y
iσai11σ 1 a

y
i11σaiσ ð3:31Þ

Assuming γi 5 γ; Ki 5K and summing up all the δℒ=δdi, then

η52 γhΨj
X
i

bTi jΨi ð3:32Þ

Therefore

di 5
γ
K

⟨Ψj
X
j

bTj jΨ⟩2 ⟨ΨjbTi jΨ⟩
 !

ð3:33Þ

Since Ψ depends on di, the optimization should be solved self-consistently.

For polyene, the hopping integral is t0 52 2:539 eV and the Hubbard U is

U5 10:06 eV. The force constant is 46 eV/Å2. The initial C�C bond length

is 1.46 Å for the single bond and 1.35 Å for the double bond. The bond angle

is fixed to be 120 degrees. The Ohno�Klopman long-range Coulomb potential

is used. The electron�phonon coupling is γ5 4:593eVÅ
21

(Bursill and

Barford, 1999). Fig. 3.10 shows the vertical excitation energy at the equilib-

rium ground state geometry and 0�0 excitation energy of 21A1
g ; 11B2

u states

and triplet 13B1
u state with different chain lengths (Bursill and Barford,

1999). At the equilibrium ground state geometry, the energies of 21A1
g and

11B2
u are very close to each other. In addition, there is one crossover in

the short chain and one crossover in the long chain. In the thermodynamic

limit, the optical allowed 11B2
u state is below the dark 21A1

g state, same as

Fig. 3.6B. After geometry optimization, the relaxation energy of 11B2
u state

is about 0.3 eV, while the relaxation energies of 21A1
g and 13B1

u are more

substantial, about 1.0 and 0.5 eV, respectively. Hence, the 21A1
g state is well

below the 11B2
u state after relaxation.

Fig. 3.11 plots the bond length parameter defined as δi 5 21ð Þi ti 2 tð Þ=t of
different states with N5 102 after relaxation, where ti is the hopping integral
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FIGURE 3.10 The vertical excitation energy at the equilibrium ground state geometry and

0�0 excitation energy of 21A1
g ; 11B2

u states and triplet 13B1
u state with different chain lengths.

Reproduced from Bursill, R.J., Barford, W., 1999. Electron-lattice relaxation, and soliton struc-

tures and their interactions in polyenes. Phys. Rev. Lett. 82, 1514. https://doi.org/10.1103/

PhysRevLett.82.1514. With permission from American Physical Society.

FIGURE 3.11 The bond length parameter of different excited states near the center of the

chain (N5 102). The markers are the numerical results. The solid lines are the fit with 2-soliton

(for 11B2
u and 13B1

u states) and 4-soliton formula (for 21A1
g state). Reproduced from Bursill,

R.J., Barford, W., 1999. Electron-lattice relaxation, and soliton structures and their interactions

in polyenes. Phys. Rev. Lett. 82, 1514. https://doi.org/10.1103/PhysRevLett.82.1514. With per-

mission from American Physical Society.
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of the ith bond after optimization and t is the average hopping integral. The

markers are the numerical results. The solid line is the 2-soliton fit for 11B2
u

and 13B1
u states and 4-soliton fit (Su, 1995) for 21A1

g state. Fig. 3.11 shows

that 13B1
u and 21A1

g undergo a substantial bond distortion, while 11B2
u only

has weak distortion. This is consistent with the different behaviors of relaxation

energy. The good fit of soliton’s hyperbolic tangent formula indicates that the

13B1
u state and 11B2

u states are one soliton�antisoliton pair and the 21A1
g

state is composed of two soliton�antisoliton pairs. The 4-soliton character

of the 21A1
g state also demonstrates the fact that it has a considerable triplet�

triplet character.

3.4.4 Intramolecular singlet fission in donor�acceptor type
conjugated copolymer

Singlet fission (SF), a photophysical process occurring in organic conjugated

molecules, such as tetracene and pentacene, has received a lot of attention

from both experimentalists and theoreticians in the last decade (Smith and

Michl, 2010). The basic microscopic process of SF is that the system absorbs a

photon to become a singlet exciton, which then splits into two triplet excitons.

According to the coupling rule of spin, two triplet states with S5 1 can be cou-

pled into a singlet state with S5 0. Therefore the SF process is a spin-allowed

process unlike the intersystem crossing. Scientists are interested in the SF pro-

cess because with SF material it is possible to break the Shockley�Queisser
limit for a single junction solar cell. In 2015 Busby et al. first reported that

PBTDO1 (benzodithiophene (B)-thiophene-1,1-dioxide (TDO)), a copolymer

composed of strong donor�acceptor (DA) units, exhibits intramolecular SF

(iSF) with high quantum efficiency (B170%) (Busby et al., 2015b). Before

that, only high-efficiency intermolecular SF (xSF) was observed. Compared to

xSF, iSF in DA-copolymer has the advantage that it is not sensitive to intermo-

lecular packing and thus is more promising in practical applications. However,

the microscopic mechanism of iSF is not very clear. Among the low-lying

excited states, one double excitation state with triplet�triplet pair character

plays the role of intermediate state, which is called 1(TT) state. Some studies

suggested that the 2Ag state is a coupled triplet�triplet state as polyacetylene

discussed above (Aryanpour et al., 2015; Tavan and Schulten, 1987). By con-

trast, other studies suggested that 2Ag is destructive as a nonradiative decay

pathway in competition with SF process (Busby et al., 2015a). Since 1(TT)

state is a double excitation state, the conventional single excitation methods

will fail to correctly describe this state. Therefore it is necessary to use DMRG

to study the low-lying states of the iSF system.

S1x
1 TTð ÞxT1 1T1 ð3:34Þ

The PPP model Hamiltonian is adopted to describe the conjugated back-

bone of DA-copolymer (Ren et al., 2017). To incorporate the electronic
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push�pull effect between donor and acceptor, a site energy difference εDA is

introduced into the model. In Fig. 3.12, the excitation energies of the lowest

three excited states, 1Bu, 2Ag, and twice T1 of PBTDO1/ADADADA oligo-

mer as a function of the DA strength εDA are plotted. The energies of the

1Bu and 2Ag states are nearly degenerate (B20 meV) when εDA is less than

3.5 eV, indicating that a very fast internal conversion would happen from the

bright 1Bu state to the dark 2Ag state. The natural transition orbital (NTO)

analysis is used to identify the excitation character of the 2Ag and 1Bu

states. In the configuration interaction singles (CIS) or TDDFT calculations,

the sum of the square of each NTO pair singular value γs is exactly 1. If the

excited state is a correlated many-body wavefunction, assuming that the

ground state is mainly a HF configuration,
P

sγ
2
s could represent the propor-

tion of single excitation components in the excited state. It is found that the

2Ag and 1Bu states have different excitation characters. For example, when

εDA 5 1:5 eV,
P

sγ
2
s of the 1Bu state is 0.766, while

P
sγ

2
s of the 2Ag state is

only 0.242. Therefore, the 1Bu state is mainly a single excitation state, while

the 2Ag state is mainly a double excitation state.

The local spin analysis method is also used to identify the 1(TT) state,

since each triplet component occupies a different position in the real space.

If the local spin of half of the system is equal to 1, the state is a pure 1(TT)

state (Clark and Davidson, 2001). At different DA strengths εDA, the local

spin S2half
� �

of the 2Ag state is larger than 1.2, while that of 1Ag and 1Bu

FIGURE 3.12 Excitation energies of the 1Bu, 2Ag and twice T1 states of PBTDO1/

ADADADA oligomer as a function of DA strength. The inset figure also plots the energy after

PPP�Peierls optimization on the 2Ag state at εDA 5 1.5 eV. The triplet pair binding energy

Eb 5E2Ag
�23ET1

is shown on the bottom panel. Reproduced from Ren, J., Peng, Q., Zhang,

X., Yi, Y., Shuai, Z., 2017. Role of the dark 2Ag state in donor�acceptor copolymers as a path-

way for singlet fission: a DMRG study. J. Phys. Chem. Lett. 8, 2175�2181. https://doi.org/
10.1021/acs.jpclett.7b00656, with permission from American Chemical Society.
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states are always near 0.6 (Fig. 3.13). With the increase of εDA; S2half
� �

of the

2Ag state is approaching 2.0. That is to say, larger DA strength increases the

percentage of TT configuration in the 2Ag wave function. Furthermore,

PPP�Peierls model is used to optimize the structure on 2Ag state at

εDA 5 1:5 eV. The local spin S2half
� �

of the 2Ag state increases from 1.31 to

1.66, indicating that the relaxed structure of the 2Ag state can stabilize the

TT component.

The spin�spin correlation function ŜizŜjz
� �

is calculated to show the cor-

relation of spin alignment in the real space. In the ground state, the spins

tend to be oriented antiparallel between neighboring sites, and the spin�spin
correlation function alternates between positive and negative along a conju-

gated chain. While in the 2Ag state, the pattern of spin�spin correlation

function is different. Take site 15 and site 22 as an example, it obeys the

antiparallel rule like the ground state when εDA is small. As εDA increases,

the correlation function becomes positive, which means that the electrons on

sites 15 and site 22 are spin parallel, indicating a triplet configuration.

Hence, the TT character of 2Ag is enhanced when DA strength increases.

Similar to the local spin analysis, after PPP�Peierls optimization on the 2Ag

state when εDA 5 1:5 eV, ⟨Ŝ15zŜ22z⟩ changes from negative to positive, further

indicating that the 2Ag optimized structure would stabilize the triplet

FIGURE 3.13 (A) Local spin of half the PBTDO1/ADADADA oligomer [fragment from site 1

to 26 shown in (C)] in the 1Ag, 2Ag, and 1Bu states as a function of DA strength εDA. The
spin�spin correlation function pattern between sites 15 and 22 at different DA strengths (B).

The schematic spin diagram is included. (C) Schematic representation of 1(TT) structure of the

2Ag state in PBTDO1/ADADADA oligomer. Reproduced from Ren, J., Peng, Q., Zhang, X., Yi,

Y., Shuai, Z., 2017. Role of the dark 2Ag state in donor�acceptor copolymers as a pathway for

singlet fission: a DMRG study. J. Phys. Chem. Lett. 8, 2175�2181. https://doi.org/10.1021/acs.
jpclett.7b00656, with permission from American Chemical Society.
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configuration. The binding energy Eb of the triplet pair state is defined as the

energy difference between the adiabatic coupled 1(TT) state and two inde-

pendent T1 states. Eb is considered as the minimum energy to be overcome

for the coupled 1(TT) state to separate. Fig. 3.12 shows that Eb is negative

and decreases (absolute value) when DA strength increases. From the ther-

modynamics point of view, larger DA strength favors the separation. Based

on this analysis, a model to explain the mechanism of iSF in such a DA-

copolymer is proposed: after photoexcitation, a quick internal conversion

process occurs from the bright 1Bu state to the dark 2Ag state as a result of

near degeneracy. And then, the 2Ag state, with a large 1(TT) component

would split into two uncoupled triplets. This model for DA-copolymer is

consistent with the former understanding of the 2Ag state in polyene.

3.4.5 Pariser�Parr�Pople density matrix renormalization group
for systems beyond one-dimension

In addition to one-dimensional polymers and oligomers, DMRG combined

with PPP model Hamiltonian has also been used to solve the static electronic

structures of ground and excited states and linear and nonlinear optical

response properties for conjugated systems with other topologies, such as

dendrimers (Mukhopadhyay and Ramasesha, 2009), porphyrins (Kumar

et al., 2012; Thomas et al., 2013), graphene nanoribbons (GNR) (Goli et al.,

2016), perylenes, (Prodhan and Ramasesha, 2018), coronene (Prodhan et al.,

2019), etc. (Kumar and Ramasesha, 2010). It is more challenging for DMRG

to handle systems beyond one-dimension.

In this subsection, we take the GNRs as an example. GNRs are quasi-one-

dimensional forms of graphene, the properties of which depend crucially on

the geometry of the edges of the ribbons, that is, zigzag (Z) and armchair (A)

types. The confinement quasi-one-dimensional geometry will enhance the

electronic correlation effect, making the properties of GNR quite different

from what the common tight-binding model predicts. The GW method com-

bined with Bethe�Salpeter equation can take into account the one electron�
one hole interaction beyond the single-particle description, successfully

predicting the quasiparticle bandgap and excitonic character of the lowest opti-

cal absorption (Spataru et al., 2004; Yang et al., 2007). However, the high-

order electronic correlation effect is still lacking in these calculations, which

may also be important to the properties of GNR. Ramasesha et al. have used

DMRG combined with PPP model to study the electronic structures of three

different structures of GNR in detail, which is 3-zigzag GNR (ZGNR), 6-/5-

armchair GNR (AGNR) shown in Fig. 3.14 (Goli et al., 2016).

Although DMRG will not handle these GNRs as accurately as it does

one-dimensional systems introduced above, it has been found that bond

dimension m5 750 is still adequate to converge the one-photon gap and

two-photon gap. In all the three systems, the charge gap (bandgap) is larger
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than 0 in the thermodynamic limit, indicating that both of them are semicon-

ductors. Compared to the results from tight-binding model, it can be further

identified that 3-ZGNB and 5-AGNR are Mott�Hubbard semiconductors,

while 6-AGNR is a band semiconductor. Through calculating the spin gap, it

was found that as the length of GNR increases, the ground state of the

3-ZGNR is a high-spin ferromagnetic state, while the ground state of the 6-

AGNR and 5-AGNR systems is a singlet state with a finite spin gap even in

the thermodynamic limit. On the contrary, 5-AGNR was predicted to be

metallic without a spin gap by the tight-binding theory, which indicates the

importance of electron correlation effect. Furthermore, the one-photon and

two-photon gaps were calculated for all three systems. Since the ground state

of 3-ZGNR gradually becomes the spin state as the length increases,

Fig. 3.15 shows the results of 3-ZGNR within two spin manifolds (S5 0 and

S5 1, the actual crossover occurs at N5 14). It was found that in 3-ZGNR,

the lowest two-photon state appears above the lowest one-photon state for

systems up to 3 units, but this ordering is reversed in larger systems. This

size-dependent ordering behavior is quite similar to polyene introduced in

the former sections. In addition, the two-photon gap extrapolates to zero in

the thermodynamic limit, while the extrapolated value of the optical gap is

2.25 eV. In the case of 6-AGNR, the optical one-photon state is always

below the two-photon state for all system sizes, suggesting these systems

will be fluorescent. On the contrary, in 5-AGNR, the optical state is always

FIGURE 3.14 Molecular structures of (A) 3-ZGNR, (B) 6-AGNR, and (C) 5-AGNR. The num-

ber in the name characterizes the width of the GNR (graphene nanoribbons). Reproduced from

Goli, V.M.L.D.P., Prodhan, S., Mazumdar, S., Ramasesha, S., 2016. Correlated electronic prop-

erties of some graphene nanoribbons: a DMRG study. Phys. Rev. B. 94, 035139. https://doi.org/

10.1103/PhysRevB.94.035139, with permission from American Physical Society.

84 DMRG-based Approaches in Computational Chemistry

https://doi.org/10.1103/PhysRevB.94.035139
https://doi.org/10.1103/PhysRevB.94.035139


higher than the lowest two-photon state. In both 5-AGNR and 6-AGNR, the

one-photon and two-photons gaps are finite in the thermodynamic limit.

3.5 Summary

The development of DMRG in quantum chemistry began with great success

in the treatment of semiempirical model Hamiltonian with both short-range

and long-range Coulomb potentials. With the symmetrized DMRG algo-

rithm, the pioneers calculated the electronic structures of the ground and

excited states of polyenes longer than 100 carbon atoms as well as other

more complex conjugated polymers by DMRG with unprecedented accuracy,

successfully solving problems including the excited states ordering, exciton

binding energies, and linear and nonlinear spectroscopy in these systems.

Before that, no methods can handle such a large system accurately. The suc-

cessful application of DMRG to these chemical problems has inspired the

subsequent researchers to further develop DMRG for the more general ab

initio Hamiltonian. The following three chapters will introduce these new

developments of DMRG for ab initio Hamiltonian. After two decades of

effort, DMRG nowadays has become one of the state-of-the-art methods to

deal with the strong correlation problem in quantum chemistry.

FIGURE 3.15 Lowest optical one-photon and two-photon gaps in 3-ZGNR versus the inverse of

the number of unit cells: the lowest optical gap in singlet space (open triangle) and in triplet space

(close triangle); the lowest two-photon gap in singlet space (open square) and in triplet space

(close square). Reproduced from Goli, V.M.L.D.P., Prodhan, S., Mazumdar, S., Ramasesha, S.,

2016. Correlated electronic properties of some graphene nanoribbons: a DMRG study. Phys. Rev.

B. 94, 035139. https://doi.org/10.1103/PhysRevB.94.035139, with permission from American

Physical Society.
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Chapter 4

Density matrix renormalization
group for ab initio quantum
chemistry Hamiltonian

Ab initio quantum chemistry methods are a class of computational chemistry

methods based on the principles of quantum mechanics. The term “ab initio”

indicates that the calculation is from first principles and that no empirical

parameters are used. Therefore they are usually more accurate, robust, and

general than their semiempirical counterparts, what have made them become

dominant in the current quantum chemistry field.

In this chapter, we will introduce the basic algorithms of using density

matrix renormalization group (DMRG) to solve the many-electron

Schrödinger equation with an ab initio electronic Hamiltonian in its second-

quantized form

Ĥ5
X
ij;σ

tijâ
y
iσâjσ 1

1

2

X
ijkl;στ

gijklâ
y
iσâ
y
kτ âlτ âjσ; ð4:1Þ

in which i, j, k; and l are the electrons’ spatial orbitals; the subscript σ and τ
denote the spin of the electrons; â

y
iσ is the electron creation operator acting

on the ith orbital with spin σ and âiσ is the conjugated annihilation operator.

tij and gijkl are the one- and two-electron integrals, respectively,

tij 5

ð
φ⁎

i rð Þĥφj rð Þdr; ð4:2Þ

gijkl 5

ð
φ⁎

i r1ð Þφ⁎

k r2ð Þĝφj r1ð Þφl r2ð Þdr1dr2 ð4:3Þ

where ĥ and ĝ are the one- and two-electron operators. The one-electron

operator (in atomic units)

ĥ52
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X
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contains the kinetic energy operator of the electrons and the attraction operator

between electrons and nuclei, and the two-electron operator (in atomic units)

ĝ5
X
i, j

1

rij
ð4:5Þ

evaluates the electronic repulsion. Here Za, rai; and rij are the nuclear

charges, electron-nucleus distances, and electron�electron distances, respec-

tively. In practice, the number of unique orbital integrals can be significantly

reduced by using the permutation symmetries, as

tij 5 tji; ð4:6Þ
gijkl 5 gjikl 5 gijlk 5 gjilk 5 gklij 5 glkij 5 gklji 5 glkji: ð4:7Þ

In ab initio DMRG calculations, orbitals i, j, k; and l are usually taken as

a set of orthogonal molecular orbitals (MOs) from a priori Hartree�Fock
self-consistent field (SCF) or other inexpensive quantum chemical calcula-

tions. The electronic Hamiltonian in Eq. 4.1 relies on both the nonrelativistic

approximation and the Born�Oppenheimer approximation, which are widely

applicable for most molecules. The consideration of the relativistic effect

and non-Born�Oppenheimer effect in DMRG will be discussed in

Section 4.11 and Section 5.7, respectively.

4.1 Renormalized operator-based density matrix
renormalization group implementation

Since White and Martin (1999) made the first implementation of DMRG cal-

culations for ab initio quantum chemistry Hamiltonian, a quick development

of ab initio DMRG quantum chemistry has been witnessed in the last two

decades. (see review papers of Chan and Sharma, 2011; Kurashige, 2014;

Wouters and Van Neck, 2014; Baiardi and Reiher, 2020; Freitag and Reiher,

2021) As we have introduced in Chapters 1 and 2, DMRG calculations can

be performed by two superficially different languages: an older language of

the renormalization group and renormalized operators and a more recent lan-

guage of matrix product state (MPS) and matrix product operator (MPO).

Most of the earlier ab initio DMRG works (e.g., White and Martin, 1999;

Daul et al., 2000; Mitrushenkov et al., 2001; Chan and Head-Gordon, 2002;

Chan and Head-Gordon, 2003; Mitrushenkov et al., 2003; Legeza et al.,

2003a; Legeza and Sólyom, 2003) employed the older formulation, which is

sometimes also called first-generation DMRG algorithm. Here, we briefly

introduce the methodology fundamentals therein.

In the first-generation DMRG methods, the whole system is partitioned

into two subsets, that is, the left block and right block. Then, the key step in
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ab initio DMRG is to identify and construct efficiently the appropriate renor-

malized operators as one proceeds through the DMRG sweep. Here the

renormalized operators mean expressing the operator matrices with the pre-

served effective bases of the left or right block after truncation.

As shown in Eq. 4.1, the local state on an MO could be one of the four

possible occupation states: the doubly occupied configuration mk
�� �

, the

spin-up singly-occupied configuration m
�� �, the spin-down singly-occupied

configuration k
�� �; and the unoccupied configuration 2j i. Thus we can write

the single-site operators (SSOs) as matrices, for example, the spin-up and

spin-down creation operators can be written as

âyu 5

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0BB@
1CCA; âyd 5

0 2 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0BB@
1CCA; ð4:8Þ

and the related annihilation operators and other SSOs could be derived from

the creators, for example, the spin-up annihilation and particle number opera-

tors are

âu 5 âyu
� �y

5

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0BB@
1CCA; ð4:9Þ

n̂u 5 âyuâu 5

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0BB@
1CCA: ð4:10Þ

The definition of the spin-down creation operator â
y
d contains a minus

sign, because we usually order the spin-up electron before the spin-down one

on a single spatial orbital. The spin-down creator with a minus sign makes

â
y
d m
�� �52 mk

�� �
to fulfill the antisymmetric requirement of the fermionic

wave function. The total Hamiltonian, as well as other global operators act-

ing on the total wave function, can be expressed as the sum of a series of

operator terms, which are the product of several SSOs. From the perspective

of the traditional DMRG algorithm, the fundamental problem that needs to

be solved in order to implement the ab initio DMRG is embedding such

operator terms into the left-right DMRG framework.

According to the left-right partition in the traditional DMRG, the N active

MOs are rearranged as a one-dimensional (1D) chain and can be split into

four blocks L, nl, nr; and R (see Fig. 1.2). In normal cases of two-site DMRG

calculations, nl and nr are two active sites. For each block, the Hamiltonian

takes the same form as the ab initio Hamiltonian in Eq. 4.1, where the orbital
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indices are only restricted to the orbitals within the block. The Hamiltonian of

the superblock L05 L1 nl can be obtained by combining the Hamiltonians

of the subblocks L and nl, as well as all the interactions between the two

subblocks, that means

ĤL0 5 ĤL 1 Ĥnl 1
X
IJ

vIJ ÎLĴnl ; ð4:11Þ

in which Î is the renormalized operator of the subblock L and Ĵ is the SSO

of site nl, respectively. Therefore the dimensions of these matrices are usu-

ally 43 4 (for Hnl and Jnl ), m3m (for HL and IL), and 4m3 4m (for HL
0 ),

where m is the number of preserved effective bases in subblock L.

The term
P

IJvIJ ÎLĴnl describes the interactions between blocks L and nl.

In this case, the Hamiltonian of the superblock L0 is

ĤL0 5 ĤL 1 Ĥnl 1
X

iAnl ;jAL

X
σ

tij â
y
iσâjσ 1 h:c:

� �
1

X
iAnl ;jklAL

X
στ

gijkl â
y
iσâ
y
kτ âlτ âjσ 1 h:c:

� �
1

X
iAL;jklAnl

X
στ

gijkl â
y
iσâ
y
kτ âlτ âjσ 1 h:c:

� �
1

1

2

X
ikAnl ;jlAL

X
στ

gijkl â
y
iσâ
y
kτ âlτ âjσ 1 h:c:

� �
1

X
ijAnl ;klAL

X
στ

gijklâ
y
iσâ
y
kτ âlτ âjσ 1 gkjilâ

y
iσâ
y
kτ âjτ âlσ

� � ð4:12Þ

The construction of the ĤL0 Hamiltonian is performed in the DMRG

sweep process and is usually called blocking.

For the superblock R
0
5 nr 1R on the right side, we can build the

Hamiltonian similarly. In fact, Eq. (4.12) can be applied to any two-part sys-

tem as long as the interaction term can be precisely constructed. We can

decompose a global operator acting on the whole wave function as a sum-of-

products (SOP),

Ô5 Ô
Lk � 1̂

Rk
1 1̂

Lk � Ô
Rk
1
X
bk

ôLkbk ô
Rk

bk
; ð4:13Þ

in which we have introduced three kinds of left and right operator terms:

(1) the identity operators 1̂
Lk

and 1̂
Rk
; (2) the operators Ô

Lk
and Ô

Rk
, respec-

tively, acting on the left and right blocks containing sites 1, 2, . . ., k and

k1 1, . . ., N, respectively; and (3) the terms ôLkbk ô
Rk

bk
denoting their interac-

tions. Following this idea, we can write down a left-right decomposition

of the total Hamiltonian into the so-called normal/complementary (N/C)
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operator (Xiang, 1996) as

Ĥ5 Ĥ
Lk � 1̂

Rk
1 1̂

Lk � Ĥ
Rk
1

X
σ

X
iALk

â
y
iσŜ

Rk

iσ 1
X
σ

X
iARk

â
y
iσŜ

Lk

iσ 1 h:c:

! 

1
1

2

X
στ

X
ikALk

Â
Lk

iσkτP̂
Rk

iσkτ 1 h:c:

!
1

X
σ

X
ijALk

B̂
Lk
iσjσQ̂

Rk

iσjσ 1 h:c:

!0@0@
2

X
στ

X
ijALk

Ĉ
Lk

iσjτR̂
Rk

iσjτ 1 h:c:

!
;

0@ ð4:14Þ

where

Âiσkτ 5 â
y
iσâ
y
kτ ; ð4:15Þ

B̂iσjσ 5 â
y
iσâjσ; ð4:16Þ

Ĉiσjτ 5 â
y
iσâjτ ; ð4:17Þ

and various complementary operators are defined as

Ŝ
Lk

iσ 5
X
jALk

tijâjσ 1
X
τ

X
jklALk

gijklâ
y
kτ âlτ âjσ; ð4:18Þ

Ŝ
Rk

iσ 5
X
τ

X
jklARk

gijklâ
y
kτ âlτ âjσ ð4:19Þ

P̂
Rk

iσkτ 5
X
jlARk

gijklâlτ âjσ; ð4:20Þ

Q̂
Rk

iσjσ 5
X
τ

X
klARk

gijklâ
y
kτ âlτ ; ð4:21Þ

R̂
Rk

iσjτ 5
X
klARk

gkjilâ
y
kτ âlσ: ð4:22Þ

Note that the above decomposition is not symmetrical with respect to L0

and R0; one superblock carries uncontracted operators such as Âik and B̂ij, Ĉij

(normal operators), while the other carries only the complementary operators,

such as P̂
Rk

ik and Q̂
Rk

ij , R̂
Rk

ij (although Ŝi is carried for both superblocks). The

two-index complementary operators can be chosen to be defined within the

left or right block and the choice will change the total number of SOP terms

in Eq. 4.1. For simplicity, here we only show one of the two possibilities

which define the two-index complementary operators within the right block.

In such cases, the number of SOP terms will increase during a DMRG
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half-sweep as the active site k is moved from the left-end (the left-most site)

to the right, and the size of the Lk block increases. Therefore it is usual to

keep the two-index complementary operators within the right block when

k,N=2 and keep them within the left block when k$N=2. Finally, a simple

flow table of renormalized operator-based DMRG implementation for

ab initio Hamiltonian is shown in Algorithm 4.1.

Algorithm 4.1: Renormalized operator-based DMRG implementation for ab

initio Hamiltonian. DMRG, Density matrix renormalization group.

1: procedure Prepare(coordination, basis, . . .)
2: {tpqg, gpqrs

� � � Hartree�Fock or other low-level calculation
3: Select active MOs
4: return {tpqg, gpqrs

� �
and other prerequisites

5: end procedure
6: procedure OrbitalOrder ({tpqg, gpqrs

� �
)

7: Optimize MO order on a 1D chain // see Section 4.6
8: end procedure
9: procedure sweepL2R({tpq}, {gpqrs})
10: for k in ½1;N2 1�
11: Build ĤL0 , ĤR0 , fÔ L0 g, fÔ R0 g
// see Eqs. 4.12 and 4.15�4.22
12: construct Ĥ via Eq. 4.14
13: E, ψ’ Diagonalize(Ĥ ) // Lanczos or Davidson
14: U; S;VT’ SVD(ψl0r 0 )
15: Ô L0’Transform (Ô L0 ;U) // Ô

new

L0 5UTÔ
old

L0 U
16: end for
17: end procedure
18: procedure SweepR2L({tpqg, gpqrs

� �
)

19: for k in ½N; 2�
20: Build ĤL0 ; ĤR0 , fÔ L0 g, fÔ R0 g
// see Eqs. 4.12 and 4.15�4.22
21: construct Ĥ via Eq. 4.14
22: E, ψ’ Diagonalize(Ĥ ) // Lanczos or Davidson
23: U; S;VT’ SVD(ψl0r 0 )
24: Ô R0’ Transform(Ô R0 ;V ) // Ô

new

R0 5VTÔ
old

R0 V
25: end for
26: if not converged then
27: Go back to step 9 with updated fÔ R0 g
28: end if
29: return E, ψ
30: end procedure

Now let’s present a brief analysis of the computational costs in renorma-

lized operator-based ab initio DMRG. (Chan and Head-Gordon, 2002;

Wouters and Van Neck, 2014) The left-right decomposition is not symmetri-

cal with respect to the left and right blocks, because one block carries uncon-

tracted normal operators such as âiâj while the other carries only the

complementary operators, such as P̂ij and Q̂ij, R̂ij. In the block configuration,
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each block L and R carries O N2
� �

normal operators with memory storage of

OðN2m2Þ if there are at most m DMRG states reserved in sweeps. The most

expensive part of blocking is consequently the formation of the two-site

complementary operators P̂ij and Q̂ij, R̂ij, which requires OðN2m2Þ time and

OðN2m2Þ storage per operator. There are O N2
� �

such operators, and a naive

implementation would hence result in a computational time cost of OðN4m2Þ
per microiteration. However, this summation needs to be performed only

once per sweep for each operator, at the moment when the second-quantized

operator is added. Thereon, this operator can be transformed successively.

The total computational time cost per microiteration is hence reduced to

OðN3m2Þ for the summation and OðN2m3Þ for the transformation (there are

O N2
� �

operators to be transformed).

In a left-to-right sweep, after we have performed the blockings

L
0
5 L1 nl and R

0
5 nr 1R, the next stage is to truncate L

0
. We have to con-

struct the on-site effective Hamiltonian and use the iterative Davidson or

Lanczos procedure to find the ground-state wave function. The key step in

these iterative eigensolvers is the construction of

vL0R0 5HL0R0cL0R0 ; ð4:23Þ
in which the cL0R0 is the trial wave function vector and its dimension is the

number of states in the superblock L
0
1R

0
, which is Oð16m2Þ. By using the

left-right decomposition of the total Hamiltonian as shown in Eqs. 4.11, 4.12,

and 4.14, the operators Ô
Lk

and Ô
Rk

in the left and right blocks with a dimen-

sion B4 m can be applied successively onto the trial wave function vector

cL0R0 . The cost for each matrix-vector multiplication is then O m3
� �

times the

number of operator pairs in the left and right blocks, which yields an OðN2m3Þ
cost per multiplication. Subsequently, a singular value decomposition (SVD)

of the ground-state wave function or the equivalent diagonalization of subsys-

tems’ reduced density matrix (RDM) with time costs of O m3
� �

is performed

to obtain the lowest m eigenvectors as the later updated basis set of the super-

block L
0
. The operators of L

0
are then rotated in O N2m3

� �
time. These opera-

tors, together with the wave function and transformation matrix, are saved to

disk for use in the subsequent sweep iteration or renormalization transform.

Overall, on each site, the most expensive parts of the renormalization

transform are the blocking, diagonalization, and truncation steps, which cost

OðN3m2Þ1OðN2m3Þ, OðN2m3Þ, and O N2m3
� �

time, respectively. As these

procedures must be applied on each site, in DMRG calculations these proce-

dures have to be executed OðNÞ times, leading the total time cost of the

DMRG algorithm to ðN4m2Þ1OðN3m3Þ, as shown in Table 4.1.

Due to the sparsity of the two-electron integrals, the number of nonzero

effective operator terms in the total Hamiltonian is normally much smaller

than N4. How to decompose these terms into normal and complementary

operators becomes highly nontrivial, because there are no rigorous rules to

guarantee the minimum of SOP terms. The optimal decomposition choices

will be discussed in Section 4.3.
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4.2 Matrix product operator-based density matrix
renormalization group implementation

As we have introduced in Chapter 2, the modern formulation of the DMRG

method based on MPS and MPO, sometimes called the second-generation

DMRG algorithm, is nowadays also popular in ab initio DMRG (e.g., Keller

et al., 2015b; Keller and Reiher, 2016). In the MPO-based DMRG imple-

mentation, the multiconfigurational wave function is transformed as a prod-

uct of rank-3 MPS tensors and the Hamiltonian as a product of rank-4 MPO

tensors. Instead of performing the left-right partition in renormalized

operator-based ab initio DMRG, here the Hamiltonian is completely decom-

posed into a series of single tensors on each orbital, rather than renormalized

blocks on multiple orbitals. Thus we only have to decompose the total

Hamiltonian completely before starting any DMRG sweep, and no blocking

procedures but tensor contractions are essential in the sweeps.

In MPO constructions, we should use not only the nontrivial SSOs, but

also the identity operator Î and the parity operator P̂. For example, for a sys-

tem with N5 6 orbitals, one of the operator terms might be

t24â
y
2uâ4u 5 t24 Î1â

y
2uP̂2P̂3â4uÎ5 Î6: ð4:24Þ

There are one creator and one annihilator operator explicitly shown in

this equation, whereas on the other orbitals, an identity Î or a parity operator

P̂ is implicitly included, defined as

Î5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA; P̂5

1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

0BB@
1CCA: ð4:25Þ

The parity operator P̂ is introduced to maintain the anticommutation rela-

tions between the fermionic operators ây and â. The operator term in

TABLE 4.1 The computational cost per sweep in ab initio density matrix

renormalization group algorithm.

Task Time Memory

Diagonalization of effective Hamiltonian OðN3m3Þ Oðm2Þ
Singular value decomposition OðNm3Þ Oðm2Þ
Constructing normal operators OðN3m3Þ OðN2m2Þ
Constructing complementary operators OðN4m2Þ1OðN3m3Þ OðN2m2Þ
Total OðN4m2Þ1OðN3m3Þ OðN2m2Þ
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Eq. (4.23) can be constructed in two steps, by applying the two nontrivial

SSOs successively, as

P̂1â
y
2uÎ3Î4Î5Î6;

and

P̂1P̂2P̂3â4uÎ5 Î6:

As P̂iP̂i 5 Î i, we can merge these two steps and multiply the correspond-

ing MO integral to get the complete operator term.

After splitting the total Hamiltonian in Eq. 4.1 into a series of operator

terms, we need to decompose these terms and put the SSOs on their corre-

sponding sites and positions to construct the Hamiltonian MPO tensors. An

MPO tensor can be regarded as an operator valued two-dimensional matrix

rather than a four-dimensional tensor. In this case, the elements in the MPO

matrix are SSOs, which are two-dimensional matrices themselves. Now, the

crucial part for a second-generation ab initio DMRG algorithm is to con-

struct operator tensors, such as the Hamiltonian, in an efficient manner.

A most straightforward and naive way to build the MPO form of the

Hamiltonian is to write the MPOs at different lattice sites as diagonal matri-

ces, in which the diagonal elements are the SSOs acting on the current site.

Using this naive idea, on any general site (except the first and the last sites),

the MPO tensor is a Nt 3Nt diagonal matrix

Ŵ i 5

Ô
1

i 0 ? 0

0 Ô
2

i ? 0

^ ^ & ^
0 0 ? Ô

Nt

i

0BBB@
1CCCA; ð4:26Þ

in which Ô
k

i is the SSO acting on the ith site in the kth operator term. The

dimension size Nt of the MPO matrices equals the number of operator

terms. When transforming the ab initio quantum chemistry Hamiltonian in

Eq. 4.1, the number of operator terms could be as large as O N4
� �

. For

N5 30 orbitals there would be more than 105 operator terms. Therefore the

naive diagonal MPO tensors are not practical for large chemical systems.

The optimal compact construction for ab initio MPOs and the computa-

tional scaling for MPO-based ab initio DMRG will be discussed in the next

section.

With the constructed MPO representations, DMRG sweeping for the opti-

mization of MPS will become straightforward as discussed in Chapter 2. A

simple flow table of MPO-based DMRG implementation for ab initio quan-

tum chemistry is illustrated in Algorithm 4.2.

Algorithm 4.2: MPO-based two-site DMRG implementation for ab initio

Hamiltonian. DMRG, Density matrix renormalization group; MPO, matrix

product operator.
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1: procedure Prepare(coordination, basis, . . .)

2: {tpqg, gpqrs
� � � Hartree�Fock or other low-level calculation

3: Select active MOs
4: return {tpqg, gpqrs

� �
and other prerequisites

5: end procedure
6:procedure OrbitalOrder({tpqg, gpqrs

� �
)

7: Optimize MO order on a 1D chain // see Section 4.6
8: end procedure
9: procedure MPOWithMPS({tpqg, gpqrs

� �
)

10: Mnk
ak21ak

n o
’ InitializeMPS()

11: W
nkn

�
k

bk21bk

� �
’ ConstructMPO({tpqg, gpqrs

� �
)

12: end procedure

13: procedure PrepareBlocks( Mnk
ak21ak

n o
; W

nkn
�
k

bk21bk

� �
)

14: for kA½1;N�
15: Lbka⁎

k
;ak

5
P

Lbk21a⁎
k21

;ak21
Mnk

ak21ak
M

n⁎
k

a⁎
k21

a⁎
k
W

nk n
⁎

k

bk21bk

16: Rbk21
a⁎
k21

;ak21
5
P

Rbk
a⁎
k
;ak
Mnk

ak21ak
M

n⁎

k
a⁎
k21

a⁎
k
W

nkn
⁎

k

bk21bk

17: end for
18: end procedure
19: procedure SweepL2R({tpq}, {gpqrs})
20: for k in ½1;N21�
21: H

n⁎
k
n⁎
k11

nknk11
a⁎
k21

a⁎
k11

;ak21ak11
5
P

Lbk21Rbk11W nk n
⁎

kW nk11n
⁎

k11

22: E ; ~M
nknk11
ak21ak11

’Diagonalize H
n⁎
k
n⁎
k11

nknk11
a⁎
k21

a⁎
k11

;ak21ak11

23: Uak21nk ;m ; Sm;m ; V y
� �

m;nk11ak11
’SVD ~M

nknk11
ak21ak11

� �
24: Mnk

ak21ak

� �new
5Uak21nk ;m; Mnk11

ak ak11

� �new
5
P

m Sm;m V y
� �

m;nk11ak11

25: Update Lbk
a
�
k
;ak

with Mnk
ak21ak

� �new
; Lbk21

a⁎
k21

;ak21

26: end for
27: end procedure
28: procedure SweepR2L({tpqg, gpqrs

� �
)

29: for k in ½N; 2�
30: H

n⁎
k21

n⁎
k
nk21nk

a⁎
k22

a⁎
k
;ak22ak

5
P

Lbk22RbkW nk21n
⁎

k21W nkn
⁎

k

31: E, ̃Mnk21nk
ak22ak

’ Diagonalize H
n
�
k21

n
�
k
nk21nk

a
�
k22

a
�
k
;ak22ak

32: Uak22nk21 ;m, Sm;m, V y
� �

m;nk ak
’ SVD(̃Mnk21nk

ak22ak
)

33: Mnk21
ak22ak21

� �new
5
P

mUak22nk21 ;m; Sm;m ; Mnk
ak21ak

� �new
5 V y
� �

m;nk ak

34: Update Rbk21

a
�
k21

;ak21
with Mnk

ak21ak

� �new
; Rbk

a
�
k
;ak

35: end for
36: if not converged then
37: Go back to step 18 with updated fRbk

a
�
k
;ak
g

38: end if

39: return E, Mnk
ak21ak

n o
40: end procedure
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4.3 Optimal construction for matrix product operators

To construct the MPO tensors compactly, Keller et al. (2015b) proposed an

efficient approach, using the so-called fork and merge operations. If two or

more operator terms are identical on sites 1 through k, the common sub-

strings can be collapsed into one single substring up to site k, which is then

forked into new strings on site k1 1, splitting the common left part into the

unique right remainders and constructing complementary operators. Because

each operator on the site of the fork will be multiplied by the shared left part

upon matrix�matrix multiplication, the redundant substrings can be safely

removed. The second operation is to merge strings that match on sites

l through L into a common right substring. If the ab initio Hamiltonian oper-

ator is constructed in this fashion, there will also be strings with identical

subsections in the middle of the lattice of sites. To compact the Ŵ matrices,

one can collapse strings from both sides of the orbital-chain lattice simulta-

neously. For general term gijklâ
y
iσâ
y
kτ âlτ âjσ (i, k, l, j), the four nontrivial

SSOs divide the string running over all sites into five substrings 12 i, i2 k,

k2 l, l2 j, and j2N. Because one always begins with fork from the left and

merges from the right, one only needs to focus on the three substrings in the

center. Considering the connectivity types of the labels for these substrings,

there are two possible combinations for the compact MPO representations:

fork-fork-merge and fork-merge-merge.

The above method can be easily understood as a simpler way of utilizing

matrix multiplication by tracking the row and column indices of each SSO

Ô
I

i . In the matrix multiplication operation

Cij 5
X
k

AikBkj;

the element Bkj in the kth row of the matrix B must be multiplied by the ele-

ment Aik in the matrix A on Bkj’s left. It implies that if Aik holds the common

substring of multiple operator terms, all of the various remainders should be

placed in the kth row of the neighboring B matrix. In practice, the matrices

A and B here are two MPO tensors Ŵ i and Ŵ i11 adjacent to each other. For

the general operator term

Ô1Ô2?ÔN ;

as the first tensor Ŵ 1 is considered as a row-vector, the row index r1 of the

first SSO Ô1 is 0, and its column index c1 can be obtained by sorting all the

SSOs in this row in a certain order. For the second SSO Ô2, its row index r2
in the matrix Ŵ 2 must be equal to c1, and we can get its column index c2 by

sorting all of the SSOs in this row. We can do such operations on each Ŵ i

matrices except the last one, on which the row index rN of the last SSO

ÔN in column vector ŴN is equal to cN21 and the column index cN is 0.
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While sorting the SSOs, we can merge the common left substrings if two

terms share the same part on the left. Between each pair of sites, all identical

operators can be collapsed into a single bond to obtain a compact representa-

tion of the Hamiltonian. Note that the identical operators must be the same

kind of SSO and share the same left/right basis. Because most elementary

operators have some identity operators on the left, and the left and right

bases of these identities are both vacuum states, we can always get some

common left substrings consisting of identity operators, which is very helpful

for reducing the dimensions of the MPO matrices.

Here we take a Hamiltonian containing four operator terms of a N5 4

system as a simple example:

Ĥ5 t̂1 1 t̂2 1 t̂3 1 t̂4; ð4:27Þ
with

t̂1 5 â
y
1uâ
y
2uâ3uâ4u; ð4:28Þ

t̂2 5 â
y
1uâ
y
2dâ3uâ3d; ð4:29Þ

t̂3 5 â
y
1uâ
y
2dâ4uâ4d; ð4:30Þ

t̂4 5 â
y
2uâ
y
2dâ4uâ4d; ð4:31Þ

and the scaling factors (e.g., the MO integrals) are temporarily omitted for

convenience. The four terms can be completed by adding the identity and

parity operators as

t̂1 5 â
y
1uP̂1â

y
2uâ3uP̂3â4u; ð4:32Þ

t̂2 5 â
y
1uP̂1â

y
2dâ3uâ3dÎ4; ð4:33Þ

t̂3 5 â
y
1uP̂1â

y
2dÎ3â4uâ4d; ð4:34Þ

t̂4 5 Î1â
y
2uâ
y
2dÎ3â4uâ4d; ð4:35Þ

and the naively constructed diagonal MPO matrices and vectors are

Ŵ1 5 â
y
1uP̂1 â

y
1uP̂1 â

y
1uP̂1 Î1

� �
; ð4:36Þ

Ŵ2 5

â
y
2u 0 0 0

0 â
y
2d 0 0

0 0 â
y
2d 0

0 0 0 â
y
2uâ
y
2d

0BBB@
1CCCA; ð4:37Þ
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Ŵ3 5

â3uP̂3 0 0 0

0 â3uâ3d 0 0

0 0 Î3 0

0 0 0 Î3

0BB@
1CCA; ð4:38Þ

Ŵ4 5

â4u
Î4

â4uâ4d
â4uâ4d

0BB@
1CCA: ð4:39Þ

It is easy to prove that

Ŵ1Ŵ2Ŵ3Ŵ4 5 t̂1 1 t̂2 1 t̂3 1 t̂4: ð4:40Þ
To reduce the size of the MPO tensors, we start from the left-most site,

reorder all of the SSOs in the row-vector Ŵ 1 and eventually merge the dupli-

cate ones. We can put the identity operator Î 1 in the head of the vector by

reordering the operator terms as

t̂1-t̂2; t̂2-t̂3; t̂3-t̂4; t̂4-t̂1:

Forthwith, we merge the three â
y
u;1P̂1 operators in Ŵ 1 and obtain the

compact MPO as

Ŵ1 5 Î1 â
y
1uP̂1

� �
: ð4:41Þ

The next MPO tensor Ŵ 2 are transformed to a 23 4 matrix as

Ŵ2 5
â
y
2uâ
y
2d 0 0 0

0 â
y
2u â

y
2d â

y
2d

 !
: ð4:42Þ

The nonzero elements in Ŵ 3 and Ŵ 4 are reordered as well, thereby

we have

Ŵ3 5

Î3 0 0 0

0 â3uP̂3 0 0

0 0 â3uâ3d 0

0 0 0 Î3

0BB@
1CCA; ð4:43Þ

Ŵ4 5

â4uâ4d
â4u
Î4

â4uâ4d

0BB@
1CCA: ð4:44Þ
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We can easily find that the two â
y
d;2 operators in the second row of

Ŵ 2 can be merged. The final compact MPO tensors in this simple

example are

Ŵ1 5 Î1 â
y
1uP̂1

� �
; ð4:45Þ

Ŵ2 5
â
y
2uâ
y
2d 0 0

0 â
y
2u â

y
2d

 !
; ð4:46Þ

Ŵ3 5
Î3 0 0 0

0 â3uP̂3 0 0

0 0 â3uâ3d Î3

0@ 1A; ð4:47Þ

Ŵ4 5

â4uâ4d
â4u
Î4

â4uâ4d

0BB@
1CCA: ð4:48Þ

Accordingly, the product of these compact MPOs is still equal to the

original Hamiltonian. Since the scaling factors are generally irreducible, they

can be multiplied by the first unmerged SSOs in the corresponding operator

terms, for example, the SSOs in the above matrix Ŵ 3.

The relationship between the first-generation renormalized operator-based

ab initio DMRG and second-generation MPO-based ab initio DMRG has been

carefully examined by Chan et al. (2016). It was demonstrated that the so-

called fork-fork-merge or fork-merge-merge operations in the latter’s MPO

compaction are completely equivalent to use P̂ and Q̂, R̂ complementary

operators in the right or left block in the former. Therefore, by using the com-

pact MPO construction, MPO-based ab initio DMRG also has the same

computational scaling of ðN4m2Þ1OðN3m3Þ as renormalized operator-based

ab initio DMRG. Nevertheless, the MPO formulation is a more flexible frame-

work to apply DMRG for higher dimensions and complex Hamiltonians, espe-

cially when containing long-range interactions. Another main advantage of

MPS is that they encode wave functions as stand-alone objects that can

directly be manipulated arithmetically as a whole for subsequent calculations

of higher excited states or dynamic correlations and evaluating the overlaps

between different states. In contrast, for traditional DMRG a series of compli-

cated and tedious reduced basis transformations are needed.

One important fact of the optimal MPO construction is that both the

so-called complementary operator technique in the first-generation renorma-

lized operator-based DMRG algorithm and the equivalent Keller et al.’s

approach for the second-generation MPO-based DMRG algorithm are

not automatic and cannot guarantee the minimization of the number of SOP

terms. A possible solution is to naively construct the MPO and then compress

it by SVD or removing the linearly dependent terms (Hubig et al., 2017).
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This scheme is fully generic and automatic for different operators, but a

numerical SVD truncation error is introduced and it is infeasible to quan-

tify its effect on the following DMRG calculations in advance. In addition,

the numerical compression may be computational costly when the number

of SOP terms in the Hamiltonian is large.

To globally minimize the number of SOP terms and eliminate the numeri-

cal errors in MPO construction, Ren et al. (2020) proposed a generic method

to automatically determine the most efficient operator decomposition by virtue

of using bipartite graph theory. Describing the nonredundant operators in the

left and right blocks as vertices Uf g and Vf g and the interactions (MO inte-

grals) with a nonzero prefactor as edges Ef g, a global operator can be trans-

formed to a bipartite graph G5 U;V ;Eð Þ, as shown in Fig. 4.1. The optimal

compression/decomposition problem of the operator terms at each bond can be

interpreted as a minimum vertex cover problem in the graph G, which is to

determine a subset of the vertices which covers all edges such that the number

of the vertices in the subset is minimized. For the bipartite graph described

here, the König theorem (König, 1931) proves that the number of vertices in

the minimum vertex cover is equal to the number of edges in the maximum

matching. A matching is an edge set in which any two edges do not share

one vertex. The maximum matching shown in red in Fig. 4.1 is the matching

having the maximal number of edges, which could be solved efficiently by

Hungarian algorithm (Kuhn, 1955) or the Hopcroft�Karp algorithm (Hopcroft

and Karp, 1973). Once the maximum matching is found, the vertices in the

FIGURE 4.1 An example of mapping the operator Ô to a bipartite graph G5GðU;V ;EÞ. The
vertices represent the nonredundant operators in the left and right blocks. The edges represent

the interactions with a nonzero prefactor. The filled vertices in blue form a minimum vertex

cover, while the dash edges in red form a maximum matching. Reproduced from Ren, J., Li, W.,

Jiang, T., Shuai, Z., 2020. A general automatic method for optimal construction of matrix prod-

uct operators using bipartite graph theory. J. Chem. Phys. 153, 084118. https://doi.org/10.1063/

5.0018149, with permission from American Institute of Physics.
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minimum vertex cover could be obtained easily, and the retained operators are

optimally selected.

4.4 Symmetries and spin adaption

In expensive quantum chemistry calculations, it is usually desirable to

exploit symmetries to reduce memory storage, shorten computation time, and

to thin out Hilbert space by decomposing it into a sum of smaller sectors.

It is also crucial to utilize the symmetrical constraints to correctly identify

and target the electronic state. Symmetries often used in ab initio DMRG fall

into two categories, Abelian or non-Abelian.

The most frequently implemented symmetries in DMRG are the Abelian

U 1ð Þ symmetries, leading to total magnetization Sztot and total particle num-

ber Ntot as good conserved quantum numbers. In the traditional DMRG for-

mulation with left-right partition, as the total quantum number

T 5 TL 1 TR; T 5 Sztot or Ntot

is fixed, only a small portion of the vectors jLμ
�
and jRνi can be blocked

according to the specified TL and T 2 TL. Thus all operators used in

DMRG can be expressed in a matrix representation as dense blocks of

nonzero matrix elements with all other matrix elements equal to zero.

Abelian molecular point group symmetries P with real-valued character

tables PA C1;Ci;C2;Cs;D2;C2v;C2h;D2hf g and other discrete symmetries

(e.g., spin-flip, particle-hole) can be also easily incorporated by using

symmetrized DMRG (see Section 3.3).

The total spin Ŝ
2
requires a non-Abelian Lie group SU 2ð Þ symmetry in

ab initio quantum chemical Hamiltonian. Since Zgid and Nooijen (2008a)

proposed a first spin-adapted ab initio DMRG implementation, a variety

of algorithms (Sharma and Chan, 2012; Wouters et al., 2012; Keller and

Reiher, 2016; Li and Chan, 2017) have been developed to account for

U 1ð Þ � SU 2ð Þ � P symmetry, in both renormalized operator-based and

MPO-based DMRG formulations.

Let us first introduce the MPO-based spin-adaption scheme proposed

by Keller and Reiher (2016). Using symmetries in the MPS/MPO, the

DMRG method naturally leads to the symmetry-protected tensor implemen-

tation. In the U 1ð Þ � SU 2ð Þ � P symmetry, the local state on a certain

orbital could be

N; S; Ij iA 2; 0;Ag

�� �
; 1;

1

2
; I

���� �
; 0; 0;Ag

�� �� �
; ð4:49Þ

in which I denotes the irreducible representation of the point group P and Ag

is the totally symmetric representation. The most complicated problem arises

from the multiplicity of the total spin. With the Clebsch�Gordan expansion,
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a composite system consisting of the two representations D N1; S1; I1ð Þ and
D N2; S2; I2ð Þ can be decomposed as

D N1; S1; I1ð Þ � D N2; S2; I2ð Þ
5⨁S11S2

S5 S12S2j jD N1 1N2; S; I1 � I2ð Þ:
ð4:50Þ

The direct sum of multiple representations on the right side of Eq. (4.50)

implies a block-sparse implementation in the spin-adapted DMRG method

(Wouters and Van Neck, 2014). Because MPSs and MPOs behave as rank-k

tensor operators, the Wigner�Eckart theorem is the fundamental equation to

exploit spin symmetry. This states that the matrix element of the Mth compo-

nent T
k½ �
M of a rank-k tensor operator T k½ � is generated from a reduced matrix

element multiplied by the Clebsch�Gordan coefficient

hj0m0jT ½k�M jjmi5 j0:T k½ �:j
� �

C
jkj0
mMm0 : ð4:51Þ

The double vertical line denotes Condon and Shortley’s notation for a

reduced matrix element, which is independent of any projection quantum

number. In Eq. (4.51), j and j
0
refer to a spin quantum number [an irreducible

SU 2ð Þ representation, e.g., the total spin S]; m, m0; and M are projection

quantum numbers such as the z-component of spin if the z-axis is chosen as

the axis of quantization. As the multiplet M52 k;?; k is determined by a

single reduced matrix element, the Wigner�Eckart theorem entails informa-

tion compression, thus allowing an efficient operators storage. As the total

Hamiltonian Ĥ is a spin-zero operator, the feasibility of using the spin sym-

metry is based on the fact that the Hamiltonian Ĥ is invariant under the sym-

metric rotations. When solving the Schrödinger equation with spin

symmetry, we can work with multiplets as a single entity, rather than indi-

vidual states.

Henceforth, till the end of the section, bold symbols are used to represent

the reduced tensors in SU 2ð Þ symmetry. According to Eq. (4.51), these ten-

sors are constructed from a series of tensor blocks, each of which is labeled

with the quantum number of a certain irrep of the symmetry. Following the

ideas of Keller and Reiher (2016), we associate the a-index of each MPS ten-

sor Mni
ai21ai

with a quantum number

qi 5 Ni; Si; Iið Þ; ð4:52Þ
to partition the MPS tensor into symmetry blocks. The MPS tensor

Mni
qi21ai21;qiai

will then be characterized by the symmetry constraint

qiAqi21 � ni; ð4:53Þ
which implies that the MPS tensor Mni

qi21ai21;qiai
on site i is in fact an operator

that maps states from the subsystem spanning sites 1 to i2 1 to the
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subsystem enlarged to site i, and qi21, qi, and ni are input, output, and opera-

tor quantum numbers, respectively.

In DMRG calculations, the MPS tensors are constructed site by site from

the vacuum state. Consequently, the quantum numbers appearing in the MPS

tensors on opposite ends are also the vacuum state. As we usually start the

construction of the MPS/MPO tensors from left to right, in the first MPS ten-

sor Mn1
q0a0;q1a1

, the tensor blocks are

q1 : a1 5 f 2; 0;Ag

� �
: 1;

1;
1

2
; I1

0@ 1A : 1;

0; 0;Ag

� �
: 1g;

ð4:54Þ

with the vacuum state on the a0 bond denoted by a size-1 block

q0:a0 5 0; 0;Ag

� �
:1

� �
. The tensor Mn1

q0a0;q1a1
on site 1 consists of three 13 1

blocks. Since the three tensor blocks in Eq. 4.54 also constitute the local

state ni, the MPS tensor Mn2
q1a1;q2a2

on site 2 shares q1:a1 with Mn1
q0a0;q1a1

and

the output quantum numbers are

q2:a2 5

4; 0;Ag

� �
:1; 3;

1

2
; I1

0@ 1A:1; 3;
1

2
; I2

0@ 1A:1;

2; 1; I1 � I2ð Þ:1; 2; 0; I1 � I2ð Þ:1; 2; 0;Ag

� �
:2;

1;
1

2
; I1

0@ 1A:1; 1;
1

2
; I2

0@ 1A:1; 0; 0;Ag

� �
:1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; ð4:55Þ

in which the output quantum number q2 5 2; 0;Ag

� �
appears twice in the

combination of the input quantum numbers q1 with the local site basis n2,

namely,

q1 � n2 5 0; 0;Ag

� �� 2; 0;Ag

� �
; ð4:56Þ

and

q1 � n2 5 2; 0;Ag

� �� 0; 0;Ag

� �
: ð4:57Þ

This indicates that there are two different 2; 0;Ag

� �
states defined on sites

1 and 2, corresponding to a 13 2 tensor block. The total MPS wave function

can be constructed by continuing this scheme toward the right-most site, while

only those tensor blocks which lead to the vacuum target state are reserved.

The most complicated process in the implementation of the spin-adapted

quantum chemistry DMRG method is still the construction of MPO tensors.

To those SSOs that transform according to an irreducible SU 2ð Þ representa-
tion, we may apply the Wigner�Eckart theorem. The pairs âyu, â

y
d and âu, âd,
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for instance, each form the two components of a rank-1
2
tensor operator with

reduced matrix elements

ây5
0 2

ffiffiffi
2
p

0

0 0 1

0 0 0

0@ 1A; ð4:58Þ

while in this case, the annihilation operator is no longer a simple conjugate

transpose of the creation operator

â5
0 0 0

1 0 0

0
ffiffiffi
2
p

0

0@ 1A: ð4:59Þ

The
ffiffiffi
2
p

values in the above matrices imply the Clebsch�Gordan coeffi-

cients. The other SSOs, such as the particle number operator n̂, the spin-flip

operator âyâ, and the empty-to-double operator d̂
y
, can be constructed as

n̂5
2 0 0

0 1 0

0 0 0

0@ 1A; ð4:60Þ

âyâ
� � 1½ �

5
0 0 0

0
ffiffiffiffiffiffiffiffi
3=2

p
0

0 0 0

0@ 1A; ð4:61Þ

âyn̂5
0 2

ffiffiffi
2
p

0

0 0 0

0 0 0

0@ 1A; ð4:62Þ

n̂â5
0 0 0

1 0 0

0 0 0

0@ 1A; ð4:63Þ

d̂
y
5

0 0 1

0 0 0

0 0 0

0@ 1A; ð4:64Þ

d̂5
0 0 0

0 0 0

1 0 0

0@ 1A: ð4:65Þ

Note that the spin-flip operator âyâ changes the spin on a singly occupied

orbital and we use its spin-1 component in Table 4.2, while the empty-to-

double operator d̂
y
creates a pair of electrons on an empty orbital.

Similar to the previous sections, to implement the spin-adapted DMRG

algorithm for ab initio quantum chemistry, first we need to find all the
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TABLE 4.2 Terms of the Hamiltonian partitioned into one- and two-electron equivalence classes in 2U 1ð Þ and SU 2ð Þ formulations.

Integral 2U(1) Terms SU(2) Terms

tii
P

σ n̂iσ n̂i

tij
P

σ âyiσ âjσ 2 âiσ â
y
jσ

� � ffiffiffi
2
p

âyi âj 1 âi â
y
j

� �
giiii f̂ i 5 n̂iun̂id f̂ i

gijjj
P

σ 6¼τ âyiσ âjσn̂jτ 2 âiσ â
y
jσn̂jτ

� � ffiffiffi
2
p

âyi n̂âð Þj 1 âi âyn̂
� �

j

� �
giijj n̂iu 1 n̂idð Þ n̂ju 1 n̂jd

� �
n̂i n̂j

gijij âyiu â
y
id âjd âju 1 âyjuâ

y
jd âid âiu 2 n̂iun̂ju 2 n̂id n̂jd 2 âyiu âid â

y
jd âju 2 âyju âjd â

y
id âiu d̂

y
i d̂ j 1 d̂ i d̂

y
j 2

1
2 n̂i n̂j 1

ffiffiffi
3
p

âyâ
� � 1½ �

i
âyâ
� � 1½ �

j

giikl
P

στ n̂iσ âykτ âlτ 2 âkτ â
y
lτ

� � ffiffiffi
2
p

n̂i â
y
k âl 1

ffiffiffi
2
p

n̂i âk â
y
l

gijil âyiu â
y
id âjd âlu 1 âld âju
� �

1 âid âiu âyjuâ
y
ld 1 âylu â

y
jd

� �
2 âyju âlu 1 âylu âju
� �

n̂iu

2 âyjd âld 1 âyld âjd
� �

n̂id 2 âyiu âid âyjd âlu 1 âyld âju
� �

2 âyid âiu âyjuâld 1 âylu âjd
� � 2

ffiffiffi
2
p

d̂
y
i âj âl 1

ffiffiffi
2
p

d̂ i â
y
j â
y
l 2

ffiffi
2
p
2 n̂i â

y
j âl 2

ffiffi
2
p
2 n̂i âj â

y
l

1
ffiffiffi
3
p

âyâ
� � 1½ �

i
âyj âl 2

ffiffiffi
3
p

âyâ
� � 1½ �

i
âj â
y
l



gijkl
P

στ â
y
iσ â
y
kτ âlτ âjσ 1

P
στ â
y
iσ â
y
lτ âkτ âjσ 1

P
στ â
y
jσ â
y
kτ âlτ âiσ 1

P
στ â
y
jσ â
y
lτ âkτ âiσ i, k , l, j;α5

ffiffiffi
3
p

;β52 1

α âyi â
y
k

� � 1½ �
âl âj 1β âyi â

y
k

� � 0½ �
âl âj

� �
1 α âyi âk

� � 1½ �
âyl âj 1β âyi âk

� � 0½ �
âyl âj

� �
1 α âi â

y
k

� � 1½ �
âl â
y
j 1β âi â

y
k

� � 0½ �
âl â
y
j

� �
1 α âi âkð Þ 1½ �âyl âyj 1β âi âkð Þ 0½ �âyl âyj
h i

i, k , j, l;α52
ffiffiffi
3
p

; β521

α âyi â
y
k

� � 1½ �
âj âl 1β âyi â

y
k

� � 0½ �
âj âl

� �
1 α âyi âk

� � 1½ �
âj â
y
l 1β âyi âk

� � 0½ �
âj â
y
l

� �
1 α âi â

y
k

� � 1½ �
âyj âl 1β âi â

y
k

� � 0½ �
âyj âl

� �
1 α âi âkð Þ 1½ �âyj âyl 1β âi âkð Þ 0½ �âyj âyl
h i

i, j, k , l;α5 0; β5 2

β âyi âj
� � 0½ �

âyk âl 1 âyi âj
� � 0½ �

âk â
y
l 1 âi â

y
j

� � 0½ �
âyk âl 1 âi â

y
j

� � 0½ �
âk â
y
l

� �



operator terms in the spin-adapted Hamiltonian and thenceforth use the MPO

construction algorithm mentioned in the previous section to obtain the com-

pact MPO tensors. The spin-adapted operator terms are listed in Table 4.2.

Note that an eightfold permutation symmetry of the two-electron integrals

(Eq. 4.7) is used therein.

In the traditional renormalized operator-based DMRG, it is much less

complicated to embed spin adaption because usually only left and right

blocks are considered. One must keep in mind that in this case, all the tensor

operators labeled by spin S are associated with a manifold of 2S1 1 opera-

tors that transform amongst each other under some SU 2ð Þ rotation. As intro-
duced by Sharma and Chan (2012), the spin-adapted complementary

operator B̂ can be defined as

B0;0
ij 5

1ffiffiffi
2
p â

y
iuâju 1 â

y
idâjd

� �
ð4:66Þ

for S5 0 singlet operator and

B1;21
ij 5 â

y
idâju ð4:67Þ

B1;0
ij 5

1ffiffiffi
2
p â

y
iuâju 2 â

y
idâjd

� �
ð4:68Þ

B1;1
ij 52 â

y
iuâjd ð4:69Þ

for S5 1 triplet operators. All of the tensor operators used in the spin-

adapted renormalized operator-based ab initio DMRG algorithm can be sum-

marized in Table 4.3.

When constructing the total Hamiltonian, one must find all nontensor

analogs for all possible partitions. Because the Hamiltonian Ĥ is a spin-0

operator, we can write the Hamiltonian of the left superblock A5 L1 nl as

Ĥ
0
A½ �5 Ĥ

0
L½ ��01̂

0
nl½ �1 1̂

0
L½ ��0Ĥ

0
nl½ �

1 2
X
iAL

â
1=2
i L½ ��0R̂

1=2¼

i nl½ �1 â
1=2¼
i L½ ��0R̂

1=2

i nl½ �
� �

1 2
X
iAnl

â
1=2
i nl½ ��0R̂

1=2¼

i L½ �1 â
1=2¼
i nl½ ��0R̂

1=2

i L½ �
� �

1
X
ijAnl

2
ffiffiffi
3
p

B̂
1

ij nl½ ��0Q̂
1

ij L½ �1 B̂
0

ij nl½ ��0Q̂
0

ij L½ �
� �

1

ffiffiffi
3
p

2

X
ijAnl

Â
1

ij nl½ ��0P̂
1

ij L½ �1 Â
1¼

ij nl½ ��0P̂
1¼

ij L½ �
� �

1
1

2

X
ijAnl

Â
0

ij nl½ ��0P̂
0

ij L½ �1 Â
0¼

ij nl½ ��0P̂
0¼

ij L½ �
� �

;
ð4:70Þ
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TABLE 4.3 Definitions of the operators used in the spin-adapted

renormalized operator-based ab initio DMRG. The indices in this

table refer to spatial indices rather than spin indices.

Components Definition

â
1=2
i â

1=2;21=2
i

âyid

â
1=2;1=2
i

âyiu

R̂
1=2

k R̂
1=2;21=2

k
1ffiffi
2
p
P

ijl gikjl âyiu â
y
juâlu 1 âyiu â

y
jd âld

� �
R̂
1=2;1=2

k
1ffiffi
2
p
P

ijl gikjl âyid â
y
ju âlu 1 âyid â

y
jd âld

� �
Â
0

ij Â
0;0

ij
1ffiffi
2
p âyiuâ

y
jd 2 âyid â

y
ju

� �
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1

ij Â
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ij
âyid â

y
jd
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2
p âyiuâ

y
jd 1 âyid â

y
ju

� �
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ij
âyiu â

y
ju

B̂
0

ij B̂
0;0

ij
1ffiffi
2
p âyiuâju 1 âyid âjd
� �

B̂
1

ij B̂
1;21

ij
âyid âju

B̂
1;0

ij
1ffiffi
2
p âyiuâju 2 âyid âjd
� �

B̂
1;1

ij
2âyiu âjd

P̂
0

ij P̂
0;0

ij
2 1ffiffi

2
p
P

kl gikjl 2âlu âkd 1 âld âkuð Þ

P̂
1

ij P̂
1;21

ij

P
kl gikjl âlu âku

P̂
1;0

ij
2 1ffiffi

2
p
P

kl gikjl 2âlu âkd 2 âld âkuð Þ

P̂
1;1

ij

P
kl gikjl âld âkd

Q̂
0

ij Q̂
0;0

ij
1ffiffi
2
p
P

kl 2gijkl 2 gilkj
� �

âykuâlu 1 âykd âld
� �

Q̂
1

ij Q̂
1;21

ij
2
P

kl gilkj â
y
kd âlu

Q̂
1;0

ij 2 1ffiffi
2
p
P

kl gilkj âykuâlu 2 âykd âld
� �

Q̂
1;1

ij

P
kl gilkj â
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DMRG, Density matrix renormalization group.
Source: Reproduced from Sharma, S., Chan, G.K.-L., 2012. Spin-adapted density matrix
renormalization group algorithms for quantum chemistry. J. Chem. Phys. 136, 124121. https://doi.
org/10.1063/1.3695642, with permission from American Institute of Physics.
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in which the spin-adapted tensor product �S is defined as

X̂
S1
1 �SX̂

S2
2 5 X̂

S1
1 X̂

S2
2

� �S
; ð4:71Þ

and the symbol ¼ denotes the adjoint with an additional sign factor to pre-

serve the Condon�Shortley phase convention used in the angular momentum

ladder operators, as

X̂
S;m¼

5 21ð ÞS1mX̂
S;2my

: ð4:72Þ
Similarly, one can construct the right superblock Hamiltonian and also

the total one.

An important issue in spin-adapted DMRG is to find a proper way to

determine the spin-adapted renormalized DMRG basis in both left and right

blocks. In general, the density matrix of a subsystem does not commute with

the total spin operator of the subsystem, thus the usual DMRG prescription,

in which the density matrix eigenvectors are used as the many-body basis, is

incompatible with spin adaptation. McCulloch and Gulácsi (2000, 2002)

showed that the best states to retain in the decimation step of the DMRG are

eigenvectors of a quasi-density matrix which commutes with the Ŝ
2
operator.

The quasi-density matrix is obtained from the usual density matrix by setting

off-diagonal blocks, which couple states of different spins, to zero.

We can see clearly from Tables 4.2 and 4.3 that there are much fewer

operators in the spin-adapted DMRG method than in the simpler U 1ð Þ � U 1ð Þ
non-spin-adapted implementation. In fact, the total number of operators stored

in the spin-adapted DMRG is approximately half that in the non-spin-adapted

DMRG. (Sharma and Chan, 2012) However, there are certain disadvantages

when using the spin-adapted DMRG algorithm in the study of high-spin

states. The most serious one is that the eigenvalues of the quasi-density matrix

of the left and right blocks are not equivalent for nonsinglet states. This non-

equivalence means that discarded weights obtained during the forward and

backward sweeps of a calculation (which respectively arise from quasi-density

matrices of the left and right blocks) are different, and this makes DMRG

energy extrapolation using discarded weights ambiguous. Sharma and Chan

(2012) used the singlet embedding method (Tatsuaki, 2000) to overcome these

disadvantages by adding a set of auxiliary noninteracting orbitals to the end

of the lattice, which couple to the physical orbitals to overall yield a singlet

state. Thus the wave function ~ψ
�� � of the combined physical and auxiliary orbi-

tals is

~ψS50

�� �
5 ψS

�� �
φS

�� �
; ð4:73Þ

in which φS

�� �
is the state of the auxiliary noninteracting orbitals and does

not energetically couple to the physical system.

Another way to embed spin symmetry into the DMRG method is using

the spin-projected MPS (Li and Chan, 2017; Larsson, et al., 2020). The
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spin-projected MPS can be obtained by applying a projection operator on the

non-spin-adapted MPS

ψ N;S;Mð Þ
SP2MPS

��� E
5 P̂S ψ N;Mð Þ

MPS

��� E
; ð4:74Þ

in which P̂S is the spin projector for the total spin S and ψ N;Mð Þ
MPS

��� E
is an MPS

wave function with a given particle number N and spin projection M (e.g.,

the z-component of the total spin). The energy to be variationally optimized

can then be considered as a functional of the underlying MPS ψ N;Mð Þ
MPS

��� E
, and

its explicit functional form reads as

E ψ N;S;Mð Þ
SP2MPS

��� Eh i
5E ψ N;Mð Þ

MPS

��� Eh i
5

ψ N;S;Mð Þ
SP2MPS Ĥ

�� ��ψ N;S;Mð Þ
SP2MPS

D E
ψ N;S;Mð Þ
SP2MPS ψ N;S;Mð Þ

SP2MPS

��� ED

5
ψ N;Mð Þ
MPS P̂S

M;MĤP̂S

M;M

��� ���ψ N;Mð Þ
MPS

D E
ψ N;Mð Þ
MPS P̂S

M;M

��� ���ψ N;Mð Þ
MPS

D E :

ð4:75Þ

There are various choices for the spin projector P̂S in Eq. (4.75) and the

works by Li and Chan (2017) and Larsson, et al. (2020) adopted a group the-

oretical projector in integral form (Percus and Rotenberg, 1962)

P̂S

M;M0 5
2S1 1

8π2

ð
dΩDS⁎

M;M0
Ωð ÞR̂ Ωð Þ;

R̂ Ωð Þ5 exp 2iαŜz
� �

exp 2iβŜy
� �

exp 2iγŜz
� �

: ð4:76Þ
Here Ω5 α; β; γð Þ are the Euler angles; R̂ Ωð Þ is the rotation operator;

and DS
M;M0 Ωð Þ5 exp 2 iMαð ÞdSM;M0 βð Þexp 2 iM0γð Þ is the Wigner D-matrix,

and dS
M;M0 βð Þ is an element of the Wigner’s small d matrix. The integration

can be evaluated via Gauß2Legendre quadrature and results in a real-

valued sum of terms.

Compared with the method to explicitly incorporate the non-Abelian

SUð2Þ symmetry into DMRG, the spin-projection scheme provides a sim-

pler formulation to achieve spin adaptation. Besides, since the underlying

state jψ N;Mð Þ
MPS ⟩ in the SP-MPS uses only Abelian symmetries, one does not

need the singlet embedding scheme for nonsinglet states to achieve a single

consistent variationally optimized state. SP-MPS’s another important fea-

ture is the close connection to traditional “broken-symmetry” determinants,

widely used in quantum chemistry. This gives the ability to seed SP-MPS

from initial broken-symmetry configurations built upon chemical intuitions,

opening the possibility to fully map out the low-energy landscape of com-

peting spin states in finite chemical systems, in particular the polymetallic

Density matrix renormalization group Chapter | 4 115



transition metal compounds. However, one may also notice that the spin-

projected DMRG method is usually more computationally expensive than

the non-spin-adapted approach, because there are much more tensor con-

tractions, as shown in Eq. 4.75, than in standard non-spin-adapted DMRG

processes.

Before the end of this section, we should also note that the algorithm

for treating spin-adapted SUð2Þ symmetry in DMRG can be also

adopted for describing general non-Abelian point group symmetries.

Sharma (2015) used the resulting implementation to calculate the ground-

state and excited-state potential energy curves of the C2 molecule with

a cc-pVQZ basis set (and frozen core) to an unprecedented (near-exact)

accuracy.

4.5 Reduced density matrix

In previous sections, we have shown that DMRG serves as a powerful tech-

nique for accurately calculating the many-electron wave function within a

large active space. In quantum chemical computations of energies and

properties of large molecular systems, because of the two-body nature of

electronic interactions, it is usually more convenient to use the n-electron

RDM (n-RDM) instead of the many-electron wave function expanded to an

astronomical number of configurations, especially for large systems. For

example, one-electron RDM (1-RDM) can be used for population analysis,

e.g., calculating the charge and spin densities (Boguslawski et al., 2012a)

at different atoms. The ground-state energy of a many-electron system can

be also described by using the electron integrals and 1-RDM as well as

two-electron RDM (2-RDM) as,

E5
X
ij

tijD
i
j 1

1

2

X
ijkl

gikjlD
ij
kl: ð4:77Þ

Here the 1- and 2-RDMs are defined as

Di
j 5
X
σ

ψ â
y
iσâjσ

��� ���ψD E
; ð4:78Þ

D
ij
kl 5

X
στ

ψ â
y
iσâ
y
jτ âlτ âkσ

��� ���ψD E
; ð4:79Þ

where jψ⟩ is the ground-state many-electron wave function. Orbital optimiza-

tions in the multiconfigurational SCF method, which will be introduced

in the next chapter, also require the assistance of 1- and 2-RDMs within

the active space. In Chapter 6, we will know that the incorporation of
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further dynamic correlation may also require additional three-electron and

four-electron RDMs (3- and 4-RDMs),

D
jkl
ghi 5

X
στμ

ψ â
y
jσâ
y
kτ â
y
lμâiμâhτ âgσ

��� ���ψD E
; ð4:80Þ

Dklmn
ghij 5

X
στμν

ψ â
y
kσâ
y
lτ â
y
mμâ
y
nν âjν âiμâhτ âgσ

��� ���ψD E
; ð4:81Þ

which involve 6 and 8 orbital indices, respectively. Therefore, for the pur-

pose of evaluating further energy and wave function properties, it is highly

necessary to develop efficient algorithms to compute n-RDMs from a

DMRG many-electron wave function.

In ab initio DMRG, the 1-RDM and 2-RDM can be in principle calcu-

lated simultaneously with the converged MPS wave function. The 1-RDM

can be calculated easily within the DMRG scheme since all the matrix repre-

sentations of a small number of second-quantized operators required are

readily available at every step of the DMRG algorithm. However, there are

N4 elements for 2-RDM of a system with N MOs, which means that in

DMRG calculations we need to perform N4 MPS-MPO-MPS contraction

operations to obtain all 2-RDM entries. This is always extremely difficult,

because the system size N is usually large in DMRG calculations.

Zgid and Nooijen (2008b) proposed an effective algorithm to compute

the 2-RDM effectively without performing lots of tensor contractions.

Their approach assumes that different elements of the 2-RDM can be eval-

uated at different site steps of a sweep in renormalized operator-based

DMRG. Hence, the wave function at the convergence shouldn’t change

during a sweep, which can be achieved by using one-site DMRG algorithm

(see Chapter 1). Then 2-RDM can be easily obtained as a by-product of

the DMRG sweeps. Following the ideas of left-right DMRG decomposi-

tion, the four orbital labels i, j, k, and l in D
ij
kl can be distributed between

the left and right orbital subspaces. For example, to evaluate the element

D
ij
kl i, j, k, lð Þ of the 2-RDM, one can use a block configuration where

the indices i; j belong to the left block L, kAnl, and l in the right block R.

Therefore the number of the additional two-index operators is at most of

order O N2
� �

and accordingly the memory cost will be of order O m2N2
� �

,

which is the same as for the DMRG sweep algorithm. Indeed, for most ele-

ments in 2-RDM, we can find a corresponding block configuration where

no more than two indices are present on any of the blocks. The exception

is for the cases when more than two indices refer to the same spatial

orbital, but these do not contribute to the leading cost of the computation.

In the spin-adapted DMRG method, the 1-RDM and 2-RDM can be evalu-

ated similarly, except for the multiplicity caused by blocking the operator
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terms and multiplying the Clebsch�Gordan coefficients (Sharma and

Chan, 2012).

It is much more complicated and expensive to compute higher order

RDMs. Saitow et al. (2013) introduced an approximation to high-order

RDM by using a cumulant reconstruction from lower-order RDMs. The

concept of cumulant expansion is originally used in statistical mechanics to

provide hierarchical relationships among different orders of correlation

functions. This concept has been later extended to the quantum mechanics

of fermionic many-body systems for evaluations of high-order RDMs. The

cumulant decomposition of n-RDM n5 1; 2; 3; 4ð Þ can be written using the

antisymmetrized products among the k-RDMs k5 1; 2;?n2 1ð Þ along with

the n-rank cumulant Δð Þ as follows:

D
j
i 5Δj

i; ð4:82Þ

D
ij
gh 5Δij

gh 1 4Di
gXD

j
h; ð4:83Þ

D
jkl
ghi 5Δjkl

ghi 1 9D
jk
ghXDl

i 2 12Dj
gXDk

hXDl
i; ð4:84Þ

Dklmn
ghij 5Δklmn

ghij 1 16Dklm
ghiXDn

j 1 18Dkl
ghXDmn

ij

2 144Dkl
ghXDm

i XDn
j 1 96Dl

gXDk
hXDm

i XDn
j ; ð4:85Þ

where Δ?
? refers to the fully-connected cumulant and is regarded as pertur-

bative in the cumulant approximation, and the label D with n indices refer

to the n-order RDM. The wedge symbol X represents the antisymmetrized

products, as

XnXYmð Þi1;?;in1m
j1;?;jn1m

5 1
n1mð Þ!

� �2

3
X
πσ

E πð ÞE σð ÞπσXi1;?;in
j1;?;jn

Yin11;?;in1m
jn11;?;jn1m

ð4:86Þ

where X and Y are tensors with ranks as n and m; π and σ permute all of

the upper and lower indices, respectively; E returns the corresponding sign

change to the given permutation. Neglect of three-particle cumulant Δjkl
ghi in

Eq. (4.84) and four-particle cumulant Δklmn
ghij in Eq. (4.85) allows for avoiding

the costly rigorous evaluation of 3-RDM and 4-RDM in the DMRG calcula-

tion, which have a high computational scaling of N6 and N8, respectively.

However, it introduces approximation errors (so-called cumulant errors) in

the resultant 3-RDM and 4-RDM.
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Algorithm 4.3: Calculating n-RDM n5 1; 2; 3; 4ð Þ from a DMRG wave

function. DMRG, density matrix renormalization group. n-RDM, n-electron

reduced density matrix.

1: procedure 1-RDM( ψ⟩
�� )

2: Di
j 5

P
σ ψ âyiσ âjσ

��� ���ψD E
3: return Di

j

n o
4: end procedure
5: procedure 2-RDM( ψ⟩

�� )

6: D
ij
kl 5

P
στ ψ âyiσ â

y
jτ âlτ âkσ

��� ���ψD E
== Zgid and Nooijen (2008b)

7: return D
ij
kl

n o
8: end procedure

9: procedure Approximate3-RDM(fDi
j g, D

ij
kl

n o
)

10: D
jkl
ghi � 9D

jk
ghXDl

i 2 12D
j
gXDk

hXDl
i

11: return D
jkl
ghi

n o
12: end procedure

13: procedure Approximate4-RDM(fDi
j g, D

ij
kl

n o
, D

ijk
lmn

n o
)

14: Dklmn
ghij � 16Dklm

ghi XDn
j 118Dkl

ghXDmn
ij 2 144Dkl

ghXDm
i XDn

j 1 96Dl
gXDk

hXDm
i XDn

j

15: return Dklmn
ghij

n o
16: end procedure

4.6 Orbital selection and ordering

Although DMRG method can realize the nearly exact diagonalization for up

to B100 MOs (Hachmann et al., 2006; Zhai and Chan, 2021), it is still

impossible to take all MOs (with a number of a few hundreds or thousands)

into DMRG consideration in practical calculations due to its polynomial

computational scaling Oðm2N4 1m3N3Þ. Therefore usually only a small

number of most strongly correlated MOs and electrons are selected to form a

complete active space (CAS), in which all possible electronic configurations

are considered and solved exactly by full configuration interaction (FCI) or

DMRG. In the CAS model, the entire MO space is usually divided into three

subspaces: core, active, and external, as shown in Fig. 4.2. The complete

configuration space ℋtotal in the CAS method can be accordingly also

expressed as a direct product of these three parts,

ℋtotal 5ℋcore �ℋactive �ℋexternal: ð4:87Þ
Within this model, all of the MOs in the core space are doubly occupied

and the energy is evaluated at the Hartree�Fock level, while the orbitals in
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the external space are completely empty and do not contribute to the total

energy. Electron correlations are precisely evaluated only within the active

space, and the active electrons interact with the inactive electrons through an

effective one-electron Hamiltonian. Therefore the choice of active orbital is

obviously crucial for the accuracy of complete active space configuration

interaction (CASCI)/complete active space SCF and DMRG methods: a rea-

sonable active space must be able to contain the most entangled part of the

electronic structure of the system.

Currently, the active orbitals are generally selected by using a try-and-

error method, which depends to a large extent on personal experience and

chemical intuition. This is, however, quite tedious and unreliable for MR cal-

culations with large active spaces. In recent years, there have been increasing

efforts to develop strategies for the selection of active orbitals. Most of them

constitute the initial active space on the basis of the natural orbitals (NOs)

and the associated fractional occupancies (e.g., between 0.02 and 1.98),

which come from either unrestricted Hartree�Fock or inexpensive electron-

correlation calculations (e.g., single-reference perturbation theory and trun-

cated configuration interaction methods) on a large number of orbitals (e.g.,

Mitrushenkov et al., 2003; Ma and Ma, 2013; Keller et al., 2015a). Grimme

and Hansen (2015) also introduced the fractional occupation number

weighted density (FOD) obtained from finite temperature density functional

theory (DFT) as measure for selecting a proper active space. Recently, low-

level MR methods such as strongly contracted n-electron valence perturba-

tion theory on top of a minimal active space calculation, multiconfigurational

general valence bond, and DMRG with a small bond dimension are also

used to produce NOs or orbital entanglement information to construct the

active space (Ma and Ma, 2013; Stein and Reiher, 2016; Khedkar and

Roemelt, 2019; Khedkar and Roemelt, 2020; Zou et al., 2020). Although a

few tens of candidate orbitals can be explored in a preliminary low-level

FIGURE 4.2 Division of the MO space into different subspaces. MO, Molecular orbital.
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DMRG calculation, its automatic selection for molecules with very large

valence spaces is still expensive and challenging. This limit can be partly cir-

cumvented through preselecting orbitals either by manual inspection or by

imposing constraints such as maximum distance from a reactive center. Stein

and Reiher (2019) proposed a new protocol for large systems by splitting the

large active space into several smaller feasible subsets in a localized basis

and analyzed the entanglement entropies of these subsets in order to identify

the pairwise interactions.

In addition, chemical intuition-based strategies have been recently gener-

alized to the automatic construction of active space. Sayfutyarova, et al.

(2017) proposed an atomic valence active space scheme, which automatically

selects the active space based on the projection of occupied and virtual MOs,

onto the target valence atomic orbitals. However, projecting the MOs onto

all valence atomic orbitals of the target atoms may generate a very large

active space beyond the capability of current MR calculations. For the case

of conjugated π systems, Sayfutyarova and Hammes-Schiffer (2019) further

developed an automated π-orbital space (PiOS) method utilizing algebraic

transformations of a single-reference wave function and the Hückel theory to

construct small but effective active spaces. The iCAS method proposed by

Lei et al. (2021) also transforms a priori selected set of occupied/virtual

atomic or fragmental orbitals to an equivalent set of localized occupied/vir-

tual prelocalized MOs, which can then be taken as probes to select the same

number of maximally matching localized occupied/virtual Hartree�Fock
orbitals as the initial local orbitals spanning the desired CAS. The machine

learning technique has been also adopted by Jeong, et al. (2020) and Golub,

et al. (2021) to automatically select active spaces for main group diatomic

molecules and transition metal complexes.

Unlike many other common wave function methods, an MPS is not

orbital-invariant within the active space, except at extremely large m values.

Therefore the DMRG convergence (and energy), of course, also depends on

the kind of orbitals employed in the calculation. In molecular systems,

canonical orbitals and NOs, as well as localized or split-localized orbitals,

are often used. Recently, plane wave-based Kohn�Sham orbitals were also

adopted in ab initio DMRG, paving the way toward applying the DMRG

method in periodic correlated solid-state systems. (Barcza et al., 2021)

The DMRG convergence is also largely affected by the orbital ordering,

due to the sequential nature of the sweeping optimization of MPS local ten-

sors. Orbital reordering can be viewed as a kind of orbital rotation. Although

the DMRG calculation becomes less sensitive to these choices as m increases,

at fixed m, a good choice of orbital ordering greatly improves the accuracy

and efficiency of a DMRG calculation. In principle, the best ordering of orbi-

tals minimizes the total energy and the maximum entanglement at any cut of

the 1D DMRG orbital lattice. Unfortunately, we can hardly obtain the optimal

orbital ordering in the DMRG calculations in advance, as it cannot be derived
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analytically from DMRG theory. For a lattice consisting of N orbitals, there

are N! different possibilities to arrange these orbitals. Moritz et al. (2005a)

suggested to utilize the genetic algorithm (GA) to optimize the ordering with

respect to a sufficiently low total electronic energy, obtained at a predefined

stage of the DMRG algorithm with a fixed number of reserved states. As the

DMRG method is variational, which means the full-CI energy is the lower

limit of the DMRG result, for a fixed m value, the lower DMRG energy

always comes together with a more reasonable ordering. However, one has to

perform a huge number of DMRG calculations if we use this GA-based

method to determine the optimal orbital ordering, which is usually too expen-

sive in ab initio quantum chemistry calculations.

In the early ab initio DMRG implementations, a widely used orbital

ordering approach was to utilize the reverse Cuthill�McKee (RCM) algo-

rithm (Cuthill and McKee, 1969) reordering sparse matrices by permutating

rows and columns to minimize the maximum bandwidth of MO integrals.

Within the reordering procedure above, the matrix elements which have non-

zero values are placed near the diagonal. Because the RCM algorithm discri-

minates the values only between zero and nonzero, one has to define a

threshold for the values of the integrals in such a way that matrix elements

with values below this threshold are set to zero. Chan and Head-Gordon

(2002) as well as Moritz et al. (2005a) have explored RCM schemes in ab

initio DMRG calculations by using one-electron integrals tij and two-electron

exchange integral matrices Kij 5 gijji as approximations of the orbital correla-

tion strengths, respectively.

Recently, a Fiedler vector (Fiedler, 1973)-based method is becoming

more popular in ab initio DMRG implementations. The Fiedler vector is a

graph theoretic technique which provides good approximations to the spec-

tral graph partitioning problem, and a detailed study of the Fiedler vector in

DMRG was first presented by Barcza et al. (2011). Here we briefly introduce

the process of MO reordering using exchange integrals and the Fiedler vector

method. Since the exchange integrals can be used to quantify the correlations

between orbitals approximately, the orbitals i; j;? and the absolute values

of the exchange integrals Kij

�� ��� �
constitute a weighted undirected graph G.

The adjacency matrix of this graph can be regarded as

Aij 5 Kij

�� ��5 gijji
�� ��: ð4:88Þ

The Laplacian matrix is accordingly defined as

L5D2A; ð4:89Þ
in which Dii 5

P
jAij is the degree matrix. The Fiedler vector of this graph is

the second-lowest eigenvector of the Laplacian matrix L. Sorting the values

of the vector coordinates then gives the Fiedler ordering. A naive example of

a six-site system is shown in Fig. 4.3. The advantage of this method is that it
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is trivial to be implemented from a small matrix diagonalization, and since

our optimization matrix Kij

�� �� is in any case approximate, it is not necessary

to resolve the true global optimum (Olivares-Amaya, et al., 2015).

In the past years, the orbital entanglement entropy concepts in quantum

information theory (QIT) have been also adopted for the orbital selection

and ordering in ab initio DMRG and will be discussed in Section 4.9.

4.7 Error estimation

The computation cost of the DMRG method is controlled by adjusting the

number of bond dimension (m) to be kept in the sweeps. The larger the

number of bond dimensions is, the closer the energy is to the exact full-CI

(energy). We can consider the result of a DMRG algorithm as an analytical

function of an adjustable parameter like m. Consequently, it is possible to

probe this analytical function by performing calculations for a few different

numbers of renormalized DMRG basis states. None of these calculations

has to actually provide the desired accuracy, but after one has collected

enough information about the function’s behavior, one can represent it by

an analytic rational function that may then be used to extrapolate to the

converged energy.

The detailed numerical behavior of the DMRG algorithm is still imper-

fectly understood. Chan and Head-Gordon (2002) analyzed the error in the

energy for given m in quantum chemistry DMRG calculations and proved

that under fairly general conditions the thermal density matrix eigenvalues

decay asymptotically like

wi ~ const3 e2κ lnið Þα ; ð4:90Þ
where αB2 and constant κ is model specific and proportional to the one-

particle level density.

In an early study of the algorithm accuracy for the Ising model, Legeza

and Fáth (1996) demonstrated that the error in the energy for a given m is

FIGURE 4.3 Schematic illustration of the Fiedler-vector-based method for orbital ordering. In

(A), all existing connections are set to 1.0 and denoted as black lines. The corresponding value

of one site in the Fiedler vector is marked next to it. Sorting the sites (or MOs in this chapter) in

the order of the corresponding values from small to large leads to the optimized orbital ordering

in (B). MOs, Molecular orbitals.
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roughly proportional to the sum of the weights discarded during decimation.

More strictly,

E mð Þ2E0

�� ��Bconst3
X
i.m

wi 1C: ð4:91Þ

The linear relationship arises simply from the boundedness of the

Hamiltonian and is because the energy is a linear functional of the density

matrix. From Eqs. 4.90 and 4.91, the error in the energy should asymptoti-

cally converge like

δEj j5 const3
e2κ lnmð Þ2 1 lnm

lnm
: ð4:92Þ

Taking logarithms on both sides, we find that the leading term gives

ln δEj jD2κ lnmð Þ2: ð4:93Þ
On the basis of the above extrapolation, Mitrushenkov et al. (2003)

increased the flexibility of Eq. 4.93 and accordingly suggested another

energy extrapolation scheme in terms of the incremental energies

δEm 5Em 2Em21 ð4:94Þ
to the asymptotic value within the appropriate range of m by the following

formula,

lim
m-m

δEm 5 lim
m-m

c1 dEm

fm
5 0 ð4:95Þ

with

fmB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2N3 1 2m3N2
p ð4:96Þ

and the parameters c and d are determined by a fit to the calculated DMRG

data.

Instead of using a fixed m value in the DMRG sweeps, Legeza et al.

(2003b) suggested a dynamic block state selection (DBSS) protocol based on

a fixed truncation error

ε5 12
Xm
α51

wα ð4:97Þ

of the subsystem’s RDM, which can automatically adapt the bond dimension

at different sites. For methylene with a (6e, 13o) CAS, a linear relationship

was found between the truncation error ε and the absolute error in the energy

which led to an extrapolation formula of the form

ln
EDMRG 2EFCI

EFCI

5 alnε1 b; ð4:98Þ
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where EFCI, a, and b are parameters determined from the fit of the numerical

result. In contrast, Mitrushenkov et al. (2003) found another extrapolation

formula

EDMRG 2EFCI 5Aexp 2Bε21=2
� �

; ð4:99Þ

to be adequate in the DMRG calculation of HF molecule, where A and B are

parameters.

In order to make the extrapolations on the fly to detect when to stop the

DMRG iterations, Marti and Reiher (2010) investigated an automated

DMRG error protocol, which extrapolates the electronic energy using

Richardson’s deferred approach to the limit. In a Richardson-type algorithm,

the extrapolation is performed using rational functions, which overcomes the

constraint of the power series and its limited radius of convergence. The

rational functions used in this approach can be written as

E μνð Þ εð Þ5 Pμ εð Þ
Qν εð Þ 5

p0 1 p1ε1?1 pμεμ

q0 1 q1ε1?1 qνεν
; ð4:100Þ

where μ and ν are the orders of the polynomials in the denominator and in

the numerator, respectively, and are determined by the number of data

points. Such an error control facility was considered to provide a feasibility

to perform practical DMRG calculations, at a low number m of DMRG basis

states for larger systems without the need of having fully converged absolute

energies.

4.8 Component analysis of density matrix renormalization
group wave function

It is obvious that the DMRG wave functions based on both the left-right

decomposition and MPS are intuitively quite different from the traditional

many-electron wave functions based on CI configurations. Moritz and Reiher

(2007) rationalized the equivalent relationship between the MPS and its

CASCI formulation using Slater-determinant (SD) basis. It is now clear that

the CI coefficients can be reconstructed by contracting all of the MPS local

tensors, as

cn1n2?nN 5
X

a1a2?aL21

Mn1
1a1

Mn2
a1a2

?MnN
aN211 ð4:101Þ

It should be noted that the computation of the CI coefficient for a speci-

fied SD n1n2?nLj ið Þ is very straightforward and efficient, which requires

only B N2 1ð Þ matrix multiplications of m3mð Þ-sized matrices (m usually

being a few hundreds to thousands). However, the full CI expansion for a

DMRG wave function in a large active space with more than 20 active
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orbitals would be prohibitive, because the total number of SDs would be eas-

ily larger than 1010. Totally transforming the DMRG wave function to a mul-

ticonfigurational CI-type wave function is still challenging.

Since the number of SDs in a DMRG active space is extremely large,

one could learn the ideas from the recently revived selected-CI theory. For

most molecules, the exact energy and properties could be described with a

limited number of important electronic configurations rather than the full-CI

wave function containing even more than billions of configurations. There

are usually a few dominant configurations contributing a fairly large propor-

tion of the quadratic sum of CI coefficients. These configurations are

expected to provide a good approximation of the original DMRG wave func-

tions and characterize properties of the states.

Boguslawski et al. (2011) proposed a Monte Carlo-based sampling-recon-

structed CAS (SR-CAS) algorithm for reconstructing CASCI-type wave

functions from a DMRG ansatz elegantly. The application to 1,3-dimethyl

Arduengo carbene in their work suggests that only a comparatively small

amount of SDs within the entire large active space has to be considered to

construct an efficient CASCI-type wave function, and the small amount of

SDs could already represent the main feature for a specific electronic state.

Within the SR-CAS framework, a predefined reference (usually the HF

determinant) is used to generate the trial determinants in the given active

space. However, the single determinant may not be adequate or very efficient

as the reference for the molecule that owns strong multiconfigurational

character.

Luo et al. (2017) later developed an entanglement-driven GA (EDGA), in

which the multiple SDs can be used as the reference and where the “cross-

over” process is employed, rather than Monte Carlo process, for generating

new SDs. In addition, inspired by QIT, in which orbital interactions are

quantitatively evaluated, MO entanglement entropies (see Section 4.9) were

also embedded into the “mutation” process to generate more likely SD exci-

tations. It is shown that the efficiency of determinants’ reconstruction can be

improved by using the sampling/evolutionary direction guided by the MO

entanglement entropy.

By extracting CI expansion coefficients and collecting important determi-

nants, one can explore the compressibility of wave functions of strongly cor-

related systems in CI space. Most of the configurations in the FCI space

almost do not contribute to the whole wave function as they have very small

CI coefficients, close to 0. Accordingly, the SR-CAS and EDGA methods

are effective in practice to collect only those important configurations with

large CI coefficients and construct a well-approximated multiconfigurational

CI-type wave function, which can be used for further selected-CI or post-

DMRG references. Such sampling algorithms have been used by Ren et al.

(2021) to analyze the dominant final vibrational states in a vibronic wave

function that contribute the most to the excited-state radiationless decay rate.
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Wang et al. (2020) further reported the massively parallel expansions of

SR-CAS and EDGA using the Charm11 parallel framework. The parallel

variants can drastically enhance the efficiency in reconstructing the reference

wavefunction.

Algorithm 4.4: Reconstruction of a CASCI-type wave function from MPS

by EDGA. CASCI, Complete active space configuration interaction; EDGA,

entanglement-driven genetic algorithm; MPS, matrix product state.

1: function initialize(n)
2: Randomly generating n initial SDs in G
3: return G
4: end function
5: function MPS2CI(Φi )
6: ci 5 ⟨Φi jψ⟩5Mn1

1a1
Mn2

a1a2
?MnN

aN211

7: return ci
8: end function
9: procedure EDGA
10: G’ initialize(n)
11: c1; c2; . . .cnf g’ MPS2CI

12: if 12
Precord
i

c2i . rang; 102k then

13: Do “crossover” and “mutation” to generate new configurations
// refer to Luo et al. (2017)

14: Go back to step 11
15: end if
16: return collected configurations f φ0; φ1; . . .; jφnig

����
17: end procedure

To simulate finite temperature quantum systems efficiently, White and

Stoudenmire proposed a method to sample minimally entangled typical ther-

mal states (White, 2009; Stoudenmire and White, 2010). They suggested that

at a nonzero temperature β, a set of states φi

�� �� �
with minimal entropies

could be selected according toX
i

Pijφi⟩⟨φij5 e2βĤ ; ð4:102Þ

in which the unnormalized probabilities Pi could be evaluated as

Pi 5 ⟨ije2βĤ ji⟩; ð4:103Þ
and the product state i⟩

�� could be any complete orthonormal basis of the sys-

tem. Their ideas inspired Guo et al. (2018b) on the importance sampling of

determinants in the zeroth-order wave function ψ 0ð Þ⟩
�� in the perturbative

DMRG (p-DMRG) method (see Section 4.10). In their implementation, a

determinant φi⟩5 n1n2?nN⟩
���� can be sampled according to the probability
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Pi 5 j⟨ψ 0ð Þjφi⟩j2 in a single sweep site by site from left to right. With the

right canonical MPS

ψ 0ð Þ�� �
5
X

n1?nN
Mn1?MnN n1?nNj i; ð4:104Þ

the generation probability for nk with given n1?nk21 can be evaluated as

pk nkjn1?nk21ð Þ5 1

Nk

X
ak

Mn1?Mnkð Þak
�� ��2 ð4:105Þ

with

Nk 5 pk21 nk21jn1?nk22ð Þ: ð4:106Þ

Thereby, the total generation probability is

Pi 5 p1 n1ð Þ?pN nN jn1?nN21ð Þ
5 Mn1?MnNj j2

5 j⟨ψ 0ð Þ φi⟩
2;
���� ð4:107Þ

which is exactly the target distribution.

4.9 Quantum information theory analysis

As we have discussed in Chapter 2, the success of DMRG truncation in 1D

strongly correlated chain can be understood in the language of QIT as pre-

serving the maximum entanglement between system and environment as

measured by the von Neumann entropy of entanglement,

S52Trρ̂lnρ̂52
X
α

wαlnwα: ð4:108Þ

The concepts from QIT, like the von Neumann entropy or the mutual

information, were also recently utilized to understand the electronic structure

features of strongly correlated molecules and optimize the ab initio DMRG

parameters in quantum chemistry.

It was suggested by Legeza and Sólyom (2004) to evaluate the total

quantum information encoded in a wave function from the sum of entropies

at different sites. Later, Rissler, et al. (2006) generalize Eq. 4.108 to arbitrary

subsystems (e.g., one orbital or two orbitals), and defined the single-orbital

von Neumann entropy S
1ð Þ
i of the ith orbital

S
1ð Þ
i 52

X4
σ51

wσ;ilnwσ;i; ð4:109Þ
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with wσ;i being the eigenvalues of the 43 4ð Þ-dimensional one-orbital RDM

ρ 1ð Þ
ii0 5

X
n

nj ijψ� �
ψji0� �jn� �

: ð4:110Þ

Similarly, the two-orbital entropy S
2ð Þ
ij is obtained from the eigenvalues

wτ;ij of the 163 16ð Þ-dimensional two-orbital RDM

S
2ð Þ
ij 52

X16
τ51

wτ;ijlnwτ;ij: ð4:111Þ

Furthermore, they defined orbital mutual information Iij by the subtrac-

tion of the entanglement of two orbitals taken together with the rest of the

system from the sum of the entanglement of two individual orbitals with the

rest of the system,

Iij 5
1

2
S

1ð Þ
i 1 S

1ð Þ
j 2 S

2ð Þ
ij

� �
12 δij
� �

: ð4:112Þ

The mutual information Iij, also known as the orbital entanglement

entropy, can be therefore obtained from a converged DMRG wave function.

Although it is a quantitative description of the orbital correlation, we cannot

get its precise values to determine the accurate orbital ordering before doing

an accurate DMRG calculation, which also depends on the accurate orbital

ordering. In practice, some rough DMRG calculations are often performed

preliminarily to obtain reasonable orbital entanglement entropies at a low

computational cost. Legeza and Sólyom (2003) suggested to place the

strongly correlated orbitals next to each other and toward the middle of the

lattice to achieve a faster DMRG convergence. Instead of using NO occupa-

tion number (NOON) as a selection criterion for active space, Stein and

Reiher (2016) proposed to only consider orbitals with single-orbital entropy

S
1ð Þ
i higher than a fraction of the maximum value found for one of the S

1ð Þ
i in

a preliminary large-scale but low-level electron-correlation calculation.

Discouraged by the computational cost, King and Gagliardi (2021) suggested

an “approximate pair coefficient” method, attempting to estimate the entropy

in a physically motivated fashion from orbital energies and features of the

HF exchange matrix in a pair-interaction framework.

The concepts of single-orbital and two-orbital entropies, as well as orbital

mutual information, have been also recently used as new orbital entangle-

ment measures to evaluate the SR and MR character of molecular bonding

structures and chemical reactions in a given orbital basis set. (Barcza et al.,

2011; Boguslawski et al., 2012b; Duperrouzel et al., 2015). For instance,

Duperrouzel et al. (2015) dissect bond-formation processes in metal-driven

catalysis using concepts from QIT. Fig. 4.4 shows that the total quantum

information increases gradually when the nickel atom and ethene molecule

are pulled apart, up to a nickel�ethene distance of 2.4 Å. Beyond this point,
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the total quantum information decreases indicating the transition state in

which the wave function has a strong multireference character. Stein and

Reiher (2016) concluded that a conservative global threshold of

S
1ð Þ
i

� �
max
� 0:14 for at least one orbital indicates the MR character of a

wave function. The orbital mutual information Iij was also used as the selec-

tion weights in the mutation process of changing the orbital occupation status

in a GA for sampling the important configuration states in a large active

space (Luo et al., 2017). Compared to other widely used MR diagnostic vari-

ables like NOON and configuration coefficient, QIT features of single-

orbital entropy and orbital mutual information can give more informative

and straightforward illustrations of electron correlations between specified

FIGURE 4.4 (A) Potential energy surface and (B�D) quantum information analysis of nick-

el�ethene complexation with respect to selected nickel�ethene distances. Note that the nick-

el�ethene distances are measured from the nickel atom to the middle of the carbon-carbon

bond. The chosen distances (1�4) are marked in (A) and cover the transition state (1), and the

equilibrium distance (4). MOs are marked by different symbols (according to their irreducible

representation) in the mutual information and single orbital entropy diagrams. Highly correlated/

entangled orbitals are highlighted in (C) and (D). MOs, Molecular orbitals. Reproduced from

Duperrouzel, C., Tecmer, P., Boguslawski, K., Barcza, G., Legeza, Ö., Ayers, P.W., 2015. A

quantum informational approach for dissecting chemical reactions. Chem. Phys. Lett. 621,

160�164. https://doi.org/10.1016/j.cplett.2015.01.005, with permission from Elsevier.
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orbital pairs. Furthermore, the static and dynamic contributions to the corre-

lation energy can be also distinguished by examining the entanglement pat-

terns of orbitals (Boguslawski et al., 2012b).

Moreover, it has been argued that the mutual information does not really

quantify the entanglement since it includes both quantum and classical corre-

lations (Henderson and Vedral, 2000). Considering that entanglement is an

important resource for realizing quantum cryptography, superdense coding,

and possibly even quantum computing, recently Schilling and coworkers has

proposed a new scheme to separate the total correlation into classical and

quantum parts and implement their quantification in an operationally mean-

ingful way (Ding et al., 2021).

4.10 Density matrix renormalization group for larger active
spaces

DMRG’s main strength lies in treating large 1D quantum lattices where all the

sites are extremely strongly interacting. However, the orbitals in molecular

systems usually have different chemical environments and don’t have spatial

translational symmetry which is present in condensed phase physics models.

Therefore the mix of different correlation characters in a number of active

orbitals and the presence of long-range interactions decrease the computation

efficiency of ab initio DMRG and consequently hinders its application to

larger systems. In recent years, a few new algorithms have been proposed to

treat larger active spaces in DMRG quantum chemistry (Parker and Shiozaki,

2014; Ma et al., 2015; Ren et al., 2016; Guo et al., 2018a,b).

One of the most straightforward ideas to reduce the computation cost and

apply DMRG methods on larger molecules can be addressed to reducing the

number N of MPS tensor sites and using a smaller m value. With this aim,

Parker and Shiozaki (2014) proposed to combine DMRG with the active

space decomposition (ASD) method (Parker et al., 2013) to describe the elec-

tronic structure of molecular aggregates. In ASD-DMRG (Fig. 4.5), they

chose each site to be the CAS or RAS wave function of a single molecule or

fragment instead of the one-electron orbital in usual ab initio DMRG. As a

consequence, the dimensionality of the single site, d, is much larger in ASD-

DMRG than in conventional approaches. However, its key benefit is that this

makes N much smaller and allows m to be very small, with a numerical test

on a benzene pentamer and a perylene diimide trimer. Recently, Larsson

et al. (2022) performed a detailed investigation on the computational costs

on such cluster MPS methods which group clusters of related orbitals into

large “sites.” In systems with nearly constant entanglement across the lattice,

a cluster MPS is found to be unlikely to reduce computational cost for the

same accuracy. On the contrary, the cluster MPS is advantageous for an

MPS with highly nonuniform bond dimensions, large within a cluster of sites

and very small between clusters. Larsson et al. (2022) further suggested to
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put large cluster sites at either end of the MPS, because now each large site

only has a single boundary (and does not have a boundary with another large

site), and when combined with a configuration selection of the large site

Hilbert space, there is a large regime of computational advantage.

Ma et al. (2015) presented a DMRG algorithm with a multilevel (ML)

control of the active space based on chemical intuition-based hierarchical

orbital ordering, also called ML-DMRG, or ML-DMRG-SCF in its SCF vari-

ant. With examples of H2O, N2, indole, and Cr2, ML-DMRG calculations

were shown to achieve a noticeable computational efficiency gain with a lit-

tle price of energy inaccuracy (normally few mHartrees) in contrast to those

standard DMRG calculations with fixed m values. It is also shown that the

orbital reordering based on hierarchical multiple active subspaces may be

beneficial for reducing computational time, not only for ML-DMRG calcula-

tions, but also for standard DMRG ones with fixed m values.

Ren et al. (2016) proposed a new formulation called DMRG inner space

perturbation theory (DMRG-isPT) to replace the expensive exact diagonal-

ization procedure in each local matrix optimization step in order to achieve

high efficiency and maintain accuracy at the same time. In the DMRG-isPT

method, “small space diagonalization 1 large space perturbation” algorithm

is adopted, in which only a smaller effective Hamiltonian (with a dimension of

163m0
2, m0{m) is exactly diagonalized and then use Rayleigh�Schrodinger

perturbation theory (RSPT) to calculate the first-order wave function ψ 1ð Þ�� �
(with a larger dimension of 163m2) and the second-order energy

E2 5 ψ 1ð Þ Q̂V̂
�� ��ψ 0ð Þ� �

. The first-order wave function ψ 1ð Þ�� �
can be obtained by

FIGURE 4.5 Comparison of wave functions in ASD-DMRG and in conventional ab initio

DMRG. ASD, Active space decomposition; DMRG, density matrix renormalization group.

Reproduced from Parker, S.M., Shiozaki, T., 2014. Communication: active space decomposition

with multiple sites: density matrix renormalization group algorithm. J. Chem. Phys. 141,

211102. https://doi.org/10.1063/1.4902991, with permission from American Institute of Physics.
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solving the equation

Ĥ0 2E0

� �
ψ 1ð Þ�� �

52 Q̂Ĥ ψ 0ð Þ�� �
; ð4:113Þ

in which P̂5 ψ 0ð Þ�� �
ψ 0ð Þ� �� and Q̂5 12 P̂ are projectors.

Using the approach similar to “small space diagonalization1 large space

perturbation”, Guo et al. (2018a) developed a p-DMRG algorithm. The main

difference between DMRG-isPT and p-DMRG is that the former uses pertur-

bation theory at each DMRG sweeping step to approximate the local MPS

tensor, while the latter applies perturbation theory on a globally converged

MPS wave function with a small bond dimension. For solving the first-order

equation, ψ 1ð Þ�� �
in p-DMRG is achieved by minimizing the Hylleraas func-

tional through DMRG sweeps using the MPS-PT algorithm (Sharma and

Chan, 2014), which will be introduced in Section 6.3. Because this MPS-PT

will require a much larger bond dimension m1 m1cm0ð Þ for p-DMRG, a sig-

nificant cost in both computation and storage becomes a bottleneck for very

large active spaces with 50�100 orbitals. To further speed up the computa-

tional efficiency, later Guo et al. (2018b) proposed a stochastic p-DMRG

algorithm to avoid solving the first-order equation deterministically, through

using an importance sampling algorithm over the determinant space (see

Section 4.8).

4.11 Relativistic density matrix renormalization group

As we have mentioned in the beginning of this chapter, the relativistic effect

is not considered in the Schrödinger equation. The term “relativistic effect”

refers to any difference between the Dirac and Schrödinger models of elec-

tronic structure. In other words, it refers to any difference arising from the

finite and infinite speeds of light. Relativistic quantum chemistry has wit-

nessed fast development, especially in the last 20 years, and it can be envis-

aged that relativistic quantum chemistry will play an increasingly important

role in the exploration of molecular science. (Reiher and Wolf, 2014; Liu,

2016; Liu, 2017; Liu, 2020)

Relativistic effect is strong for heavy and super-heavy elements as well as

their compounds, which usually also exhibit strong electron correlations

caused by the large number of near-degenerate d and f orbitals. Hence, the

coupling of electron-correlation and relativistic effects is in general best

described using relativistic multiconfigurational WFT methods. The relativistic

effect has two primary origins, (1) the scalar relativistic effects of the radial

contraction and energetic stabilization for s and p states and the radial expan-

sion and energetic destabilization for outer d and f shells and (2) spin�orbit
coupling effect on the splitting of shells of nonzero angular momenta (p, d,

f, . . .). The scalar relativistic and spin�orbit coupling effects can be treated

separately or synergistically by relativistic quantum chemistry methods.
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For technique details of relativistic quantum chemistry, we refer the read-

ers to the recent books by Reiher and Wolf (2014) and Liu (2017). Here we

just briefly introduce its basic ideas. Relativistic quantum chemistry starts

from the Dirac equation, the relativistic quantum mechanical description of a

one-electron system in the nuclear attraction potential V,

ĤD Ψ⟩5 cαUp1 β2 1ð Þmec
2 1V

	 

Ψ⟩5E Ψ⟩:

������ ð4:114Þ
Here me is the mass of electron and c is the speed of light. The rest mass

energy mec
2 of the electron has been subtracted in the equation. α and β are

the 4 3 4 Dirac matrices,

α5
0 σ
σ 0

� �
;β5

I2 0

0 2I2

� �
; ð4:115Þ

with σ being the vector of the 2 3 2 Pauli spin matrices,

σx 5
0 1

1 0

� �
;σy 5

0 2i

i 0

� �
;σz 5

1 0

0 21

� �
: ð4:116Þ

The eigenfunction ψ⟩
�� is a bispinor with four components (4C) vector

containing two “large” and two “small” components ψL and ψS, respectively.

jψ⟩5 ψL

ψS

� �
5

ψL
1

ψL
2

ψS
1

ψS
2

0BB@
1CCA: ð4:117Þ

The large and small components, respectively, originate from the elec-

tronic and positronic degrees of freedom. In the nonrelativistic limit c-N
the small components vanish, while the large components correspond to the

nonrelativistic wave functions for α and β electron spin.

There is no unique derivation for a molecular many-electron analog to

the Dirac equation. In many cases, the Dirac-Coulomb (DC) or Dirac-

Coulomb-Breit Hamiltonian is used in practice. Due to the expensive compu-

tational costs of 4C calculations, approximate two-component (A2C)

approaches can be derived by removing the small component of the four spi-

nors. To achieve an efficient elimination, zeroth- and first-order regular

approximations and the method of normalized elimination of the small

component (NESC) can be used. In addition, transformation techniques such

as Douglas�Kroll (DK) or Douglas�Kroll�Hess (DKH) aim at a unitary

transformation of the Dirac Hamiltonian to block-diagonal form such that ψL

and ψS (in an eigenspinor basis of ĤD) are decoupled. A scalar approxima-

tion will be obtained if such kind of transformations are applied to the

one-electron operators only, with spin-dependent terms discarded. Therefore

scalar relativistic calculations are fully compatible with conventional multi-

configurational WFT code since only the one-electron integrals are affected.
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Recent attention was also paid to the so-called exact two-component and

quasi four-component methods, which involve no additional approximations

beyond the no-pair approximation at the one-electron level. That is, results

of the one-electron Dirac equation can be reproduced to machine accuracy,

while substantially reducing the computational effort compared to the full

4C treatment.

In recent years, relativistic effects have been also successfully incorpo-

rated in DMRG calculations by using different relativistic models. Moritz

et al. (2005b) implemented the first scalar relativistic DMRG calculation

with an example of the cesium hydride molecule, in which the generalized

arbitrary-order DKH protocol up to tenth order was used for a complete

decoupling of the Dirac Hamiltonian. The first implementation of the A2C-

and 4C-DMRG based on the four-component DC Hamiltonian was reported

by Knecht et al. (2014) with a benchmark test on thallium hydride. Later,

such 4C-DMRG implementation was reformulated using MPS and MPO

language and its capabilities were further illustrated by studying the

ground-state magnetization, as well as current density of a paramagnetic f 9

dysprosium complex (Battaglia et al., 2018). Moreover, the combination of

DMRG-tailored coupled cluster (see Section 6.4) with 4C DC Hamiltonian

was also accomplished by Brandejs et al. (2020) with demonstrations on the

system of TlH, AsH, and SbH. The relativistic DMRG calculations have

been also successfully applied to the computation of electron paramagnetic

resonance spectra parameters such as g-tensor and hyperfine coupling con-

stants (HFCCs) at different approximation levels. (Lan et al., 2015; Knecht

et al., 2016; Sayfutyarova and Chan, 2018)

4.12 High-performance ab initio density matrix
renormalization group

Although the DMRG method is recognized by its ability for reducing

the computational costs and make many complex problems solvable, in

many chemical systems, the computational costs are still very expensive.

Therefore it is highly desired to apply high-performance computing tech-

nology to accelerate DMRG calculations. The most important technique for

modern processors architecture is parallelization, as the main stream central

processing units (CPUs) are all multicore processors nowadays. Many

parallelization methods of the DMRG method have been developed and

reported by previous researches. Zhai and Chan (2021) summarized the

existing parallelization methods in their article and classified them into five

levels from the most fine-grained level to the most coarse-grained level.

These five levels are: (1) parallelism within dense matrix multiplications,

(2) parallelism over symmetry sectors, (3) parallelism over normal and

complementary operators, (4) parallelism over a sum of sub-Hamiltonians,

and (5) parallelism over sites.
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Parallelism within dense matrix multiplications is the most fine-grained

parallelism. In DMRG procedure, the matrix�matrix multiplications (BLAS

DGEMM) and matrix-vector multiplications (MVM) are frequently applied.

Hager et al. (2004) discussed the parallelization strategies of these two major

operations on shared-memory systems. Nowadays, many math libraries, like

BLAS or Intel MKL, provided highly efficient implementations of these two

operations. So, this parallelism can be easily acquired by linking to existing

math libraries.

When the DMRG is implemented with symmetry restrictions, the operator

matrix is block-sparse matrix. Therefore it can be further decomposed into

several dense matrices which would been processed simultaneously. This pat-

tern is well described by Levy et al. (2020) as shown in Fig. 4.6. Kurashige

and Yanai (2009) introduced their parallelization method over symmetry

sectors. By applying this strategy, they conducted a DMRG calculation for Cr2
molecule with a (24e, 30o) active space. The energies are demonstrated to be

accurate to 0.6 mEh when the DMRG bond dimension of m as large as 10000.

This parallelism was also applied by Levy et al. (2020) on distributed-memory

systems. They implemented this parallelism for the two-dimensional J12 J2
Heisenberg model at J2/J15 0.5 and the triangular Hubbard model, and

achieved up to 256 nodes parallelism with m5 32768.

The parallelism over normal and complementary operators is often con-

sidered the largest source of parallelism for typical ab initio problems. As

we introduced in Section 4.1, the left-right decomposition of the Hamiltonian

can be written as a summation of normal and complementary operators,

which is referred as the normal/complementary (NC) partition for the right

block, and the complementary/normal (CN) partition for the left block. So,

FIGURE 4.6 Cartoon of the tensor quantum block structure. (A) The block-sparse matrix was

reorganized into a list of dense matrices. (B) Each tensor in an MPS has a special block-

diagonal structure, where the blocks form dm3m matrices. MPS, Matrix product states.

Reproduced from Levy, R., Solomonik, E., Clark, B.K., 2020. Distributed-memory DMRG via

sparse and dense parallel tensor contractions. In: SC ’20: Proc.eedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis. https://doi.

org/10.5555/3433701.3433732, with permission from Institute of Electrical and Electronics

Engineers.
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the splitted operators can be assigned to different threads and processors. By

benchmarking with a water molecule, correlating 10 electrons in 82 orbitals

in C1 symmetry, keeping m5 1000 states, a speedup of 45 was achieved

with 64 processors by Chan (2004), showing good near-linear parallelism.

Chan et al. (2016) suggested a new parallelization strategy for ab initio

DMRG method. By applying the Hamiltonian compression, and an SOP

representation (see Section 4.1), they achieved good computational parallel-

ism. An important advantage of the SOP formulation is that each sub-

Hamiltonian term can be manipulated completely independently of any other

term. Thus the construction of sub-Hamiltonian term, the associated renor-

malized operators, and renormalized operator matrices for each sub-

Hamiltonian term can be carried out independently. This leads to a different

organization of the parallelization of the DMRG algorithm, which is highly

scalable. This parallelism is coarse-grained with a very low communication

cost and is easy to express in an MPO description.

The most coarse-grained parallelism is the parallelism over the sites which

was firstly proposed by Stoudenmire and White (2013). In this work, the

DMRG lattice was separated equally into several fragments, and several

DMRG sweeps were conducted on corresponding fragments simultaneously.

The sweeping pattern of this parallelism strategy is described in Fig. 4.7, in

which one fragment was assigned to one computational node. When the sweep

of one fragment comes to the boundary, it will wait for the neighbor to

come and then communicate to each other. This strategy was then applied by

FIGURE 4.7 Sweeping pattern for one full sweep of the parallel DMRG algorithm split over

four computational nodes. First, (A) the nodes are positioned in a spatially staggered pattern and

sweep to the other end of their block. (B) When the nodes reach the end of their block they wait

for their neighboring node to arrive, then communicate. (C) Finally, the nodes sweep back to

their starting positions and (D) communicate with their other neighbor. DMRG, Density matrix

renormalization group. Reproduced from Stoudenmire, E.M., White, S.R., 2013. Real-space par-

allel density matrix renormalization group. Phys. Rev. B 87, 155137. https://doi.org/10.1103/

PhysRevB.87.155137, with permission from American Physical Society.
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Secular et al. (2020) for time-dependent variational principle algorithm. Chen

et al. (2021) further developed an adaptive boundary strategy for lattice sites

parallelism and successfully reduced the load imbalance between nodes.

It is clear that these parallelization strategies can be employed together to

develop a ML parallelization method. Brabec et al. (2020) reported a mas-

sively parallel implementation of DMRG using both strategies (2) and (3)

and achieved parallelism up to 2496 CPU cores on the largest benchmark

system (FeMo-cofactor cluster system with a CAS(113e, 76o) by using

m5 6000). By identifying these five parallelization levels, Zhai and Chan

(2021) implemented a low communication high-performance ab initio

DMRG algorithm, applying all of the five parallelisms. They introduced a

reformulated strategy (3) for a distributed-memory model using the sum of

sub-Hamiltonian language. And by taking this demonstrates, a low communi-

cation version of strategy (3) can also be viewed as a variant of strategy (4).

The strategy (4) and strategy (5) are implemented with distributed-memory

model, and the strategy (1) and strategy (2) are implemented with shared-

memory model. They benchmarked their strategies on a benzene molecule in

an (30e, 108o) active space and achieved a parallelism of up to 2800 CPU

cores with m5 6000. And they suggested that the combination of different

DMRG parallelism strategies using both distributed and shared-memory

models was essential to achieve near-ideal speed-ups.

In recent years, the graphic processing unit (GPU) was introduced to

accelerate quantum chemistry algorithms and achieved great success. For

DMRG calculations, the cuBLAS library, a GPU version of BLAS library

integrated in Nvidia CUDA toolkit, implemented the matrix multiplications

operations on GPU, providing a powerful tool for the most fine-grained par-

allelism. Based on this, Chen et al. (2020) implemented a CPU�GPU hybrid

parallel method for DMRG calculations. In their strategy, both the diagonal-

ization and the truncation procedure are optimized, and these optimizations

effectively reduced the total computational time. Li et al. (2020) developed a

GPU accelerated time-dependent DMRG time evolution scheme. The

cuBLAS library was also applied in their implementation. Nemes et al.

(2014) also introduced a hybrid CPU�GPU implementation of DMRG

method. In their implementation, a new CUDA kernel was developed, as the

MKL and cuBLAS libraries give poor performance. They also discussed the

limitation of another widely used acceleration device, the field-

programmable gate array (FPGA). As they stated, the FPGA chips have

lower operating frequencies than in case of GPU architectures. And the

FPGA chips are hard for programming.

To our best knowledge, the largest ab initio DMRG parallelism on CPU

cores was achieved by Zhai and Chan (2021) for the (30e, 108o) benzene

system, which applied up to 2800 CPU cores. We notice that other one-

body-like quantum chemistry methods may achieve up to millions of CPU

cores. For example, a parallelism of 8,519,680 cores for discontinuous
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Galerkin DFT calculations was achieved by Hu et al. (2021). However,

unlike the DFT method usually implemented with grid-based numerical inte-

grations, many WFT methods like DMRG are more challenging to be paral-

lelized efficiently because of tight dependence between their inner

procedures, which brings more data synchronization requirements in paralle-

lized implementations. In many-body quantum chemistry cases like ab initio

DMRG, the evaluations and operations of tremendous matrices take much

greater efforts, growing as a higher order polynomial with the increasing

number of electrons and orbitals. It usually demands immense amounts of

physical memory as well as fast and efficient input/output storage. The enor-

mous amount of data synchronization severely restricts the parallel efficiency

of many-body quantum chemistry methods. The parallelism of many-body

quantum chemistry calculations is therefore significantly limited by inter-

node communications. The internode imbalance becomes a big concern for

massive parallelism that remains an unsolved problem for future work. By

applying the machine learning method for workload arrangement, the inter-

node imbalance may be able to be reduced. For large system DMRG calcula-

tions, the Davidson procedure is the most time-consuming step. It may take

several iterations when the strength of correlation is large. The machine

learning methods may also be able to help accelerate the Davidson diagonal-

ization procedure by estimating a better initial guess.

4.13 Tensor network states

Before finishing, we should notice that the linear nature of the MPS is far

from ideal for the entanglement structure of most chemical molecules. In the

DMRG framework, we consider the actual three-dimensional MOs with

long-range interactions as one-dimensional chains, which causes an unbal-

anced loss of correlations between MOs and accordingly requires a much

larger m value. An intuitive improvement is to increase the dimension of the

MPS tensors, leading to the quickly developing tensor network state (TNS)

methods, as we have introduced in Chapter 2. A generalization from MPS to

TNS can be understood by using the concept of higher order SVD from the

mathematical point of view.

In recent years, various TNS methods have been applied in ab initio quan-

tum chemistry, including the complete-graph tensor network (Marti et al.,

2010), tree TNS (TTNS) (Murg et al., 2010; Murg et al., 2015; Nakatani and

Chan, 2013), self-adaptive TNS (Kovyrshin and Reiher, 2017), and three-

legged tree TNS (Gunst et al., 2018; Gunst et al., 2019), as well as comb TNS

(CTNS) (Li, 2021). Fig. 4.8 shows an example of CTNS topology for the large

CAS model (113e, 76o) of the FeMoco (M-cluster) in nitrogenase, grouping

the d orbitals within each transition metal atom and active orbitals of each sul-

fur or carbon atom respectively. In TNS implementations, the TNS is usually

mapped onto an MPS, and then the iterative optimization step can be executed
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in a DMRG-like variational way. High computational accuracy and efficiency

for molecules of organic polyatomic radicals and polynuclear transition metal

compounds have been illustrated in these works. In TTNS, the orbital optimiza-

tion by canonical transformations has also been explored. (Murg et al., 2010)

In principle, the ab initio quantum chemistry Hamiltonian can be formulated

in the tensor network operator language, similar to that of MPO. However, no

such works have been reported due to its great complexity, and accordingly,

most of the current TNS quantum chemical calculations still use the formulation

of renormalized operators. Unlike MPS, the underlying chain topology of which

is unique, there can be different topology shapes for TNS calculations of a given

molecule. Therefore the optimization of the parameters for a high-dimensional

tensor network becomes highly nontrivial and is of much higher numerical cost.

In addition, one has to keep it in mind that the computational scaling of TNS is

still worse than that of traditional DMRG, because of TNS’s higher-dimensional

nature. For these reasons, there is ample opportunity for quantum chemists and

theoretical physicists to make valuable algorithmic contributions toward the

quest for useful TNS quantum chemical computation.

FIGURE 4.8 (A) The P-cluster and the FeMo-cofactor (M-cluster) in nitrogenase (Protein Data

Bank (PDB) ID: 3U7Q). Color legend: Fe, orange; Mo, green; S, yellow; C, cyan; O, red; N,

blue; H, white. The labels in the two complexes index the Fe/Mo atoms in the later figures.

(B) The right canonical form of an CTNS for the active space model [CAS (113e, 76o)] of the

FeMoco. The sites in blue represent physical sites associated with spatial orbitals, while the sites

in green represent internal sites without physical index (red lines). Some selected MOs are also

illustrated. CTNS, Comb tensor network state; MOs, Molecular orbitals. Reproduced from Li, Z.,

2021. Expressibility of comb tensor network states (CTNS) for the P-cluster and the FeMo-

cofactor of nitrogenase. Electron. Struct. 3, 014001. https://doi.org/10.1088/2516-1075/abe192,

with permission from Institute of Physics.
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McCulloch, I.P., Gulácsi, M., 2000. Density matrix renormalisation group method and symme-

tries of the Hamiltonian. Aust. J. Phys. 53, 597�612. Available from: https://doi.org/

10.1071/PH00023.
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Chapter 5

Density matrix renormalization
group with orbital optimization

In Chapter 4, we have shown that how the density matrix renormalization

group (DMRG) method can be used as an excellent substitute to traditional

full configuration interaction (FCI) or complete active space configuration

interaction (CASCI) method in large active spaces composed of up to B100

orbitals (Hachmann et al., 2006; Zhai and Chan, 2021). Since the multiconfi-

gurational wave functions depend greatly on the choice of selected molecular

orbitals (MOs) in an active space with a given size, multiconfigurational

self-consistent field (MCSCF) calculation is usually performed, in which

both configuration interaction (CI) coefficients and MOs are variationally

optimized. Under those circumstances, qualitatively correct electronic struc-

tures for both the ground and excited states are obtained. Dynamic correla-

tion effects not described by the MCSCF wave function can be generally

recovered by subsequent multireference CI, perturbation theory (PT), or cou-

pled cluster treatments that use the MCSCF wave function as zeroth-order

approximation (see Chapter 6).

In this chapter, we will introduce the basic algorithms of MCSCF and its

implementation in DMRG-SCF for orbital optimization, as well as their

applications in geometry optimization, calculations of excited states, molecu-

lar spectra, and non-Born�Oppenheimer effects.

5.1 Orbital rotation

Since we need to optimize the MOs to minimize the total energy in the

MCSCF method, first we briefly provide basic notions on the MOs and the

one- and two-electron integrals. In quantum chemistry, MOs φi

� �
are usu-

ally expressed as linear combinations of atomic orbitals (AOs) χμ

n o
by

(Lennard-Jones, 1929)

φi 5
Xm

μ51
Ci
μχμ ð5:1Þ
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which can be written in matrix form as

φ1 φ2 ? φm

� �
5 χ1 χ2 ? χm

� � C1
1 C2

1 ? Cm
1

C1
2 C2

2 ? Cm
2

^ ^ & ^
C1
m C2

m ? Cm
m

0BB@
1CCA:

ð5:2Þ
Here Ci

μ

n o
are MO coefficients. In most wave function theory methods,

one generally makes the MOs orthogonal to each other for convenience. For

example, one can obtain a set of canonical MOs from Hartree�Fock (HF) self-

consistent field (SCF) calculations, in which all orbitals are orthonormalized as

hφijφj⟩5 Ci⁎
1 Ci⁎

2 ? Ci⁎
m

� � χ⁎

1

χ⁎

2

^
χ⁎

m

0BB@
1CCA χ1 χ2 ?χm

� � C
j
1

C
j
2

^
Cj
m

0BB@
1CCA

5Ci⁎SCj

5 δij
ð5:3Þ

in which

Sμν 5 χμjχν

D E
ð5:4Þ

is the overlap matrix element of the AOs. If the MOs φi

� �
need to be

updated during the optimization iteration, one can easily construct a new

MO coefficient matrix ̃C by performing a unitary transformation on the

original MO coefficient matrix C0, as

~C5C0U; ð5:5Þ
in which U is a unitary transformation matrix. The above equation is equiva-

lent to

~φi0 5
X
i

Uii0φi: ð5:6Þ

Once the MOs are updated, one has to update the one- and two-electron

MO integrals with the fixed AO integrals and the updated MO coefficients ~C,
alternatively one can directly refresh the MO integrals by updating the old

integrals with the unitary transformation matrix U as

~ti0j0 5
X
ij

Uii0Ujj0 tij ð5:7Þ

~gi0j0k0l0 5
X
ijkl

Uii0Ujj0Ukk0Ull0gijkl: ð5:8Þ
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The full transformation of the two-electron integrals in Eq. 5.8 costs

O N8
� �

for N orbitals. As the computational cost is excessive, a cheaper and

widely used technique is to perform four O N5
� �

steps to respectively handle

the four indices i0; j0; k0, and l0, as

gi0jkl 5
X
i

Uii0gijkl; ð5:9Þ

gi0j0kl 5
X
j

Ujj0gi0jkl; ð5:10Þ

gi0j0k0l 5
X
k

Ukk0gi0j0kl; ð5:11Þ

gi0j0k0l0 5
X
l

Ull0gi0j0k0l: ð5:12Þ

With the updated one- and two-electron integrals by U, one can rebuild

the many-electron electronic Hamiltonian in Eq. 4.1 and solve it by exact or

approximate FCI methods, to obtain the new multiconfigurational wave func-

tion along with new expansion configuration coefficients. Thereby, the goal

of the orbital optimization is to find an appropriate unitary matrix U to mini-

mize the total energy of the system. To reduce computational costs for opti-

mizing U, a widely used technique is to expand the unitary matrix U into a

progression as

U5 exp Rð Þ5 11R1
1

2
RR1? ð5:13Þ

in which R is an anti-Hermitian matrix containing all the orbital rotation

parameters. Since we use real functions to represent orbitals and rotations,

the matrix R is real and antisymmetric, which means

Rrs 52Rsr: ð5:14Þ
Therefore we only need to optimize the elements in the upper (or lower)

triangle of the matrix R. In practice, it usually requires more than 100 lead-

ing terms of R expansion series, in order to construct the unitary matrix U
with a satisfactory numerical accuracy. In addition, many elements in the

matrix R are redundant, therefore can be safely ignored. We will explain in

detail in the next section how to perform orbital optimizations by transform-

ing the matrix R or U.

As it has been mentioned in Section 4.6 (CAS model), the entire MO

space is usually divided into three subspaces: core, active, and external, as

shown in Fig. 4.2. Henceforth (unless otherwise noted), the indices k, l will

refer to internal orbitals; indices a, b will indicate external orbitals; r, s, p,

q will represent any generic orbitals. The internal orbital space is further
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divided into core and active subspaces, in which the MOs are labeled with

indices i, j and t, u, v, w, respectively.

We have discussed at the beginning of this section that only those ele-

ments in the upper (or lower) triangle of the matrix R are used in orbital

optimizations because R is antisymmetric. By splitting the orbital space

into three subspaces, the number of orbital rotation parameters Rrsf g can be

reduced one step further. Some of the parameters Rrs may be redundant,

that is, they do not influence the energy to first-order. This happens if the

orbitals φi and φj have the same occupation number in all electronic config-

urations or the same spatial point group symmetry. An Rrs is also redundant

if the same first-order energy change can be achieved by a variation of the

CI coefficients. Since redundant variables influence the energy in higher

order, they must be set to zero in order to avoid convergence difficulties.

(Werner, 1987) Thus, in the complete active space SCF (CASSCF) method

in which one performs exact FCI calculation within the active space, all

rotations between the orbitals in the same subspace are redundant and must

be set to zero. However, in other MCSCF implementations with truncated

CI instead of the FCI in the active space, such as the restricted active space

SCF and the DMRG methods with small m values, the rotations between

active orbitals are not redundant because the CI basis functions are not

complete in these cases. In this chapter, we are mainly focusing on the

common and popular CASSCF implementation, whereas all active�active
rotations are omitted.

5.2 The multiconfigurational self-consistent field methods

5.2.1 Energy, gradient, and Hessian

The second-quantized ab initio quantum chemistry Hamiltonian in CAS

model is

Ĥ5
X
tu;σ

Fc
tuâ
y
tσâuσ 1

1

2

X
tuvw;στ

gtuvwâ
y
tσâ
y
vτ âwτ âuσ 1Ec ð5:15Þ

in which the core energy Ec and the closed-shell Fock matrix Fc
rs can be

evaluated as

Ec 5
X
j

tjj 1Fc
jj

� �
1Enuc; ð5:16Þ

Fc
rs 5 trs 1

X
j

2grsjj 2 grjjs
� �

: ð5:17Þ

Enuc is the repulsion energy between nuclei. The total energy can be

directly obtained by applying the Hamiltonian Ĥ on the many-electron wave
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function ψ
�� �, as

E5 hψjĤjψi

5
X
tu

Fc
tu

X
σ
hψjâytσâuσjψi1

1

2

X
tuvw

gtuvw
X
στ
hψjâytσâyvτ âwτ âuσjψ⟩1Ec

5
X
tu

Fc
tuD

t
u 1

1

2

X
tuvw

gtuvwD
tv
uw 1Ec:

ð5:18Þ

in which the one- and two-electron reduced density matrices (1-RDM and 2-

RDM) Dt
u and Dtν

uw are defined as in Section 4.5. The core energy Ec is a

constant in Eq. 5.16, because it is totally independent from the active orbi-

tals. Thus the total energy E depends entirely on the RDMs and the MO inte-

grals in the active space and can be expressed as a function of the CI

coefficients c and the MO transformation matrix R (or U), as

E5E c;Rð Þ: ð5:19Þ
Once the total energy is minimized, there must be: (1) the energy gradi-

ent (first derivative) equals to zero, that is,

@

@cI
E c;Rð Þ5 0

@

@Rrs

E c;Rð Þ5 0

8>>><>>>: ð5:20Þ

for arbitrary electronic configurations ΦIj i and orbitals r, s; (2) the energy

Hessian (second derivative) matrix is positive definite. It can be easily

derived that minimizing the total energy E c;Rð Þ with respect to the CI coeffi-

cients c leads to standard CI calculations. By introducing the operator,

Ŝ5
X
k 6¼0

SkŜk 5
X
k 6¼0

Sk ψk

�� �
ψ0 2 ψ0

�� �
ψk

� ���� �
;

�� ð5:21Þ

where ψk

�� �
represents a complement state orthogonal to the target state ψ0

�� �
.

Then the variations of the CI wave function can be written as

ψ
�� �5 exp Ŝ

� �
ψ0

�� �
: ð5:22Þ

Note that the operator Ŝ is anti-Hermitian. The CI energy can be written

as a function of the variational parameters as

E5 ψjĤ jψ� �
5 ψ0

���e2Ŝ ĤeŜ
���ψ0

D E
; ð5:23Þ
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which can be expanded to second order according to the Baker�Campbell�
Hausdorff expansion

E5 ψ0jĤ jψ0

� �
1 ψ0j Ĥ ; Ŝ

	 
jψ0

� �
1

1

2
ψ0j Ĥ ; Ŝ

	 

; Ŝ

	 
jψ0

� �
: ð5:24Þ

Here the first term is the zeroth-order energy ðE0Þ, also known as the ref-

erence energy; the second term denotes the first differential with respect to

the CI coefficients; the third term contains the second differential. The first

and the second derivative terms are also known as the gradient and the

Hessian, respectively. The first-order gradient derivative g
0
k cð Þ with respect

to the CI coefficients is obtained by

hψ0j Ĥ; Ŝ
	 
jψ0i5

X
k 6¼0

Sk hψ0 Ĥ
�� ��ψk⟩1 hψk Ĥ

�� ��ψ0⟩
� �

; ð5:25Þ

which can be reduced, because the wave functions are real and the element

ψ0jĤ jψk

� �
is thus symmetric, as

gk
0ðcÞ5 2 ψ0jĤ jψk

� �
: ð5:26Þ

The Hessian elements H
0 0
klðcÞ can be evaluated in a similar way, as

ψ0j Ĥ ; Ŝk
	 


; Ŝl
	 


; jψ0

� �
5 2SkSl ψkj Ĥ 2E0

� �jψl

� �
; ð5:27Þ

and accordingly,

H
0 0
klðcÞ5 2 ψkj Ĥ 2E0

� �jψl

� �
: ð5:28Þ

To optimize MOs, one also needs the first and second derivatives of the

energy respecting to the orbital rotations. The anti-Hermitian operator

R̂5
X
rs

Rrsâ
y
r âs ð5:29Þ

can be introduced to transform each spin-orbital φs of the original wave

function into a new spin-orbital ̃φs, as

~φs 5
X
r

eRrsφr: ð5:30Þ

The matrix R in Eq. 5.29 has been introduced in the last section. As the

MOs are real, the operator R̂ takes the compact form

R̂5
X
r. s

R̂rs 5
X
r. s

Rrs Êrs 2 Êsr

� �
; ð5:31Þ
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in which Êrs 5
P

σâ
y
rσâsσ is a single-excitation operator. Thus applying

the unitary transformation of exp R̂
� �

to the reference wave function ψ0

�� �
leads to

ψ
�� �5 exp R̂

� �
ψ0

�� �
; ð5:32Þ

and the energy in this situation becomes

E5 ψjĤ jψ� �
5 ψ0je2R̂ ĤeR̂ jψ0

D E
: ð5:33Þ

We can use the Baker�Campbell�Hausdorff expansion to second order

again with respect to orbital rotations as

E5 ψ0jĤ jψ0

� �
1 ψ0j Ĥ ; R̂

	 
jψ0

� �
1

1

2
ψ0j Ĥ ; R̂

	 

; R̂

	 
jψ0

� �
: ð5:34Þ

Here

ψ0j Ĥ ; R̂
	 
jψ0

� �
5
X
r. s

Rrs ψ0j Ĥ ; Êrs 2 Êsr

� �	 
jψ0

� �
; ð5:35Þ

which gives the first-order derivative

grs
0 ðRÞ5 ψ0j Ĥ ; Êrs 2 Êsr

� �	 
jψ0

� �
: ð5:36Þ

Similarly,

ψ0j Ĥ; R̂
	 


; R̂
	 
jψ0

� �
5RrsRpq ψ0j Ĥ; êrs

	 

; êpq

	 
jψ0

� �
;

êij 5 Êij2Êji:

ð5:37Þ

which gives the second-order derivative

H
0 0
rs;pq Rð Þ5 ψ0j Ĥ; êrs

	 

; êpq

	 
jψ0

� �
: ð5:38Þ

Besides, the full Hessian matrix involves the coupling between CI coeffi-

cients and orbital rotations. Therefore a naive idea of the MCSCF method is

to perform CI calculations and MO optimizations iteratively, as an uncoupled

scheme. Taking the CI-orbital coupling term into direct consideration leads

to the coupled approach. The former one usually results in slower conver-

gence and reduced computational costs, while the latter has faster conver-

gence at higher computational costs.

According to the different strategies in their orbital optimization algo-

rithms, current MCSCF methods can be categorized in two classes: (1) meth-

ods based on the generalized Brillouin’s theorem (Levy and Berthier, 1968),

and (2) methods based on the direct minimization of the energy. We will

introduce these two approaches in the following subsections.
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5.2.2 Super-configuration interaction method: a first-order
multiconfigurational self-consistent field implementation

The super-configuration interaction (CI) method was firstly proposed by Grein

and coworkers (Grein and Chang, 1971; Grein and Banerjee, 1975). After that,

Roos and coworkers immensely contributed to the development of the method

and software. (Roos et al., 1980; Roos, 1980; Siegbahn et al., 1980; Siegbahn

et al., 1981; Malmqvist et al., 1990) The Super-CI method is based on the gen-

eralized Brillouin’s theorem (Levy and Berthier, 1968), which states that for

optimized MOs the ground-state wave function jψ0

�
satisfies

ψ0jĤ jrk
� �

5 0; ð5:39Þ
where rkj i5 Êrk 2 Êkr

� �
ψ0

�� �
are the so-called Brillouin states, which are

internally contracted singly excited configurations (see Section 6.1). Eq. 5.39

can be easily derived from the stationary point condition of

grk
0 Rð Þ5 ψ0 Ĥ; Êrk 2 Êkr

� �	 
�� ��ψ0

� �
5 0: ð5:40Þ

The Super-CI wave function ψ
�� � can be obtained by performing unitary

transformation on the reference wave function ψ0

�� �
, as shown in Eq. 5.32.

Expanding the exponential function in Eq. 5.32 to the first-order leads to the

definition of the Super-CI wave function

ψ
�� �5 11 R̂

� �
ψ0

�� �
5 ψ0

�� �
1
X
r. k

Rrk rkj i: ð5:41Þ

The coefficients Rrkf g are determined by solving coupled Eq. 5.39 for dif-

ferent r and k indices. These equations represent the necessary and sufficient

condition for optimized orbitals at each MCSCF macroiteration. In practice,

the Super-CI Hamiltonian matrix is built and diagonalized. Because the

Brillouin states rkj i and slj i are usually nonorthogonal to each other, this

corresponds to generalized eigenvalue equations.

Hamiltonian matrix elements between the reference state and the

Brillouin states, ψ0jĤ jrk
� �

, as well as the coupling terms between Brillouin

states, rkjĤ jsl� �
, are required when solving the Super-CI eigenvalue prob-

lem, which are expensive because of the requirement for the three-body

RDMs. In order to avoid their expensive computations and to achieve lower

order scaling, the terms rkjĤ jsl� �
can be approximated by rk Ĥ

eff
��� ���slD E

,

(Roos, 1980; Malmqvist et al., 1990), where

Ĥ
eff

5
X
pq

Fc
pq 1Fa

pq

� �
Êpq: ð5:42Þ

The closed-shell Fock matrix Fc has been introduced in Eq. 5.17, while

the active Fock matrix Fa can be obtained by

Fa
rs 5

X
tu

Dt
u grstu 2

1

2
grtsu

� �
: ð5:43Þ
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In fact, Super-CI using the generalized Brillouin theorem is also equivalent

to running a perturbative treatment of ψ0

�� �
by considering the single excita-

tions rkj i as Eq. 5.41. According to Rayleigh�Schrödinger PT (see

Section 6.3.1), the Hylleraas functional for the Super-CI first-order wavefunc-

tion can be easily derived (summation over repeated indices implied)

E5 2Rrk rkjĤ jψ0

� �
1Rrk rkjĤ 2E0jsl

� �
Rsl: ð5:44Þ

Therefore orbital rotation parameters Rri can be obtained through the

minimization of E.
The couplings between CI coefficients and orbital rotations are completely

omitted in the Super-CI method. Each iteration of the Super-CI method starts

with a closed-shell update for computing the closed-shell Fock matrix and

two-electron MO integrals, followed by a CASCI calculation. From the

CASCI calculation, the 1-RDM, 2-RDM as well as the Fock matrix for

the active space are obtained. Finally, the orbital rotation parameters fRrkg are
determined by solving the Super-CI eigenvalue problem. The computational

effort of the Super-CI method scales as O N3
AONint

� �
, in which NAO and Nint

are, respectively, the number of atomic and internal MOs. This scaling is smal-

ler than the second-order methods described later. However, convergence

acceleration techniques such as the Broyden�Fletcher�Goldfarb�Shanno
(BFGS) method are vital for a robust convergence. Even with these accelera-

tion methods, the Super-CI method may still show a slow convergence in

some cases (Chang and Schwarz, 1977).

5.2.3 Second-order multiconfigurational self-consistent field method

In second-order MCSCF methods, both the gradient g and the Hessian matrix

H of the orbital rotation parameters Rrkf g are computed. The optimized

orbital rotation parameters can be obtained via the Newton�Raphson (NR)

method, by expanding the energy to the second-order of R

E5E0 xð Þ1 gyx1
1

2
xyHx; ð5:45Þ

in which x contains all nonredundant parameters in the matrix ΔR. To

improve the speed and robustness of convergence, the augmented Hessian

(AH) method (Yarkony, 1981) is usually employed, which determines the

step x by solving the eigenvalue problem

0 gy

g H=λ

� �
1=λ
x

� �
5 E

1=λ
x

� �
; ð5:46Þ

where λ is a damping parameter to keep the solution x within a trust radius.

Solving the AH eigen problem is equivalent to solving the NR equations
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with an adaptive shift E of the diagonal elements of the Hessian matrix

H2 E1ð Þx1 g5 0 ð5:47Þ
with

E5λgyx: ð5:48Þ
1 denotes a unit matrix with the same size of the Hessian matrix H.

Introducing the E value keeps the shifted Hessian H2 E1 staying positive

definite for λ$ 1, therefore convergence toward an energy minimum can

always be enforced by a sufficiently large value of λ.
A more efficient implementation was proposed by Werner, Meyer, and

Knowles (Werner and Meyer, 1980; Knowles and Werner, 1985; Werner and

Knowles, 1985; Kreplin et al., 2019), and denoted in this book as the WMK

method. Instead of expanding the total energy E to the second-order of the

orbital rotation matrix R, in the WMK method, the energy E is expanded to

the second-order of the unitary matrix U, which is equal to the infinite order

of the matrix R, as

E 2ð Þ5E0 1 2
X
kl

hΔk ĥ
�� ��liDk

l 1
X
kl

hΔk ĥ
�� ��ΔliDk

l 1 2
X
klmn

ðΔkljmnÞDkm
ln

5
X
klmn

ðΔkΔl mnj ÞDkm
ln 1 2

X
klmn

ðΔkmjnΔlÞDkm
ln ;

ð5:49Þ

in which k, l, m, n are internal orbitals and kljmnð Þ5 gklmn is the two-electron

MO integral. This equation can be easily derived from Eq. 5.18. As the

essence of orbital optimization is to get a new set of MOs via linear transfor-

mation, as shown in Eq. 5.6, the first derivatives of the one-electron MO

integrals in Eq. 5.49 can be evaluated as

Δr ĥ
�� ��sD E

5
X
r 6¼p

Urp p ĥ
�� ��sD E

; ð5:50Þ

which can be simplified by introducing an auxiliary matrix T

T5U2 15 exp Rð Þ2 15R1
1

2
RR1?: ð5:51Þ

Thus the first and second derivatives of the one- and two-electron MO

integrals can be obtained by

Δr ĥ
�� ��sD E

5
X
p

T⁎

pr p ĥ
�� ��sD E

.Tyh; ð5:52Þ

Δr ĥ
�� ��Δs

D E
5
X
pq

T⁎

prTqs p ĥ
�� ��qD E

.TyhT; ð5:53Þ

158 DMRG-based Approaches in Computational Chemistry



ðΔrs klj Þ5
X
p

T⁎

prgpskl.TyJkl; ð5:54Þ

ðΔrΔs klj Þ5
X
pq

T⁎

prTqsgpqkl.TyJklT; ð5:55Þ

ðΔrk lΔsj Þ5
X
pq

T⁎

prTqsgpklq.TyKklT; ð5:56Þ

where the matrix product expressions of these transformations lie on the right

side of the arrows. Note that Jkl and Kkl are respectively the Coulomb and

the exchange operators, and defined as

rjJkljs� �
5 grskl; ð5:57Þ

rjKkljs� �
5 grkls: ð5:58Þ

The evaluation of the second-order energy E 2ð Þ in Eq. 5.49 can be simpli-

fied as

E 2ð Þ Tð Þ5E0 1
X
rk

Trk 2Ark 1
X
sl

Gkl
rsTsl

 !
; ð5:59Þ

with

Ari 5 2Fri; ð5:60Þ

Aru 5
X
t

Fc
rtD

t
u 1

X
tvw

grtvwD
tv
uw; ð5:61Þ

Ara 5 0; ð5:62Þ

Gij
rs 5 2 Frsδij 1 Lijrs

� �
; ð5:63Þ

Gtj
rs 5

X
v

Dt
vL

vj
rs 5Gjt

sr ; ð5:64Þ

Gtu
rs 5Fc

rsD
t
u 1

X
vw

Jvwrs D
tv
uw 1 2Kvw

rs D
tu
vw

� �
: ð5:65Þ

The auxiliary rank-4 tensor L and the Fock matrix F which respectively

are defined as

Lkjrs 5 4Kkj
rs 2Kkj

sr 2 Jkjrs ; ð5:66Þ

Frs 5Fc
rs 1

X
tu

Dt
u Jturs 2

1

2
Ktu
rs

� �
: ð5:67Þ
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Note that the Fock matrix F has been introduced in the first-order Super-

CI method, as shown in Eq. 5.43.

Now one has to minimize the energy with respect to T with the constraint

UyU5 1 because the matrix U must be unitary. This problem can be solved

by introducing the Lagrangian multipliers εpq
� �

, as

@

@Trk
E 2ð Þ2

X
pq

εpq UyU
� �

pq
2 δpq

h i !
5 0: ð5:68Þ

Inserting Eq. 5.59 into Eq. 5.68 leads to the stationary condition

UyB2ByU5 0 ð5:69Þ
with

Brk 5Ark 1
X
sl

Gkl
rsTsl; Bra 5 0: ð5:70Þ

For the fully optimized orbitals, the solution of Eq. 5.69 must be U5 1.

Since these matrices are real, the variational conditions are

Aak 5 0 ð5:71Þ
and

Akl 2Alk 5 0: ð5:72Þ
For a given U5 11T, the Hamiltonian can be expanded as

Ĥ
2ð Þ
5
X
tu;σ

Fc 2ð Þ
tu âytσâuσ 1

1

2

X
tuvw;στ

g 2ð Þ
tuvwâ

y
tσâ
y
vτ âwτ âuσ 1E 2ð Þ

c ð5:73Þ

with the second-order expansions of the integrals and closed-shell energy

F
c 2ð Þ
tu 5 UyFcU

� �
tu
1 2
X
i

UyJtuU2Jtu
� �

ii
2
X
i

UyKtuU2Ktu
� �

ii

1
X
i

TyLuiT
� �

ti
1
X
i

TyLtiT
� �

ui
;

ð5:74Þ

g
2ð Þ
tuvw 5 2 gtuvw 1 UyJvwU

� �
tu
1 UyJtuU
� �

vw

1 11 τtuð Þ 11 τvwð Þ TyKtvT
� �

uw
;

ð5:75Þ

E 2ð Þ
c 5Ec 1 4

X
i

FcTð Þii 1 2
X
ij

Ty Fcδij1Lij
� �

T
	 


ij
; ð5:76Þ

in which τtu permutes the two indices t and u. The second energy can be

accordingly evaluated in the alternative form

E 2ð Þ Tð Þ5 ψ Ĥ
2ð Þ��� ���ψD E

; ð5:77Þ
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which is equivalent to Eq. 5.59 and can be simplified by using the 1-RDM

and 2-RDM.

One can see from Eq. 5.70 that the computation of the matrix B requires

the unitary matrix U, which suggests that SCF iterations are essential to

solve the nonlinear Eq. 5.69. An update T R1ΔRð Þ is defined as

T R1ΔRð Þ5T Rð Þ1U Rð Þ ΔR1
1

2
ΔRΔR1?

� �
: ð5:78Þ

To address the nonconvex problem, a second-order technique with good

robustness is required to determine the step ΔR at the expansion point

E 2ð Þ Tð Þ. Usually, the AH method is employed. In this case, the gradient g
and the Hessian H for a fixed U5 11T can be derived by inserting

Eq. 5.78 into Eq. 5.59, differentiating with respect to ΔRrk, and evaluating

the derivatives at ΔR5 0, which yields

~grk 5 ~Ark 2 ~Akr

� �
; ð5:79Þ

~Hrk;sl 5 12 τrkð Þ 12 τslð Þ ~G
kl

rs 2
1

2
δkl ~Ars 1 ~Asr

� �� �
; ð5:80Þ

with

~Ark 5 UyB
� �

rk
; ~Ara 5 0; ð5:81Þ

~G
kl

rs 5 UyGklU
� �

rs
: ð5:82Þ

Note that rk r. kð Þ and slðs. lÞ are considered as composite indices of

the gradient vector ̃g and the Hessian matrix ̃H. The tilde indicates that the

gradient and the Hessian are evaluated for a given unitary matrix U. Each

time the AH eigenvalue equation is solved iteratively and an update ΔR is

obtained, the matrix T is updated according to Eq. 5.78 and the unitary

matrix U can be easily updated since U5 11T. This process is repeated

until the convergence criterion in Eq. 5.69 is reached. The orbital optimiza-

tion iterations are denoted as the microiterations. After the microiterations

are converged, a new set of MOs can be constructed with the updated matrix

U and the minimum energy is found for the current CI coefficients. Thence,

a new macroiteration is performed, starting with a full integral transforma-

tion followed by a CI calculation and a new set of microiterations. The

uncoupled WMK method is concluded in Algorithm 5.1. As E 2ð ÞðTÞ is used

as the approximate energy functional rather than E 2ð ÞðRÞ, the WMK method

has a much larger radius of convergence than other second-order MCSCF

approaches. (Werner, 1987)
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Algorithm 5.1: The uncoupled second-order WMK method.

1: Set U5 1; T 5 0 as initial guess
2: procedure Prepare(coordination, basis, . . .)

tpqg, gpqrs
� � �

4: Calculate Fc , Ec // see Eqs. 5.16�5.17
5: return {tpqg, gpqrs

� �
, Fc and Ec

6: end procedure
7: procedure RunCASCI(Fc , gpqrs

� �
, Ec )

8: E0, fDt
ug, fDtv

uw g’ Do FCI in active space
9: return E0, fDt

ug, fDtv
uwg

10: end procedure
11: procedure PrepareMicroIteration(E0, Fc

rs

� �
, gpqrs
� �

, fDt
ug, fDtv

uwg, T ; U)
12: Calculate A, G using Eqs. 5.60�5.65
13: E 2ð Þ � Calculate second order energy(A; T ;G; E0) // see Eq. 5.59
14: B’ Generate matrix B(A, T ) // see Eq. 5.70
15: return A, G, E 2ð Þ and B
16: end procedure
17: procedure UncoupledMicroIteration ðB;T ;UÞ
18: ~grk

� �
; ~Hrk ;sl

� �
// see Eqs. 5.79�5.82

19: ΔR � Solve for ΔR with AH method
20: U;T � Update matrix T and U // see Eq. 5.78
21: B’ Generate matrix B(A, T )
22: if UyB2ByU 6¼ 0 then
23: Go back to step 18 with updated B, T ;U
24: end if
25: return U
26: end procedure
27: procedure CheckEnergyConvergency(U)
28: if δE 2ð Þ 6¼ 0 then
29: Transform {tpqg, gpqrs

� �
with converged U // see Eqs. 5.7�5.12

30: Calculate Fc , Ec
31: Go back to step 7 with updated Fc , gpqrs

� �
, Ec

32: end if
33: ̃C 5C0U
34: return E0, ̃C
35: end procedure

5.2.4 Simultaneous optimization of configuration interaction
coefficients and orbital rotations

In the above description of the second-order WMK method, the coupling of

the orbital rotations and CI coefficients is still omitted, thus CI coefficients

and orbital rotation parameters are optimized individually in iterative steps.

Such kind of two-step optimization scheme is also known as the uncoupled

MCSCF method. Although the uncoupled WMK method is efficient in most

cases, it is still necessary to improve the convergence of the MCSCF method
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by taking the coupling term into consideration, and optimize CI coefficients

c and orbital rotation parameters R simultaneously. This leads to the coupled

MCSCF method. Note that there are different implementations (Werner and

Meyer, 1980, 1981; Knowles and Werner, 1985; Kreplin et al., 2019;

Kreplin et al., 2020) of the coupled MCSCF method, and in some of them

the coupling terms are evaluated explicitly while in others are not.

Once the coupling terms are evaluated, the second-order energy expan-

sion in the changes of the orbitals and CI coefficients can be written as

E 2ð Þ5E0 1
1

2
Tr Ty A0 1B0

� �� �
1 2

X
I

cI 2 c0I
� �

Tr TyAI
� �

; ð5:83Þ

in which c0I
� �

are the initial CI coefficients, and A0, B0 denote, respectively,

the matrices calculated using these coefficients according to Eqs. 5.60�5.62,
and 5.70. The derivative matrices AI are defined with the same formulae as

the matrix A and A0, while the RDMs in the definition are replaced by the

derivatives

Dt
u Ið Þ5

X
J;σ

c0J ΨI â
y
tσâuσ

�� ��ΨJ

� �
; ð5:84Þ

Dtv
uw Ið Þ5

X
J;στ

c0J ΨI â
y
tσâ
y
vτ âwτ âuσ

�� ��ΨJ

� �
: ð5:85Þ

The CI vector c and the orbital rotation parameters R can be simulta-

neously optimized via coupled NR equations

HRR HRc

HcR Hcc

� �
R
c

� �
1

gR
gc

� �
5

0

0

� �
: ð5:86Þ

The orbital gradient gR and Hessian HRR can be computed with the same

techniques used in the uncoupled WMK method, while the CI gradient gc
and Hessian Hcc can be easily derived from the second-order Hamiltonian in

Eq. 5.73. The coupling term can be evaluated as

HRrk ;cI 5
@2E 2ð Þ

@Rrk@cI
5 2 12 τrkð Þ AI

rk 2 c0I Ark

� �
: ð5:87Þ

Therefore only the additional calculations of the matrices fAIg are

required to optimize the orbital rotations and CI coefficients simultaneously.

The robustness of the coupled MCSCF approach can be improved by solving

the changes of the orbitals and CI coefficients in the same one AH eigen

equation, as shown in Sun et al. (2017). The algorithm is similar to the

uncoupled case, except that the CI gradients, Hessian and the coupling terms

must be evaluated before entering the AH procedure.

However, sometimes the explicit evaluation of the coupling terms is too

expensive. In those cases, an implicit variant can be used, by performing a
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second-order transformation of the MO integrals in the active space accord-

ing to Eqs. 5.74 and 5.75, and then employing some cheap and coarse CI

iterations to update the RDMs. We will give a deeper introduction about this

approach in the next section.

5.3 Density matrix renormalization group self-consistent
field methods

Since the DMRG method could be an efficient substitute for the traditional

FCI and CASCI methods in large active spaces, one can naturally introduce

the DMRG method into the CASSCF framework and implement the so-

called DMRG-SCF method. From the discussion in the last section, we can

see that the differences between the traditional CASSCF method and the

DMRG-SCF method are:

1. The active�active orbital rotations must be taken into consideration

when using an approximated FCI solver such as the DMRG, because

the first-order energy change cannot be achieved by a variation of the

incomplete CI basis functions. This problem can be solved by explicitly

evaluating all active�active rotation parameters Rtuðt. uÞ as well as the

related gradients and Hessian elements, which must be set to zero in tra-

ditional CASSCF implementations.

2. The ab initio DMRG method works with large active spaces, but the

costs are still substantial. Besides, as the full transformation of two-

electron MO integrals costs O N5
� �

time and OðN4Þ storage for N MOs, it

is extremely expensive to perform such full transformations in large

molecules with NB10223. Therefore it is important to reduce the number

of macroiterations in DMRG-SCF calculations, because in each macroi-

teration a full transformation of all the one- and two-electron MO inte-

grals is required, followed by a costly DMRG calculation.

3. It is difficult to optimize the orbital rotation parameters and the CI coeffi-

cients simultaneously in a coupled MCSCF approach by explicitly evalu-

ating the coupling terms and solving an extended AH eigen problem in

ab initio DMRG, because the number of CI basis functions is too large to

be handled in any existing eigen-solver. It is more realistic to make use

of coupling items implicitly.

4. The construction of 1-RDM and 2-RDM is more complicated than in tradi-

tional ways. This issue has been already discussed in detail in Section 4.4.

The DMRG-SCF method was first exploited by Zgid and Nooijen (2008)

and Ghosh et al. (2008) in its AH/NR-based implementations, respectively.

Both implementations followed the principles of first-order approaches,

transforming the wave function with rotated orbitals according to Eq. 5.35.

Besides, Luo et al. (2010) proposed a method to minimize the DMRG energy
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by swapping the orbitals inside and outside the active space, which is essen-

tially also a kind of first-order approach. The first-order Super-CI method

was introduced into the multilevel DMRG calculations by Ma et al. (2015).

A second-order implementation was proposed by Yanai et al. (2009), in

which the total energy was expanded to the second order of the matrix R and

the direct inversion of iterative subspace method (Pulay, 1980) was intro-

duced to reduce the number of macroiterations. A similar implementation

was proposed by Wouters et al. (2014). Note that in all of these implementa-

tions, the coupling between the orbital rotations and CI coefficients is

completely omitted. Recently, Sun et al. (2017) developed a coupled second-

order DMRG-SCF method by expanding the energy to the second order of

the matrix R.
As the WMK method is considered to have advantages in robustness and

convergence over other second-order MCSCF implementations, Ma et al.

(2017a) introduced the WMK method into DMRG-SCF calculations. The

coupling between the orbital rotations and CI coefficients was evaluated

implicitly as we have discussed in the last section. Their second-order

DMRG-SCF implementation showed a high computational efficiency when

applied to the Cr2, CuCl2, and trioxytriangulene molecules.

5.4 Excited state calculation

Understanding the fundamental physics and chemistry in photochemical

reactions, optoelectronic materials as well as biological photosynthesis, is

relying on an accurate electronic structure characterization of the excited

states. However, as the original DMRG algorithm is designed for optimizing

the ground-state wave function, extending DMRG to target the excited states

efficiently is highly nontrivial.

Similar to the scheme in state-specific (SS) CASSCF, a straightforward

DMRG way in calculating excited states is to still target the states of inter-

ests, respectively, by using different renormalized bases. Note that this SS-

DMRG approach has the similar shortcomings of SS-CASSCF, that is, the

nonorthogonality and root-flipping. The occurrence of nonorthogonality

between wave functions of different electronic states is because the truncated

renormalized bases of the ground and excited states become nonorthonormal

now. To resolve this nonorthogonality issue, the excited states have to be

optimized with a standard DMRG variation in the space orthogonal to the

already optimized matrix product states (MPSs) of the lower-lying states.

Therefore all lower-lying wave functions need to be calculated and suffi-

ciently converged in order to optimize a given excited state. The root-

flipping between different excited states occurs when the approximate wave

function leaves the convergence basin of the target excited state and enters

that of a different excited state.
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In order to improve the stability of the nonlinear optimization and to pre-

vent root flipping, the state-averaged (SA) scheme in CASSCF can be

seemly adopted in DMRG.

In SA-CASSCF, one needs to solve for multiple eigenvectors ranging

from the ground state to the excited state of interest, thus the averaged

RDMs can be evaluated as

Di
j 5

X
k

wkD
i
j kð Þ; ð5:88Þ

Dik
jl 5

X
k

wkD
ik
jl kð Þ; ð5:89Þ

in which Di
j kð Þ and Dik

jl kð Þ are respectively the one- and two-electron RDMs

computed with the multiconfigurational wave function ψk
�� �

of the kth state

ψk
�� �

5
X
I

ckI ΨIj i; ð5:90Þ

and wk 0,wk # 1ð Þ is its weight. Note that the weights wkf g must be normal-

ized to make sure that X
k

wk 5 1: ð5:91Þ

There is no known optimal choice for wk, but empirically it seems to be

most reasonable to weigh states roughly equally. Consequently, one can use

the averaged RDMs in MCSCF calculations to get a set of orbitals that

works well with all of the states.

Instead of constructing the SA 1-RDM and 2-RDM in SA-CASSCF, SA-

DMRG builds an SA RDM for the subsystem L (R) by

ρ̂S 5TrE
X
k

wk ψk
�� �

ψk
� ��: ð5:92Þ

It is worth to clarify that, SA in DMRG is different from SA in CASSCF,

although they are quite similar from a mathematic perspective. The former is

used for the optimization of one MPS basis set for various states and the lat-

ter is used for obtaining one set of optimized MOs for different states.

Therefore SA-DMRG and SA-CASSCF can be implemented separately or

synergistically.

Targeting high-lying excited states in DMRG is even more challenging.

Prominent examples include simulating X-ray photoelectron and absorption

spectra as well as identifying dense vibrational spectroscopy levels.

Conventional excited state approaches discussed above require solving all

the eigenvectors with energies lower than the target state sequentially, which

is usually computationally prohibitive. To overcome this limitation, various

energy-specific diagonalization algorithms can be utilized in DMRG.
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In ab initio DMRG, Dorando et al. (2007) employed a harmonic

Davidson (HD) algorithm (Sleijpen and Van der Vorst, 2000), in which a

shift-and-invert operator Ω̂ω is introduced as

Ω̂ω 5 Ĥ
21

ω 5 ω2Ĥ
� �21

; ð5:93Þ

to directly calculate harmonic Ritz approximations to excited eigenvalues

and eigenvectors without the expensive costs to calculate all states between

the ground state and excited state of interest. Here ω is an energy shift and

Ĥ is the Hamiltonian in the same basis set. The operator Ω̂ω maps the target

excited state of the Hamiltonian Ĥ onto its ground state, as

ψ
�� �5 X

i

ci ĤωΦi

�� �
: ð5:94Þ

Left projection with ΦjĤω
� �� yields a generalized eigenvalue problem,

ΦjĤω Ĥ
21

ω 2E21
ω

� ���� ���ĤωΦi

D E
ci 5 0; ð5:95Þ

where E21
ω is the current approximation to ω2Eð Þ21. Eω is known as a har-

monic Ritz approximation to the corresponding eigenvalue of Ĥω. The above

equation can be simplified asX
i

Φi Ĥω
�� ��Φi

� �
2E21

ω

�
ΦjĤω ĤωΦi

�� �i
ci 5 0:

h
ð5:96Þ

Thus, instead of computing with the inverted operator, one can easily solve

the eigenvalue equation for the noninverted operator Ĥω with a trial vector

expanded in the basis Φij if g. The ground state of the operator Ĥω is the targeted

excited state of the Hamiltonian Ĥ . One may notice that the evaluation of

matrix elements of ΦjĤωjĤωΦi

� �
is exactly equivalent to the computation of

Φj Ĥω
2

��� ���Φi

D E
. Dorando et al. (2007) also combined the HD procedure with

state-averaging over nearby states in the spectrum and then assessed their

numerical accuracy and convergence stability in DMRG-SCF calculations, on

the low-lying excited states in oligoacenes ranging from naphthalene to penta-

cene. Results indicated that such a HD algorithm is particularly efficient for

low-lying states; however, it is not stable in regions with a high density of states

(Baiardi et al., 2019). The reason for this shortcoming lays in the fact that the

HD algorithm introduces an approximation, specifically in the representation of

the squared value of the Hamiltonian (Ĥ
2

ω) during the application of the shift-

and-invert transformation to the local representation of the Hamiltonian.

To obtain a more robust convergence, the folded spectrum approach in

conjunction with root-homing algorithms was implemented by Baiardi et al.
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(2019) for targeting directly specific energy regions and therefore highly

excited states in DMRG calculations. In the folded DMRG method, an alter-

native auxiliary operator Ω̂
F

ω is introduced, as

Ω̂
F

ω 5 ω2Ĥ
� �2

: ð5:97Þ
The lowest eigenvalue of the folded operator Ω̂

F

ω is the eigenvalue of the

Hamiltonian Ĥ , which is closest to ω. The main advantage of Ω̂
F

ω over Ω̂ω is

that, in Ω̂
F

ω case, the spectral transformation is applied to the full

Hamiltonian operator Ĥ . The resulting modified operator is only later pro-

jected in the renormalized basis once, and, therefore, an additional spectral

transformation of its renormalized representation is not required. This advan-

tage increases the accuracy of the evaluation of the squared value of the

Hamiltonian and accordingly the diagonalization convergence. It must be

noticed that, the spectral range (i.e., the difference between the smallest and

the largest eigenvalues) of the squared Hamiltonian is larger than the one of

the original, non�squared Hamiltonian. This slows down the convergence of

iterative diagonalization schemes. However, in regions with a high density of

states, even if slower, the folded DMRG ensures a much smoother conver-

gence of the energy of the target state. The robustness of this approach can

be further increased by combination with a root-homing algorithm (Butscher

and Kammer, 1976) to consistently follow the correct root during the optimi-

zation. Baiardi et al. (2019) illustrated their energy-specific variant of

DMRG with a vibrational Hamiltonian that allows one to target highly

excited states, with energies above 3000 cm21 in ethylene and to the dipep-

tide SarGly1. Recently, Baiardi et al. (2022) also applied FEAST algorithm

(Polizzi, 2009) to DMRG and showed that DMRG[FEAST] enables the

stable optimization of both low- and high-energy vibrationally excited states

without the necessity of estimating a priori the energy of the target excited

states and calculating powers of the Hamiltonian.

In addition to solve the time-independent Schrödinger equation by

DMRG to obtain the eigenvalues and eigenvectors, it is also possible to

obtain the excited state information by calculating the spectral functions

directly in the frequency domain or performing Fourier transformations of

the time correlation functions from a solution of time-dependent Schrödinger

equation. The principles and progresses of DMRG in frequency space- and

time-dependent DMRG (TD-DMRG) will be in detail discussed in Chapter 7

and Chapter 8, respectively.

5.5 Analytic gradient and geometry optimization

All the methods and implementations that we have discussed so far are

appropriated to fixed molecular geometries. In practical chemical researches,
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these geometries are often stable equilibrium structures with the lowest

energy or saddle-point structures in transition states of chemical reactions in

a potential energy surface (PES). Therefore one of the important tasks of

quantum chemistry methods is to optimize the geometry of molecules to find

those stationary structures with

@E

@ai
5 0; ð5:98Þ

in which faig are nuclear coordinates given that nuclei make up the skeleton

of molecules. The energy gradients with respect to nuclear coordinates can be

computed numerically or analytically. Numerical gradients are available for

any quantum chemistry method as long as a set of energies and corresponding

geometries are presented. At the same time, although preferred owing to their

low computational cost and numerical stability, analytic energy gradients

introduced by Pulay (1969) are only available in some methods.

In this section, we are focusing on the evaluation of analytic energy gra-

dients in DMRG methods and the optimization of molecular geometries. As

the energy E can be computed with the 1- and 2-RDMs as well as MO inte-

grals, as shown in Eq. 5.18, the first derivative can be evaluated by

@E

@a
5
X
kl

@Dk
l

@a
hkl 1

X
kl

Dk
l

@hkl
@a

1
1

2

X
klmn

@Dkm
ln

@a
gklmn 1

1

2

X
klmn

Dkm
ln

@gklmn
@a

;

ð5:99Þ
in which the derivative of the core energy is trivial and thus omitted. It is

clear that the CI coefficients as well as the RDMs do not depend on the

geometry of molecules, thus the first and third terms in Eq. 5.99 vanish

according to Hellmann�Feynman theorem. Therefore Eq. 5.99 can be sim-

plified as

@E

@a
5
X
kl

Dk
l

@hkl
@a

1
1

2

X
klmn

Dkm
ln

@gklmn
@a

; ð5:100Þ

which states that we have to compute the first derivatives of one- and two-

electron MO integrals. Since the MOs are linear combinations of AOs, as we

have introduced in the first section of this chapter, the one- and two-electron

MO integrals can be obtained, respectively, by

hkl 5
X
μν

Ck
μC

l
νhμν ; ð5:101Þ

gklmn 5
X
μνρσ

Ck
μC

l
νC

m
ρ C

n
σgμνρσ: ð5:102Þ
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Note that the indices k, l, m, n denote MOs while the Greek characters μ,
ν, ρ, σ denote atomic orbitals. The first derivative of one-electron MO inte-

grals can be evaluated as

@hkl
@a

5
@

@a

X
μν

Ck
μC

l
νhμν 5

X
μν

@Ck
μ

@a
Cl
νhμν 1Ck

μ
@Cl

ν

@a
hμν 1Ck

μC
l
ν
@hμν
@a

0@ 1A;

ð5:103Þ
in which the derivative of MO coefficients Ck

μ

n o
can be computed by

dCk
μ

da
5
X
r

UrkC
r
μ: ð5:104Þ

Thus Eq. 5.103 can be simplified as

@hkl
@a

5
X
μν

X
r

UrkC
r
μC

l
νhμν 1UrlC

k
μC

r
νhμν

� �
1
X
μν

Ck
μC

l
ν
@hμν
@a

5
X
r

Urkhrl 1Urlhkrð Þ1
X
μν

Ck
μC

l
ν
@hμν
@a

;
ð5:105Þ

in which the first derivatives of one-electron AO integrals @hμν=@a
� �

can be

computed analytically, because the AO are usually represented with

Gaussian primitive functions. Similarly, we can compute the first derivatives

of two-electron MO integrals, as

@gklmn
@a

5
X
r

Urkgrlmn 1Urlgkrmn 1Urmgklrn 1Urngklmrð Þ

1
X
μνρσ

Ck
μC

l
νC

m
ρ C

n
σ
@gμνρσ
@a

: ð5:106Þ

Inserting Eqs. 5.105 and 5.106 into Eq. 5.100 yields (Yamaguchi et al.,

1994)

@E

@a
5
X
μν

Dμ
ν
@hμν
@a

1
X
μνρσ

Dμρ
νσ

@gμνρσ
@a

2 2
X
μν

X
k$ l

12
δkl
2

0@ 1ACk
μC

l
νX

l
k

@Sμν
@a

1 2
X
k$ l

Ukl X
k
l 2Xl

k

� �
;

ð5:107Þ

in which

Xk
l 5

X
r

hkrD
r
l 1

X
rsp

gkrspD
ls
rp ð5:108Þ
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is the Lagrangian matrix in the generalized Brillouin’s theorem (Levy and

Berthier, 1968), and

Skl 5 hk lj i5
X
μν

Ck
μSμνC

l
ν ð5:109Þ

is the overlap matrix of the MOs k and l. Note that the orthonormality

condition

Ukl 1Ulk 1 Skl 5 0 ð5:110Þ
is used to derive Eq. 5.107. The evaluation of the matrix U in Eq. 5.107

takes more effort. The matrix U is actually the first-order orbital response.

Generally, it can be computed with the coupled-perturbed HF method

(Gerratt and Mills, 1968). However, in MCSCF calculations, the correlated

wave function energy itself is stationary with respect to orbital variations,

which leads to

Xk
l 2Xl

k 5 0; ð5:111Þ
which makes that the matrix U can be safely ignored. Therefore the analytic

energy gradients in MCSCF methods (including the DMRG-SCF) can be

evaluated by

@E

@a
5
X
μν

Dμ
ν
@hμν
@a

1
X
μνρσ

Dμρ
νσ

@gμνρσ
@a

2 2
X
μν

X
k$ l

12
δkl
2

� �
Ck
μC

l
νX

l
k

@Sμν
@a

:

ð5:112Þ
The above scheme was employed in SS-DMRG-CI, SS-DMRG-SCF, and

SS-DMRG-CASPT2 calculations (Hu and Chan, 2015; Nakatani and Guo,

2017). Thence, an approximate SA approach was proposed by Freitag et al.

(2019). In the SA case, the SA energy is defined as

ESA 5
X
k

wkEk 5
X
k

wk ψk Ĥ
�� ��ψk

� �
: ð5:113Þ

The optimization procedure in SA-CASSCF ensures that the SA energy,

but not the individual SS energies, is variational with respect to both orbital

rotations and CI coefficients. After that, the gradient with respect to nuclear

coordinates for a specific state Θ can be evaluated as (Snyder Jr et al., 2015;

Snyder Jr et al., 2017)

@EΘ

@a
5
X
kl

Dk
l Θð Þe

@hkl
@a

1
X
klmn

DΘ;e
klmn

@gklmn
@a

2
X
kl

Xk
l Θð Þe @Skl

@a
; ð5:114Þ

where the effective 1- and 2-RDMs are, respectively, defined as

Dk
l Θð Þe 5Dk

l Θð Þ1 ~D
k

l 1D
k

l ; ð5:115Þ
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Dkm
ln Θð Þe 5Dkm

ln Θð Þ1 ~D
km

ln 1D
km

ln ; ð5:116Þ
and the quantities with tildes and bars are respectively the orbital and CI

contributions to the RDMs. All of these quantities as well as Xk
l Θð Þe are

obtained in the coupled optimization of orbital rotations and CI coefficients.

Evaluating energy gradients is a prerequisite for geometry optimization.

To optimize the geometry of molecules within the DMRG-SCF method,

one can construct the related matrices and quantities in Eqs. 5.112 or 5.114

after the optimized wave function and MOs are obtained from a DMRG-SCF

calculation and subsequently minimize the energy E with respect to the

nuclear coordinates fag to make @E=@a5 0. Thenceforth, the geometry of

the molecule is updated, one has to reconstruct the one- and two-electron

AO integrals and start a new DMRG-SCF calculation. Obviously, optimizing

molecular geometries with DMRG-SCF method is extremely expensive,

therefore few but significant applications (Liu et al., 2013; Ma, 2020) have

been reported.

5.6 Molecular spectra

Molecular spectra result from either the absorption or the emission of electro-

magnetic radiation as a molecule undergoes transition from one quantized

energy state to another. There are two primary sets of interactions that contrib-

ute to observed molecular spectra. The first involves the internal motions of

the nuclear framework of the molecule and the electrostatic forces among the

nuclei and electrons, resulting in three categories of molecular energy levels

with a decreasing order of magnitude: electronic, vibrational, and rotational.

The interaction of electromagnetic radiation with these quantum energy levels

constitutes the basis for electron spectroscopy, visible, infrared and ultraviolet

(UV) spectroscopies, Raman spectroscopy, gas-phase microwave spectroscopy,

etc. The second encompasses the interactions of nuclear magnetic and electro-

static moments with the electrons and with each other, forming the basis for

nuclear magnetic resonance spectroscopy, electron spin resonance (ESR) spec-

troscopy, nuclear quadrupole resonance spectroscopy, etc.

As ab initio DMRG and DMRG-SCF have been shown to be able to give

accurate characterizations of the electronic structures of the ground and

excited states in strongly correlated systems, it is straightforward to apply

them to investigate the molecules’ low-energy electronic spectrum. For

example, Sharma et al. (2014) computed the individual ground- and excited-

state energy levels of [2Fe�2S] and [4Fe�4S] clusters by DMRG calcula-

tions with up to 36 active orbitals, suggesting the low-energy spectrum is

dense due to the presence of a large number of d2 d excited states arising

from both orbital transitions and spin recouplings. This finding was later

supported by indirect experimental measurements from iron L-edge 2p3d
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resonant inelastic X-ray scattering (Van Kuiken et al., 2018). Cho et al.

(2019) further computed the UV absorption spectra and the stimulated X-ray

Raman spectroscopy (SXRS) for [2Fe2 2S] complexes, which complement

each other by accessing different parts of the electronic spectrum and

together can effectively probe the dense d2 d electronic states in the Fe2 S

clusters. The simulated spectra presented clear signatures of the theoretically

predicted dense low-lying excited states within the d2 d manifold.

Furthermore, the difference in spectral intensity between the absorption-

active and Raman-active states provides a potential mechanism to selectively

excite states by a proper tuning of the excitation pump, to access the elec-

tronic dynamics within this manifold. In Cho et al. (2019)’s work, the UV

absorption spectrum intensity SL ωð Þ was calculated from the transition dipole

moment μeg between the ground state (g) and the excited state (e), transition

frequency ωeg, and a dephasing rate Γeg 5 0.014 eV (Fig. 5.1).

SL ωð Þ5
X
e

μeg

��� ���2Γeg

ω2ωeg

� �2
1Γeg

2
: ð5:117Þ

FIGURE 5.1 (A) SXRS spectra SSXRS (solid line) and absorption spectra SL (dashed line) of

(A) Fe(III)�Fe(III) and (B) Fe(III)�Fe(II) dimers. (Top) Calculated spectra from X, Y, and Z

polarized light. [See bottom of (B) for the axes]. (Bottom) Selected the TCDs are

shown. Γeg 5 0:014 eV for all states. Note that the absorption and SXRS spectra are normal-

ized. Consequently, the strength of each spectroscopy in different directions can be compared,

but SXRS and absorption strengths cannot be directly compared. SXRS, stimulated X-ray Raman

spectroscopy; TCDs, Transition charge densities. Reproduced from Cho, D., Rouxel, J. R.,

Mukamel, S., Chan, G. K.-L., Li, Z., 2019. Stimulated X-ray Raman and absorption spectroscopy

of iron�sulfur dimers. J. Phys. Chem. Lett. 10, 6664�6671. https://doi.org/10.1021/acs.

jpclett.9b02414, with permission from American Chemical Society.
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Moreover, the excited state calculations can be also extended to the simu-

lation of molecule’s photoelectron spectra. Pham and Nguyen (2018) used

restricted active-space second-order PT and DMRG-CASPT2 in conjunction

with density functional theory calculations to simulate the photoelectron

spectra of the anion Cr2O2
2. Transitions from the anionic ground state 10Ag

was found to cause most of visible bands in the photoelectron spectra, while

the first band with low intensity was determined to arise from a transition

starting from the nearly degenerate state 10B2g.

DMRG can be also used for simulating vibrational spectroscopies by

treating a vibrational Hamiltonian. Rakhuba and Oseledets (2016) computed

the vibrational spectra (84 states) of acetonitrile molecule CH3CN by using

DMRG in the discrete variable representation scheme with a quarticly cou-

pled 12-dimensional vibrational Hamiltonian. Baiardi et al. (2017) further

proposed to exploit vibrational DMRG (vDMRG) to optimize vibrational

wave functions expressed as MPS to show the complete fingerprint region of

the sarcosyn-glycin dipeptide. In this work, the authors used an approximate

form of the Watson Hamiltonian, in which only the second-order Coriolis

terms are included and higher order terms in the expansion of the inertia ten-

sor are neglected.
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Here, ωi is the harmonic frequency for the ith vibrational normal mode,

while b̂i and b̂i
y
are the bosonic annihilation and creation operators for this

mode. Bτ give the rotational constants and ζτij indicate the Coriolis coupling

constants. In a fourth-order (quartic) Taylor expansion of the potential, Φijk

and Φijkl are the third- and fourth-order reduced force constants, respectively.

Those can be defined in terms of the third- and fourth-order partial deriva-

tives, kijk and kijkl, of the PES,

Φijk 5
kijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiωiωjωk

p ; Φijkl 5
kijklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiωiωjωkωl

p : ð5:119Þ
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As a generalization to support also higher order terms is straightforward,

calculations with fifth- and sixth-order potentials are also presented in this

work. By virtue of representing this Hamiltonian compactly as an MPO,

highly accurate, converged results can be obtained with vDMRG and a mod-

erate number m of renormalized block states, as shown in Fig. 5.2.

Later Baiardi et al. (2019) further extended vDMRG to highly excited

vibrational states of ethylene via the shift-and-invert and folded auxiliary

operator techniques (see Section 5.4), in order to target specific energy

regions and therefore highly excited states. It was also demonstrated that

one can accurately calculate prominent spectral features of large molecules

such as the sarcosine-glycine dipeptide. At the same time, the computation

of vibrational spectrum of acetonitrile (CH3CN) with tree tensor network

states (TTNSs) was also reported by Larsson (2019). This approach showed

much faster convergences in TTNS, than for multilayer multiconfiguration

time-dependent Hartree (ML-MCTDH)-based optimization and found no

major advantage of the more general TTNS over MPS in this case.

Resonance Raman (RR) spectroscopy is a powerful and versatile tech-

nique for the study of both vibrational and electronic structures of chro-

mophoric molecular systems. RR can enhance the Raman scattering intensity

by a factor of 102�106 and improves signal-to-noise ratio. The enhanced

Raman scattering means shorter exposure times can be used, allowing much

faster spectral acquisition times. In addition, samples at extremely low con-

centrations can easily be studied. Ma et al. (2017b) presented a RR spectros-

copy simulation of the nucleobase uracil by means of DMRG-SCF. The

relative intensity for the fundamental transition of the jth normal mode

FIGURE 5.2 Experimental and theoretical infrared spectrum of SarGly1 computed from har-

monic (red dashed lines) and anharmonic vDMRG frequencies (green solid lines). Reproduced

from Baiardi, A., Stein, C. J., Barone, V., Reiher, M., 2017. Vibrational density matrix renorma-

lization group. J. Chem. Theory Comput. 13, 3764�3777. https://doi.org/10.1021/acs.

jctc.7b00329, with permission from American Chemical Society.
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I1’0
j ωsð Þ is given by

I1’0
j ωsð Þ5ωLωs

3 μel
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�� ��4 Δj
2

2

� �
Φ ωLð Þ2Φ ωsð Þ
�� ��2: ð5:120Þ

Here ωL represents the laser excitation frequency and ωs 5ωL 2Ωj indicates

the frequency of the scattered light, where Ωj is the harmonic vibrational fre-

quency of the jth normal mode. μel
0n expresses the electronic transition dipole

moment to the nth excited state, and Φ ωð Þ gives a complex function contain-

ing the information about the intensity shift function and its Kramers�
Kronig transform. (Neugebauer and Hess, 2004) Δj is the normal-mode dis-

placement in the excited-state equilibrium structure, which can be calculated

by taking the partial derivative of the excited-state electronic energy Eex
el

with respect to a dimensionless ground-state normal coordinate qj at the

ground-state equilibrium position,

@Eex
el

@qj

� �
qj50

5Ωj qj2Δj

� �jqj50 52ΩjΔj: ð5:121Þ

In this work, Ma et al. calculated the excited-state energy derivatives

with respect to the ground-state normal modes for the S2 state from analytic

Cartesian gradients that are subsequently transformed into the basis of nor-

mal coordinates (Fig. 5.3).

Recently, ab initio DMRG calculations were also applied to the simulation

of electron paramagnetic resonance (EPR) spectra, sometimes also known as

ESR, which is a central spectroscopic tool in the study of paramagnetic

(unpaired electron) compounds. Electrons, like nuclei, have charge and spin,

therefore have a magnetic moment, which make them susceptible to a mag-

netic field. An important parameter in interpreting EPR spectra is the hyper-

fine coupling A-tensor, which measures the hyperfine interactions between the

electron and nuclear spin magnetic moments. Lan et al. (2014, 2015) applied

DMRG-SCF to the accurate prediction of the isotropic hyperfine coupling con-

stant (HFCC) of a series of diatomic 2Σ radicals (BO, CO1, CN, and AlO),

vinyl (C2H3) radical, and a set of 4d transition-metal radicals consisting of Ag

atom, PdH, and RhH2. For the scalar-relativistic effects therein, they initially

derived and implemented the Douglas�Kroll�Hess (DKH) hyperfine coupling
operators up to the third order (DKH3) by using the direct transformation

scheme. Good agreement between their calculated isotropic HFCC values and

experiment was achieved.

Another important parameter in describing EPR spectra is the proportion-

ality between the effective magnetic moment of the unpaired electron and its

spin, namely, the g-tensor, reporting on the electronic environment of the

electron. Knecht et al. (2016) presented a state-interaction (SI) approach for

MPS wave functions in a nonorthogonal MO basis, allowing to calculate

spin2 orbit coupling (SOC) matrix elements between arbitrary electronic
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states, provided that they share the same one-electron basis functions and

size of the active orbital space, respectively. Based on the eigenstates of the

SOC operator, it becomes straightforward to compute properties such as

g-factors, as numerical calculations have shown in the case of g-factors for

f 1- and f 2-type actinide complexes were presented. Sayfutyarova and Chan

(2018) later presented a related DMRG implementation to obtain g-tensors

based on a SI spin�orbit (SISO) coupling DMRG formalism. Its numerical

tests were demonstrated on the TiF3 and CuCl4
22 complexes, a [2Fe� 2S]

model of the active center of ferredoxins, and a Mn4CaO5 model of the S2
state of the oxygen evolving complex, enlightening the prospects of

FIGURE 5.3 RR spectra of uracil in the gas phase. Intensities are given in arbitrary units. RR,

Resonance Raman. Reproduced from Ma, Y., Knecht, S., Reiher, M., 2017b. Multiconfigurational

effects in theoretical resonance Raman spectra. ChemPhysChem, 18, 384. https://doi.org/10.1002/

cphc.201601072, with permission from Chemistry Europe.
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determining g-tensors in multireference calculations with many open shell

orbitals. Recently, Freitag et al. (2021) further presented two modifications

to the original formulation of the MPS-SI method, that is, the omission

of the quadratic term in the operator for counterrotating the MPS and

decreasing the maximum bond dimension of the intermediate and the final

counterrotated MPS. For an example of a platinum azide complex, the

approximations resulted in a 63-fold reduction in computational time com-

pared to the original method for wavefunction overlaps and SOCs, while still

maintaining numerical accuracy.

As we mentioned at the end of Section 5.4, instead of using DMRG, it

is also possible to describe the dynamical response properties and molecu-

lar spectra by implementing DMRG calculations in frequency space or

TD-DMRG simulations in time space. Principles of those methods are

properly discussed in Chapter 7 and Chapter 8, respectively. A few suc-

cessful numerical examples by these methods for realistic chemical systems

include the vibrationally resolved vibronic absorption and fluorescence

spectrum of pyrazine (Baiardi and Reiher, 2019), covalently linked tetra-

cene dimer (Mardazad et al., 2021), distyrylbenzenes (DSB) H-aggregate

(Ren et al., 2018), and perylene bisimide (PBI) J-aggregate (Jiang et al.,

2020), as well as the two-dimensional ultrafast Fourier transform electronic

spectroscopy of an oligothiophene/fullerene hetero-junction (Yao et al.,

2018).

5.7 Beyond Born�Oppenheimer approximation

The Born�Oppenheimer approximation (BOA) is one of the basic concepts

underlying the description of the quantum states of molecules. This approxi-

mation makes it possible to separate the motion of the nuclei and the motion

of the electrons, and forms the basis for most electronic structure methods.

However, this approximation breaks down when the considered two or more

excited electronic states are energetically close or have nonnegligible nonadi-

abatic couplings (NACs) at some points. Going beyond BOA to describe the

properties of non-Born2Oppenheimer (also called nonadiabatic) processes

requires a quantum mechanical description of the nuclei at a full quantum,

mixed quantum-classical, quasi-classical, or semi-classical level.

Nonadiabatic dynamics can be simulated quantum mechanically in the elec-

tronically adiabatic representation or in a diabatic representation. Adiabatic

electronic wave functions are eigenstate solutions of the electronic Schrödinger

equation with BOA. In an adiabatic representation, electronic states are

coupled by the action of the nuclear momentum and nuclear kinetic energy

operators acting on the electronic wave functions; in approximate treatments,

one usually keeps only the nuclear momentum coupling, and the resulting vec-

tor coupling matrix elements, also called NACs. For two electronic eigenstates
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Θ and Λ, the NAC can be evaluated as

g5 Θ
@

@x

���� ����Λ� �
; ð5:122Þ

which is similar to the computation of geometrical gradients (see

Section 5.5). Freitag et al. (2019) proposed an approximate scheme for calcu-

lating analytical gradients and NACs for SA DMRG-SCF wave functions.

They demonstrated the feasibility of this method on performing a conical

intersection optimization of 1,2-dioxetanone, providing a basis for future

approximate nonadiabatic dynamics studies where NACs require large active

space electronic structure description.

For describing systems with strong nuclear quantum effect, multicompo-

nent quantum chemical methods attempt to solve the full time-independent

Schrödinger equation for electrons and specified nuclei (typically hydrogen

nuclei) without invoking the BOA (Pavošević et al., 2020). Considering both

fermionic (e.g., electrons and protons) and bosonic (e.g., He4 nuclei) parti-

cles may be treated at the same level, the second-quantization form of a gen-

eral nonrelativistic Schrödinger Hamiltonian in multicomponent quantum

chemistry can be written as (Muolo et al., 2020):
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y
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The indices i and j denote fermionic or bosonic particles and μ,

υ;κ; andλ are for the orbital basis. âyðb̂yÞ and â (b̂) represent the creation

and annihilation operators for the fermions (bosons), respectively, while σ(τ)
denotes different spin-up and spin-down states. t ið Þμυ, T

ijð Þ
μκυλ; and V

ijð Þ
μκυλ express

the one-body kinetic energy of a particle of type i minus the one-body part

of the kinetic energy of the center-of-mass (COM), the matrix elements of

the two-body part of the kinetic energy operator of the COM and the inte-

grals of the Coulomb interaction between particles of two types i and j calcu-

lated for the orbitals φiμ and φiκ for particle type i, and φjυ and φjλ for

particle type j, respectively.

Yang and White (2019) presented a first multicomponent DMRG study of

1D diatomic molecule aggregates where a parametrized “Coulomb” interaction

model potential was used. They found that 1D diatomic molecules with spin-1/2

Density matrix renormalization group with orbital optimization Chapter | 5 179



nuclei in the spin triplet state will unbind when the mass of the nuclei reduces to

only a few times larger than the electron mass, while the molecule with nuclei

in the singlet state always binds. Later, Muolo et al. (2020) introduced the

nuclear-electronic all-particle DMRG (NEAP-DMRG) method at ab initio level

for the first time (Fig. 5.4). Their efficient parameterization of the total wave

function as an MPS enables NEAP-DMRG to accurately approximate the FCI

energies of molecular systems (H2, H3
1, and BH3) with more than three nuclei

and 12 particles in total, which is currently a major challenge for other multi-

component approaches. The NEAP algorithm relies on a fully stochastic optimi-

zation of all wave function parameters, a task that becomes challenging for large

basis sets. Recently, Feldmann et al. (2022)’s multicomponent DMRG calcula-

tions adopted MOs which are expressed as a linear combination of preoptimized

basis sets and optimized by nuclear-electronic HF (NEHF) (Pettitt, 1986). This

scheme makes the computational less demanding. They demonstrated that

NEHF-DMRG reproduced the reference ground-state total energy and proton

density of the HeHHe1 molecular ion. In addition, for the hydrogen cyanide

(HCN) system, more accurate ground-state energy and proton density than state-

of-the-art results were also obtained with larger basis sets were obtained.

FIGURE 5.4 Schematic definition of the NEAP-DMRG wave function for the H2 5 {e2, e2,

p1, p1} molecular system in terms of the nonorthogonal stochastically optimized NEAP orbitals.

A generalized CI expansion (top of the figure) is considered to define the orbital union sets for

each particle type. An FCI expansion is defined in the basis of these union sets and then

expressed as an MPS (bottom of the figure). CI, Configuration interaction; FCI, full configura-

tion interaction; MPS, matrix product state; NEAP-DMRG, nuclear-electronic all-particle

DMRG. Reproduced from Muolo, A., Baiardi, A., Feldmann, R., Reiher, M., 2020. Nuclear-

electronic all-particle density matrix renormalization group. J. Chem. Phys. 152, 204103.

https://doi.org/10.1063/5.0007166, with permission from American Institute of Physics.
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5.8 Applications

Ab initio DMRG and DMRG-SCF methods together with post-DMRG treat-

ments to further account for dynamic and/or environmental effect(s) (see

Chapter 6) provide new powerful tools in multiconfigurational quantum

chemistry. In recent years, they have been successfully applied to the elec-

tronic structure studies in various strongly correlated molecular systems with

large active spaces, ranging from quasi-1D π-conjugated oligomers (polyene,

polyacene, polyphenylenecarbenes, graphene nanoribbon) and transition

metal complexes to heavy element chemistry and photochemistry. To the

best of our knowledge, the currently largest solved CASs for DMRG-

CASCI, DMRG-SCF, and post-DMRG are (30e, 108o) for a benzene mole-

cule (Zhai and Chan, 2021), (120e, 77o) for [Fe8S7] P-cluster (Li et al.,

2019), and (42e, 42o) for an 83 8 hydrogen square lattice (Song et al.,

2020), respectively. A complete overview of these numerous applications is

certainly out of the scope of the present section; our aim is rather to show

the potential and applicability of ab initio DMRG. Below we show two rep-

resentative application examples, the electronic landscape of the P-cluster of

nitrogenase (Li et al., 2019) and mechanism for photochromic ring-opening

reaction of spiropyran (Liu et al., 2013).

5.8.1 Electronic landscape of the P-cluster of nitrogenase

The Fe�S clusters of nitrogenase, namely, the [Fe4S4] Fe cluster of the Fe

protein, and the [Fe8S7] P-cluster and [MoFe7S9C] FeMo cofactor of the

MoFe protein, are revealed to work as the active sites for electron transfer

and reduction in biological nitrogen fixation. Although the atomic structure

of the P-cluster has been experimentally resolved, relating the structure to

the chemical function requires electronic structure knowledge about the

basic oxidation, spin states, and interpretation of the experimental spectra

(particularly in magnetic spectroscopies such as EPR) that also requires

microscopic models of the low-energy, spin-coupled, many-electron quan-

tum states and their spin and charge distributions. By implementing

DMRG calculations using active spaces with up to 77 orbitals, Li et al.

(2019) presented the first ab initio electronic structure characterization of

the P-cluster of nitrogenase at the many-electron level that can qualitatively

capture the richness of the low-energy landscape. They reported on a pleth-

ora of low-energy states across the resting state (PN), the one-electron

oxidized state (P11), and the two-electron oxidized state (POX) clusters

and their composition in terms of the local atomic configurations, spins,

and spin-couplings. The clusters were found to exist in quantum superposi-

tions of spin configurations with nonclassical spin correlations, complicat-

ing interpretation of magnetic spectroscopies, whereas the charges are
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mostly localized from reorganization of the cluster and its surroundings.

On oxidation, the opening of the P-cluster substantially increases the

density of states, which is intriguing, given its proposed role in electron

transfer. These results paved the way for obtaining a thorough microscopic

understanding of the electronic structure of the nitrogenase cofactors

(Fig. 5.5).

FIGURE 5.5 (A), The [Fe8S7] P-cluster models (PDB ID 3MIN for PN; 6CDK for P11 and

2MIN for POX) and the synthetic analog of the PN cluster. The redox-dependent structural rear-

rangements across PN, P11, and POX that involve Ser β188 and Cys α88 are highlighted. Fe,

orange; S, yellow; C, cyan; O, red; N, blue; H, white; Si, pink. (B) A table of initial guesses

(broken-symmetry product states) that were obtained by distributing different states of Fe across

the eight atoms. For spin states of POX, different classes of initial guesses are labeled by (a), (b),

(c), and (d). (C) A schematic illustration of the change of energy in the DMRG optimization pro-

cess as a function of the bond dimension (D), starting from different broken-symmetry initial

guesses. The local minima in the parameter space represent (approximate) eigenstates of the

many-electron Schrödinger equation within the active space. They are characterized by the

spin�spin correlation functions ⟨SAUSB⟩ among eight Fe atoms (red, positive; blue, negative)

shown by the square graphs. Reproduced from Li, Z., Guo, S., Sun, Q., Chan, G. K.-L., 2019.

Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum

wavefunction simulations. Nat. Chem. 11, 1026�1033. https://doi.org/10.1038/s41557-019-0337-
3, with permission from Springer Nature.
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5.8.2 Mechanism for photochromic ring-opening reaction of
spiropyran

Remarkable changes in structures and physical/chemical properties between

spiropyran (SP) and merocyanine (MC, TCC) upon photoisomerization make

the system an excellent candidate for use in optical molecular devices, such as

light-driven molecular switches. Therefore its reaction channels on the multistate

PESs, as well as the overall reaction mechanism, have drawn a lot of attention.

By performing DMRG-SCF and DMRG-CASPT2 with a (22e, 20o) active

space, Liu et al. (2013) revisited the photochromic ring-opening reaction of SP.

In this work, the capability of the DMRG-SCF method in the optimization of

molecular geometry was demonstrated for the first time. Compared with previ-

ous multiconfigurational studies with smaller active space, this work pointed

out a more important role by the hydrogen-out-of-plane valleys near the C2O

S1-minimum energy path (MEP) and the minimal-energy conical intersection

(MECI) along the S1-MEPs in the radiationless S1 - S0 transitions, whereas

the transition along the C2N bond dissociation path is less favorable, because

of a barrier on the S1-MEPCN (Fig. 5.6).

FIGURE 5.6 Schematic energy profile along the S1-MEPt [FC(S0-SPc) - CIS1/S0TCC]. (Here,

FC stands for Franck2Condon) The most relevant nature orbitals of the S0, S1, and S2 states

with occupation numbers between 1.8 and 0.2, except for the S0 state of S0-SPc (between 1.9

and 0.1) are shown at the geometries of (a) S0-SPc and (b) CIS1/S0TCC. Reproduced from Liu,

F., Kurashige, Y., Yanai, T., Morokuma, K., 2013. Multireference ab Initio density matrix renor-

malization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring open-

ing of spiropyran. J. Chem. Theory Comput. 9, 4462�4469. https://doi.org/10.1021/ct400707k,
with permission from American Chemical Society.
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Chapter 6

Post-density matrix
renormalization group

Previous chapters have illustrated how ab initio density matrix renormaliza-

tion group (DMRG) and DMRG self-consistent field (DMRG-SCF) serve as

efficient and computationally accurate methods, for describing electronic

structure properties of strongly correlated systems that require large complete

active spaces (CAS) composed of up to B100 active orbitals (Hachmann

et al., 2006; Zhai and Chan, 2021), which are not accessible by conventional

quantum chemistry methods. However, to achieve a high quantitative accu-

racy for practical molecular systems, it is still desirable to include the elec-

tron correlations between CAS and all other (Ba few hundreds or thousands

of) core and external orbitals, that is, dynamic correlation. These systems

tend to be computationally prohibitive for pure DMRG calculations. In the

last decade, aiming at computations of the missing dynamic correlation

within DMRG, several methods have been proposed. Given methods rely on

the combination of DMRG with other quantum chemistry methods such as

multireference (MR) configuration interaction (CI), perturbation theory (PT),

and coupled cluster (CC). This category of approaches is commonly known

in the DMRG community as ab initio post-DMRG. Another inevitable issue

when applying ab initio DMRG and post-DMRG methods to the “real-

world” chemistry problems is the proper description of the strongly corre-

lated subsystem’s chemical environment (e.g., a solvent environment or

biological metalloenzyme’s backbone). In this chapter, we will introduce the

recently developed post-DMRG approaches to account for the dynamic elec-

tronic correlation and embedded chemical environment.

6.1 Fundamentals for multireference quantum chemical
calculations

In order to give a pedagogical description of post-DMRG approaches, here

we first review several important and fundamental concepts in traditional

MR quantum chemical calculations.
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6.1.1 Static and dynamic electron correlation

It is well known that the single-electron mean-field Hartree�Fock (HF) the-

ory is usually the base for the other advanced wave function theory (WFT)

quantum chemistry methods. In HF theory, a single Slater determinant (SD)

is optimized by finding the set of molecular orbitals (MOs) which minimize

its ground-state energy expectation value. However, the exact ground state of

the many-electron Schrödinger equation is a linear combination over all pos-

sible SDs. The difference in energy between the HF solution and the exact

ground state is the electron correlation energy. This energy is often (some-

what ambiguously) divided into two contributions: static and dynamic

correlation.

In many chemical problems such as bond breaking/formation in chemical

reactions and transition metal catalysis in biological photosynthesis, there are

a considerable number of energetically near-degenerate frontier MOs that

make it impossible to approximate the zeroth-order wave function by using

only one leading configuration. Under such situations, it is said that the sys-

tem exhibits static electron correlation (sometimes also-called nondynamic

electron correlation or strong electron correlation). At the same time, the

Coulomb repulsion caused by the instantaneous movement of the electrons

contributes to the dynamic electron correlation, and it constitutes the remain-

der of the energy difference.

The presence of the static electron correlation is generally unavoidable

when considering the molecule’s entire potential energy surface. The most

successful and widely used model for dealing with the static correlation is

the CAS model, where a set of MOs are divided into active and inactive

orbitals (see Section 4.6 and Figure 4.2). Therein, the electron occupancy

numbers on each core, active, and external orbital are 2, 0/1/2, and 0, respec-

tively. To avoid any possible ambiguities, the notations used in this chapter

are clarified as follows. Core orbitals are labeled i, j, k, l, while active orbi-

tals are t, u, v, w and external orbitals have the labels a, b, c, d. Orbital labels

p, q, r, s represent general orbitals. Both the core orbitals and active orbitals

can be referred to as internal orbitals, labeled m, n, whereas both the core

and external orbitals can be denoted as inactive orbitals, labeled x, y. We

also note that all jφi in the following part represent the single determinant or

configuration state function (CSF), while jψi is a quantum superposition

state which is the linear combination of various configurations.

In the CAS model, the static correlation is adequately described because

an exact Hamiltonian diagonalization will be performed with the consider-

ation of all possible electronic configurations within the active space. It is

obvious that the number of CAS configurations grows exponentially with the

increasing active space size. This results in an upper limit for the computa-

tional capability of conventional CAS methods, for example, nowadays the

largest exactly solvable active space is (18e, 18o) for most computers,

although (22e, 22o) has been achieved using massive parallelization
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(Vogiatzis et al., 2017). Usually, the static correlation contributes to a large

proportion of the correlation energy; however, it does not mean the dynamic

correlation is negligible. For example, it has been shown that it is impossible

to qualitatively describe the bonding and dissociation behaviors of the

diatomic molecule Cr2, even when the static correlations are being well

accounted by DMRG using a large active space of (12e, 42o) with all 3d, 4s,

4p, 4d, and 4f orbitals. (Luo et al., 2018) Therefore, to capture the remaining

dynamic electron correlation from the otherwise neglected external orbitals,

theories of CI, PT, as well as CC are often implemented on top of a reason-

able zeroth-order approximated reference wave function. Either an HF deter-

minant in single-reference (SR) calculations for weakly correlated systems,

or a CAS wave function in MR calculations for strongly correlated systems

can be used as the reference.

6.1.2 Contraction approximations

Here we take a MR CI singles and doubles (MRCISD) as an example to intro-

duce some basic concepts in MR calculations. The MRCISD wave function

jψi can be written as:

jψ i5
X
I

c Ið Þjφ Ið Þi1
X
I

X
m;e

cem Ið Þjφe
m Ið Þ⟩1

X
I

X
mn;ef

cefmn Ið Þ φef
mn Ið Þ⟩;

�� ð6:1Þ

where c Ið Þ; cem Ið Þ, and cefmnðIÞ are multireference configuration interaction

(MRCI) coefficients. Here, e, and f are the external or active orbital labels.

φ Ið Þ
�� �� �

give reference configurations generated in the active space, and

φe
m Ið Þ

�� �� �
and φef

mn Ið Þ
�� �� �

represent singly and doubly excited configurations

from the reference configuration φ Ið Þ
�� �

respectively, as

φe
m Ið Þ

�� �
5 Ê

e

m φ Ið Þ
�� � ð6:2Þ

and

φef
mn Ið Þ

�� �
5 Ê

ef

mn φ Ið Þ
�� � ð6:3Þ

Here the spin-free single and double excitation operators are defined as

Ê
p

q �
P

σâ
y
pσâqσ and Ê

pq

rs �
P

στ â
y
pσâ
y
qτ âsτ ârσ. In some cases, a same excited

configuration can be generated by two different excitation patterns from

distinct reference configurations, that is, φe
m Ið Þ⟩5 φe0

m0 Jð Þ⟩
���� . Consequently,

special treatments must be adopted to find and eliminate the redundant con-

figurations in Eq. 6.1.

A key concept in practical MR calculations is to classify the possible

excitations in the “first-order-interacting space” (FOIS), introduced by

McLean and Liu (1973). The FOIS consists of SDs or CSFs that can directly

couple to the reference wave function via the Hamiltonian. According to the

number of excited electrons in the external space, we can sort the eight
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groups of single and double excited configurations given in the Eq. 6.1 into

three sets: internal φuv
it

�� �
, φtu

ij

��� E
, semi-internal φta

ij

��� E
, φua

it

�� �
; φua

ti

�� �� �
, φva

tu

�� �
,

and external φab
ij

��� E
, φab

it

�� �
, φab

tu

�� �
(see Table 6.1). Although we have discarded

numerous configurations by constraining the excitation patterns to contain

only single and double excitations, the number of configurations in a

MRCISD calculation is still “astronomical” for most molecular systems,

which results in the common bottleneck of all MR methods. For reducing the

number of variational parameters in MRCI wave function, contraction

approximations are often used. To appropriately distinguish the methods in

MRCI, we will refer to the conventional MRCI without contraction approxi-

mations as uncontracted MRCI (uc-MRCI) in the following sections.

Generally, there are two widely used contraction schemes, the internal

contraction (ic) and the external contraction (ec), which will be discussed

below. For simplicity, we will not consider the excitations from core orbitals

in the following discussions, nonetheless readers can easily perform exten-

sions for them.

6.1.2.1 Internally contracted approximations

The “internally” contracted MRCI was first discussed by Meyer (1977) and

Siegbahn (1980) and worked out in detail by Werner and Reinsch (1982).

For an “internally” contracted MRCI, the reference configurations in active

space are contracted as one term, whereas the excited configurations are gen-

erated by simply applying pair excitation operators on the contracted refer-

ence state.

The internally contracted MRCISD wave function is written as:

jψic⟩5 ~c0jψ0⟩1
X
tuv;a

~cvatu jψva
tu ⟩1

X
tu;ab

~cabtu jψab
tu ⟩; ð6:4Þ

with ψva
tu

�� � � Ê
va

tu ψ0

�� �
5
P

Ic Ið Þ φva
tu Ið Þ

�� �
and ψab

tu

�� � � Ê
ab

tu ψ0

�� �
5
P

Ic Ið Þ φab
tu Ið Þ

�� �
. ψ0

�� �
5
P

Ic Ið Þ φ Ið Þ
�� �

gives the reference wave function

obtained from a preliminary CASCI or CASSCF calculation. ~c represents

the variational MRCI coefficient, while c is the contraction coefficient deter-

mined in ψ0

�� �
.

Just as Fig. 6.1 shows, all configurations that have the same excitation

pattern from the reference wave function are combined together in an inter-

nal contraction approximation. Thus ic-MRCI can break through the “expo-

nential wall” and treat a larger active space than the uc-MRCI, since the

contracted terms in Eq. 6.4 are independent of the number of reference

configurations. The number of contracted internal states only depends on

the number of active orbitals nað Þ, where at most n3a contracted internal
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TABLE 6.1 List of contraction schemes of ic-MRCI ansatz. The schemes are categorized by the basis representation of the

reference jψ0i, internal, semi-internal, and external excitation classes. Each of the classes is represented with either contracted

(C) or uncontracted (U) basis.

Ansatz Internal excitation Semi-internal excitation External excitation

ψ0

�� �
ψuv
it

�� �
ψtu
ij

��� E
ψta
ij

��� E
= ψua

it

�� �
= ψua

ti

�� � ψva
tu

�� �
ψab
ij

��� E
= ψab

it

�� �
= ψab

tu

�� �
FIC-MRCI C C C C C C

WK-MRCI U U U U U C

CW-MRCI U U C C U C

SC-MRCI C C C C C C



(N-1)-electron states âyv âtâu ψ0

�� �� �
are needed by applying two annihilations

and one creation, and n2a contracted internal (N-2)-electron states âtâu ψ0

�� �
by

two annihilations (N is the number of electrons in original internal space).

Because all terms in the wave function are contracted in this ic-ansatz, we

referred to this as “fully internally contracted” (FIC), although in some litera-

tures, this is referred to as WR-ansatz (Werner and Reinsch, 1982).

In order to avoid the computation of duplicate terms in ic-MRCI

Hamiltonian matrix, one can utilize the reduced density matrices (RDMs)

within the active space. For example, when calculating two different

Hamiltonian elements:

hψ0 Ĥ
�� ��ψa

w⟩5 ⟨ψ0j
X
psqr

gprqsÊ
pq

rs

 !
Ê
a

wjψ0⟩

5
X
ta0uv

gtvua0 ψ0 Ê
tu

vw

��� ���ψ0

D E
δaa0 1 . . .

ð6:5Þ

and

⟨ψ0 Ĥ
�� ��ψb

w⟩5 ⟨ψ0j
X
psqr

gprqsÊ
pq

rs

 !
Ê
b

wjψ0⟩

5
X
tb0uv

gtvub0 ψ0 Ê
tu

vw

��� ���ψ0

D E
δbb0 1 . . .

ð6:6Þ

FIGURE 6.1 Schematic illustration of (A) internal contraction and (B) external contraction

approximations. Each dashed box represents a contracted state with the contraction coefficient

displayed under each contracted configuration.
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where gprqs is two-electron integral (see Eq. 4.3), the two-rank RDM

Dtu
wv 5 ψ0 Ê

tu

wv

��� ���ψ0

D E
shows up twice. Thus, if we calculate and store these

RDMs beforehand, numerous reduplicated calculations can be avoided, and

accordingly the ic-MRCI computational efficiency can be greatly improved.

However, this FIC scheme brings with it two shortcomings: (1) the

contracted states in ic-MRCI are nonorthogonal and (2) the required high-

order RDMs of the active space may be computationally challenging. The

first point requires solving a generalized eigenequation instead of a normal

eigenvalue problem, and it is usually overcome by explicitly diagonalizing

the overlap matrix and discarding the zero-eigenvectors. As for the second

one, this is one of the major problems in MR dynamic correlation methods,

and many schemes have been proposed to address this issue. The reason

lies in the fact that the highest rank RDM appearing in FIC-MRCISD

Hamiltonian computation is 5-rank ψ0 Ê
vwv0w0v0 0

tut0u0t0 0

��� ���ψ0

D E
, the computation

cost of which is O n10a
� �

. Even though 5-RDMs have been proved to be

able to be canceled out by expressing the Hamiltonian matrix using com-

mutators (Dyall, 1995; Angeli et al., 2001), the computation and storage

of the highest rank 4-RDMs O n8a
� �� �

are still a big challenge for large

active space.

Here, we give a brief explanation about why 5-RDMs can be annihilated

by using the commutator without any approximation. First, let us consider

the Hamiltonian matrix elements between two singly excited states:

ψ0 Ê
t0u0

v0a0ĤÊ
vvav
tvuv

��� ���ψ0

D E
; ð6:7Þ

which can be written as follows:

ψ0 Ê
t0u0

v0a0ĤÊ
v0 0a0 0

t0 0u0 0

��� ���ψ0

D E
5 ψ0 Ê

t0u0

v0a0 Ĥ; Ê
v0 0a0 0

t0 0u0 0

h i��� ���ψ0

D E
1 ψ0 Ê

t0u0

v0a0 Ê
v0 0a0 0

t0 0u0 0 Ĥ
��� ���ψ0

D E
:

ð6:8Þ

Given the CAS nature of ψ0

�� �
, the above equation can be transferred to:

ψ0 Ê
t0u0

v0a0ĤÊ
v0 0a0 0

t0 0u0 0

��� ���ψ0

D E
5 ψ0 Ê

t0u0

v0a0 Ĥ; Ê
v0 0a0 0

t0 0u0 0

h i��� ���ψ0

D E
1 E0ψ0 Ê

t0u0

v0a0 Ê
v0 0a0 0

t0 0u0 0

��� ���ψ0

D E
:

ð6:9Þ

Considering the anticommutation property of the fermions:

â1pσâqτ 1 âqτ â
1
pσ 5 δpqδστ ; ð6:10Þ
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it can be deduced that the first term in right part of Eq. 6.9 does not contain

RDMs with ranks larger than 4. Under those circumstances, the 5-RDMs

are canceled out by commutators when calculating the Hamiltonian matrix

elements in FIC-MRCI.

Besides the FIC-ansatz, there are also two widely used internal contrac-

tion schemes, which are so-called “partially contraction” (pc) and “strongly

contraction” (sc). The “partially contraction” means some excitation classes

are left uncontracted, and its motivation is to circumvent the use of high-

order RDMs. A popular pc scheme (Werner and Knowles, 1988; Knowles

and Werner, 1988) is the so-called WK-ansatz, in which only the double

external excitation terms are contracted and the other configurations are left

uncontracted:

jΨWK⟩5
X
I

~c Ið Þjφ Ið Þ⟩1
X
I

X
t;a

~cat Ið Þjφa
t Ið Þ⟩1

X
tu;ab

~cabtu jψab
tu ⟩: ð6:11Þ

An improved variant of the WK-ansatz, which introduced additional ic

bases associated with excitation from core orbitals, was also proposed by

the same group and called CW scheme (Celani and Werner, 2000). Both

ansatzes perform remarkably well for small active spaces, nonetheless their

computational scaling still increases exponentially with respect to the molec-

ular sizes for the uncontracted configurations.

As for the “strongly contracted” (sc) scheme, the subspaces in FIC-MRCI

are further contracted by electron integrals such that there are not any active

labels in the wave function of sc-MRCI. Here, we follow the notation intro-

duced by Angeli et al. (2001) and let S
ðkÞ
l denotes the subspace in sc-MRCI.

k refers to the change in the number of active electrons 22# k# 2ð Þ, while
l specifies the configuration of electrons in the inactive space. In the strong

contraction scheme, only a single state ψðkÞl
��� E

from each S
ðkÞ
l is used, which

can be obtained by:

ψ kð Þ
l

��� E
5 P̂

kð Þ
l Ĥ ψ0

�� �
; ð6:12Þ

where P̂
ðkÞ
l is the projector onto the S

ðkÞ
l space. For example, the configura-

tions with one unoccupied core orbital i and two occupied external orbitals

a and b span the S
ð21Þ
i;ab space. The ψ21ð Þ

i;ab

��� E
is then formalized as:

ψ21ð Þ
i;ab

��� E
5
X
t

gaibt 2 gatbið ÞÊab

it ψ0

�� �
; ð6:13Þ

where gaibt is the two-electron integral. This scheme leads to a more compact

representation of the FOIS by tracing out the active indexes. Its another big

advantage is that the resulted contracted states form an orthonormal set and

accordingly no problems arise from near linear dependencies.
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6.1.2.2 Externally contracted approximations

The “externally” contracted MRCI concept was first suggested by Siegbahn

(1983). By grouping together configurations with the same internal parts and

freezing their relative weights as:

ψS

�� �
5
P

aα
S
a Ið Þ φa

S Ið Þ
�� �

5
P

aα
a
t Ið Þ φa

t Ið Þ
�� �

;

ψP

�� �
5
X
ab

αP
ab Ið Þ φab

P Ið Þ
�� �

5
X

ab
αab
tu Ið Þ φab

tu Ið Þ
�� �

:
ð6:14Þ

With the ec contraction, α coefficients are determined from first-order PT

αS
a Ið Þ5 ψ0 Ĥ

�� ��φa
S Ið Þ� �

E0 2 φa
S Ið Þ Ĥ
�� ��φa

S Ið Þ� � ; αP
ab Ið Þ5 ψ0 Ĥ

�� ��φab
P Ið Þ� �

E0 2 φab
P Ið Þ Ĥ

�� ��φab
P Ið Þ� � : ð6:15Þ

ψ0

�� �
5
P

Ic Ið Þ φ Ið Þ
�� �

is the reference wave function and E0 indicates the cor-

responding reference energy, and every S/P denotes a particular internal

(N�1)- /(N�2)-electron configuration.

As a result, the externally contracted MRCI (ec-MRCI) wave function is

formalized as:

jψec⟩5
X
I

~c Ið Þjφ Ið Þ⟩1
X
S

~cSjψS⟩1
X
P

~cP ψP⟩:
�� ð6:16Þ

As all external configurations with a same internal “kernel” are merged

into one term in ec-MRCI, as Fig. 6.1 shows, the number of configurations in

the external space does not affect the size of the ec-MRCI matrix. As a result,

the ec-MRCI method is particularly suitable for calculations using large basis

sets, if the number of reference configurations is not excessively large. Unlike

the internally contracted method, the ec-MRCI cost depends directly on the

dimension of the reference space. Therefore it can hardly deal with systems

that possess large active space, unless only a limited number of reference con-

figurations are considered by using the idea of selected-CI. Due to the contrac-

tion errors in the external space, ec-MRCI results may be inaccurate for higher

lying excited states with significant external orbital occupations.

It can be noticed that the traditional FIC-MRCI and sc-MRCI belong to

“Static-Then-Dynamic” class of MR methods, whilst ec-MRCI belongs to

“Static-Dynamic-Static” family. Because the former employs the fixed con-

traction coefficients c Ið Þ of the reference states ψ0

�� �
by CASCI or CASSCF,

whereas the latter only uses them to evaluate the external contraction coeffi-

cients and consequently allows them to fully relax in the final “Static” proce-

dure. The relaxation of the reference coefficients has been found to be a

main contributor to the energy difference between FIC-MRCI and uc-MRCI.

(Sivalingam et al., 2016) At the same time, the WK-MRCI and CW-MRCI

approaches account for reference relaxation as both employ a decontracted

reference space from the start. However, a simultaneous optimization of
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reference coefficients and contraction coefficients in FIC- and sc-MR calcu-

lations is also possible to be achieved in a spirit similar to the simultaneous

optimization of configuration and orbital coefficients in CASSCF (see

Section 5.1). Hanauer and Köhn (2011) reported such an implementation in

the context of internally contracted MRCC theory. Similarly, a full optimiza-

tion could be included into FIC-MRCI and sc-MRCI, which would reclassify

them into “Static-Dynamic-Static” family.

6.2 Density matrix renormalization group-multireference
configuration interaction

6.2.1 Density matrix renormalization group-fully internally
contracted-multireference configuration interaction

As we introduced in Section 4.5, quantum chemists have developed efficient

algorithms to compute the n-RDMs (n5 1,2,3,4) in DMRG active space

(with up to 30 active orbitals), which can avoid the explicit and computation-

ally prohibitive transformation between CAS-type wave function and matrix

product state (MPS) formulation. Therefore a straightforward conclusion is

to combine DMRG with FIC-MRCI, which requires only RDMs in the active

space. Saitow et al. (2013) first reported DMRG-MRCI built on the FIC

scheme for the compact reference treatment and on the cumulant approxima-

tion for the treatment of the 4-RDMs and named this scheme as DMRG-cu

(4)-MRCI. Later Saitow et al. (2015) further developed an extended optimi-

zation of the tensor contractions by explicitly incorporating the rank reduc-

tion of the decomposed form of the cumulant-approximated 4-RDMs into the

factorization. The new DMRG-MRCI implementation has been successfully

applied to the determination of the stability of the iron(IV)-oxo porphyrin

relative to the iron(V) electronic isomer (electromer), using the active space

(29e, 29o) (including four second d-shell orbitals of iron) with triple-ζ-qual-
ity atomic orbital basis sets.

Moreover, to overcome the deficiency of size-inconsistency in truncated

CI methods including MRCI, a posteriori Davidson correction (Langhoff and

Davidson, 1974; Butscher et al., 1977) can be adopted to add into the final

MRCI energy. The correction energy can be computed by

EDavidson 5 12 ~c0
2

� �
EMRCISD 2E0ð Þ; ð6:17Þ

where ~c0 is the coefficient of the reference ψ0

�� �
in the FIC-MRCISD wave

function. EMRCISD represents the energy of non-corrected MRCISD calcula-

tion, and E0 gives the energy of the reference state. Of course, some other

correction schemes (Luken, 1978; Davidson and Silver, 1977; Siegbahn,

1978; Pople et al., 1977; Meissner, 1988; Duch and Diercksen, 1994) have

been suggested over the years and can be used as well.

It should be noticed that the cumulant approximation brings not only a

lot of computational benefits but also the nonphysical interactions in the
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Hamiltonian matrix, which results in the loss of the variational nature of ic-

MRCI. Recently, various techniques have been proposed in order to remedy

this problematic behavior, for example, truncating the IC basis with small

eigenvalue EP in the overlap matrix S (Saitow et al., 2013).

Algorithm 6.1: FIC-MRCI based on a DMRG reference wave function.

DMRG, density matrix renormalization group; FIC, fully internally con-

tracted; MRCI, multireference configuration interaction.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return MPS jψ0i // only in active space
3: end procedure
4: procedure PrecalculateRDMs // refer to Algorithm 4.3

5: return 1-,2-,3-RDMs // Dkl...
ij... 5 ψ0 Ê

kl...

ij...

��� ���ψ0

D E
6: end procedure
7: procedure GeneralizeOverlapMatrix S

8: Sμν’Use precalculated RDMs Dkl...
ij... // ψ0 Ê

t 0u0

v 0a0 Ê
vvav
tvuv

��� ���ψ0 5Dt 0u0vv
v 0 tvuvδa0a0 0

9: Vn3n eigenvectors v0; v1; . . .; vnf g; Enf g’Diagonalize S
10: Vn3 k

0 v0; v1; . . .; vkf g; E0 ’Discard zero-eigenvectors vk11; vk12; . . .; vnf g
11: return Vn3 k

0 ; E0

12: end procedure
13: procedure SolveGeneralizedEigenequation HC 5 SCE
14: H ’ Calculate cumulant-approximated 4-RDMs on the fly // refer to Algorithm 4.3

15: H0C 05C 0E’HC 5 SCE // H05 E02
1
2V 0T

� �
H V 0E02

1
2

� �
16: E ;C 0 ’ Diagonalize H0

17: return E ;C 5V 0E0
21
2C 0

� �
18: end procedure

6.2.2 Density matrix renormalization group-externally contracted-
multireference configuration interaction

To deal with larger active spaces with more than 30 active orbitals via bypass-

ing the use of high-order RDMs, Luo et al. (2018) suggested to combine

DMRG with ec-MRCI. In this implementation, DMRG wave function is first

converted to the CASCI-type wave function by using the entanglement-driving

genetic algorithm (EDGA) (Luo et al., 2017), as introduced in Section 4.8. A

selected-CI calculation is then performed by using only the leading configura-

tions in the reconstructed CASCI-type wave function and the ground-state

eigenvalue is taken as zeroth-order energy E0. Of course, this incorporates a

meager inaccuracy for neglecting unimportant configurations (e.g., with their

weights smaller than 1024), but in exchange one obtains a sharp drop in the

number of reference configurations (104B105) as a benefit to make the further

ec-MRCI feasible. Through integrating selected-CI with ec-MRCI, it bypasses
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the bottleneck of computing the high-order RDMs. By virtue of using this

approach, post-DMRG was applied to larger active spaces with more than 40

active orbitals for the first time (Luo et al., 2018). The capability of the

DMRG-ec-MRCI method was benchmarked against calculations of the poten-

tial energy curve of Cr2 with active spaces up to (12e, 42o), singlet-triplet

gaps of higher n-acene molecules with active spaces up to (38e, 38o), and the

energy of the Eu-BTBP(NO3)3 complex with active space of (38e, 36o).

It must be mentioned that the current bottleneck of DMRG-ec-MRCI

is that whether a limited number (less than 105) of important reference SDs

or CSFs for a large active space or extremely strongly correlated systems

can be selected out. Also, how to efficiently select the 105 important config-

urations is another difficulty.

Algorithm 6.2: DMRG-ec-MRCI. DMRG, Density matrix renormalization

group; ec, externally contracted; MRCI, multireference configuration interaction.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return MPS ψ0

�� �
DMRG

// only in active space
3: end procedure
4: procedure EDGA // refer to Algorithm 4.4

5: return collected configurations φ0

�� �
; φ1

�� �
; . . .; φn

�� �� �
6: end procedure
7: procedure Obtain Reference Wave function ψ0

�� �
and Energy E0

8: H’basis: φ0⟩; . . .; φn⟩
�� ����

9: ψ0

�� �
; E0 ’ Diagonalize H

10: end procedure
11: procedure Form Contracted Singly and Doubly Excited Terms

12: φa
S

�� �
; φab

P

�� En o
’ Generate singly and doubly excited configurations based on

φ0

�� �
; φ1

�� �
; . . .; φn

�� �� �
13: ψS

�� �
; ψP

�� �� �
’ Contract φa

S

�� �
; φab

P

�� En o
using Eq. 6.15

14: end procedure
15: procedure Compute Final Energy

16: Hec2MRCI’basis: φ0⟩; . . .; φn⟩; ψS⟩; ψP ⟩
�� ��������

17: ψ0

�� �ec
; Eec

0 ’ Diagonalize Hec2MRCI

18: EDavidson ’ Compute Davidson correction energy
19: return Eec

0 1 EDavidson

20: end procedure

6.2.3 Uncontracted matrix product state-multireference
configuration interaction

Recently, Larsson et al. (2022) implemented uncontracted MRCISD and

MRCISDT calculations on top of MPS reference wavefunctions. This is

achieved by using the cluster MPS formulation (see Section 4.10) which
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groups clusters of related orbitals into large “sites.” In Larsson et al. (2022)’s

implementation, the core orbitals and external orbitals were grouped to two

large sites locating at the two ends of the MPS chain respectively, that is,

jψ⟩5
X
n

AncoreAnKcore11AnKcore12 . . . AnKcore1KactAnext : ð6:18Þ

Kcore, Kact, and Kext are the numbers of core, active, and external orbitals,

respectively, and ncore and next label the Hilbert space of the coarse-grained core

and external sites, of dimension Pcore and Pext. Then it becomes feasible to

incorporate standard DMRG sweeps to optimize this cluster MPS to approach

the uc-MRCI ansatzes by restricting the electron numbers in the three subspaces

(e.g., Nel;Nel 2 1;Nel 2 2f g in core and active sites and 0; 1; 2f g in the external

site for MRCISD, where Nel is the total number of electrons in the molecule).

Because the degrees of freedom in all three subspaces can be fully relaxed vari-

ationally, here no contraction approximations are imposed. Therefore this kind

of MPS-MRCI corresponds to the uc-MRCI ansatz. However, we can easily

notice that Pcore and Pext will be generally very large (roughly proportional to

Kcore
2 and Kext

2). Therefore this usually requires a much larger bond dimension

in MPS-MRCI than that in traditional DMRG, contributing to very expensive

computational costs. Larsson et al. (2022) illustrated the capability of MPS-

MRCI for active spaces with up to 30 electrons and 30 orbitals with up to triple

excitations in the external space (in case of the benzene molecule with only 78

external orbitals), and with up to 280 external orbitals (in case of the chromium

dimer for a small active space of 12 electrons in 12 orbitals). But it was shown

that the energy results for both MPS-MRCISD and MPS-MRCISDT calculations

of the benzene molecule still did not converge at m5 9000. Therefore it remains

highly challenging to generalize MPS-MRCI calculations to larger active spaces

and larger basis sets.

6.3 Density matrix renormalization group-multireference
perturbation theory

In this section we will focus on the discussion of the basic ideas in MRPT

theory and its combination with DMRG.

6.3.1 Recapitulation of multireference perturbation theory

6.3.1.1 Rayleigh�Schrödinger perturbation theory

Time-independent PT was first introduced by Schrödinger (1926), in which

he referred to an earlier work by Rayleigh (1894). Consequently, PT as

known nowadays is often named Rayleigh�Schrödinger PT (RSPT).

RSPT starts with the decomposition of Hamiltonian:

Ĥ5 Ĥ0 1λV̂ ; ð6:19Þ
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where Ĥ0 is an unperturbed Hamiltonian with the known energies and eigen-

vectors, that is, Ĥ0 ψð0Þn
�� �

5Eð0Þn ψ 0ð Þ
n

�� �
(n5 1, 2, 3, . . .). V̂ indicates the per-

turbed term representing a weak physical disturbance and λ gives a

dimensionless parameter used for derivation. Thus the Schrödinger equation

becomes:

Ĥ0 1λV̂
� �

ψn

�� �
5En ψn

�� �
: ð6:20Þ

The energy and wave function can also be decomposed as expansions:

ψn

�� �
5 ψ 0ð Þ

n

�� �
1λ ψ 1ð Þ

n

�� �
1λ2 ψ 2ð Þ

n

�� �
1 . . . ð6:21Þ

En 5E 0ð Þ
n 1λE 1ð Þ

n 1λ2E 2ð Þ
n 1 . . .: ð6:22Þ

which results in

Ĥ0 1λV̂
� �

ψ 0ð Þ
n ⟩1λ ψ 1ð Þ

n ⟩1 . . .
�� �

5 E 0ð Þ
n 1λE 1ð Þ

n 1 . . .
� �

ψ 0ð Þ
n ⟩1λ ψ 1ð Þ

n ⟩1 . . .
�� �

:
������

ð6:23Þ
By matching the coefficients of each power of λ, we can get the equa-

tions of different order wave functions and energies. Usually, we only con-

sider up to second-order perturbative energy correction. The first-order wave

function and one- and two-order energy equations can be written as:

E 1ð Þ
n 5 ψ 0ð Þ

n V̂
�� ��ψ 0ð Þ

n

� �
; ð6:24Þ

Ĥ0 2E 0ð Þ
n

� �
ψð1Þn
�� �

5 E 1ð Þ
n 2 V̂

� �
ψð0Þn
�� �

; ð6:25Þ

E 2ð Þ
n 5 ψ 0ð Þ

n V̂
�� ��ψ 1ð Þ

n

� �
5
X
m6¼n

ψ 0ð Þ
n V̂
�� ��ψ 0ð Þ

m

� �2
E

0ð Þ
n 2E

0ð Þ
m

: ð6:26Þ

Note that the scalar product of ψ 1ð Þ
n

�� �
’s Eq. 6.25 with ψ 1ð Þ

n

�� �
yields:

ψ 1ð Þ
n

� ��Ĥ0 2E 0ð Þ
n ψ 1ð Þ

n

�� �
52 ψ 1ð Þ

n V̂
�� ��ψ 0ð Þ

n

� �
; ð6:27Þ

and adding it with Eð2Þn 5 ψ 0ð Þ
n V̂
�� ��ψð1Þn� �

, one can get:

E 2ð Þ
n 5 ψ 1ð Þ

n

� ��Ĥ0 2E 0ð Þ
n ψ 1ð Þ

n

�� �
1 2 ψ 1ð Þ

n V̂
�� ��ψ 0ð Þ

n

� �
; ð6:28Þ

which can be called Hylleraas functional H ψ 1ð Þ
n

	 

(Hylleraas, 1930). This

implies that the second-order energy corrections can be also determined in a

variational way by minimizing the Hylleraas functional, therefore given per-

turbation scheme is referred to as Hylleraas variational PT (VPT).

Here we only focus on the ground state’s property, so we will later refer

to ψ 0ð Þ
0

��� E
; ψ 1ð Þ

0

��� E
;Eð2Þ0 as ψ0⟩ or 0⟩; ψ 0ð Þ⟩

�� �
; ψ1⟩ or 1⟩; ψð1Þ⟩

�� ����������� and E2 for

simplicity.
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6.3.1.2 Different perturbation theory partitions

It is obvious that the performance of a PT theory is highly dependent on the

choice of the zeroth-order Hamiltonian Ĥ0, which is also denoted as PT parti-

tion. Because there exist different PT partitions, there are numerous MRPT

theories proposed within the framework of RSPT. Here, we just introduce a

part of them, which have been used in the combination of DMRG and MRPT.

6.3.1.2.1 Complete active space with second-order perturbation
theory

The CAS with second-order PT (CASPT2) was first proposed by Roos et al.

(1982) and later improved by Andersson et al. (1990, 1992). It can be seen

as the generalized extension of Møller�Plesset (MP) partition (Møller and

Plesset, 1934) from SR situation to MR cases and employs the one-electron

generalized Fock operator as the zeroth-order Hamiltonian:

Ĥ
caspt2

0 5 P̂0F̂P̂0 1 P̂KF̂P̂K 1 P̂SDF̂P̂SD 1 P̂TQ...F̂P̂TQ...; ð6:29Þ
where F̂ is the generalized Fock operator:

F̂5
X
pq

fpqÊ
p

q; ð6:30Þ

and fpq is F̂
0s representation in the MO basis:

fpq 5
1

2

X
σ

0 âpσ Ĥ; âyqσ
h i

1 âypσ Ĥ; âqσ
	 
��� ���0D E

; ð6:31Þ

P̂... is the projector onto the corresponding space V̂ .... And V̂0 is ψ0

�� �� �
; V̂K

represents the internal excitation space; V̂SD indicates single and double exci-

tation space; and V̂TQ... gives the space which contains all higher order exci-

tations not included in the other three spaces. Note that the terms in V̂K and

V̂TQ... do not interact with 0j i via the total Hamiltonian, so the first-order

wave function is in V̂SD which can be divided into eight groups as we

showed in Table 6.1:

iÞ Êt

iÊ
u

v 0⟩; ii
�� Þ Êt

iÊ
u

j 0⟩; iii
�� Þ Êa

t Ê
u

v 0⟩; iv
�� Þ Êa

i Ê
t

u

��0⟩; Êt

iÊ
a

u 0⟩;
��

vÞ Êt

iÊ
a

j 0⟩; vi
�� Þ Êa

t Ê
b

u 0⟩; vii
�� Þ Êa

i Ê
b

t 0⟩; and viii
�� Þ Êa

i Ê
b

j 0⟩:
�� ð6:32Þ

After the definition of Ĥ
caspt2

0 , the first-order equation set can be written

out as X
ν

Fμν 2E0Sμν
	 


cν 52Vμ; ð6:33Þ

where Fμν 5 μ Ĥ0

�� ��ν� �
; Sμν 5 μjν� �

; Vμ 5 μ Ĥ
�� ��0� �

and μ; ν represent the

different excitation configurations from the reference function 0j i, that is,
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μ
�� �5 Ê

ab

ij 0j i; vj i5 Ê
a0b0

i0j0 0j i. The solution cv of this linear equation set is the

coefficient of the excited configuration in the first-order wave function, that is,

1j i5Pνcν νj i. The second-order energy correction is then determined to be

E
ð2Þ
0 5 0 Hj j1h i5PμVμcμ: ð6:34Þ

Although CASPT2 method provides a surprisingly accurate value of

energy for a reasonable cost, CASPT2 suffers from the intruder state prob-

lem, due to the choice of one-electron Fock operator as Ĥ0 for a many-

electron calculation, that is, the denominator in second-order energy would

be zero when the energies of orbitals are degenerate or quasi-degenerate

(QD). Thus a level-shift correction (Roos and Andersson, 1995; Forsberg

and Malmqvist, 1997) usually has to be incorporated.

6.3.1.2.2 ENPT2

Different from using one-electron Fock operator in MP partition, Epstein�
Nesbet partition (Epstein, 1926; Nesbet and Hartree, 1955) can provide a

computationally simpler MRPT solution by partitioning the full configu-

rational space into a variational space and an outer space. The simplicity of

only having diagonal elements in the outer space for the zeroth-order

Hamiltonian in ENPT makes it an attractive alternative to other MRPT meth-

ods, since no diagonalization or solving linear equation set is required. Here

the zeroth-order Hamiltonian is defined as:

Ĥ
ENPT

0 5
Xactive
IJ

⟨φI Ĥ
�� ��φJ⟩jφI⟩⟨φJ j1

Xinactive
K

⟨φK Ĥ
�� ��φK⟩ φK⟩⟨φK :j

�� ð6:35Þ

where φI

�� �
and φJ

�� �
are the configurations in active space and φK

�� �
repre-

sents the configuration in the rest of the space. The second-order energy cor-

rection is written as:

E 2ð Þ
m 5

X
K

φK Ĥ
�� ��ψ 0ð Þ

m

� �� �2
E

0ð Þ
m 2 φK Ĥ0

�� ��φK

� � ; ð6:36Þ

where ψð0Þm
�� �

is the reference wave function for the mth eigenstate and Eð0Þm
introduces the corresponding reference energy.

Note that ENPT2 is generally exempted from the intruder state problem

and has a closer similarity with the true electronic Hamiltonian. However, it

has been proved that for SR problems, MP partition is preferred over EN

partition, and the ENPT2 is generally less accurate than second-order MPPT

(MP2) and lacks several important properties such as size extensivity and

orbital rotation invariance. As for the MR situation, if a sufficiently large

active space is used, ENPT2’s disadvantages may be partly alleviated, since
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the essential part of static correlation has been well described and the rota-

tion among the active orbitals does not affect the reference energy.

6.3.1.2.3 Second-order N-electron valence state perturbation theory

Second-order N-electron valence state PT (NEVPT2) was proposed by

Angeli et al. (2001, 2002) about 10 years after the formulation of CASPT2.

Its uncontracted version has been rarely used in practical applications,

because of the high computational cost. Instead, its two latter variants, the

pc-NEVPT2 and the sc-NEVPT2 are commonly used. Hence, here we will

only introduce its simplest version, sc-NEVPT2.

In sc-NEVPT2, the many-electron Dyall’s Hamiltonian (Dyall, 1995) is

used as a substitute for the generalized one-electron Fock operator in

CASPT2 to define the zeroth-order Hamiltonian, which can be written as:

Ĥ
Dyall

5 Ĥc 1 Ĥv 1C: ð6:37Þ
Here, Ĥc is a one-electron (diagonal) operator in the inactive space:

Ĥc 5
X
i;σ

εiâ1i;σâi;σ 1
X
a;σ

εaâ1a;σâa;σ; ð6:38Þ

and ε expresses the orbital energy. Ĥv represents a two-electron operator in

the active space:

Ĥv 5
X
tu;σ

hefftu â
1
t;σâu;σ 1

X
tuvw;στ

gtwuvâ
1
t;σâ

1
u;τ âv;τ âw;σ; ð6:39Þ

where gtwuv is two-electron integral. The matrix element of closed shell Fock

operator hefftu

� �
is defined as:

hefftu 5 htu 1
X
i

2gabii 2 gaibið Þ; ð6:40Þ

where htu indicates the one-electron integral and C introduces a constant

defined as:

C5 2
X
i

hii 1
X
ij

2giijj 2 gijij
� �

2 2
X
i

εi; ð6:41Þ

to ensure that Ĥ
Dyall

is equivalent to the full Hamiltonian within the CAS space.

As we can see, the Dyall Hamiltonian can be considered as a hybrid of

the zeroth-order Hamiltonians in CASPT2 and ENPT2, where the projection

of Hamiltonian in inactive space is represented by generalized Fock operator,

and in active space by the bielectronic Hamiltonian. The second-order cor-

rection is thus given by:

E 2ð Þ
m 52

X
K

ψK Ĥ
�� ��ψ 0ð Þ

m

� �� �2
hψK jĤ

DyalljψKi2E0

; ð6:42Þ
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where jψK⟩ represents the singly and doubly excited perturber functions

from the internal space to the active space or external space.

6.3.1.2.4 Linearized coupled cluster doubles

Linearized CC (LCC) was formally derived by Fink (2006), where the LCC

can be interpreted as a PT using Fink’s Hamiltonian. This theory is some-

times called retaining the excitation degree-PT (REPT), and it is straightfor-

wardly extended to MR cases, resulting in a MRLCC theory (Fink, 2009).

Fink proposed to set Ĥ0 to all terms of the full Hamiltonian, which retain

the excitation degree (i.e., do not change the number of electrons in any of

the core, active, or external spaces):

Ĥ
Fink

0 5
X

pq;Wn5 0

X
σ

hpqâ
y
pσâqσ 1

X
pqrs;Wn5 0

X
στ

1

2
gpsqrâ

y
pσâ
y
qτ ârτ âsσ; ð6:43Þ

where Wn5 0 signifies that all terms which would change the total number

of electrons in the core, active, or external spaces are removed.

The first-order wave function equation is then written as:

φab
tu Ĥ0 2E0

�� ��ψ 1ð Þ� �
52 φab

tu V̂
�� ��φ0

� �
; ð6:44ÞX

vwcd

φab
tu Ĥ0 2E0

�� ��φcd
vw

� �
ccdvw 52 φab

tu V̂
�� ��φ0

� �
: ð6:45Þ

For Ĥ0 5 Ĥ
Fink

0 , this can be rewritten as:X
vwcd

φab
tu Ĥ
�� ��φ0 1φcd

vwc
cd
vw

� �
5E0c

ab
vw; ð6:46Þ

which is also well known as the amplitude equation of the LCC doubles

method.

In order to conclude this subsection, in Fig. 6.2, we offer a schematic dia-

gram of the different Ĥ0 partition schemes within MRPT. This efficiently

illustrates matrix participating elements in practical calculations.

6.3.2 Density matrix renormalization group-complete active space
with second-order perturbation theory

As we can see, in CASPT2 calculation of first-order wave function and

second-order energy, the central complexity arises in the computation of the

matrix elements

Fμν 5
X
tu

ftu μ Ê
u

t

�� ��νD E
5
X
tu

ftu 0 Ê
t0u0

v0a Ê
u

t Ê
vvb
tvuv

��� ���0D E
: ð6:47Þ

Here, μ; ν represent the different excitation configuration from the reference

function 0j i: μ
�� �5 Ê

t0u0

v0a j0i, νj i5 Ê
v0 0b
t0 0u0 0 j0i. The coupling term 0 . . .j j0h i can
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be evaluated from the n-RDMs (n5 1, 2, 3, 4), while Fμν is further com-

puted from their contractions with ftu which are referred to as contracted

RDMs (Cn-RDMs). It has been proved that Cn-RDMs can be computed with

the same computation cost as n-RDMs for any used MOs. Kurashige and

Yanai (2011) illustrated the first implementation of CASPT2 on top of the

DMRG wave function, and its capability was demonstrated with the calcula-

tion of the potential energy curve of the chromium dimer with a large (3d

double-shell) active space consisting of 28 orbitals. Just like the cumulant

approximation methods used in the combination of DMRG with MRCI, the

cumulant versions of DMRG-CASPT2 were also later proposed (Kurashige

et al., 2014; Nakatani and Guo, 2017). Such a DMRG-cu(4)-CASPT2

FIGURE 6.2 Schematic illustration of zeroth-order Hamiltonians Ĥ0 in different partitions

of MRPT. Here, V0 is the CAS space; VS and VD represent the single and double excitation

spaces, respectively. The zero elements are shown in blank blocks and the nonzero elements

are displayed with shadow background or dashed lines. MRPT, Multireference perturbation

theory.
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approach has been successfully applied to calculate the longitudinal static

second hyperpolarizability of all-trans polyenes C2nH2n12 (n5 4�12)
(Wouters et al., 2016) and investigate the mechanism of various photochem-

istry systems (Liu et al., 2013; Shirai et al., 2016; Yanai et al., 2017) as well

as characterize the low-lying excited states in chloro-ligated iron(IV)-oxo

porphyrin and other mono- and di-nuclear metal complexes (Phung et al.,

2016; Phung and Pierloot, 2019; Phung et al., 2021; Tran, 2021).

Algorithm 6.3: DMRG-cu(4)-FIC-CASPT2.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return E0; jψ0i // only in active space
3: end procedure
4: procedure PrecalculateRDMs // refer to Algorithm 4.3

5: return 1-,2-,3-RDMs // Dkl...
ij... 5 ψ0 Ê

kl...

ij...

��� ���ψ0

D E
6: end procedure
7: procedure GeneralizeOverlapMatrix S

8: Sμν’Use precalculated RDMs Dkl...
ij... == ψ0 Ê

t 0u0

v 0a0 Ê
v 0a0

t 0u0

��� ���ψ0

D E
5Dt 0u0v 0 0

v 0t 0u0 δa0a0 0

9: Vn3n eigenvectors v0; v1; . . .; vnf g; Enf g’Diagonalize S
10: Vn3 k

0 v0; v1; . . .; vkf g; E0’ Discard zero-eigenvectors vk11; vk12; . . .; vnf g
11: return Vn 3 k

0 ; E0

12: end procedure
13: procedure SolveLinearizedEquation F 2 E0Sð ÞC 52V
14: V ’ 1-,2-,3-RDMs
15: F’ Calculate cumulant-approximated 4-RDMs on the fly // refer to Algorithm 4.3

16: F 02 E0ð ÞC 052V 0’ F 2 E0Sð ÞC 52V==H05 E02
1
2V 0T

� �
H V 0E02

1
2

� �
17: C 0 � Solve linearized Equation

18: return ψ1

�� �
5
P

μcμ μ⟩
�� Þ==C cμ

� �
5V 0E02

1
2C 0

� ��
19: end procedure
20: procedure CalculateSecondOrderEnergy

21: E ð2Þ0 5 ψ0 Hj jψ1

� �
5
P

μVμcμ

22: return E0 1 E ð2Þ0

23: end procedure

6.3.3 Density matrix renormalization group-second-order
N-electron valence state perturbation theory

The cumulant approximation version for the combination of DMRG and

sc-NEVPT2 was firstly implemented by Guo et al. (2016). Besides, a projec-

tion approximation scheme (Roemelt et al., 2016) was further incorporated

to reduce the cost of evaluating the norm and energy expectation value for

the most expensive classes of perturber functions, which requires 3-RDMs
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and 4-RDMs in DMRG-sc-NEVPT2. Later, a Cholesky decomposition of the

two-electron repulsion integrals was also exploited in DMRG-sc-NEVPT2

by Freitag et al. (2017) to efficiently describe static and dynamic correlation

in spin-crossover complexes involving calculations with more than 1000

atomic basis functions. Recently, DMRG-sc-NEVPT2 was successfully

applied to the investigation of magnetic exchange couplings in bis-μ-oxo/
μ-acetato Mn(III,IV) dimer (Roemelt et al., 2018), intra- and inter-molecular

singlet fission (Taffet and Scholes, 2018; Walia et al., 2021), as well as

carotenoid nuclear reorganization (Taffet et al., 2019). It may be also noted

that, a recent benchmark comparison for approximations of RDMs in

NEVPT2 by Guo et al. (2021) indicated that the cumulant approximation

always leads to intruder states, while the prescreening approximation pro-

duces stable results with modest computational savings.

Algorithm 6.4: DMRG-cu(4)-sc-NEVPT2.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return E0; jψ0i // only in active space
3: end procedure
4: procedure PrecalculateRDMs // refer to algorithm 4.3

5: return 1-,2-,3-RDMs // Dkl...
ij... 5 ψ0 Ê

kl...

ij...

��� ���ψ0

D E
6: end procedure
7: procedure CalculateSecondOrderEnergy

8: Calculate NðkÞl == NðkÞl 5 ⟨ψk
l jψk

l ⟩5 ⟨ψk
l Ĥ
�� ��ψ 0ð Þ

m ⟩ using Dkl...
ij...

9: ψK Ĥ
D

��� ���ψK

D E
’ Calculate cu(4)-RDMs // refer to Angeli et al. (2002)

10: Calculate E 2ð Þ
m using Eq. 6.42

11: return E0 1 E ð2Þ0

12: end procedure

The time-dependent formulation of the second-order N-electron valence

PT (t-NEVPT2) (Sokolov and Chan, 2016) was also incorporated by

Sokolov et al. (2017) to use in conjugation with a MPS reference wave

function. This (t-MPS-NEVPT2) allowed to compute uncontracted dynamic

correlation energies for large active spaces and basis sets, by using the time-

dependent density matrix renormalization group (TD-DMRG, see Chapter 8)

algorithm. It avoids the computation of expensive 4-RDMs. The active-space

wave function is represented in terms of compact time-dependent quantities

(active-space imaginary-time Green’s functions), and numerical tests with up

to 24 active orbitals show that the resulting t-MPS-NEVPT2 approach can

get results equivalent to the fully uncontracted NEVPT2, but with a smaller

computational cost.
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6.3.4 Density matrix renormalization group-ENPT2

The combination of DMRG and MR-ENPT2 was first presented by Song

et al. (2020) along with a selected-CI approximation. They suggested to use

EDGA (Luo et al., 2017) to sample the most important CASCI-type config-

urations in a DMRG/MPS wave function and then perform selected-CI calcu-

lations, by constructing the Hamiltonian with the selected small number

(102B105) of important configurations as the basis. The solution of a

selected-CI calculation with the sampled important configurations will be

then used for the zeroth-order wave function ψ0

�� �
and the zeroth-order

energy E0 in ENPT2 calculation. By avoiding the computation of n-RDMs,

DMRG-ENPT2 allows to efficiently calculate systems with large active

space beyond 40 orbitals, for example, a (42e, 42o) active space for a

strongly correlated 83 8 Hydrogen square lattice. It should be noted that

although ENPT2 suffers from two well-known deficiencies, size extensivity

and orbital rotation variance, MR dynamic correlation calculations are

heavily dependent on the quality of the reference wave function. By using a

highly accurate DMRG wave function with a sufficiently large active space

and a sufficiently large number m of preserved renormalized basis, DMRG-

ENPT2 can be expected to greatly reduce the negative influences of the

above mentioned two deficiencies in ENPT2. Similar to DMRG-ec-MRCI,

DMRG-ENPT2 has the bottleneck of finding a limited number (less than

105) of important reference configurations for a large active space or

extremely strongly correlated systems.

Algorithm 6.5: DMRG-ENPT2. DMRG, Density matrix renormalization group.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2

2: return MPS ψ0

�� �
DMRG

// only in active space

3: end procedure
4: procedure EDGA // refer to Algorithm 4.4
5: return collected configurations φ0

�� �
; φ1

�� �
; . . . ; φn

�� �� �
6: end procedure
7: procedure Obtain Reference Wave function jψ0i and Energy E0
8: H’basis: φ0

�� �
; φ1

�� �
; . . .; φn

�� �� �
9: ψ0

�� �
; E0’ Diagonalize H

10: end procedure
11: procedure Compute 2-order Energy Contribution

12: φa
S

�� �
; φab

P

�� En o
’ Generate singly and doubly excited configurations based on

φ0

�� �
; φ1

�� �
; . . .; φn

�� �� �
13: E ð2Þ0 5

P
S;a

φa
S Ĥj jψ0h ið Þ2

E0 2 φa
S Ĥ0j jφa

Sh i 1
P

P ;a;b

φab
p Ĥj jψ0

� �� �2
E0 2 φab

P Ĥ0j jφab
Ph i

14: return E0 1 E ð2Þ0

15: end procedure
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6.3.5 Matrix product states-perturbation theory

Instead of solving the first-order PT equations directly, Sharma and Chan

(2014) proposed MPS-PT, in which the second-order energy was obtained by

minimizing the Hylleraas functional in the space of MPS variationally. As

we have introduced in Section 6.3.1, for the second-order energy, the varia-

tional functional of the Hylleraas functional H½ψ1� can be written as:

H ψ1

	 

5 ⟨ψ1 Ĥ0 2E0

�� ��ψ1⟩1 2⟨ψ1 Q̂V̂
�� ��ψ0⟩

5 ⟨ψ1 Ĥ0 2E0

�� ��ψ1⟩1 2⟨ψ1 V̂
�� ��ψ0⟩2 2⟨ψ1 ψ0⟩⟨ψ0 V̂

�� ��ψ0⟩;
�� ð6:48Þ

where Q̂ is the projector onto the space orthogonal to jψ0i (equals Î when

hψ1 ψ0

�� �
5 0). In Sharma and Chan (2014)’s implementation (Fig. 6.3), the

Ĥ 0 was chosen as Dyall’s Hamiltonian, the same as in sc-NEVPT2.

Thus ψ1

�� �
can be optimized by a sweep algorithm analogous to that in

the DMRG, and overlaps and transition operator elements can be obtained

easily by the efficient product operations between two MPSs and one MPO.

However, it also means we have to do another sweep procedure, including

the construction of MPOs besides the DMRG sweep, and the two sweeps

have to be performed over the whole space (not only active orbitals).

Under this scheme, RDMs are no longer needed and the zeroth-order

Hamiltonian Ĥ0 can be decided arbitrarily. Later, Sharma et al. (2016) fur-

ther generalize MPS-PT for calculating energies of excited states by using

QDPT. Another advantage of MPS-PT is its ability to recover the exact

uncontracted MRPT energies in the limit of large MPS bond dimension.

However, a standard DMRG-like sweep over the entire orbital set will

become prohibitively expensive when working with a few hundred external

orbitals. Sharma et al. (2017) further proposed to solve this problem by

parametrizing the perturbed wave function using a mixture of CW partial

FIGURE 6.3 Schematic illustration of the optimization of Anl
il21 il

in ψ1

�� �
. The red tensor is the

quantity being solved for. Reproduced from Sharma, S., Chan, G.K.-L., 2014. A flexible multire-

ference perturbation theory by minimizing the Hylleraas functional with matrix product states.

J. Chem. Phys. 141, 111101. https://doi.org/10.1063/1.4895977, with permission from American

Institute of Physics.
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internal contraction and MPS-PT. All terms (i and iii in Eq. 6.32) that

require 4-RDMs (internally contracted states with three active space indices

and one external or core index) are treated fully uncontracted by MPS-PT,

and the rest of the terms, requiring three-body or lower-order RDMs, are

treated using internal contraction, for example,

Ĥ0 2E0

� �
ψiv
1

�� �
52 V̂

iv
ψ0

�� �
; ð6:49Þ

where ψiv
1

�� �
and V̂

iv
are respectively the space iv’s contribution in jψ1i and

V̂ , the space partition refers to Eq. 6.32. Now in MPS-PT, the first-order

state has a maximum of a single electron in the external space, therefore the

maximum bond dimension required for the tensors on external orbitals is

only nv, the number of external orbitals, which is much less than a typical m

value of a few thousand that is routinely used in DMRG calculations.

Recently, Khokhlov and Belov (2020) successfully applied the NEVPT2

under this combination framework (ic-MPS-NEVPT2) to study the low-lying

excited states of polyenes containing from 8 to 13 conjugated double bonds,

which serve as a model for natural carotenoids. With relaxed geometries of

the excited states, absorption and transient absorption spectra were also cal-

culated within the Franck2Condon approximation bridging the gap between

experimental spectroscopic data and computational results.

6.3.5.1 Matrix product states-linearized coupled cluster

Sharma and Alavi (2015) proposed a new size-extensive MRLCC theory

using matrix product states (MPS-LCC), which provides remarkably accurate

ground-state energies for a wide variety of electronic Hamiltonians. As we

introduced and proposed by Fink (2009), MRLCC can be reformulated as

MR-REPT. Under this framework, an MPS-LCC scheme can be worked out

as the extension of the MPS-PT algorithm.

In LCC ansatz, the Baker�Campbell�Hausdorff (BCH) expansion is

truncated at the first order, that is, e2T̂ ĤeT̂ 5 Ĥ 1 ½Ĥ ; T̂ �, which yields the

governing equations of the SRLCC theory:

E5 φ0 Ĥ
�� ��φ0

� �
1 φ0 Ĥ

�� ��ψ1

� �
; ð6:50Þ

05
�
φab...
ij... Ĥ
�� ��φ0

�
1
�
φab...
ij... Ĥ2E0

�� ��ψ1

�
: ð6:51Þ

Here, jψ1i � T̂ jφ0i is defined as the correction to wave function consist-

ing of only single and double excitations, that is, T̂ 5 T̂ 1 1 T̂ 2.

The MRLCC method can be achieved by replacing the HF determinant

jφ0i with the many-electron wave function of CASCI or CASSCF jψ 0ð Þi.
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By utilizing the PT and the projector approximation, the governing equation

of jΨðnÞi, which is the nth-order correction of the ground state wave function

jΨi of the full Hamiltonian, is written as:

Ĥ0 2E 0ð Þ� ���ψ nð Þ⟩5 Q̂ 2 V̂
��ψ n21ð Þ⟩1

Xn
k51

E kð Þ��ψ n2kð Þ⟩

!
;

 
ð6:52Þ

where Ĥ 0 gives Fink Hamiltonian, Q̂5 12 jψ 0ð Þihψ 0ð Þj, and V̂ represents the

perturbative operator. Therefore, using the variational principle for the PT,

the Hylleraas functional can be written as:

H ψ nð Þ	 

5 ⟨ψ nð Þ Ĥ0 2E 0ð Þ�� ��ψ nð Þ⟩

2 ⟨ψ nð Þ V̂
�� ��ψ n21ð Þ⟩2

Xn
k51

E kð Þ⟨ψ nð Þjψ n2kð Þ⟩

 !

1 ⟨ψ nð Þjψ 0ð Þ⟩ ⟨ψ 0ð Þ V̂
�� ��ψ n21ð Þ⟩2

Xn
k51

E kð Þ⟨ψ 0ð Þjψ n2kð Þ⟩

 !
:

ð6:53Þ

The remaining part of this approach is to evaluate the MPS-LCC wave

function by minimizing the Hylleraas functional using the sweep algorithm,

which is totally equivalent to the MPS-PT method.

Algorithm 6.6: MPS-PT (not in combination with ic-ansatz). MPS, Matrix

product states; PT, perturbation theory.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return E0; jψ0i // in the active space
3: end procedure
4: procedure Optimize first-order wave function jψ1i
5: Ĥ0; V̂  � Construct needed MPO // in the whole orbital space

6: Generate Hylleraas functional H jψ1i
� �

// refer to Fig. 6.3

7: optimized jψ1i � Optimize each site MPS in ψ1

�� �
by sweeping through whole space

8: return jψ1i
9: end procedure
10: procedure Compute 2-order Energy Contribution

11: E ð2Þ0 5 ψ0 V̂
�� ��ψ1

D E
12: return E0 1 E ð2Þ0

13: end procedure
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Algorithm 6.7: MPS-PT in combination with ic-ansatz. MPS, matrix product

states; PT, perturbation theory.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return E0; jψ0i // in the active space
3: end procedure
4: procedure Optimize jψi

1i and jψiii
1 i // refer to Eq. 6.32

5: Ĥ0; V̂
i
; V̂

iii  � Construct needed MPO // in the whole orbital space

6: Generate Hylleraas functional H½jψi
1i�,H½jψiii

1 i� according to Eq. 6.49

7: return optimized jψi
1i, jψiii

1 i // refer to Algorithm 6.6

8: end procedure
9: procedure Optimize other space contribution in jψ1i
10:

P
ν H0ð Þμν 2 E0Sμν
� �

cν 52Vμ’⟨μ Ĥ0 2 E0
�� ��ψii;iv;...

1 ⟩52 ⟨μ V̂
�� ��ψ0⟩

11: cν  � Solve linearized equation // refer to Algorithm 6.3

12: return jψii;iv;...
1 i

13: end procedure
14: procedure Compute 2-order Energy Contribution

15:
E 2ð Þ
0 5 ψ0 V̂

�� ��ψ1

D E
5 ψ0 V̂

i;iii
��� ���ψi;iii

1

D E
1 ψ0 V̂

ii;iv;...
��� ���ψii;iv;...

1

D E
16: return E0 1 E ð2Þ0

17: end procedure

6.3.6 Other variants

Besides the aforementioned DMRG-MRPT approaches, there are also many

other DMRG-MRPT variants. For example, DMRG was suggested to be fol-

lowed by the second-order perturbative version (DSRG-MRPT2) of driven

similarity renormalization group (DSRG) by Khokhlov and Belov (2021),

and the hybridization between DMRG and blocked correlated second-order

PT (BCPT2) was implemented based on the generalized valence bond

(GVB) reference by Xu et al. (2015).

DSRG introduced by Evangelista (2014) is an alternative approach to

treat dynamic correlation effects in many-body theories. It is based on a

series of infinitesimal unitary transformations of the Hamiltonian to decouple

the reference wave function from its excited configurations.

Ĥ-H sð Þ5 Û
y
sð ÞĤÛ sð Þ; ð6:54Þ

where H sð Þ is the transformed Hamiltonian and Û sð Þ gives a unitary operator

that depends on a time-like parameter s defined in the range (0,N). Both

DSRG and its second-order perturbative version, DSRG-MRPT2, (Li and

Evangelista, 2015) are inherently intruder free by suppressing those excita-

tions that correspond to a denominator smaller than an energy cutoff

Λ5 s21=2
� �

. Another advantage of DSRG-MRPT2 is that it only requires
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RDMs up to the third order. Recently, Khokhlov and Belov (2021) applied

ab initio DMRG and DMRG-SCF calculations followed by DSRG-MRPT2

for the calculation of vertical and adiabatic excitation energies into the 2A2
g ,

1B2
u , and 1B1

u electronic states of polyenes, which contains from 8 to 13

conjugating double bonds acting as a model for natural carotenoids. The cal-

culated adiabatic excitation energies deviated less than 1000 cm21 from the

experimental data for the 2A2
g state and less than 3000 cm21 for the 1B2

u

and 1B1
u states. Given results can be considered as a fine agreement, when

compared with the accuracy of ic-MPS-NEVPT2 reported by the same

authors (Khokhlov and Belov, 2020) earlier.

Instead of applying MRPT theories on the DMRG reference wave functions

or their RDMs, Xu et al. (2015) proposed to include the dynamic correlation as

a simple energy correction calculated at an independent and lower MR quantum

chemistry level, that is, GVB-BCPT2 in this work. The basic idea is to approxi-

mate the DMRG reference and excited functions as the GVB reference and the

corresponding excited functions and simplify the zeroth-order Hamiltonian as

Ĥ
GVB

0 in computing the dynamic correlation term. Therefore the total energy of

this hybridized method (DMRG-BCPT2/GVB) can be written as

EDMRG2BCPT2=GVB 5EDMRG 1
X
u 6¼0

ψGVB
0 Ĥ2Ĥ

GVB

0

��� ���ψGVB
u

D E��� ���2
EGVB
0 2EGVB

u

; ð6:55Þ

where EGVB
0 (EGVB

u ) and jψGVB
0 i (jψGVB

u i) are the ground (excited) state

energy and wave function, respectively. Xu et al. (2015) applied DMRG-

BCPT2/GVB to investigate the bond-breaking potential energy surfaces in

n-butane and the spectroscopic constants of Cr2. However, when the mole-

cules are extremely strongly correlated, the GVB approximation for the

DMRG reference may break down and accordingly the performance of the

DMRG-BCPT2/GVB method becomes less satisfactory.

6.4 Density matrix renormalization group-coupled cluster
theory

In this section, we first give a brief recapitulation about CC theory, followed

by an introduction to the recently proposed combination schemes of DMRG

with different CC approaches.

6.4.1 Recapitulation of coupled cluster theory

The wave function of traditional SRCC theory is written as an exponential ansatz:

jψ⟩5 eT̂ jφ0⟩5 11 T̂ 1
T̂
2

2!
1

T̂
3

3!
1 . . .

0@ 1A φ0⟩:
�� ð6:56Þ
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where φ0

�� �
is the SD (e.g., the HF determinant), and T̂ is an excitation oper-

ator which contains a set of excitation terms at the different levels:

T̂ 5 T̂1 1 T̂2 1 T̂3 1 . . .;

T̂1 5
X
i;a

tai â
y
aâi 5

X
i;a

tai Ê
a

i ;

T̂2 5
X

i. j;a. b

tabij â
y
aâiâ

y
bâj 5

1

4

X
ij;ab

tabij Ê
ab

ij ; ð6:57Þ

Here, i, j, . . . label occupied orbitals and a, b, . . . label unoccupied orbitals.

tai and tabij are excitation amplitudes.

Due to the exponential ansatz, the standard CC wave function that con-

tains all determinants in FCI space obtains several significant properties

(Crawford and Schaefer, 2000) such as size extensivity and size consistency

provided that the reference function adopts a direct-product form in the non-

interacting separated limit. The CC Schrödinger equation is written like:

Ĥ ψ⟩5 ĤeT̂ φ0⟩5ECCe
T̂ φ0⟩:
�������� ð6:58Þ

We may left-multiply it by φ0

� ��e2T̂ or φab...
ij...

D ���e2T̂ to achieve:

φ0 e2T̂ ĤeT̂
��� ���φ0

D E
5ECC; ð6:59Þ

φab...
ij... e2T̂ ĤeT̂
��� ���φ0

D E
5 0: ð6:60Þ

The similarity transformed Hamiltonian ðĤT Þ is non-Hermitian and may

be expressed through the BCH expansion:

Ĥ
T
5 e2T̂ ĤeT̂

5 Ĥ1 Ĥ; T̂
	 


1
1

2!
Ĥ; T̂
	 


; T̂
	 


1
1

3!
Ĥ; T̂
	 


; T̂
	 


; T̂
	 


1 . . .
ð6:61Þ

Thus we can obtain the energy from Eq. 6.59, while the amplitudes come

from Eq. 6.60. Because the energy is given by an expectation value of the

non-Hermitian Ĥ
T
, it is not guaranteed to obey the variational theorem. For

practical uses, different truncations of the excitation operator T̂ define the

CC methods at different levels. If the cluster operator only contains double

excitation, that is, T̂ � T̂2, then it is the simplest CC method, generally

denoted as CCD, and if single excitation is also included, thence CCSD

method will be obtained, etc.

Just like CISD or MP2 method, the CC theory is still an SR method,

even though the exponential CC wave function is defined in the entire
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Hilbert space. Thus SRCC fails in describing MR chemical systems, which

encouraged the extension of the CC formalism to produce an efficient multi-

reference CC (MRCC) method applicable to a wider class of interesting pro-

blems. Theoretically, MRCC (Lyakh et al., 2012; Evangelista, 2018) can be

obtained through substituting the SD by a multiconfigurational reference

wave function (e.g., the CASSCF wave function).

It can be easily derived that, in SRCC, higher than fourfold commutators

cannot appear in Eq. 6.61, because of the two-body nature of the Hamiltonian

and commutativity of all components in T̂ . However, in most cases of MRCC,

the excitation and deexcitation coupling between the active indexes leads to an

unterminated BCH expansion due to the noncommutativity of the excitation

operators that constitute T̂ , leading to more complex equations as compared to

SRCC. Recent advances in MRCC theory seem to have opened new frontiers

for simplier implementations. Generally, the MRCC algorithms can be catego-

rized into two sets. The first one is called “genuine” MRCC scheme, where a

true multiconfigurational reference wave function is used, and the second one

is named alternative MRCC, which simply adjusts the conventional CC for-

malism to MR problems. For details about MRCC theory, the readers may

refer to the reviews by Lyakh et al. (2012) and Köhn et al. (2013) or the book

by Kowalski et al. (2013) as well as the references therein.

6.4.2 Density matrix renormalization group-alternative-
multireference coupled cluster

Since practical MRCC methods are limited, works on the combination of CC

theory and DMRG are significantly fewer compared with those for the

MRCI or MRPT methods. However, there are still several impressive

attempts in combining the alternative MRCC schemes with DMRG.

Since 2016 the combination of tailored CC (TCC), one of the alternative

MRCC schemes, with DMRG has been extensively investigated (Veis et al.,

2016; Faulstich et al., 2019; Antalı́k et al., 2019; Lang et al., 2020). The gen-

eral TCC (Kinoshita et al., 2005) wave function employs the following split-

amplitude ansatz��ψTCC⟩5 eT̂
��φ0⟩5 eT̂ext1T̂cas

��φ0⟩5 eT̂exteT̂cas φ0⟩;
�� ð6:62Þ

where φ0

�� �
is the single determinant reference wave function, and the cluster

operator T̂ is divided into two parts: T̂cas represents the amplitudes corre-

sponding to the active space and T̂ext is the rest of the cluster operator, that

is, the amplitudes with at least one index outside the active space. The active

part ðT̂casÞ is obtained from a precomputed CAS wave function and keeps

fixed during the calculation, while the external amplitudes ðT̂extÞ are iterated

using the standard CC framework. Note that φ0

�� �
is the single determinant

wave function, so T̂cas and T̂ext commute naturally.
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As we mentioned before, the MPS-type wave function:

jψMPS⟩5
X
σif g

Aσ1Aσ2 . . .Aσn σ1σ2. . .σn⟩;
�� ð6:63Þ

can be transformed into the CAS-type wave function:

jψ⟩5
X
σif g

cσ1...σn
σ1σ2. . .σn⟩;
�� ð6:64Þ

where the MPS matrices Aσi are contracted to obtain the CI coefficients

cσ1...σn
. Using the relations between CI and CC expansions

T1 5C1; ð6:65Þ

T2 5C2 2
1

2
C1ð Þ2; ð6:66Þ

the CC amplitudes in active space can be acquired by DMRG procedure,

which are kept frozen during the calculation. Thus the T̂cas can be seen as

the static correlation to the HF reference function. As for the amplitudes in

T̂ext, they are optimized by treating the equations:

φab...
ij... e2T̂ext e2T̂casĤeT̂cas

� �
eT̂ext

��� ���φ0

D E
5 0 ð6:67Þ

which is analogous to the standard CC method and corresponds to the

dynamic correlation.

Algorithm 6.8: DMRG-TCCSD. DMRG, Density matrix renormalization

group. TCCSD, tailored coupled cluster singles and doubles.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return MPS jψ0i // only in active space
3: end procedure
4: procedure Calculate T̂

1ð Þ
cas and T̂

2ð Þ
cas

5: Choose the single-configurational reference wave function jφ0i (usually HF
determinant)
6: cut

� �
; fcvwtu g � extract the coefficients of singly and doubly excited configurations

corresponding to φ0

�� �
from jψ0i using Eq. 4.101: Obtain the CC amplitudes in active

space from cut
� �

; fcvwtu g using Eqs. 6.65/6.66
8: return T̂

1ð Þ
cas and T̂

2ð Þ
cas

9: end procedure
10: procedure Calculate T̂

1ð Þ
ext and T̂

2ð Þ
ext

11: T̂
1ð Þ
ext and T̂

2ð Þ
ext  � solve CC amplitude equations // see Eq. 6.67

12: return T̂
1ð Þ
ext and T̂

2ð Þ
ext

13: end procedure
14: procedure Compute CC energy
15: Solve the CC energy equation // see Eq. 6.59
16: return ECC
17: end procedure
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DMRG-TCC does not require the computation of the high-rank RDMs,

since the reference function is a single determinant, which, on the other

hand, limits its accuracy for systems displaying strong static correlation,

where the efficiency of DMRG is maximal in contrast. Recently, scrutiniza-

tion of the performance of various CC methods tailored by electronic wave

functions, including the DMRG, was given by Leszczyk et al. (2022). It was

shown that, by restricting the cluster operator to at most double excitations,

the studied tailored CC methods were not able to treat very challenging sys-

tems such as predicting the correct barrier height for the automerization of

cyclobutadiene, or reliably describing the complete potential energy surface

of the chromium dimer.

On contrary to tailored CC, the externally corrected CC (ecCC) method

(Li et al., 1997) extracts static correlation from a MR method, by using the

MR wave function as an “external” source of higher order CC amplitudes.

For example, in the externally corrected coupled cluster singles and dou-

bles (ecCCSD), the T̂3 and T̂4 amplitudes are extracted from the external

source

T3 5C3 2C1C2 1
C3
1

3
;

T4 5C4 2C1C3 2
C2
2

2
1C2

1C2 2
C4
1

4
;

ð6:68Þ

and accordingly, a new set of T̂1 and T̂2 amplitudes are computed in their

presence. The concept is that a priori exact T̂3 and T̂4 clusters, can yield the

exact T̂1 and T̂2 clusters and as a result the exact final energy. Therefore,

using an approximate many-electron wave function obtained by a low-level

multiconfigurational calculation, one can fix the amplitudes in T̂3 and T̂4

and employ them in the CC chain:

T̂ 5 T̂1 1 T̂2 1 T̂3
01 T̂4

0 ð6:69Þ

where T̂3
0; T̂4
0 indicate they are approximated clusters. It has been shown that

the T̂3
0; T̂4
0 obtained from a partially converged FCIQMC calculation already

provides nearly accurate FCI energy (Deustua et al., 2018). Thus a partially

converged MPS with a small bond dimension can also be coupled with this

theory and gives an exceptional combination scheme for DMRG and CC

(Lee et al., 2021).
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Algorithm 6.9: DMRG-ecCCSD(T).

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: Large CAS with small m or small CAS with large m // m is bond dimension

3: return approximate ψ0

�� �0
4: end procedure

5: procedure Calculate T̂ 3
0 and T̂ 4

0

6: Choose the single-configurational reference wave function φ0

�� �
(usually HF

determinant)
7: C1

0;C2
0;C3

0;C4
0 ’ extract the coefficients of singly to quadruply excited configurations

corresponding to φ0

�� �
from ψ0

�� �0 using Eq. 4.101: Choose the triply and quadruply

excited configurations with large coefficients
// set the threshold according to Lee et al. (2021)
9: Obtain the CC amplitudes of selected configurations using Eq. 6.68

10: return T̂
0

3 and T̂
0

4

11: end procedure

12: procedure Calculate T̂ 1 and T̂ 2

13: T̂ 1 and T̂ 2 ’ solve CC amplitude equations // see Eq. 6.60

14: return T̂ 1 and T̂ 2

15: end procedure
16: procedure Compute total energy
17: Solve the CC energy equation // see Eq. 6.59
18: Add perturbative triples correction // refer to Lee et al. (2021)

19: return ECC 1 δecCCSDðTÞ

20: end procedure

6.4.3 Density matrix renormalization group-canonical
transformation

Yanai, Chan and their coworkers have developed the so-called canonical

transformation (CT) theory (Yanai and Chan, 2006; Neuscamman et al.,

2010a), an elaborated theory seeking feasible alternatives to the

“genuine” CC method. Its combination with DMRG has also been

discussed in the subsequent literatures (Neuscamman et al., 2009; Yanai

et al., 2010).

In common with CC methods, CT theory is also based on an exponential

ansatz

jψ⟩5 eÂ ψ0⟩:
�� ð6:70Þ

However, Â is an anti-Hermitian operator, that is, Â5
P

μAμ Ôμ 2 Ô
y
μ

� �
,

which makes eÂ a unitary transformation, and ψ0

�� �
is a reference wave

function.
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At the singles and doubles (CTSD) level of theory, the full set of possible

excitations are given by the following:

Â5
X
ij;tu

Atu
ij Ê

tu

ij 2 Ê
ij

tu

� �
1
X
i;tuv

Atu
iv Ê

tu

iv 2 Ê
iv

tu

� �
1
X
i;t

At
i Ê

t

i 2 Ê
i

t

� �
1
X
tu;ab

Aab
tu Ê

ab

tu 2 Ê
tu

ab

� �
1
X
tuv;a

Ava
tu Ê

va

tu 2 Ê
tu

va

� �
1
X
t;a

Aa
t Ê

a

t 2 Ê
t

a

� �
1
X
i;tu;a

Aua
it Ê

ua

it 2 Ê
it

ua

� �
1
X
i;t;ab

Aab
it Ê

ab

it 2 Ê
it

ab

� �
1
X
ij;t;a

Ata
ij Ê

ta

ij 2 Ê
ij

ta

� �
1
X
ij;ab

Aab
ij Ê

ab

ij 2 Ê
ij

ab

� �
1
X
i;a

Aa
i Ê

a

i 2 Ê
i

a

� �
;

ð6:71Þ

where the indices obey the rules that we mentioned in Section 6.1.1.

Given that eÂ is a unitary transformation, the effective Schrödinger equa-

tion in CT method is written as:bH ψ0

�� �
5E ψ0

�� �
; ð6:71Þ

where the effective Hamiltonian is obtained by bH5 e2ÂĤeÂ. Therefore the

energy and amplitude equations are formalized as:

ECT 5 ψ0 Ĥ
��� ���ψ0

D E
; ð6:72Þ

05 ψ0
bH; Â
h i��� ���ψ0

D E
: ð6:73Þ

If ψ0

�� �
is a multiconfigurational reference wave function, the CT ansatz

aforementioned becomes the same as that used in an internally contracted

MR unitary CC theory (ic-MRUCC) (Chen and Hoffmann, 2012), except the

fact that the CT method further applies operator decompositions to avoid the

high computational costs in ic-MRUCC theories.

As we can see, after the canonical transformation of the Hamiltonian, the

complexity of wave function is transferred to the Hamiltonian operator

bH 5 e2ÂĤeÂ5 Ĥ1 Ĥ; Â
	 


1
1

2!
Ĥ; Â
	 


; Â
	 


1 . . .: ð6:74Þ

Here over two-particle-rank operators appear, for example, Ĥ; Â
	 


gives

out ayp1a
y
p2
ayp3aq1aq2aq3 terms which are not included in an electronic

Hamiltonian. In order to avoid the unlimited expansion of the transformed

Hamiltonian, the three- and higher-body interactions (operators) are approxi-

mated by the products of one- and two-body interactions,

bH1;2 5 Ĥ1 Ĥ; Â
	 


1;2
1

1

2!
Ĥ; Â
	 


1;2
; Â

h i
1;2

1 . . . ð6:75Þ
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where the notation Ĥ; Â
	 


1;2
indicates that a combination of one- and two-

body operators is used as an approximation. Note that the quadratic term in

Eq. 6.75 could also be approximated by applying the decomposition once

1
2! Ĥ; Â
	 


; Â
	 


1;2
rather than applying it twice 1

2! Ĥ; Â
	 


1;2
; Â

h i
1;2
.

Using the formalism of extended normal ordering (ENO) operators sug-

gested by Kutzelnigg and Mukherjee (1997), one can employ the operator

approximation by neglecting any resulting three-body ENO operators. The

one-, two-, and three-body ENO operators are defined as

~̂
E
p1

q1
5 Ê

p1
q1
2Dp1

q1
;

~̂
E
p1p2

q1q2
5 Ê

p1p2
q1q2

2
X

2
1

2

� �P

Dp1
q1

~̂
E
p2

q2
2Dp1p2

q1q2
;

~̂
E

p1p2p3

q1q2q3
5 Ê

p1p2p3
q1q2q3

2
X

21
2

� �P

Dp1
q1
Ê
p2p3

q2q3
2
X

21
2

� �P

Dp1p2
q1q2

~̂E
p3

q3
2Dp1p2p3

q1q2q3
;

ð6:76Þ
where D represents the reference function’s RDMs (see Section 4.6) and the

summation runs over all possible permutations among p1; p2; p3
� �

and

q1; q2; q3
� �

respectively. For each permutation operation of the indices from

their original positions, a factor of 21
2

� �
is applied. As a result, the three-

body operators in Ĥ; Â
	 


can be approximated by the combination of one-

and two-body operators with the n-RDMs (n5 1, 2, 3),

Ê
p1p2p3
q1q2q3

.
P

21
2

� �P

Dp1
q1

~̂
E

p2p3

q2q3

1
X

21
2

� �P

Dp1p2
q1q2

~̂
E
p3

q3
1Dp1p2p3

q1q2q3
: ð6:77Þ

The energy and amplitude equations can be formalized using only the

one- and two-body operators of the electronic Hamiltonian:

ECT 5 ψ0
bH1;2

��� ���ψ0

D E
; ð6:78Þ

05 ψ0
bH1;2; Â
h i

1;2

���� ����ψ0

� �
: ð6:79Þ

So far, the operator approximation eliminates all three- or higher body

interactions in the expansion of the Hamiltonian, while requires the use of

the reference function’s 3-RDMs. In order to avoid calculating 3-RDMs, the

cumulant approximation that we discussed before is utilized to decompose

the 3-RDMs into its 1-RDMs and 2-RDMs approximations in CT method.

Consequently, the final CT method only needs the 1-RDMs and 2-RDMs

from the active space, which is easily obtained from the DMRG procedure.
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A strongly contracted CT (sc-CT) theory has also been proposed

(Neuscamman et al., 2010b). In this, the operators in Â are written as the

strongly contracted excitation operators, that is,

Â5
X
μ

Cμôμ: ð6:80Þ

Here ôμ is a strongly contracted operator, for example,

ôa1a2 5
X
t1t2

ga1t1a2t2 Ê
a1a2
t1t2

2 Ê
t1t2
a1a2

� �
; ð6:81Þ

where ga1t1a2t2 is the two-electron integral appearing in the Hamiltonian.

Though the CT scheme slowly scales in the function of the system size, it

introduces the intruder state problems, which are caused by the cumulant and

operator decomposition approximations. These intruder states can be circum-

vented by the overlap truncation, the use of strongly contracted excitation

operators or the level-shifted condition (Yanai et al., 2012). Unfortunately,

those countermeasures now disrupt the size consistency of CT theory.

Algorithm 6.10: DMRG-CT. DMRG, Density matrix renormalization group;

CT, canonical transformation.

1: procedure DMRG // refer to Algorithm 4.1or 4.2
2: return ψ0

�� �
// only in active space

3: end procedure
4: procedure PrecalculateRDMs // refer to Algorithm 4.3
5: Calculate cumulant-approximated 3-RDMs
6: return 1-, 2-RDMs and cumulant approximated 3-RDMs
7: end procedure
8: procedure Calculate amplitudes of Â
9: generate amplitude equations using the one- and two-body operators with 1-, 2-RDMs
and cumulant approximated 3-RDMs // see Eqs. 6.76/6.77
10: Solve amplitude equations // see Eq. 6.79
11: return Â
12: end procedure
13: procedure Compute final energy

14: Generate bH1;2 // see Eq. 6.75
15: Solve the energy equation (Eq. 6.78).
16: return ECT
17: end procedure

6.5 Hybridization of density matrix renormalization group
with density functional theory

A computationally cheap alternative to obtain dynamic correlation with multi-

configurational wave functions is to combine these with a density functional,
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thereby exploiting the efficiency of density functional theory (DFT), while

maintaining a correct description of multiconfigurational systems. In turn, the

combination can also correct the errors observed in current DFT approxima-

tions, namely, the delocalization error and static correlation error (Cohen

et al., 2008). In this section we will introduce several schemes for combining

DMRG with DFT.

6.5.1 Recapitulation of density functional theory

DFT is probably the most widely used electronic structure method in solid-

state physics, computational material science, and quantum chemistry. The

principle behind DFT is that the ground-state density uniquely determines

the external potential, and for this reason all properties of the system, includ-

ing the energy and many-body wave function. In other words, the ground-

state energy is a functional of the electron density ρð Þ:
EDFT 5E ρð Þ5 T ρð Þ1Vext ρð Þ1U ρð Þ; ð6:83Þ

where T is the kinetic energy, Vext expresses the potential energy from the

external field (the attraction to the nuclei) and U represents the electron-

electron energy. Assuming we can minimize this functional with respect to

ρ, we will obtain the ground-state energy and electron density ρ with all

other ground-state observables. In the framework of Kohn and Sham (1965),

they mapped the interacting electronic system to a fake noninteracting sys-

tem with the same density ρ, where every electron is treated as formally

independent particles in the mean field of all other electrons, this results in a

new functional of the energy:

EKS2DFT 5 Ts ρð Þ1Vs ρð Þ5 Ts ρð Þ1Vext ρð Þ1EH ρð Þ1Exc ρð Þ: ð6:84Þ
Here, TsðρÞ gives the kinetic energy and Vs ρð Þ is the external potential of one

electron in the noninteracting system. Vs ρð Þ consists of three ingredients, the

attraction to the nuclei Vext ρð Þð Þ, the Coulomb repulsion of electrons EH ρð Þð Þ,
and all the rest things in the exchange-correlation term ðExcðρÞÞ. Based on

the expression of EKS2DFT, Kohn�Sham (KS) equations of this auxiliary

noninteracting system can be derived:

2
h̄2

2m
r2 1 V̂s

24 35φi 5 εiφi: ð6:85Þ

By solving the KS equations, one can obtain the KS orbitals fφig and
reproduce the density ρ of the original interacting electronic system

ρ5
XN
i51

φi

�� ��2: ð6:86Þ
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Notwithstanding its simplicity, in the KS formulation the V̂s depends on

the ρ, that at the same time depends on fφig, which in turn depend on V̂s. The

problem of solving KS equation can be fixed by the self-consistent method.

Note that although DFT is a single determinant method, we can obtain

the exact energy and wave function by solving the KS equation if we have

an ideally exact ExcðρÞ. However, except for the free-electron gas, the exact

functionals for exchange and correlation are unknown, approximations must

be adopted to generate the ExcðρÞ, such as local density approximation

(LDA), generalized gradient approximation (GGA), hybrid functionals, and

so on. (Cohen et al., 2012; Zhang and Xu, 2021)

6.5.2 Density matrix renormalization group-short-range density
functional theory

The combination of multiconfigurational WFT and DFT is not straightfor-

ward, since static and dynamic correlation are merely phenomenological

terms and cannot be strictly separated. A small part of static correlation is

therefore already included in DFT calculations, implicitly by an empirical

functional, leading to double-counting of correlation effects if no special pre-

cautions are taken.

To avoid the double-counting issue, Savin and Flad (1995) proposed mul-

ticonfigurational ranged-separated short-range DFT (MC-srDFT) method,

where the two-electron operator are separated into long-range and short-

range components,

ĝ 1; 2ð Þ5 ĝμ;lr 1; 2ð Þ1 ĝμ;sr 1; 2ð Þ: ð6:87Þ
The exact definition of ĝμ;lr 1; 2ð Þ and ĝμ;srð1; 2Þ can differ by virtue of

tuning the error function

ĝμ;lr 1; 2ð Þ5 erf μ r1 2 r2j jð Þ
r1 2 r2j j ; ĝμ;sr 1; 2ð Þ5 12 erf μ r1 2 r2j jð Þ

r1 2 r2j j ; ð6:88Þ

which involves a range-separation parameter μ. Calibration studies suggest

that μ values in the interval between 0.33 and 0.5 a.u. are optimal.

The short-range part of the electron interaction is henceforth treated by

DFT, while the long-range part is assigned to the WFT approach.

Accordingly, the ground-state energy expression of MC-srDFT can be writ-

ten as:

E5min
ψ-ρ

ψ T̂ 1 ĝμ;lr
�� ��ψ� �

1E
μ;sr
Hxc ρψ
� �

1

ð
ρψ rð ÞVext rð Þdr

� �
; ð6:89Þ

where E
μ;sr
Hxc ρψ
� �

indicates the short-range Hartree-exchange-correlation func-

tional and ρψ is the density coming from the wave function ψ, that is,
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ρψ 5 ψ ρ̂
�� ��ψ� �

5
P

pq ψ ΩpqÊ
p

q

��� ���ψD E
5
P

pqΩpqD
p
q, where ρ̂ represents the den-

sity operator and Ωpq 5φ⁎

pφq is the overlap matrix of MOs. The minimizing

wave function jψμi from Eq. 6.89 can be given by the Euler�Lagrange
equation:

T̂ 1 ĝμ;lr 1 V̂ext 1 v
μ;sr
Hxc ρψμ

� �h i
ψμ

�� E
5 εμ ψμ

�� E
; ð6:90Þ

where v
μ;sr
Hxc ρψμ

� �
5 δEμ;sr

Hxc ρψ
� �

=δρ rð Þ.
As we can see, MC-srDFT requires new short-range exchange-correlation

functionals ðEμ;sr
HxcÞ, because the standard functionals which were designed to

capture all electron correlation are not suitable for it. Thus srLDA, srGGA,

and meta-srGGA variants have been developed. Once the approximation is

chosen for E
μ;sr
Hxc, the wave function ψμ

�� E
can be computed by solving self-

consistently Eq. 6.63 using wave function theories. As a result, the electron

density ρψ can be obtained and the total energy is calculated according to the

Eq. 6.62.

Following the range-separation approach, Hedegård et al. (2015) pro-

posed the combination of DMRG with DFT, so-called DMRG-srDFT. In this

work, range-separation parameter μ is chosen to be 0.4 a.u., and the energy

expression is written as:

EsrDFT
DMRG 5Elr

C 1Elr
A 1Esr

Hxc ρð Þ; ð6:91Þ
where Elr

C, E
lr
A are the core energy and active energy obtained by the WFT,

and the regular two-electron integrals are replaced by the long-range two-

electron integrals, that is gpqrs-glrpqrs.

Since Esr
HxcðρÞ is nonlinear in 1-RDMs, an exact DMRG-srDFT expression

is state specific (SS). In order to formulate the DMRG-srDFT energy to be

linear with the density matrix, a reference density is introduced. This results

in a more complicated energy expression as (a detailed derivation can be

referred to works of Pedersen, 2004 and Hedegård et al., 2015):

EsrDFT
DMRG 5EsrDFT

C 1EsrDFT
A ; ð6:92Þ

where the core part becomes

EsrDFT
C 5Elr

C 1
1

2

X
ij

jC;srij Di
j

� �C
2

1

2

X
tu

jA;ref;srtu Dt
u

� �A;ref
1Esr

xc ρref
� �

2
X
tu

vref;srxc;tu Dt
u

� �A;ref ð6:93Þ

and the active part is

EsrDFT
A 5Elr

A 1
X
tu

jC;srtu 1 jA;ref;srtu 1 vref;srxc;tu

� �
Dt

u

� �A ð6:94Þ
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EsrDFT
A 5

X
tu

f C;lrtu 1 jC;srtu 1 jA;ref;srtu 1 vref;srxc;tu

� �
Dt

u

� �A
1

1

2

X
tuvw

glrtuvw Dtv
wu

� �A
:

ð6:95Þ
Here, jsrpq are the matrix elements of the short-range two-electron

Coulomb operator,

jsrpq 5 φp

δEsr
H

δρ rð Þ

������
������φq

* +
5
X
rs

gsrpqrsD
r
s ð6:96Þ

and vsrxc;pq are the matrix elements of the short-range exchange-correlation

potential,

vsrxc;pq 5 φp

δEsr
H

δρ rð Þ

������
������φq

* +
: ð6:97Þ

fpq 5 hpq 1
P

kð2gpqkk 2 gpkqkÞ are the elements in generalized Fock matrix,

and Dp
q, D

pq
rs denote 1-RDM and 2-RDM. Note that Di

j

� �C
5 2δij, since core

orbitals are all doubly occupied, therefore only the density matrices in active

space Dt
u

� �A
; Dtv

wu

� �A� �
are needed in the energy expression.

In this formulation, a “DMRG macro iterations” can be made, where

we rerun the DMRG-srDFT with an updated reference density, as Algorithm

6.11 shows. Note that the density matrices in every macro iteration are uti-

lized as the reference density matrix in the next iteration, and only jA;ref;srtu

and vref;srxc;tu need to be recalculated in each macro iteration. Thus, by adding

them to the core Fock matrix, that is, f C;lrtu 1 jC;srtu 1 jA;ref;srtu 1 vref;srxc;tu in Eq. 6.95,

the density matrices can influence jA;ref;srtu and vref;srxc;tu , which in turn influence

the newly obtained density matrices from DMRG. The macro iterations can

therefore be continued until getting self-consistently converged DMRG-

srDFT density matrices.

In practice, DMRG calculation is implemented on a CAS with a limited

size instead of the full MO space. Therefore the long-range dynamic correla-

tion energy is missing, which may be recovered by the recently proposed

long-range-corrected multiconfiguration density functional with the on-top pair

density based on adiabatic connection (AC) formalism (Hapka et al., 2020).

As an alternative to range-separated methods, the combination of CI

methods with orbital occupation functionals has been also explored, at the

formal level through the separation of correlation effects in the orbital space

by Fromager (2015), and its combination with DMRG has been applied to

treat the uniform one-dimensional Hubbard model (Senjean et al., 2018).
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The lack of well-established algorithms for the design of new functionals has

limited the applications of this approach to only model Hamiltonians.

Algorithm 6.11: DMRG-srDFT. DMRG, Density matrix renormalization

group; srDFT, short-range density functional theory.

1: procedure Calculate Pre-Requisites
2: Calculate lr/sr integrals and f C;lr

� �
3: fjC;srg; E lr

C  � integrals and f C;lr
� �

4: Dt
u

� �An o
; Dtv

wu

� �An o
 �Run DMRG

5: end procedure
6: procedure Calculate Modified One-Electron Integrals

7: ρref � Dt
u

� �An o
as reference density matrices Dt

u

� �A;refn o
8: jA;ref;sr; E sr

xc ρref
� �

; vref;sr
xc  � ρref, Dt

u

� �A;refn o
9: return ff C;lrtu 1 jC;srtu 1 jA;ref;srtu 1 vref;sr

xc;tug
10: end procedure
11: procedure Run DMRG with Modified One-Electron Integrals and lr Integrals

12: Dt
u

� �An o
; Dtv

wu

� �An o
; E srDFT

A  �ff C;lrtu 1 jC;srtu 1 jA;ref;srtu 1 v ref;sr
xc;tu g and g lr

tuvw

13: if DA not converged then
14: Go back to step 7 with updated Dt

u

� �A;refn o
15: end if
16: return converged Dt

u

� �An o
; Dtv

wu

� �An o
and EsrDFT

A

17: end procedure
18: procedure Calculate Total Energy

19: Calculate E srDFT
C using Eq. 6.93

20: return E srDFT
C 1 E srDFT

A

21: end procedure

6.5.3 Density matrix renormalization group-pair density functional
theory

Treatment of open-shell systems by conventional DFT models relies on uti-

lizing unphysical ρα and ρβ densities obtained from unrestricted (i.e., spin-

polarized) SDs with broken spin symmetry. This is incompatible with the

retained spin symmetry in multiconfigurational wave functions, which are

eigenfunction of Ŝ
2
as well as ŜZ (S is total electron spin). Therefore Li

Manni et al. (2014) proposed a multiconfigurational pair-DFT (MC-PDFT)

to correct the multiconfigurational WFT for dynamic correlations. In this

method, the functional is expressed in terms of not only the total density ρ,
but also on-top pair density Π (Perdew et al., 1995).

The combination of DMRG with MC-PDFT (DMRG-PDFT) was later

implemented by Sharma et al. (2019), in which DMRG is used as a substi-

tute for the MCSCF method to calculate the kinetic energy and the Coulomb
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energy. Here, we utilize the DMRG-PDFT to explain this scheme. It is

important to mention that all equations hold for the other variants.

In the CAS model, the electronic energy for a multiconfigurational eigen-

state ψ
�� � is expressed as:

E5 ⟨ψ Ĥ
�� ��ψ⟩5X

pq

hpqD
p
q 1

1

2

X
pqrs

gpqrsD
pr
qs 1Vnn ð6:98Þ

E5
X
i

hii 1 fiið Þ1
X
tu

ftuD
t
u 1

1

2

X
tuvw

gtuvwD
tv
uw 1Vnn: ð6:99Þ

In order to properly correct the energy for the dynamic correlation, the

new MC-PDFT method calculates the energy via

EMC2PDFT 5
X
pq

hpqD
p
q 1

1

2

X
pqrs

gpqrsD
p
qD

r
s 1Eot ρ;Πð Þ1VNN ð6:100Þ

EMC-PDFT 5VNN 1 2
X
i

hii 1 2
X
ij

giijj 1
X
tu

htuD
t
u 1 2

X
i;tu

giituD
t
u

1
1

2

X
tuvw

gtuvwD
t
uD

v
w 1Eot ρ;Πð Þ

ð6:101Þ

where the 2-RDM ðDpr
sqÞ in Eq. 6.98 is replaced by the product of two

1-RDMs ðDp
qD

r
sÞ, and the neglected exchange contributions are now included

in the new-added on-top density functional Eot ρ;Πð Þ. Note that in the MC-

PDFT calculation, only the kinetic energy and the Coulomb energy are

calculated from the MCSCF wave function, whereas all exchange and corre-

lation contributions are evaluated by the density functional, and accordingly

this results in the elimination of the double-counting errors that we men-

tioned before. The density and on-top pair density in Eot ρ;Πð Þ are calculated

according to:

ρ5
X
ij

Di
iφi rð Þφi rð Þ1

X
tu

Dt
uφt rð Þφu rð Þ; ð6:102Þ

Π5
X
ij

Di
iD

j
jφi rð Þφj rð Þφi rð Þφj rð Þ1

X
iitu

Di
iD

t
uφi rð Þφi rð Þφt rð Þφu rð Þ

1
X
tu

Dtv
wuφt rð Þφu rð Þφv rð Þφw rð Þ;

ð6:103Þ

Therefore the density functional correction can be evaluated only once,

directly from the 1-RDMs and 2-RDMs obtained from DMRG. Evaluating

the functional only once indicates that DMRG-PDFT has a computational

advantage over DMRG-sr-DFT, since no self-consistent iterations between

the DMRG and DFT parts are needed (only need one DMRG procedure).
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Algorithm 6.12: DMRG-PDFT. DMRG-PDFT, Density matrix renormaliza-

tion group-pair density functional theory.

1: procedure DMRG // refer to Algorithm 4.1 or 4.2
2: return E0; jψ0i
3: end procedure
4: procedure PrecalculateRDMs
5: return 1-,2-RDMs
6: end procedure
7: procedure Calculate on-top density functional Eot ρ;Πð Þ
8: ρ;Π ’1-,2-RDMs
9: return Eot ρ;Πð Þ
10: end procedure
11: procedure Calculate Total Energy // see Eq. 6.101
12: return EMC2PDFT // VNN is obtained in procedure “Prepare” of Algorithm 4.1 or 4.2
13: end procedure

6.6 Density matrix renormalization group-adiabatic
connection

Recently, Beran et al. (2021) presented a new post-DMRG approach to

include the dynamic correlation via the AC technique (Pernal, 2018;

Pastorczak and Pernal, 2018a,b), which requires only up to two-body active

space RDMs. They reported encouraging results of this approach on typical

candidates for DMRG computations, namely, the n-acenes (n5 2-7), Fe

(II)-porphyrin, and Fe3S4 cluster.

The AC theory is a general approach to the correlation energy calcula-

tion, which can be applied to a broad class of multireference wave functions.

The DMRG-AC recovers the correlation energy missing in the underlying

DMRG model and the total electronic energy follows as the sum

E5EDMRG 1EAC
corr: ð6:104Þ

Given approach is based on the partitioning of the Hamiltonian

Ĥ5 Ĥ
0ð Þ
1 Ĥ

0
, where Ĥ

0ð Þ
comprises only two terms, one corresponding to

the doubly occupied (inactive) part and other corresponding to the active

orbitals. The AC formula defines the AC Hamiltonian by linearly interpolat-

ing between the zeroth-order Hamiltonian Ĥ
0ð Þ
and the exact one Ĥ

Ĥ
α
5 Ĥ

0ð Þ
1αĤ0; ð6:105Þ

with the coupling parameter α ranging from 0 to 1. By exploiting the Hellmann�
Feynman theorem, a general AC correlation energy formula can be expressed as

EAC
corr 5

Ð 1
0
Wαdα; ð6:106Þ
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where the AC integrand reads

Wα 5
1

2

X
pqrs

grpsq
X
υ

Dp
r α; νð ÞDs

q α; νð Þ1 1

2

X
pqrs

grpsq np 1 1
� �

nqδrqδps;

ð6:107Þ
with exclusion of terms involving all four indices pqrs belonging to a set of

either active or inactive orbitals. Here np and nq are occupation numbers

of MOs p and q. Dp
r α; νð Þ and Ds

q α; νð Þ are transition 1-RDMs between the

ground and νth eigenstates of the AC Hamiltonian Ĥ
α
, which can be approxi-

mately obtained by employing extended random phase approximation (ERPA)

equations (Chatterjee and Pernal, 2012), which require 1-RDMs and 2-RDMs

from DMRG reference wave functions.

Based on the observation that the AC integral is typically nearly linear,

the missing correlation energy has been further approximated using the

first‑order expansion of Wα at α5 0, that is, Wα 5W 0ð Þ1αW 1ð Þ. By notic-

ing that W 0ð Þ5 0, the AC0 approximation has been derived as

EAC0
corr 5

W 1ð Þ

2
: ð6:108Þ

Beran et al. (2021) combined the DMRG-SCF and AC0 methods to

describe the dynamic correlation outside the large CAS. 1-RDMs and 2-RDMs

obtained from the DMRG-SCF calculation were employed to construct

one-body transition RDMs in conjunction with the solutions of the ERPA

equations and subsequently evaluate the AC0 energy correction. The final

electronic energy of DMRG-SCF-AC0 is then expressed as

EDMRG2SCF2AC0 5EDMRG2SCF 1EAC0
corr : ð6:109Þ

It is worth to note that the derivation of Eq. 6.106 assumed that a 1-RDM

stays constant along the AC path, which is approximately valid in DMRG-

AC calculations, because a major part of the static correlation would be

already accounted for at α5 0 in DMRG reference wave function with a

large CAS. One limitation in the AC theory lies in the fact that only singly

excited configurations are considered in ERPA, while double (and higher)

excitations are completely neglected. Given restriction hampers its applica-

bility as double excitations may play a key role in photophysics and photo-

chemistry processes.

6.7 Embedding density matrix renormalization group in
environments

Chemical reactions and molecular spectroscopy are usually local phenomena,

which in principle can be well described with a small cluster model by using

a quantum mechanics (QM) method at a sufficiently high level of theory.
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However, an important aspect for the theoretical simulation of a molecular

system is the reasonable treatment of its complex environment, which might

be a solution, molecular matrices, or a biological protein. The direct incorpo-

ration of the environment into QM part will make the calculation infeasible,

primarily due to the large number of nuclear and electronic degrees of free-

dom. Nowadays, many theoretical chemistry approaches have been proposed

for describing the electronic structure of solvated molecules in environments.

Solvation models can be classified into two main categories, depending on

the way the environmental molecules are treated, that is, explicitly or implic-

itly. To describe the solvents explicitly with an affordable computational

cost, quantum embedding schemes are often used with a division of the

entire system into smaller less costly subsystems, usually a chemically active

part requiring higher QM level description and its environment described by

a more approximate theory, at either a classical molecule mechanics (MM)

or lower QM level. On the other hand, on the basis of the traditional non-

equilibrium solvation theory in continuum models, the solvent environmental

effect can be described with an implicit solvation model with cheaper

computational costs. In recent years, various combinations of DMRG with

different solvation models have been explored. This enables accurate calcula-

tions on large systems with strong electron correlations embedded in realistic

complex environments.

6.7.1 Density matrix renormalization group-in-density functional
theory

Dresselhaus et al. (2015) presented the first implementation of DMRG

embedded in a DFT environment (DMRG-in-DFT) by utilizing the frozen

density embedding (FDE) scheme (Wesolowski and Warshel, 1993). In FDE,

a specific subsystem DFT method, a subsystem is calculated in a KS

approach by adding an effective potential to the KS potential of the isolated

subsystem, assuming a constant (frozen) environmental electron density. The

FDE framework also allows for treating one active subsystem with a corre-

lated WFT method and the rest of the system with DFT, namely, WFT-in-

DFT embedding. Here we briefly review the theoretical framework of

Dresselhaus et al. (2015)’s implementation.

In WFT-in-DFT scheme, the total electronic energy Etot can be calculated

in the following way:

Etot 5EWFT
act 1EKS2DFT

env 1EOF2DFT
int : ð6:110Þ

Here EWFT
act , EKS2DFT

env , and EOF2DFT
int are the energy of the active subsystem

by WFT, the KS energy evaluated for the environmental electron density,

and the system�environment interaction energy, respectively. EWFT
act gives

the expected value of ⟨ψactjĤactjψact⟩ with Ĥact being the Hamiltonian of the

232 DMRG-based Approaches in Computational Chemistry



isolated active subsystem. To account for the polarization effect by the envi-

ronment, the wave function ψact⟩
�� is expected to be fully relaxed with respect

to the environment. For describing the inter-subsystem interactions, an effec-

tive embedding potential, the functional derivative of EOF2DFT
int over a subsys-

tem density, will be applied on each subsystem. For the active subsystem,

this reads as

vactemb ρact; ρenv
	 


rð Þ5 vkin ρact 1 ρenv
	 


rð Þ2 vkin ρact
	 


rð Þ
1 vxc ρact 1 ρenv

	 

rð Þ2 vxc ρact

	 

rð Þ

1
Ð ρenv r2ð Þ

r2 r2j j dr2 1 venvext rð Þ:
ð6:111Þ

Here vkin is the functional derivative of the noninteracting kinetic energy

and vxc indicates the exchange-correlation energy. venvext gives the potential

caused by the nuclei of environmental subsystems. Therefore, to relax ψact⟩
��

with respect to the environment requires a solution of the Hamiltonian

Ĥact
0 5 Ĥact 1

Xnact
i51

vactemb ρact; ρenv
	 


rið Þ; ð6:112Þ

where nact is the number of electrons in the active subsystem. To solve the

Hamiltonian of Eq. 6.112 by multiconfigurational WFT methods, one can

add the extra potential vactemb ρact; ρenv
	 


rð Þ onto the one-electron part of the

Fock operator. Consequently, the eigenvectors of the modified Fock operator

are used as new MO basis, and accordingly the one- and two-electron MO

integrals are updated for later electron correlation WFT calculations. To

achieve an accurate and self-consistent description for the mutual polariza-

tion between the system and surrounding environment, an iterative procedure

(known as freeze-and-thaw cycle) is usually implemented, in which the role

of system and environment is interchanged for the subsystems until conver-

gence is reached.

In Dresselhaus et al. (2015)’s work, WFT-in-DFT is extended to DMRG-

in-DFT by using DMRG-SCF as the WFT solver for the active subsystem.

6.7.2 Polarizable embedding density matrix renormalization group

Hybrid QM/MM framework, in which the most important part of the prob-

lem is treated by QM and the surrounding environment is described by an

empirical force field for discrete solvent molecules, is another widely used

explicit solvation model. Therein, the system�environment interactions are

usually approximated by electrostatic embedding (EE) or polarizable embed-

ding (PE) potentials. The EE potential, only accounting for the permanent

charge distribution of the environment, is represented by a multicenter multi-

pole expansion and accordingly neglects the QM part’s polarization effect on
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the environment. In order to account for many-body induction effects, that

is, the polarization of the environment both internally and by the QM core,

Olsen et al. (2010) suggested a PE scheme, in which the interaction with the

surrounding environment is modeled through an effective operator. This

effective operator represents the environment by multipoles [e.g., charges

q rið Þ, dipole moment μα rið Þ, quadruple moment Qαβ rið Þ] and polarizabilities

(αi) for each atomic center (and bond midpoint) i derived from QM calcula-

tions (usually with DFT) on subsystems of the environment.

In PE scheme, the interaction energy of environment and embedded sys-

tem EPE
� �

have both electrostatic and polarization contributions, Ees and

Epol, respectively.

EPE 5Ees 1Epol: ð6:113Þ
Ees contains the interaction of all electrons in the QM region with the elec-

trostatic environment via a multicenter multipole expansion of the environ-

mental electrostatic quantities and the interaction of all multipoles within the

environment. Epol describes the interaction of all electrons in the QM region

with the polarization of the environment by using distributed anisotropic

polarizability tensors αi on the environmental sites. The induced dipole

moments are updated in each SCF iteration, thus leading to a fully self-

consistent treatment of the polarization.

Hedegård and Reiher (2016) implemented the coupling of the PE

approach with DMRG as well as DMRG-sr-DFT. The developed PE-DMRG

and PE-DMRG-sr-DFT were then successfully applied for the study of the

first excited state of water and a retinylidene Schiff base within a channelr-

hodopsin protein.

6.7.3 Combining density matrix renormalization group with
reference interaction site model

Compared with the explicit counterparties, implicit solvation models provide

an efficient means to estimate solvation energies without the necessity to cal-

culate the solvent molecules explicitly and sample costly molecular dynam-

ics trajectories. For example, dielectric continuum models along with

parametrized terms are commonly used to obtain the long-range electrostatic

interactions, in order to partially include in some average manner short-range

interactions such as dispersion and exchange. However, such methods are

well known to be infeasible to illustrate local solvation structures such as

hydrogen bonding well. The reference interaction site model (RISM)

(Chandler and Andersen, 1972) is another representative implicit solvation

model based on integral equation theory for liquids. This method determines

the electronic structure of a solute molecule and the statistical solvent distri-

bution around the solute in a self-consistent manner. Recently, the combina-

tion between DMRG approaches with RISM has been successfully illustrated
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by Shimizu et al. (2018), providing a new tool for calculating the photo-

chemical properties of near-infrared molecules in solution.

The RISM method is a solvation theory of a statistical mechanical

approach, in which the solvation structure is represented by the spatial corre-

lation functions. In RISM, the total free energy A of the solvation system is

defined as the sum of the electronic energy of the solute Esoluteð Þ and the sol-

vation free energy Δμð Þ,
A5Esolute 1Δμ: ð6:114Þ

The Fock operator for the solvated solute F̂
solv

� �
contains a solvent-

specific term V̂
� �

,

F̂
solv

5 F̂
gas

1 V̂ ; ð6:115Þ
where V̂ expresses the solvent reaction field in RISM as

V̂ 5 ρ
X
λα

b̂λqα

ð
4πr2

gλ;α rð Þ
r

dr: ð6:116Þ

Here ρ is the number density of the solvent, b̂λ indicates a population

operator of the solute, and qα points the partial charge on the solvent site.

gλ;α rð Þ expresses a spatial pair correlation function between λ (solute) and α
(solvent) with an inter-site distance of r, obtained by solving RISM equa-

tions. Thence, the combination of a WFT method with RISM is just modify-

ing the one-electron integrals through replacing the original Fock operator by

Eq. 6.115. The sketch of Shimizu et al. (2018)’s implementation of the

RISM-DMRG-CASPT2 method in a SS fashion is depicted in Fig. 6.4. For

the ground-state calculation, first the ground-SS (DMRG-)CASCI and orbital

optimization are performed, and consequently the obtained 1-RDMs are

passed to the RISM code for computing the electrostatic potential V̂ induced

by the solvents. These electrostatic potentials are used to construct the sol-

vated Hamiltonian for the successive iteration. Once the wave function con-

verges, the obtained solvated Hamiltonian is used in ground-state (DMRG-)

CASPT2 to apply perturbation in solution. While computing the electronic

absorption energy, the potentials obtained from the ground-state calculation

are used to construct the solvated Hamiltonian for determining the excited

state; this corresponds to the calculation of the excited state with the solva-

tion structure fixed at the ground state. Finally, perturbation is applied in

solution for the excited state via SS (DMRG-)CASPT2 with the obtained sol-

vated Hamiltonian.

As it is well-known, and in the present book highlighted in Section 5.4,

the SSCAS treatment for the excited state typically suffers from the root-

flipping issue, which occurs when the approximate wave function leaves the

convergence basin of the target excited state and enters that of a different

excited state. To improve the convergence of the calculation under
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reasonable computational cost, Shimizu et al. (2020) later proposed a state-

average (SA) version of RISM-DMRG-CASPT2 method with damping

treatment for solvation, making feasible the analysis of a wider variety of

solvated molecules. Given method is expected to boost and benefit funda-

mental research, for example providing complementary information of near-

infrared molecular excitation and enabling the rational design of bioimaging

probes, where the possibly preferable SS treatment is intractable.

6.8 Summary and outlook

The quantitatively accurate computation of the electronic structure of large

and strongly correlated molecules and materials requires a balanced descrip-

tion of both static and dynamic electron correlations. In this chapter, we

briefly overview the recent efforts of developing post-DMRG methods

toward this aim which are usually based on the combination of DMRG and

other inexpensive MR quantum chemical methods or DFT. Although the

number of these developing methods is increasing quickly, by considering

the nontrivial treatment of high-order n-RDMs (n5 3, 4), ab initio post-

DMRG methods can be characterized into two main categories, depending

FIGURE 6.4 (A) Flowchart of the state-specific RISM-CASPT2 method for the ground (left)

and excited (right) state in calculating absorption energies. (B) Flowchart of the state-average

and damping procedure of the RISM-CASPT2 calculation. CASPT2, Complete active space with

second-order perturbation theory; RISM, reference interaction site model. Reproduced from

Shimizu, R.Y., Yanai, T., Kurashige, Y., Yokogawa, D., 2018. Electronically Excited Solute

Described by RISM Approach Coupled with Multireference Perturbation Theory: Vertical

Excitation Energies of Bioimaging Probes. J. Chem. Theory Comput. 14, 5673�5679. https://
doi.org/10.1021/acs.jctc.8b00599; Shimizu, R.Y., Yanai, T., Yokogawa, D., 2020. Improved

RISM-CASSCF Optimization via State-Average Treatment and Damping for Characterizing

Excited Molecules in Solution with Multireference Perturbation Theory. J. Chem. Theory

Comput. 16, 4865�4873. https://doi.org/10.1021/acs.jctc.9b01289, with permission from

American Chemical Society.
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on whether high-order n-RDMs are used (as the Fig. 6.5 shows). These

diverse and fruitful progresses provide powerful new tools for treating

dynamic correlation with a large active space, which is infeasible by using

traditional quantum chemistry methods. However, the popularization of post-

DMRG is far from being satisfactory, quite different from the situation in ab

initio DMRG, because post-DMRG’s efficient implementation in popular

quantum chemistry codes is still quite rare and its power in computing the

molecular gradients and response properties hasn’t been illustrated.

Moreover, new post-DMRG schemes are still greatly desired when treating

extremely strongly correlated systems.

The proper description of the strongly correlated subsystem’s chemical

environment is another important issue when applying ab initio DMRG and

post-DMRG methods to the “real-world” chemistry problems. In this chapter,

FIGURE 6.5 Schematic classification of post-DMRG methods according to the treatment for

n-RDMs (Cheng et al., 2022). DMRG, Density matrix renormalization group. Reproduced from

Cheng, Y., Xie, Z., Ma, H., 2022. Post Density-matrix Renormalization-group for Describing

Dynamic Electron Correlation with Large Active Spaces. J. Phys. Chem. Lett. 13, 904�915.
https://doi.org/10.1021/acs.jpclett.1c04078, with permission from American Chemical Society.
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we also introduce the recent progresses of DMRG-in-DFT and PE-DMRG

using the quantum embedding schemes to describe the environment explic-

itly as well as the combination of DMRG and RISM solvation model which

treats the environment molecules implicitly. These efforts for describing the

strongly correlated subsystem’s chemical environment, together with post-

DMRG’s progresses of simultaneously treating the static and dynamic elec-

tron correlations, are going to make the highly accurate characterization of

the electronic structures in realistic strongly correlated systems possible. This

can be expected to greatly promote the theoretical studies of strongly corre-

lated materials in various fields, ranging from multicenter spin coupling in

spintronic devices to transition metal catalysis in biological photosynthesis.
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Hapka, M., Pastorczak, E., Krzemińska, A., Pernal, K., 2020. Long-range-corrected multiconfi-

guration density functional with the on-top pair density. J. Chem. Phys. 152, 094102.

Available from: https://doi.org/10.1063/1.5138980.
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Chapter 7

DMRG in frequency space

7.1 Introduction

Calculating spectral function is of central importance in both quantum chem-

istry and condensed matter physics, which describes many frequency-

dependent dynamical properties that can be probed experimentally, including

linear absorption and emission spectroscopy, photoelectron spectroscopy,

optical conductivity, etc. When a physical quantity Ô of an equilibrium sys-

tem at zero temperature is perturbed by external perturbation, the spectral

function that describes the response is given by

S ωð Þ5 0 Ô
y
δ ω2 Ĥ0 1E0

� �
Ô

��� ���0D E
ð7:1Þ

where Ĥ 0 is the Hamiltonian of the system at equilibrium, E0 and 0j i are the

ground-state energy and wavefunction. The Dirac δ function describes the

energy resonance condition between the external field and states transition.

The spectral function can also be obtained by the Fourier transform of

time correlation function 0 Ô
y
tð ÞÔ 0ð Þ

��� ���0D E
(up to a constant prefactor 1=2π).

Therefore two different roads are paved for the calculation of the spectral

function: the frequency-domain methods and the time-domain methods. The

former directly calculates the frequency-dependent function (Eq. 7.1) and the

latter performs real-time evolutions to obtain the time correlation function

0 Ô
y
tð ÞÔ 0ð Þ

��� ���0D E
and then performs Fourier transform.

Density matrix renormalization group (DMRG) was initially developed to

study the equilibrium properties of many-body systems, and it was gradually

developed for dynamical quantity calculation. The earliest attempts in

extending it to study the dynamical properties started from the frequency

domain. In this chapter, we will present a pedagogical introduction of the

frequency-domain DMRG, including its theoretical foundation, algorithms,

and several applications adapted to different problems, and the next chapter

will introduce the time-dependent methods.

The pioneering work of frequency-domain DMRG originated from the

Lanczos algorithm, which is widely used to solve the linear equation and

the eigenvalue problem of large sparse Hermitian matrices. Gagliano and
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Balseiro (1987) first used the Lanczos algorithm to calculate the ground-state

wavefunction and spectral function at zero temperature. Soon after the inven-

tion of DMRG (White, 1992, 1993), Hallberg (1995) proposed the Lanczos

DMRG method by combining DMRG with the Lanczos algorithm, which

was easy to implement and numerically economic but limited to calculating

discrete spectral function made of only the first several low-lying states

(Kühner and White, 1999). Later, based on the correction vector (CV)

method, Ramasesha et al. (1997) and Pati et al. (1999) proposed the CV-

DMRG. The CV method was originally combined with the valence bond

theory by Soos and Ramasesha (1989) to study the nonlinear optical prop-

erties of the π electron conjugated systems, which was accurate but only

applicable to small systems. CV-DMRG expanded the research scope to

more complex systems and exhibited very high accuracy. Based on the

essential working equations of CV-DMRG, Jeckelmann (2002) proposed a

more elegant method that works in a variational manner, called the dynam-

ical DMRG (DDMRG), and to date, it is regarded as the method of choice

for high precision calculations of spectral functions (Dorando et al., 2009;

Ronca et al., 2017). However, DDMRG is usually computationally expen-

sive since the time cost of DDMRG relies on the number of frequencies

that need to be calculated because the response at each frequency is calcu-

lated independently. Similar to the Lanczos algorithm, the Chebyshev poly-

nomial expansion method also employs a recursive manner to expand the

dynamical correlation function, and it has been successfully applied to the

calculation of optical absorption, conductivity, and other response proper-

ties of spin, phonon, and impurity models (Silver and Röder, 1994; Wang,

1994; Weisse, 2004; Weiße et al., 2006). Holzner et al. (2011) combined

the matrix product state (MPS) with the Chebyshev polynomial expansion

and proposed the Chebyshev MPS (CheMPS) method, which gained good

compromise between the accuracy and numerical cost when applied to the

isotropic Heisenberg model. The resolution was increased by employing

the effective band with the energy truncation procedure (Holzner et al.,

2011) and employing the linear prediction (Ganahl et al., 2014) techniques

for extrapolation in some cases. Inspired by the linear response theories of

conventional quantum chemistry methods, the analytic linear response DMRG

(Dorando et al., 2009; Haegeman et al., 2013; Nakatani et al., 2014; Wouters

et al., 2013) was proposed by combining the time-dependent perturbation

theory with the tangent space of DMRG wavefunction to calculate the dynam-

ical quantities and achieved comparable accuracy with DDMRG (Dorando

et al., 2009).

Some of the algorithms have also been extended to finite temperature to

tackle the thermal effects on the dynamical quantities of many-body systems.

Kokalj and Prelovšek (2009) extended the Lanczos DMRG to finite tempera-

ture by sampling the initial state to approximate the thermal equilibrium

density matrix. Using the quantum mechanical technique of thermal field
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dynamics which is also called purification, Tiegel et al. (2014) presented the

finite temperature algorithms for CheMPS, and Jiang et al. (2020a) extended

DDMRG to finite temperature to study the thermal effects on the electron�
phonon coupled systems such as organic molecular aggregates.

In the following sections, we first recap the linear response theory and

give the formulation of spectral function. Next we pay attention to the algo-

rithm details at zero and finite temperature. Then we introduce several repre-

sentative applications in electron�electron/electron�phonon correlated

systems. Finally, we summarize and give further outlooks.

7.2 Spectral function in linear response regime

In this section, we briefly describe the linear response theory and give the

formulation of spectral function at zero and finite temperature. Unless stated

otherwise, the atomic unit will be used.

Considering a canonical ensemble described by Hamiltonian Ĥ0 at thermal

equilibrium of temperature T , the density matrix is written as ρβ 5 e2βĤ0=Z βð Þ,
where Z βð Þ5Trðe2βĤ0Þ and β5 1=kBT (kB is the Boltzmann constant). When

the system is perturbed by a time-dependent external field f tð ÞV̂ , the

Hamiltonian is written as

Ĥ tð Þ5 Ĥ0 1 f tð ÞV̂ ; ð7:2Þ
where f ðtÞ represents the strength of the external field, and V̂ is the observ-

able of the system that obeys V̂ 5 V̂
y
. The system will respond to the pertur-

bation, and according to the linear response theory, the thermal expectation

value of the observable Ô at time t is,

ÔðtÞ� �
ρβ
5 Ô 0ð Þ� �

ρβ
1

ðt
2N

χ t2 t0ð Þf t0ð Þdt0; ð7:3Þ

where ÔðτÞ5 eiĤ0τÔe2iĤ0τ and Uh iρβ denotes the expectation with respect to

the density matrix ρβ . The equation is also called the Kubo formula (Kubo,

1957) and χðt2 t0Þ is the retarded Green function (other names are dynam-

ical correlation function and susceptibility, etc.) that is nonzero only if t. t0:

χ t2 t0ð Þ52 iθ t2 t0ð Þ Ô t2t0ð Þ; V̂ 0ð Þ	 
� �
ρβ

ð7:4Þ
where θðt2 t0Þ is the Heaviside step function and ½U; U� is the anticommutator

with ½Â; B̂�5 ÂB̂2 B̂Â. The retarded Green function in frequency domain

can be obtained by the Fourier transform G ωð Þ5 ÐN
2N dτeiωτχ τð Þ, leading to

G ωð Þ5G 1ð Þ ωð Þ2G 2ð Þ ωð Þ ð7:5Þ

G 1ð Þ ωð Þ5 lim
η-01

X
m;n

e2βEn

Z βð Þ
n Ô
�� ��m� �

m V̂
�� ��n� �

ω2 Em 2Enð Þ1 iη
ð7:6Þ
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G 2ð Þ ωð Þ5 lim
η-01

X
m;n

e2βEm

Z βð Þ
n Ô
�� ��m� �

m V̂
�� ��n� �

ω2 Em 2Enð Þ1 iη
ð7:7Þ

which are expanded with the eigenstates of Ĥ0. The operator-based formula-

tion can be written as:

G ωð Þ5 lim
η-01

Tr Ô
1

ω2ℒ1 iη
V̂ρβ

� �
2Tr V̂

1

ω1ℒ1 iη
Ôρβ

� �
ð7:8Þ

where L5 ½Ĥ0; U� acts as a Liouville superoperator, the eigenvalues of which
correspond to the difference between the eigenvalues of Ĥ 0. These two terms

follow the relation of G 1ð Þ 2ωð Þ� 52Gð2Þ ωð Þ; hence, only the calculation of

the first term will be calculated. The second term can be dropped in some

cases, as will be described below. The imaginary part of GðωÞ is called the

spectral function which is proportional to the rate of absorbing energy from

the external field (Mahan, 2013),

SÔ;V̂ ωð Þ52
1

π
ImχÔ;V̂ ωð Þ: ð7:9Þ

At zero temperature, ImG 2ð Þ ω. 0ð Þ5 0, we have

SÔ;V̂ ω. 0ð ÞZT 52
1

π
Im lim

η-01
0 Ô

1

ω2 Ĥ0 1E0 1 iη
V̂

������
������0

* +
5 0 Ôδ ω2 Ĥ0 1E0

� �
V̂

�� ��0� �
:

ð7:10Þ

At finite temperature, when the energy gap for excitation is large

compared to the thermal energy kBT , ImG 2ð Þ ωð Þ can also be safely

neglected.

Several examples are given as follows. When Ô5 V̂ 5 μ̂ (μ̂ is the dipole

operator), Sμ̂;μ̂ ðωÞ is proportional to the linear absorption cross section, and

ImG 1ð Þ ωð Þ, ImG 2ð Þ ωð Þ represent the stimulated absorption and stimulated

emission respectively, the latter of which can be safely neglected for the

absorption in the visible and ultraviolet region at ambient temperature.

The correlation function of current�current operator corresponds to the

transport properties. As noted above, the operator Ô and V̂ are both

Hermitian observables. In the case of non-Hermitian single creation or anni-

hilation operator, G ωð Þ is also called the single-particle Green function,

and G ωð Þ5G 1ð Þ ωð Þ6G 2ð Þ ωð Þ where the upper sign is for fermions and the

lower sign is for bosons (Mahan, 2013). When V̂=Ô5 a
y
j =ai where a

yð Þ
i jð Þ is the

fermion annihilation (creation) operator of the iðjÞth orbital, ImG 1ð Þ ωð Þ and
ImG 2ð Þ ωð Þ describe the electron affinity and ionization of the photoelectron

spectroscopy separately.
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7.3 Algorithms at zero temperature

7.3.1 Lanczos density matrix renormalization group

To illustrate the algorithms at zero temperature, we use the single-particle

spectral function for simplicity, which writes

S ωð Þ52
1

π
Im lim

η-01
0 Ô
y 1

ω2 Ĥ0 1E0 1 iη
Ô

������
������0

* +
5
X
n

njÔj0� ��� ��2δ ω2En 1E0ð Þ:
ð7:11Þ

The second type of expansion is written in the Lehmann representation.

The Lanczos algorithm is the symmetric matrix version of the Arnoldi

method, the logic of which is projecting the primitive large sparse matrix

into the Krylov subspace spanned by the so-called Lanczos vectors. The

Lanczos DMRG method combines Lanczos algorithm with DMRG to calcu-

late the dynamical correlation function (Hallberg, 1995) by projecting the

Hamiltonian which is numerically inaccessible for exact diagonalization to a

tridiagonalized matrix Heff in the Krylov subspace,

Heff 5

a0 b1 0 . . . 0

b1 a1 b2 & ^
0 b2 & & 0

^ & & & bn21

0 . . . 0 bn21 an21

0BBBB@
1CCCCA ð7:12Þ

the eigenvalues and eigenvectors of which can then be obtained by direct diago-

nalization and then be substituted back to Eq. 7.11 for the final result of

response. The Krylov space is generated by the Lanczos iteration procedure

starting from the initial Lanczos vectors f21

�� �
5 0 and f0

�� �5 Ô 0j i= 0 Ô
y
Ô

��� ���0D E
.

The rest of Lanczos vectors follow a three-term recurrence relation:

fn11

�� �
5 Ĥ0 fn

�� �2 an fn
�� �2 b2n fn21

�� �
an 5

hfnjĤ0jfni
hfnjfni

; b2n11 5
hfn11jfn11i
hfnjfni

ð7:13Þ

In addition to directly diagonalizing Heff , a smooth spectral lineshape

with a Lorentzian broadening width η can also be obtained by the continued

fraction expansion,

S ωð Þ52
1

π
Im

0 Ô
y
Ô

��� ���0D E
z2 a0 2

b2
1

z2 a1 2
b2
2

z2 ...

ð7:14Þ

which is subjected to a finite Lorentzian broadening width η with z5E0 1ω1 iη.
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The algorithms of Lanczos DMRG can be roughly categorized into the

multi-targeting scheme and the adaptive scheme which are based on the

first-generation DMRG with renormalized operator, and the modern scheme

employing MPS and matrix product operators (MPO).

7.3.1.1 The multi-targeting scheme and adaptive scheme

The reason for employing the so-called targeting arises from the fact that

Ĥ0
nj0i brings increasing errors for increasing n since Ĥ 0 is approximated in

the form of renormalized operator. Therefore one makes compromise by con-

structing the reduced density matrix that suits only the first several vectors

as possible, which is called multi-targeting. Generation of Lanczos vectors

starts from the ground state j0i optimized by targeting the ground state itself

and the other Lanczos vectors simultaneously to construct the reduced den-

sity matrix ρ̂5
P

i cijfiihfij where i is the index of the targeted vectors andP
ci 5 1. The reduced density matrix is expected to well describe both the

ground state and the targeted excited states, which on the other hand reminds

us that the increasing number of targeted vectors leads to decreasing accu-

racy for each vector. Therefore only the first few Lanczos vectors are

involved in the construction of the reduced density matrix, with which the

following higher excited states are usually not described well, making this

scheme restricted to calculate the discrete spectra made of the first low-lying

excited state (Kühner and White, 1999). On the other hand, the loss of

orthogonality between Lanczos vectors because of the error accumulation of

the successive compressions further restricts the precision for higher excited

states’ calculations. It was proposed to monitor f0jfn
� �

to decide whether the

iteration should be stopped (Kühner and White, 1999).

As for the adaptive scheme, the idea of multi-targeting is kept but only the

last three vectors are targeted at one time, that is to say, the basis changes adap-

tively as the recursion moves forward, through which the accuracy is greatly

enhanced (Dargel et al., 2011). However, the reorthogonalization of Lanczos

vectors (as will be stated below) is not easy to be performed in this scheme.

7.3.1.2 The matrix product states/matrix product operators
scheme

Within the modern framework of MPS/MPO, each vector is independently

represented in the form of MPS, and the Hamiltonian will be precisely repre-

sented in the form of MPO. Then the Lanczos DMRG can be implemented

by conducting the elementary operations of MPO/MPS (Schollwöck, 2011),

including the application of MPO onto MPS (Ĥ 0jfii) where Ĥ 0 is precisely

represented, and the summation between MPSs, and the following compres-

sions for controlling the bond dimension which is the only approximation

made in this scheme. Because of the accumulated errors by the successive

compressions for new Lanczos vectors, the three-term Lanczos recurrence rela-

tion will be broken and introduces nonorthogonalities. The nonorthogonality
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can be mended by employing a post-treatment for the primitive Lanczos vec-

tors, for example, the Gram�Schmidt reorthogonalization (Dargel et al., 2012).

The reorthogonalized vectors are expressed as

φn

�� �
5 cn 12

X
m, n

φm

�� �
φm

� �� !
fn
�� �; φmjφn

� �
5 δmn ð7:15Þ

where cn is the normalization constant. The reorthogonalization cannot be

carried out directly, otherwise it involves adding a sequence of MPS that

brings errors arising from MPS compressions. The reothogonalization is

achieved by assuming that φn

�� �
5
Pn

i50 Cin fi
�� �, and by putting it into the

Gram�Schmidt orthogonalization formula, the coefficient matrix C can be

calculated in a recursive style (Dargel et al., 2012) which uses the inner pro-

ducts Wij 5 fij fj
� �

: After the reorthogonalization is complete, an effective

Hamiltonian in the Krylov space is constructed by,

Heff;mn 5 hφmjĤ0jφni5
Pn;m

i;j50CinCjmhfijĤ0jfji ð7:16Þ
The effective Hamiltonian matrix can be directly diagonalized for the

excited states and the corresponding transition amplitudes, with which the

spectral functions can be calculated.

Heff jni5λnjni: ð7:17Þ

S ωð Þ5 c21
0

X
n

n φ0

�� �� ��2δ ω2λn 1E0ð Þ:
��� ð7:18Þ

We outline the procedure in Algorithm 7.1.

Algorithm 7.1: Lanczos MPS with reorthogonalization. MPS, Matrix prod-

uct state.

1: prepare operater Ĥ0, Ô , and ground state j0i.
2: generate first two Lanczos vector f0

�� �; f1�� �
3: initialize Wij 5 fi jfj

� �
; Fij 5 hfi jĤ0jf ji for i; jA 0;1½ �

4: procedure vector generation
5: for n5 1 to n5N2 1 do

6: jfn11i’min:jjfn11i2ðĤ02anÞjfni2b2
n jfn21ij2

7: an’hfnjĤ0jfni=hfnjfni; b2
n11’hfn11jfn11i=hfnjfni

8: for j5 0 to j5n do
9: Wjn 5Wnj’hfj jfni, Fjn 5 Fnj’hfj jĤ0jf ni
10: end for
11: end for
12: end procedure
13: procedure reorthogonalization
14: C’RecursiveGramSchmidtðW Þ
15: Heff’MatrixMultiply CT ; F ;C

� �
16: λn ; nj i’Diag Heffð Þ
17: end procedure
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7.3.2 Correction vector density matrix renormalization group

To solve the spectral function (Eq. 7.11) at a fixed frequency ω, one can

introduce the CV (Soos and Ramasesha, 1989),

C ωð Þ
�� �

5
1

ω2 Ĥ0 1E0 1 iη
Oj i; ð7:19Þ

where jOi5 Ôj0i. It is straightforward to get the following linear equation

of jCðωÞi,
ω2 Ĥ0 1E0 1 iη
� �

C ωð Þ
�� �

5 Oj i; ð7:20Þ
and by only solving for jCðωÞi, the spectral function is directly obtained,

S ωð Þ52
1

π
ImhOjC ωð Þi: ð7:21Þ

Because ðω2 Ĥ 0 1E0 1 iηÞ is non-Hermitian, the above equation is typi-

cally not solved directly. Instead, the common treatment is multiplying both

sides of the linear equation by ω2 Ĥ0 1E0 2 iη
� �

and splitting jCðωÞi into
the real and imaginary part, and the latter one satisfies a real symmetric and

positive definite linear equation,

ω2H01E0ð Þ2 1 η2
	 


Im C ωð Þ
�� �

52 η Oj i ð7:22Þ

RejC ωð Þi5 Ĥ0 2ω2E0

η
Im C ωð Þi:
�� ð7:23Þ

Since the spectral function merely relates to the imaginary part ImjC ωð Þi,
CV-DMRG aims at Eq. 7.22, which can be solved by a sweeping manner in

the local renormalized basis using the conjugate gradient method. During the

process of sweeping, the reduced density matrix is averaged over j0i, jOi,
and ImjC ωð Þi ρ5

P
scsρs;

P
cs 5 1

� �
, in order to optimize a single set of

renormalized basis for all of them. In addition, a sightly improvement can be

made by also including RejC ωð Þi in the averaged reduced density matrix,

which ensures minimal truncation error when calculating Ĥ0ImjC ωð Þi
(Schollwöck, 2005), although RejC ωð Þi is not explicitly needed to calculate

Eq. 7.21.

The main approximation made within the representation of renormalized

basis is that the projected Hamiltonian of the ith site is represented as

Ĥ0i 5 P̂iĤ 0P̂i, where P̂i 5
P

ai21;σi ;ai
lai21σirai
�� �

lai21σirai
� �� is made of a mixed

canonical MPS (for the graphical representation, see also Fig. 7.1). As a con-

sequence, P̂iĤ
2

0P̂i cannot be precisely given but only be approximated by

ðP̂iĤ 0P̂iÞ2. This approximation becomes rigorously accurate when the bond

dimension m-1N, which means extra error for a finite m. This drawback
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can be mended by employing the MPO representation of Ĥ0, as will be intro-

duced in the next section. Moreover, the introduction of Ĥ
2

0 in Eq. 7.22 leads

to a roughly squared condition number, and when the Lorentzian broadening

width η is small, the equation becomes quasi-singular at the resonance posi-

tion of ω and Ĥ0 2E0. The preconditioned treatment such as using the solu-

tion relating to the matrix composed of only the diagonal elements is often

employed to improve the convergence.

Compared to Lanczos DMRG in the previous section that employs one

set of renormalized basis for the responses of all frequencies, one unique set

of basis is tailored for each frequency in the procedure of CV-DMRG, lead-

ing to much improved accuracy. In principle, CV-DMRG possesses the flexi-

bility of arbitrarily choosing the artificial broadening width and the number

of frequency points to obtain a spectrum with desired resolution, while in

practice the numerical cost shall be taken into consideration. Higher resolu-

tion usually means smaller broadening width and more dense frequency

points to be computed, which accordingly requires higher numerical

resources: on the one hand, a large amount of frequencies need to be calcu-

lated independently, although this drawback allows for natural paralleled

computations at the same time. The converged CV can be used as the initial

guess for the adjacent frequency for apparent accelerations; on the other

hand, a smaller η in Eq. 7.22 increases the condition number thus the diffi-

culty of solving the equation, so there are trade-offs to be made. Kühner and

White (1999) mentioned that considering the large amount of computations,

a dense set of frequencies is not necessarily computed using CV-DMRG, and

as for the calculation within the region of ½ω1;ω2�, when ηBω2 2ω1, one

can only calculate the CV at ω1 and ω2, and the response of those frequen-

cies inside this interval can be calculated using the more economic Lanczos

DMRG by providing a better basis that employs j0i, jOi together with the

CV of both ω1 and ω2 for approximating Hamiltonian. One shall keep in

mind that this is under the assumption that the CV of ω1 and ω2 can fairly

reflect the responses near to them.

Recently, Nocera and Alvarez (2016) proposed a method that employed

the Lanczos method for solving the CV jCðωÞi: when optimizing a local site

FIGURE 7.1 The mixed canonical representation of wavefunction composed of left-canonicalized

matrix product, canonical center and right-canonicalized matrix product.
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during the sweeping process, the effective Hamiltonian is transformed into a

tridiagonalized matrix through the Lanczos algorithm: Ĥ0 5VyTV , and the

the T matrix is directly diagonalized by T 5 SyDS where D is the diagonal

matrix made of the eigenvalues of the T matrix:

C ωð Þ
�� �

5VySy
1

E0 1ω2D1 iη
SV Oj i: ð7:24Þ

This method is essentially different from the Lanczos DMRG, and the

Lanczos method here serves as an alternative solver for CV, which avoids

directly solving ill-conditioned linear equations. The reduced density matrix

for Lanczos recurrence considers the contribution of jCðωÞi compared to the

original Lanczos DMRG, namely, it still employs different renormalized

basis for different frequency points.

7.3.3 Dynamical density matrix renormalization group

More frequently used CV approach is the DDMRG, which is a reformulation

of CV-DMRG in terms of the variational principle (Jeckelmann, 2002).

DDMRG transforms the task of solving the Eq. 7.22 for CV to a minimiza-

tion problem for functional F,

F5 hX ωð Þj ω2Ĥ01E0

� �2
1 η2 X ωð Þi1 2ηhO X ωð Þi:

���� ð7:25Þ
F finds its minimum when jX ωð Þi5 ImjC ωð Þi, and one important feature

is that the spectral function S ωð Þ in Eq. 7.21 equals 2Fmin=πη, which means

the explicit use of CV is not necessary for obtaining SðωÞ, and this leads to

increased accuracy: the numerical error of SðωÞ drops from OðεÞ to Oðε2Þ, if
the error of the obtained jXðωÞi is OðεÞ by adopting the minimization proce-

dure. The problem now turns into calculating Fmin. The minimization of

F employs a variational manner, and the working equation for a local site

i comes from the variational treatment of the local site matrix Aσi while

keeping the rest of matrices fixed,

@F X ωð Þ½ �
@Aσi

5 2hX ωð Þj ω2Ĥ01E0

� �2
1 η2j @

@Aσi
X ωð Þi1 2ηhOj @

@Aσi
X ωð Þi5 0:

ð7:26Þ
For clear demonstration, we graphically illustrate Eq. 7.26 that is formu-

lated with the structure of MPS/MPO (Jiang et al., 2020a), see Fig. 7.2.

Here, the MPS provides a mathematical ansatz for the CV.

This linear equation can be solved via standard iterative methods such

as the conjugate gradient method. Eq. 7.26 and Fig. 7.2 describe the “single-

site” algorithm that optimizes one local matrix at a time, and the procedure

is outlined in Algorithm 7.2.
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Algorithm 7.2: Single-site dynamical DMRG. DMRG, Density matrix renor-

malization group.

1: prepare operater Ĥ0 and Ô , ground state j0i.
2: generate initial guess of left canonical Xj i5Pfσi gA

σ0Aσ1?AσN21 .
3: for j5 0 to j5max_iter do
4: if j is even:
5: procedure right_to_left_sweep
6: for i5N2 1 to i5 1 do
7: @

@Aσi Fj X ωð Þ½ �5 0
8: U; S;V T’SVDðAσi Þ
9: update Aσi’V T, Aσi21’Aσi21US
10: end for
11: end procedure
12: if ðFj 2 Fj21Þ=Fj , E break
13: elif j is odd:
14: procedure left_to_right_sweep
15: for i5 0 to i5N2 2 do
16: @

@Aσi Fj X ωð Þ½ �5 0
17: U; S;V T’SVDðAσi Þ
18: update Aσi’U, Aσi11’SV TAσi11

19: end for
20: end procedure
21: if ðFj 2 Fj21Þ=Fj , E break
22: end for

Similar to the difference between the “single-site” and “two-site” ground-

state optimization, the extension to the “two-site” algorithm is fairly straight-

forward. The “two-site” algorithm is numerically more expensive but can

prevent from being trapped to a local minimum. In the first-generation

(A)

(B)

FIGURE 7.2 (A) The linear equation problem for optimizing Aσi ; (B) when sweep from right

to left, perform the SVD of Aσi each time after solving the local linear equation and update the

local site Aσi and meanwhile obtain the guess for Aσi21 . SVD, Singular value decomposition.

Reproduced from Jiang, T., Li, W., Ren, J., Shuai, Z., 2020a. Finite temperature dynamical

density matrix renormalization group for spectroscopy in frequency domain. J. Phys. Chem. Lett.

11, 3761�3768. https://doi.org/10.1021/acs.jpclett.0c00905, with permission from American

Chemical Society.
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DMRG in terms of renormalized operator, the implementation is the same as

CV-DMRG with the targeting state jXðωÞi, the ground-state wavefuction j0i
and jOi. The targeting states share one set of renormalized basis by state

averaging (Jeckelmann, 2002). In contrast, here all of them are accurately

represented by independent MPSs, which enables increased accuracy.

Meanwhile, the local effective Hamiltonian is based on the renormalized

basis in the traditional DDMRG (see discussion for CV in the previous sub-

section), so those moments with higher order such as Xy ðω2Ĥ0Þ2
�� �� @

@Aσi X
� �

are approximated (see discussion in Section 7.3.2), while the use of MPO

allows precise representation of all operators appeared in Eq. 7.26.

7.3.4 Chebyshev matrix product states

The CheMPS (Holzner et al., 2011) addresses the δ function formulation of

the spectral function:

S ωð Þ5 0 Ô
y
δ ω2 Ĥ0 1E0

� �
Ô

��� ���0D E
: ð7:27Þ

CheMPS combined the kernel polynomial expansion (Weiße et al., 2006)

with MPS to approximate the δ function. A general function f ðxÞ can be

expanded by the Chebyshev polynomials,

f xð Þ5 1

π
ffiffiffiffiffiffiffiffiffi
1-x2
p

ð1
21

dxf xð ÞT0 xð Þ1 2
XN
n51

Tn xð Þ
ð1
21

dxf xð ÞTn xð Þ
 !

where TnðxÞ follows the recurrence relation:

T0 xð Þ5 1;
T1 xð Þ5 x;
Tn xð Þ5 2xTn21 xð Þ2 Tn22 xð Þ; n5 2; 3;?:

ð7:29Þ

The expansion only holds when xA½2 1; 1� out of which the norm of

polynomial will diverge. When dealing with the δ function in Eq. 7.27, one

should rescale and shift the frequency ω and (the eigenvalues of) Ĥ 0 2E0

into ½2 1; 1� (in practice into ½2W0;W0� where W0 is slightly smaller than 1

to ensure the numerical stability). The rescale and shift operation is defined

by a function ω
0
5 f ðω0Þ and Ĥ

0

0 5 f ðĤ 0 2E0Þ where f xð Þ5 x2Emin

a
2W 0,

a5 ðEmax 2EminÞ=2W 0, and EmaxðminÞ correspond to the largest (smallest)

transition energy. The ground state of Ĥ0 and 2Ĥ0 can be calculated for the

lowest and highest energy of the system and then the transition energy can

be determined. Sometimes, not all states are involved in the transitions,

depending on the problems investigated, the quantum number (qn) con-

straints can be used to extract the energy window that involves energy transi-

tion. A smaller value of Emax 2Emin speeds up the convergence rate of

Chebyshev expansion. For instance, for linear optical absorption or emission
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spectroscopy of exciton models, the transitions happen between spaces with

qn5 0 and qn5 1, where qn denotes the number of exciton, and thus we can

only calculate the transition energies between these two spaces to determine

Emax and Emin.

The δ function is approximated by

δ ω2 Ĥ0 1E0

� �
5 a21δ ω02 Ĥ0

0� � � 1

aπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ω02
p g0 1 2

XN21

n51

gnTn Ĥ0
0� �
Tn ω0ð Þ

 !
ð7:30Þ

The approximation in Eq. 7.30 becomes exact in the limit of the expan-

sion order of N-N. Otherwise, the damping factor gn should be used. A

finite N without using gn leads to the so-called Gibbs oscillation (Holzner

et al., 2011). The introduction of gn let the spectral function become smooth,

for instance, the most commonly used Jackson kernel with the damping fac-

tor (Eq. 7.31) mimics the effect of frequency-dependent Gaussian broadening

with width η (Weiße et al., 2006).

gJn 5
N2 n1 1ð Þcos πn

N1 1
1 sin πn

N1 1
cot π

N1 1

N1 1
ð7:31Þ

η05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ω02
p π

N
; η5 aη0 ð7:32Þ

Substitute Eq. 7.30 back to Eq. 7.27, then

S ωð Þ5 1

aπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ω02
p g0μ0 1 2

XN21

n51

gnμnTn ω0ð Þ
" #

; ð7:33Þ

where μn 5 tnjt0h i is called the Chebyshev moments. Following the three-

term recurrence relation of Chebyshev polynomials, the Chebyshev vector

tnj i satisfies the recurrence relation,

tnj i5 2Ĥ0
0 tn21j i2 tn22j i; ð7:34Þ

with t0j i5 Ô 0j i and t1j i5 Ĥ00 t0j i.
The rescaled Ĥ00 is represented as an MPO and the generated Chebyshev

vectors are each represented by an MPS. To prevent the exponential growth

of the bond dimension of Chebyshev vectors, jtni is approximated by tmn i
�� in

terms of a MPS with a fixed virtual bond dimension m by the variational

compression called “recurrence fitting” which minimizes

Δfit 5 : tnj i22Ĥ0
0 tn21j i1 tn22j i:2: ð7:35Þ

@Δfit

@Xi

5 0-2htn21jĤ0
0 @jtmn i
@Xi

2 htn22j
@jtmn i
@Xi

5Xi ð7:36Þ
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where Xi is the canonical center of the MPS tmn i
�� . The minimization is graph-

ically represented in Fig. 7.3. Eq. 7.35 can also be minimized with two-site

algorithm which avoids local minimum but is more expensive. We outline

the procedure of Chebyshev MPS in Algorithm 7.3.

Algorithm 7.3: Chebyshev MPS. MPS, Matrix product states.

1: prepare operater Ĥ0, Ô, and ground state 0j i.
2: procedure rescale Hamiltonian
3: calculate minimal and maximal transition energy Emin and Emax.
4: Ĥ0

0’RescaleðĤ0; Emin; EmaxÞ
5: end procedure
6: generate first two Chebyshev MPS t0j i’Ô 0j i; t1j i’Ĥ0

0 t0j i
7: procedure vector generation
8: for n5 1 to n5N2 1 do
9: tn11j i’min: tn11j i2 2Ĥ0

0 tn21j i2 tn22j i
� ���� ���2

10: μ n½ �’ tnjt0h i3 g½n�
11: end for
12: end procedure
13: procedure calculate spectral function
14: for ω5ω0 to ω5ωK21 do
15: ω0’Rescaleðω; Emin ; Emax Þ
16: T 0:N2 1½ �’ChebyshevRecurrence ω0ð Þ
17: S ω½ �’ μ 0½ �1 2μT T

� �
3 coeffðω0Þ

18: end for
19: end procedure

According to Eq. 7.32, the spectral function is obtained with the

frequency-dependent resolution which is proportional to 1/N and

Emax 2Emin. Considering the fact that the frequency range with a finite

dynamical response called the spectral width WSð Þ is often significantly nar-

rower than the full many-body bandwidth W 5Emax 2Emin, an effective

FIGURE 7.3 Graphical representation of the single-site variational optimization of Chebyshev

vector tmn ⟩:
�� L (R) denotes left (right) canonical matrices. Reproduced from Jiang, T., Ren, J.,

Shuai, Z., 2021. Chebyshev matrix product states with canonical orthogonalization for spectral

functions of many-body systems. J. Phys. Chem. Lett. 12, 9344�9352. https://doi.org/10.1021/
acs.jpclett.1c02688, with permission from American Chemical Society.
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bandwidth W
�
smaller than W can be adopted in the rescaling implementa-

tion to increase the resolution. However, if doing so, an additional

higher-energy truncation procedure has to be included to throw away the

higher-energy components coming from the eigenstates of Ĥ00 that fall outside

of ½2 1; 1�. Otherwise, the newly generated Chebyshev vectors diverge

rapidly. Each time after compressing the newly generated Chebyshev vector,

the truncation is implemented in the traditional DMRG-like sweeping proce-

dure by first constructing a Krylov space of the local site and then project out

the higher-energy components. Nevertheless, the energy truncation procedure

cannot be formulated in a variational way as the ground-state calculation, that

is, there is no criterion to decide when to stop the sweep process and how

large the Krylov space should be constructed for the local site, so one should

assess the accuracy of using different combinations of parameters before the

real calculation. It was also shown that the energy truncation increases the

entanglement (bond entropy) (Holzner et al., 2011). All these facts stated in

this paragraph complicate the application of CheMPS to those systems having

especially broad full many-body bandwidth but narrow spectral width such as

the electron�phonon systems.

There is another approach to increase the resolution. The idea is behind

the fact that the damping factor is used to cure the Gibbs oscillation because

of finite expansions, which also leads to the reduction of the resolution. The

linear prediction which makes predictions by the extrapolation of the previ-

ous data points was proposed to monitor the decay of the Chebyshev

moments so as to discard the Gibbs oscillation in the absence of damping

factor (Ganahl et al., 2014).

Similar to the Lanczos MPS method, CheMPS follows a three-term recur-

rence relation that proceeds by variational compression of new vectors using

Eq. 7.35, which is the primary approximation made in CheMPS. Therefore

the recurrence relation will be broken because of accumulated errors, a post-

treatment by orthogonalizing the primitive Chebyshev vectors and construct-

ing a Krylov space (Xie et al., 2018) (similar to what was used in Lanczos

MPS, see Algorithm 7.1), in which the three-term recurrence relation can be

strictly preserved, and the accuracy and efficiency will be effectively

increased. Sometimes, the linear dependency between the Chebyshev vectors

makes the Gram�Schmidt orthogonalization numerically unstable. A numer-

ically stable canonical orthogonalization approach (inspired by Lowdin’s

orthogonalization in electronic structure calculation) was later presented and

significantly increased the accuracy of CheMPS (Jiang et al., 2021).

The canonical orthogonalization assumes the orthogonal vectors are line-

arly combined by the primitive N vectors,

φn

�� �
5
XN21

i50

Cin tij i; φmjφn

� �
5 δmn ð7:37Þ
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The C matrix is obtained by first diagonalizing the overlap matrix S of

the primitive Chebyshev vectors Sij 5 tijtj
� �� �

by S5UTDU, where D is

diagonal with elements being the eigenvalues of S. Then we have

C5UD21=2: The effective Hamiltonian matrix in the Krylov subspace

spanned by the new orthogonal vectors is,

Heff;mn 5 hφmjĤ0
0jφni5

XN21

i;j50

CimCjnhtijĤ0
0jtji ð7:38Þ

Heff ni5λn
0 nij

�� ð7:39Þ
Finally the spectral function is calculated by

S ωð Þ5 a21
X
n

njt⁎0
� ��� ��2δ ω02λn

0ð Þ5 a21
X
n

Ωnδ ω02λn
0ð Þ ð7:40Þ

where t⁎0
�� � is the first Chebyshev vector that represented in the new basis set

by t⁎0
�� �5 PN21

ij50 Cij t0jtih i j
�� �: We outline the procedure of CheMPS with

canonical orthogonalization in Algorithm 7.4.

Algorithm 7.4: Chebyshev MPS with canonical orthogonalization. MPS,

Matrix product states.

1: prepare operater Ĥ0, Ô, and ground state 0j i.
2: procedure rescale Hamiltonian
3: calculate minimal and maximal transition energy Emin and Emax.
4: Ĥ0

0’RescaleðĤ0; Emin; EmaxÞ
5: end procedure
6: generate first two Chebyshev MPS t0j i’Ô 0j i; t1j i’Ĥ0

0 t0j i
7: initialize Wij 5 ti jtj

� �
; Fij 5 ti jĤ0

0jtj
D E

for i; jA 0; 1½ �
8: procedure vector generation
9: for n51 to n5N2 1 do
10: tn11j i’min: tn11j i2 2Ĥ0

0 tn21j i2 tn22j i
� ���� ���2

11: for j5 0 to j5n do
12: Wjn 5Wnj’ fj jfn

� �
, Fjn 5 Fnj’ fj jĤ0

0jfn
D E

13: end for
14: end for
15: end procedure
16: procedure reorthogonalization
17: C’CanonicalOrthoðW Þ
18: Heff’MatrixMultiplyðCT ; F ;C Þ
19: λn ; nj i’Diag Heffð Þ;n5 0;1;?;N2 1
20: t⁎0

�� �’MatrixMultiply CT ;W ½0; :�� �
21: for n51 to n5N21 do
22: Ωn’ n t⁎0

�� �� ��2���
23: end for
24: end procedure
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7.3.5 Analytic linear response density matrix renormalization
group

We may as well group those algorithms (Lanczos DMRG, CV-DMRG,

DDMRG, and CheMPS) stated above into one category since all of them

are incorporating the independently existed method (Lanczos method, CV

method, and Chebyshev polynomial expansion method) with DMRG or

MPS/MPO as the supporter to calculate the spectral function. In contrast,

the analytic linear response DMRG that will be introduced in this section is

inspired by the linear response theories of conventional quantum chemistry

methods (Dorando et al., 2009; Wouters et al., 2013; Haegeman et al.,

2013; Nakatani et al., 2014).

First, we briefly review the canonical representation of the wavefunction

(also see Fig. 7.1),

jψi5
X
if g
L

0ð Þ
1 ?L

0ð Þ
i21C

0ð Þ
i R

0ð Þ
i11?R

0ð Þ
N jσ1?σi?σNi ð7:41Þ

where the right superscripts represent that the system is unperturbed. When

the system is perturbed by the external electromagnetic field

VðtÞ5Veiωt 1V⁎e2iωt, the local site matrix responses,

Li tð Þ5 L
0ð Þ
i 1 L

1ð Þ
i tð Þ1?

� �
e2iE0t

Ci tð Þ5 C
0ð Þ
i 1C

1ð Þ
i tð Þ1?

� �
e2iE0t

Ri tð Þ5 R
0ð Þ
i 1R

1ð Þ
i tð Þ1?

� �
e2iE0t

ð7:42Þ

Substitute Eqs. 7.41 and 7.42 into the time-dependent Schrödinger

equation i@tCiðtÞ5HiðtÞCiðtÞ and maintain the first-order terms, the linear

response matrix of the ith site C
ð1Þ
i ðωÞ, Cð1Þi ð2ωÞ satisfies

H
0ð Þ
i 2 E0 1ωð ÞI

� �
C

1ð Þ
i ωð Þ52Q ΔH

1ð Þ
i ωð Þ1V

1ð Þ
i

� �
C

0ð Þ
i ð7:43Þ

H
0ð Þ
i 2 E0 2ωð ÞI

� �
C

1ð Þ
i 2ωð Þ52Q ΔH

1ð Þ
i 2ωð Þ1V

1ð Þ⁎
i

� �
C

0ð Þ
i ð7:44Þ

where Q5 12C
ð0Þ
i C

ð0Þy
i assumes the intermediate normalization condition.

ΔH
1ð Þ
i 6ωð Þ is the linear response of the effective Hamiltonian of the ith site,

which in turn relies on C
ð1Þ
i ð6ωÞ, and therefore Eqs. 7.43 and 7.44 should be

solved iteratively. The entire linear response is obtained by a sweeping man-

ner: when sweeping from left to right, after solving for C
ð1Þ
i , L

ð1Þ
i needs to be

updated, and one can solve the equation of its column vector lð1Þp ,

D
0ð Þ
L 2σp

� �
l 1ð Þp 52QL

i D
1ð Þ
L l 0ð Þp ð7:45Þ
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where the projection operator QL
i 5 12 L

ð0Þ
i L
ð0Þy
i . The zeroth and first-order

response density matrix of the ith site are defined as,

D
0ð Þ
L 5C

0ð Þ
i C

0ð Þy
i ð7:46Þ

D
1ð Þ
L 5C 0ð ÞC 1ð Þy1C 1ð ÞC 0ð Þy; ð7:47Þ

and then move to the i1 1ð Þth site to get C
ð1Þ
i11.

The polarizability ω. 0ð Þ can be obtained after having the converged lin-

ear response wavefunction:

G1 ωð Þ5C 0ð Þyμ 0ð Þ
i C 1ð Þ ωð Þ1C 1ð Þy ωð Þμ 0½ �

i C 0ð Þ1C 0ð Þyμ 1ð Þ
i ωð ÞC 0ð Þ ð7:48Þ

where μð0Þi is the projection of the dipole operator at the renormalized basis

of the ith site, and C 1ð Þ ωð Þ is the linear response wavefunction at ω after the

perturbation from external field.

7.4 Finite temperature algorithms

7.4.1 Lanczos density matrix renormalization group

The calculation of spectral function at finite temperature relies on getting the

thermal equilibrium density matrix, with which the algorithms at zero tem-

perature can be slightly modified for the finite temperature case. The density

matrix of thermal equilibrium mixed state at T. 0 can be represented by

ρ̂5
1

Z
e2βĤ0 5

1

Z

XN
n51

nie2βEnhn ; β5 1=kBT
���� ð7:49Þ

where Z is the partition function. Note that all notations are identical to those

in Section 7.2. By sampling R normalized states jri with random amplitudes,

the thermal density matrix ρ̂ can be approximated as

ρ̂B
N

ZR

XR
r51

e2
βĤ0
2 jrihrje2βĤ0

2 ; jri5
X

n
crn nij ð7:50Þ

With the random sampling treatment of the initial state, Kokalj and

Prelovšek (2009) extended the Lanczos DMRG to finite temperature. A tri-

diagonalized matrix Heff can be obtained by performing the Lanczos itera-

tion on rj i, then Heff is diagonalized to obtain a set of eigenvectors jψr
i i and

the corresponding eigenvalues Eri i5 1; 2;?;Mð Þ. Therefore e2βĤ0=2 rj i can
be approximated as

j ~ψri5
XM
i51

e2
βEr

i
2 ψr

i

�� �
ψr
i jr

� �
; ð7:51Þ
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then the density matrix is approximated as

ρ̂B
N

ZR

XR
r51

j ~ψrih ~ψrj; Z5
N

R

XR
r51

XM
j51

e-βε
r
j jhrjψr

j ij2 ð7:52Þ

For the spectral function,

G 1ð Þ ωð Þ5 1

Z

X
n

e2βEn njÔy 1

ω2 Ĥ0 2En

� �
1 iη

Ôjn
* +

; ð7:53Þ

use the approximation of random sampling,

G 1ð Þ ωð Þ � N

ZR

XR
r51

XM
i;j51

e2βEri
1

ω2 EOrj 2 Eri
� �

1 iη

3 rjψr
i

� �
ψr
i Ô
y��� ���ψOr

j

D E
ψOr
j Ô
�� ��rD E ð7:54Þ

where ψOr
j

��� E
and EOrj are the Lanczos vectors and the corresponding eigenva-

lues by using Ô rj i as the initial state to perform the Lanczos iteration.

The accuracy of this method relies on the number of states being sampled

for the construction of density matrix, indicating the suitability for situations

with relatively low temperature. However, it often requires a large number

of states to be sampled for high temperatures. As will be introduced in

Chapter 8, a more rigorous approach using the imaginary time evolution for

the thermal density matrix has become more popular for obtaining the ther-

mal density matrix.

7.4.2 Dynamical density matrix renormalization group

The response function SðωÞ at finite temperature (see Section 7.2) reads

S ωð Þ52
1

π
lim
η-01

ImTr Ô
y 1

ω2ℒ1 iη
Ôρ̂β

� �
ð7:55Þ

Jiang et al. (2020a) extended the DDMRG method to finite temperature

with the help of the purification technique that provides the thermal equilib-

rium. Accordingly, they defined the CV at finite temperature as

C ωð Þ5 1

ω2ℒ1 iηð Þ μ̂ ρ̂1=2β ; ð7:56Þ

where ρ̂1=2β can be obtained by the imaginary time evolution (see Chapter 8

for details), and CðωÞ is in the form of MPO, whose imaginary part XðωÞ
satisfies the following real symmetric and positive definite equation:
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ω2ℒð Þ2 1 η2
� �

X ωð Þ52 ηÔρ̂1=2β ; ð7:57Þ
basing upon which the functional F is constructed,

F5Tr Xy ω2ℒð Þ2 1 η2
� �

X1 2ηXyÔρ̂1=2β

n o
ð7:58Þ

Similar to the zero-temperature case, F finds its minimum where XðωÞ
satisfies Eq. 7.57, and SðωÞ52Fmin=πη. XðωÞ can be obtained by solving

the equation @F=@Aσi
ai21ai

5 0 iteratively in a variational way (Schollwöck,

2011), which is graphically represented in Fig. 7.4.

@F

@Aσi
5

Tr Xy ω2Ĥ0

� �2
1 η2

h i @X

@Aσi
1 2Xy ω2 Ĥ0

� � @X

@Aσi
Ĥ0 1Xy

@X

@Aσi
Ĥ

2

0 1 ηρ1=2β μ̂
@X

@Aσi

8<:
9=;5 0:

ð7:59Þ
The complexity for solving the linear equation at finite temperature is

Oðm4p4Þ, compared with Oðm4p2Þ at zero temperature, which could be a

vast increase of numerical resources especially for the electron�phonon sys-

tems that typically possess a large physical bond dimension p (tens or hun-

dreds) of the local phonon mode.

7.4.3 Chebyshev matrix product state

In Section 7.3.4, we introduced the CheMPS method at zero temperature.

Tiegel et al. (2014) combined it with the purification technique to calculate

the spectral function at finite temperature.

FIGURE 7.4 Graphical representation of DDMRG’s working equation for optimizing single

local site at finite temperature. DDMRG, Dynamical density matrix renormalization group; MPO,

matrix product operator. Reproduced from Jiang, T., Li, W., Ren, J., Shuai, Z., 2020a. Finite

temperature dynamical density matrix renormalization group for spectroscopy in frequency

domain. J. Phys. Chem. Lett. 11, 3761�3768. https://doi.org/10.1021/acs.jpclett.0c00905. With

permission from American Chemical Society.
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S ωð Þ5Tr ρ̂1=2β Ô
y
δ ω2ℒð ÞÔρ̂1=2β

n o
ð7:60Þ

Similar to the procedure at zero temperature in Section 7.3.4, ω and the

operator ℒ should be rescaled first. Considering the case of frequency lying

in the full many-body band ½Emin;Emax�, the projection works as follows,

ω05
ω2Emin

a
2W 0;ℒ05

ℒ2Emin

a
2W 0; ð7:61Þ

the δ function is rewritten as

δ ω2ℒð Þ5 1

a
δ ω02ℒ0ð Þ

� 1

aπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ω02
p g0 1 2

XN21

n51

gnTn ℒ0ð ÞTn ω0ð Þ
 ! ð7:62Þ

this equation is substituted back to Eq. 7.60, and a formula same as the zero-

temperature case is obtained, see Eq. 7.33, where the Chebyshev moments

μn 5Trft̂nt̂0g, and t̂n satisfied the following recurrence relation,

t̂n 5 2ℒ0 t̂n21 2 t̂n22; ð7:63Þ
with the initial vectors t̂0 5 Ôρ̂1=2β , t̂1 5ℒ0 t̂0.

7.5 Applications

With all these efforts, the DMRG methods in frequency space discussed in

the previous sections have been extensively applied in calculating the

dynamical properties of electron systems, electron�phonon systems, spin

systems, etc. Some representative applications that study the dynamical

quantities of many-body systems or examine/benchmark the performance of

numerical methods will be presented in this section.

7.5.1 Electron system

The frequency space DMRG methods have been used to study the dynamical

quantities of many-body electron systems, including the Hubbard model and

its extensions, the Anderson impurity model, and ab initio quantum chemis-

try Hamiltonian. Earlier applications were applied to study the optical prop-

erties of conjugated polymer described by the (extended) Hubbard lattice

model (Chapter 3 discussed the electronic structure investigations using

DMRG). In organic semiconductors, the electron/hole pair of an exciton is

bounded locally compared to the inorganic counterparts. The inorganic semi-

conductors typically have a large dielectric constant ε. 10 so that the

Coulombic interaction is well screened, and, hence, the single-electron band

model is often appropriate. However, as for the organic semiconductors, the
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intermolecular interaction is dominated by relatively small van der Waals

force and the typically small dielectric constant εB22 4 cannot exhibit well

screening effect. The binding energy of the electron�hole pair generated by

the photon excitation is greater than the bandwidth of single electron band,

thus the electron and hole are generally bounded. The extended

Hubbard�Peierls model is a simple treatment to consider the attractive

potential of the electron�hole pair,

Ĥ52
X
i

t 11 ð21Þiδ	 

ĉ
y
iσĉi11σ 1 h:c:

� �
1U

X
i

n̂imn̂ik 1V
X
i

ðn̂i 2 1Þðn̂i11 2 1Þ

ð7:64Þ
where t is the nearest hopping integral, δ is the parameter for adjusting the

bond length, U is the on-site Coulombic repulsion, and V is the nearest

Coulombic potential. A graphical representation is shown in Fig. 7.5.

With this Hamiltonian, Pati et al. (1999) investigated the third-order

polarizability of different length, see Fig. 7.6. In Section 7.2.2, we only intro-

duced how to calculate the linear response function using CV-DMRG,

although the nonlinear response has a more complicated form, it can be cal-

culated using CV-DMRG within the same framework (Ramasesha et al.,

1997; Pati et al., 1999), see the third-order polarizability shown in Chapter 3.

Jeckelmann (2002) applied DDMRG to calculate the current�current cor-
relation function of the extended Hubbard�Peierls model (V5 0) to obtain

the optical conductivity, see Fig. 7.7. If the Hubbard term (U5 0) in

Eq. 7.64 is again neglected, the Hamiltonian describes the free electron sys-

tem, the optical conductivity of which is exactly solvable, which is regarded

as one criteria to test the accuracy of DDMRG, and according to Fig. 7.7,

the DDMRG result rigorously overlaps with the exact result.

Dorando et al. (2009) developed the analytic linear response DMRG

method and applied it to calculate the polarizability of oligodiacetylenes

(ODAs) and the result is compared with the DDMRG result. It was found that

for relatively smaller m (e.g., m5 25), DDMRG gave poor polarizabilities in

some cases, and some of the relative errors even reach 50%. By contrast, the

results from the analytic linear response DMRG are more reasonable than

DDMRG. This was explained that DDMRG suffers from using one set of

DMRG basis to represent both the zeroth and response vectors, and we antici-

pate the improved accuracy if adopting different MPSs to represent the zeroth

and response vector separately, as stated in Section 7.3.3. With the increase of

FIGURE 7.5 The graphical representation of the extended Hubbard�Peierls model.
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FIGURE 7.6 Plot of the log of average third⁃order polarizability ˜γ versus log of the chain length,

L. Hubbard chain with three different values of U/t for δ5 0 (A) and δ5 0.09 (B); Hubbard�Peierls
chain with three different values of U=t and V=t5 1 for δ5 0 (C) and δ5 0.09 (D). Reproduced

from Pati, S.K., Ramasesha, S., Shuai, Z., Brédas, J.-L., 1999. Dynamical nonlinear optical coeffi-

cients from the symmetrized density-matrix renormalization-group method. Phys. Rev. B. 59, 14827.

https://doi.org/10.1103/PhysRevB.59.14827, with permission from American Physical Society.

FIGURE 7.7 (A) Peierls insulator with U5 0 and δ5 0:3, both DDMRG result for a 128-site

chain and the exact result in the thermodynamic limit are shown (broadening width η5 0.05t);

(B) optical conductivity on a 128-site chain for: Mott�Hubbard insulator with U5 3t; δ5 0

(dashed), Peierls insulator with U5 0; δ5 0:15 (dot dashed), and Hubbard�Peierls insulator

with U5 2:3t; δ5 0:075 (solid), broadening width η5 0:1t. Reproduced from Jeckelmann, E.,

2002. Dynamical density-matrix renormalization-group method. Phys. Rev. B. 66, 045114. https://

doi.org/10.1103/PhysRevB.66.045114, with permission from American Physical Society.
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m, both methods converge gradually, and when m5 250, the results from

DDMRG are a little bit better than the analytic linear response DMRG. Ronca

et al. (2017) also applied DDMRG to calculate the single-electron Green func-

tion to obtain the photoelectron spectrum of quantum chemical systems with

ab initio Hamiltonian, and the full configuration interaction results are used as

the benchmarking results to compare the performance of DDMRG and time-

dependent DMRG (TD-DMRG). Apart from this, they also applied DDMRG

to precisely calculate the core ionization energy of the O 1s orbital of water

molecule.

Jiang et al. (2021) combined CheMPS with canonical orthogonalization

(coCheMPS), and applied it to calculate the photoelectron spectra of ab inito

Hamiltonian. The coCheMPS exhibited both high accuracy and efficiency as

compared with other state-of-the-art DMRG methods, as shown in Fig. 7.8.

Such system is with relatively discrete density of states; however, the appli-

cation to electron�phonon systems with dense states should be cautioned (as

shown by Fig. 7.12). The algorithm did not adopt the spin adaptation with

which the performance can be further increased (Ronca et al., 2017).

(A)

(B)

(C)

(D)

FIGURE 7.8 (A) The transition amplitude and transition energy (in unit of a.u.) computed by

Lanczos MPS, CheMPS (both with canonical orthogonalization) with different bond dimension.

(B) Density of states computed by coCheMPS and TD-DMRG. (C) The first six peaks using

DDMRG. (D) Time cost for obtaining whole spectral functions using TD-DMRG and

coCheMPS and the averaged time for one frequency using DDMRG. coCheMPS, CheMPS with

canonical orthogonalization; DDMRG, dynamical density matrix renormalization group; TD-

DMRG, time-dependent density matrix renormalization group. Reproduced from Jiang, T., Ren,

J., Shuai, Z., 2021. Chebyshev matrix product states with canonical orthogonalization for spec-

tral functions of many-body systems. J. Phys. Chem. Lett. 12, 9344�9352. https://doi.org/

10.1021/acs.jpclett.1c02688, with permission from American Chemical Society.
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Ganahl et al. (2014) applied the CheMPS method with the linear predic-

tion technique to the single-impurity Anderson model (SIAM) The method

was benchmarked with the exactly solvable noninteracting SIAM which is

equivalent to the spinless fermion model which is a nontrivial case for the

MPS-based method, as shown in Fig. 7.9A, and the linear prediction dramati-

cally increases the resolution of the spectral function and leads to great over-

lap with the exact results. As for the SIAM model with finite interaction

strength, in Fig. 7.9B the trained MPS-based Chebyshev moments using the

first 200 moments for training prediction are well overlapped with those

without linear prediction.

7.5.2 Electron�phonon system

The Holstein model represents the most often studied object relating to elec-

tron�phonon coupled systems. Using the Lanczos DMRG, Zhang et al.

(1999) studied the spectral functions and the optical conductivity of Holstein

model with noninteracting electrons coupled to dispersionless phonons,

Ĥ5Ω
X
i

b̂
y
i b̂i 2 γ

X
i

b̂
y
i 1 b̂i

� �
n̂i 2 t

X
iσ

ĉ
y
i11σĉiσ 1 ĉ

y
iσĉi11σ

� �
; ð7:65Þ

where ĉ
y
iσðĉiσÞ is the creation (annihilation) operator of electron with spin σ

on site i, n̂i is the number of electrons on site i, b̂
y
i ðb̂iÞ is the creation (annihi-

lation) operator of local phonon mode. γ is the electron�phonon coupling

FIGURE 7.9 The application of CheMPS with the linear prediction technique to the SIAM

model: (A) spectral function of the 100-site SIAM model in the noninteracting limit (U5 0)

without (dash-dotted blue line, using 200 moments) and with (solid green line) linear prediction

by using the CheMPS method as well as the exact results for the infinite system (red dots). The

difference is shown in the inset. (B) Linear prediction of MPS-computed Chebyshev moments

for the SIAM model with finite interaction strength: moments data in the left of the black dashed

line are used as input and those between the black dashed and solid line are used as training data

to make predictions. CheMPS, Chebyshev matrix product states; MPS, matrix product states;

SIAM, Single-impurity Anderson model. Reproduced from Ganahl, M., Thunström, P.,

Verstraete, F., Held, K., Evertz, H.G., 2014. Chebyshev expansion for impurity models using

matrix product states. Phys. Rev. B. 90, 045144. https://doi.org/10.1103/PhysRevB.90.045144,

with permission from American Physical Society.
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strength of the ith lattice site, and t is the hopping integral of the nearest lat-

tice sites.

Fig. 7.10 presents the change of physical quantities related to the optical

conductivity with the changes of the electron�phonon coupling strength γ. The
optical conductivity σðωÞ5DδðωÞ1σ0ðωÞ and D is the Drude peak correspond-

ing to the weight of the coherent part, and σ0ðωÞ corresponds to the weight of

the incoherent part. In Fig. 7.10A, T is the kinetic energy per site and follows

the relation with σðωÞ that ÐN
0

σ ωð Þdω5 πe2
2

2Tð Þ, namely, T gives the total

weight of the optical conductivity. In the absence of the electron�phonon
coupling (γ5 0), the incoherent part σ0ðωÞ contributes nothing to the optical

conductivity, and one has the relation that D5 T , corresponding to the noninter-

acted free electron system. With the increase of γ, both D and T decrease, and

D deceases faster and becomes very small when γ. 2t. The decrease of the

ratio D=T implies the more contribution of the incoherent part, and this corre-

sponds to the polaronic behavior in the strong electron�phonon coupling. It is

also observed that σ0ðωÞ becomes more complex in the polaronic regime. When

FIGURE 7.10 (A) Drude weight D and the kinetic energy per site T as a function of the elec-

tron�phonon coupling γ; (B) the incoherent part of the optical conductivity σ0ðωÞ in the quasi⁃
free electron regime (γ5 0.8t) and in the small polaron regime (γ5 2.5t). Reproduced from

Zhang, C., Jeckelmann, E., White, S.R., 1999. Dynamical properties of the one-dimensional

Holstein model. Phys. Rev. B. 60, 14092. https://doi.org/10.1103/PhysRevB.60.14092, with per-

mission from American Physical Society.
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the electron�phonon coupling is weak, the picture of a nearly free electron

slightly dressed by the phonon cloud is appropriate, and when the electron�pho-
non coupling is strong, the distortion of lattice acts as a trap of electron to form

a quasi-particle called polaron.

The Holstein model is widely used to study the nonadiabatic quantum

dynamics of π electron conjugated organic aggregates and polymers, where

the excitation energy and charge transfer are usually accompanied by the

nuclear motion and hence the interaction between electron and nuclear

motion (electron�phonon coupling) has a crucial impact on the dynamical

properties of the excited states. Considering the comparable magnitude of

the intermolecular coupling and the electron�vibrational (electron�phonon)
coupling, the perturbation treatment often fails and DMRG methods will be

used to treat them on equal footing. Jiang et al. (2020a) presented the

MPS/MPO formulation of the DDMRG algorithm at finite temperature (code

can be found in Further reading). The absorption and emission spectra

of one-dimensional molecular aggregates are studied by calculating the

dipole�dipole correlation function. The Hamiltonian is

Ĥ5
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where εi is the adiabatic transition energy of the ith molecular, Jij is the inter-

molecular excitonic coupling between the ith and jth molecules, and ωin and

gin is the vibrational frequency and the corresponding electron�phonon cou-

pling constant belonging to the nth vibrational mode of the i2 th molecule.

Fig. 7.11 compared DDMRG (Jiang et al., 2020a) with TD-DMRG (Ren

et al., 2018) by calculating the absorption spectra. The dimer model contains

FIGURE 7.11 (A) Relative error for the absorption spectra of J-aggregated dimer with differ-

ent Huang�Rhys factor S across different temperatures (Jiang, et al., 2020a). The error of

DDMRG at kBT 5 0:5ω0 is magnified by 50 times to make it clearly visible. (B) Relative error

of 02 0 emission strength of an open boundary 5-site system using n-particle approximation and

DDMRG. DDMRG, Dynamical density matrix renormalization group. Reproduced from Jiang,

T., Li, W., Ren, J., Shuai, Z., 2020a. Finite temperature dynamical density matrix renormaliza-

tion group for spectroscopy in frequency domain. J. Phys. Chem. Lett. 11, 3761�3768. https://
doi.org/10.1021/acs.jpclett.0c00905, with permission from American Chemical Society.
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one vibration mode with frequency of ω0 for each molecule and covers the

parameter space of different Huang�Rhys factor (S5 g2) and temperature

kBTA ω0; 2ω0; 4ω0½ �. Keeping the fixed m5 120, DDMRG is generally more

accurate than TD-DMRG within the parameters space studied, and in particu-

lar accurate at low temperature regime with a nearly exact result, but it exhi-

bits growing error with increased temperature, because more transition pairs

exist at higher temperature, which requires a large bond dimension m to main-

tain the accuracy. Therefore DDMRG is more suitable to calculate the

response properties at low temperature. In fact, large amounts of organic con-

jugated molecules have the vibronic progression of ω0 5 1400cm21, which

lies at region of kBT #ω0 for ambient temperature. Fig. 7.11b also compared

DDMRG with the n-particle approximation, which is a truncated configuration

interaction method that was popularly applied in studying the spectra of

organic molecular aggregates. It turned out that DDMRG is able to achieve

the precision of up to 4-PA with a relatively small bond dimension.

The coCheMPS method was applied to the emission spectrum of molecu-

lar aggregates with electron�phonon coupling at finite temperature. It was

found that the canonical orthogonalization can greatly improve the accuracy;

however, coCheMPS may not be very well suited to study the spectral func-

tion of complex electron�phonon systems, which requires more Chebyshev

FIGURE 7.12 Emission spectra of 10-site molecular aggregates at 298K using m5 32. The

upper panel belongs to a system with one fast mode for each molecule and the lower panel

belongs to a system with one fast mode and one slow mode for each molecule. The frequency

axis is in units of 1400cm21. The stemmed lines are discrete transition amplitudes calculated by

coCheMPS (N5 500 for the upper panel and N5 1500 for the lower panel). Reproduced from

Jiang, T., Ren, J., Shuai, Z., 2021. Chebyshev matrix product states with canonical orthogonali-

zation for spectral functions of many-body systems. J. Phys. Chem. Lett. 12, 9344�9352. https://
doi.org/10.1021/acs.jpclett.1c02688, with permission from American Chemical Society.
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vectors since the involvement of slow modes makes the density of states

larger. Besides, the spectral window shown in Fig. 7.12 constitutes very little

part of the full many-body frequency window (B8%). It was also suggested

to rescale the effective energy window rather than the full window to

½2 1; 1� (Holzner et al., 2011) since the rest frequencies have near zero

response. However, the energy truncation leads to increased entanglement

(Holzner et al., 2011) and the parameters for additional energy truncation is

quite empirical (Jiang et al., 2020b). All in all, the application of CheMPS

method to electron�phonon coupled systems deserves further investigations.

7.6 Summary and outlook

DMRG was initially proposed as a powerful technique to study the equilib-

rium properties of the strongly correlated system and has gradually been

developed to accurately calculate the dynamical response properties of large

systems. One can obtain the response properties by two schemes: one is

directly solving the response function in frequency space and another is by

performing the Fourier transform of the time correlation function computed

in the time domain. This chapter elaborated the methods in frequency space

and introduced some of their applications.

Although we focus on introducing the frequency domain methods, we

find it necessary to leave some comments on the TD-DMRG (also serves as

an introduction for Chapter 8), which helps for a more comprehensive under-

standing of the frequency domain method. TD-DMRG has been extensively

applied to the simulation of the ultrafast dynamics, and compared with the

frequency-domain algorithms, it gives the information of the real-time

dynamics, as will be introduced. The weakness of TD-DMRG is that the

accumulated error and the increased entanglement with the time evolution

require the larger bond dimension and hence lead to great challenges to the

long-time evolution (Barthel et al., 2009; Gobert et al., 2005; Kloss et al.,

2018). The frequency-domain algorithm can avoid this issue and is promis-

ing to give more accurate results. As for the frequency-domain algorithms,

both CV-DMRG and DDMRG need separate calculations for different fre-

quencies and have high accuracy but low efficiency. They become the choice

of methods when only the dynamical quantities of several important frequen-

cies are needed. Technically speaking, the naturally paralleled character of

them and the powerful GPU acceleration (Jiang et al., 2020a) can drastically

reduce the computing time. CheMPS is a newly proposed method that is

promising to have a balance between accuracy and numerical cost, the intro-

duction of post-orthogonalization significantly increases both the accuracy

and efficiency of traditional CheMPS method, especially for system with dis-

crete states; however, its application in complex electron�phonon systems

still waits for more comprehensive and systematic explorations.
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Originated from the zero-temperature case, the ability of the frequency-

domain DMRG methods are naturally extended to finite temperature after

obtaining the thermal equilibrium density matrix with the help of techni-

ques such as the thermal field dynamics (the purification method). The

purification is conducted by evolving the maximally entangled state at infi-

nite high temperature along the imaginary time axis. Hence, more evolution

steps are needed to get access to the thermal density matrix at low tempera-

ture, and the minimally entangled typical thermal state (METTS) method

(White, 2009) may be explored as a powerful complement at the low-

temperature regime.

The frequency-domain DMRG methods and their MPS/MPO formulation

have achieved excellent applications for the dynamical quantities and spec-

troscopy, and there are still lots of space to be explored considering more

broad application cases, method development as well as assessment.
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Chapter 8

Time-dependent density matrix
renormalization group

8.1 Overview

8.1.1 Time-dependent density matrix renormalization group and
nonadiabatic dynamics

The time evolution algorithms for density matrix renormalization group

(DMRG) are initially proposed around 2002 (Cazalilla and Marston, 2002;

Daley et al., 2004; Luo et al., 2003; Vidal, 2004; White and Feiguin, 2004)

and have developed rapidly ever since, enabled by the establishment of the

relation between DMRG and the matrix product states ansatz. These algo-

rithms offer a numerically exact solution to the time-dependent Schrödinger

equation of complex many-body systems, provided that the bond dimension

or the number of variational parameters is large enough. Although the time

evolution algorithms have become an indispensable part of DMRG, there has

not been a unified terminology or abbreviation for time-dependent DMRG in

the literature, and in this chapter we choose to use TD-DMRG at our

discretion.

Unlike in the realm of physics where most often DMRG as well as TD-

DMRG are utilized to tackle spin problems, the application of TD-DMRG in

chemistry is primarily focused on electron-vibration coupled models, also

known as vibronic models. These models are fundamental for the study of

chemical reactions, photochemical, or photophysical phenomena in (bio-)

molecules and transport properties in solids. For example, TD-DMRG has

been successfully used to study exciton dissociation in donor/acceptor het-

erojunction (Yao et al., 2018, 2016), absorption and fluorescence spectra of

molecular aggregates (Baiardi and Reiher, 2019; Ren et al., 2018), and car-

rier mobility in organic semiconductors (Li et al., 2020b). More details on

the applications will be elaborated in Section 8.4,

Actually, vibronic problems are so prevalent and important in chemistry that

even before DMRG is invented theoretical chemists have already developed a

full set of tools for them, named as nonadiabatic dynamics, whose purpose is

to describe the simultaneous motion of electrons and nuclei (Crespo-Otero

and Barbatti, 2018; Yarkony, 2012). The numerous nonadiabatic dynamics
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methodologies can be roughly divided into two categories. The first category,

usually termed quantum dynamics, includes the methodologies that treat the

nuclear motion quantum mechanically and the advantage is that the zero-point

energy and tunneling effect of the nuclei can be correctly accounted for. In the

second category, usually termed mixed quantum-classical dynamics, the nuclear

motion is approximated by classical or semi-classical mechanics, and the advan-

tage is the possibility to study larger systems with more degrees of freedom

over a longer timescale. For vibronic models TD-DMRG describes the state of

the nuclei with wavefunctions, and thus it falls into the category of quantum

dynamics, whose representative method is multiconfiguration time-dependent

Hartree (MCTDH) (Beck et al., 2000; Meyer et al., 1990) and its multilayer

extension (ML-MCTDH) (Wang, 2015; Wang and Thoss, 2003). (ML-)

MCTDH has achieved great success in the past years and is implemented in the

famous Heidelberg MCTDH package (Vendrell and Meyer, 2011). TD-DMRG

and (ML-)MCTDH target similar problems in nonadiabatic dynamics and their

formulations share a lot in common. We shall discuss the relation between TD-

DMRG and ML-MCTDH in the next subsection.

The materials of the chapter are organized with a special focus on

the applicability of TD-DMRG to vibronic problems. For example, in

Section 8.3 we will introduce several algorithms that enable TD-DMRG to

capture the finite temperature effect, significant for nuclear degrees of free-

dom but not much for electron motion in molecules. However, it is important

to note that TD-DMRG cannot be simply understood as one of the emerging

methodologies in nonadiabatic dynamics and serves as an alternative to

(ML-)MCTDH, since DMRG and TD-DMRG are general methods that are

not limited to specific models. Leaving the various models conquered with

TD-DMRG in physics aside, several recent studies in chemistry have

revealed the potential of using TD-DMRG to investigate the dynamics of

electronic degrees of freedom based on ab initio Hamiltonian (Baiardi, 2021;

Frahm and Pfannkuche, 2019; Ronca et al., 2017). Although these reports,

for the time being, only make up a relatively small portion of all the litera-

ture regarding TD-DMRG in chemistry, we believe that the spectrum of its

application will continue to expand.

8.1.2 Relation between time-dependent density matrix
renormalization group and multilayer multiconfiguration time-
dependent Hartree

MCTDH and ML-MCTDH are the de-facto reference method for nonadia-

batic dynamics and have gained great popularity (Beck et al., 2000; Wang,

2015). The starting points of TD-DMRG and ML-MCTDH resemble each

other, which are approximating system wavefunction with low-rank tensors.

The ML-MCTDH ansatz is formally known as hierarchical Tucker tensor

decomposition. A typical two-layer ML-MCTDH wavefunction can be
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expressed using graphical notations similar to those used in MPS to describe

the ML-MCTDH ansatz:

ð8:1Þ

Adopting ML-MCTDH notation (Wang, 2015), the two-layer wavefun-

tion for Eq. (8.1) reads:
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where A is the coefficient matrix at layer 0 with indices j1 to jp, p is the total

number of nodes in layer 1 or the number of the children of the node at layer

0, Bκ;jκ is the coefficient matrix of jκth single-particle function of the

κ node at layer 1 with indices i1 to iQðκÞ, QðκÞ is the number of the children

of the κth node at layer 1, and jvðκ;qÞiq
i is a time-dependent linear combination

of the corresponding time-independent primitive basis σij i. The ML-

MCTDH wavefunction with arbitrary layers can be defined recursively in a

similar way. The same as MPS, ML-MCTDH belongs to tensor networks.

Their difference is that ML-MCTDH adopts a tree-like structure, while MPS

is linear. At the first glance, ML-MCTDH seems to be identical to tree tensor

networks (Orús, 2019). Nevertheless, for typical tree tensor networks, each

node can have its physical bond, while in ML-MCTDH only nodes at the top

layer have physical bond. Note that the top layer in Eq. (8.1) is actually the

bottom layer by ML-MCTDH convention. Eq. (8.2) and its recursive exten-

sion indicate that the ML-MCTDH wavefunction is rather flexible. In fact,

MPS can be viewed as a very special case of ML-MCTDH, in which the tree

is extremely unbalanced and reduces to a linear chain (Grasedyck, 2010):

ð8:3Þ
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In this case, the number of layers in ML-MCTDH is identical to the number

of sites in MPS. It can be shown that, both derived from time-dependent varia-

tional principle (TDVP), the equations of motion (EOM) for MPS is identical to

the EOM of ML-MCTDH with this extremely imbalanced architecture. However,

to the best of our knowledge, in practical ML-MCTDH computations, the number

of layers never exceeds 10, so the “unification” here is purely conceptual.

Although ML-MCTDH is a more general and flexible ansatz, the specific

structure restriction on MPS actually gives it an advantage over ML-

MCTDH, which is the possibility of flexible quantum state manipulation

with the help of MPOs. If a quantum state Ψj i represented by an MPS is

applied by an operator Ô represented by an MPO, the resulting state Ô Ψj i
trivially retains the MPS structure, with an enlarged bond dimension. On the

contrary, after being applied by an MPO, the tree structure of the ML-

MCTDH ansatz with an enlarged bond dimension cannot be easily restored:

ð8:4Þ

To design an operator which is able to retain the ML-MCTDH tree struc-

ture, the operator should also adopt the tree topology. Such design is more

complicated than MPO and has not been reported yet. Thus, in the MCTDH

community, the idea of MPO is never used and quantum state manipulation

is limited to relatively simple cases. The fact that universal operator applica-

tion can be straightforwardly implemented for MPS lays the foundation of a

whole class of time evolution algorithms and enables the calculation of gen-

eral correlation functions such as current-current correlation function.

Interestingly, the similarities between TD-DMRG and (ML-)MCTDH have

boosted the development of the two methodologies with ideas originating from

each other. For instance, in Section 8.2, we shall discuss MPS time evolution algo-

rithms that are inspired by (ML-)MCTDH, and the projector splitting algorithm

originally designed for MPS has also been successfully migrated to (ML-)

MCTDH (Bonfanti and Burghardt, 2018; Kloss et al., 2017; Lubich, 2015).

Besides, the idea of MPS has enabled a variant of the MCTDH ansatz (Kurashige,

2018), and the resulting methodology is very similar to the optimized boson basis

technique for MPS (Guo et al., 2012). Also, both MPS and (ML-)MCTDH can be

integrated with hierarchical equations of motion (HEOM) for efficient propagation

of the reduced density operators (Shi et al., 2018; Yan et al., 2021).
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8.1.3 Reviews, software, and other resources

In this chapter, we aim to provide a pedagogical view of TD-DMRG with a

flavor of our understanding and due to length limitation several topics are

not discussed in detail. These topics include but are not limited to the histori-

cal development of TD-DMRG, rigorous derivations of several conclusions

and formulas, scaling analysis of the algorithms, and numerical evidence for

the performance of the algorithms over a variety of computational examples.

Readers are referred to several excellent reviews on TD-DMRG for more

information (Ma et al., 2018; Paeckel et al., 2019; Ren et al., 2022).

There also exist a number of packages that implements the algorithms introduced

in the chapter. Some of the packages are well-documented with high-level interfaces

that can be put into production out of the box. In Table 8.1, we provide a non-

exhaustive list of the packages. To focus on the topic of the chapter, general tensor

network packages or DMRG packages focused on ground state properties that do

not process full-fledged time-evolution algorithm are not listed. Apart from kln-X,

SymMPS, and SyTen, all packages in Table 8.1 are open source software with

source code hosted on public websites such as GitHub, where readers can easily find

runnable code for most of the formulas and algorithms introduced in the chapter.

TABLE 8.1 An incomplete list of available TD-DMRG packages in

alphabetical order.

Name Feature

evoMPS (Milsted et al., 2013) Nonuniform dynamics in the thermodynamic
limit

Itensor/TDVP (Yang and White,
2020)

Global subspace expansion algorithm for
TDVP

kln-X (Xu et al., 2021) Stochastically adaptive single-site TDVP

OSMPS (Jaschke et al., 2018) Excited state search and parallelization over
MPI

pytenet (Mendl, 2018) Light weight and compact implementation

Renormalizer (Ren et al., 2021) Optimal MPO construction and GPU
acceleration

SymMPS (Paeckel and Köhler,
2021)

Projected purification for large local Hilbert
space

SyTen (Hubig, 2017; Hubig et al.,
2021)

Local basis optimization and exploitation of
symmetry

TeNPy (Hauschild and Pollmann,
2018)

Disentanglers for purification and active
community
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The packages listed are quite unique and it’s almost impossible to give a

proper summary of their features in just a few words. Detailed descriptions

on these packages can be found at their respective websites. Most of the

package websites also contain an abundant amount of introductory informa-

tion on (TD-)DMRG, which may serve as complementary resources to the

reviews mentioned above and the contents of the chapter.

8.2 Time evolution algorithms

The available time evolution algorithms for TD-DMRG could be roughly clas-

sified into three groups. The first group is based on globally approximating the

formal time evolution operator e2iĤt or e2iĤt Ψj i, including Runge-Kutta

(Garcı́a-Ripoll, 2006; Ren et al., 2018), time-evolving block decimation

(TEBD) (Daley et al., 2004; Vidal, 2004; White and Feiguin, 2004), WI, II

(Zaletel et al., 2015), Krylov subspace (Garcı́a-Ripoll, 2006; Wall and Carr,

2012) methods, Chebyshev expansion (Halimeh et al., 2015), and split opera-

tor method on the grid basis (Greene and Batista, 2017). The same feature

shared in these schemes is that in each time step the wavefunction is firstly

propagated as a whole globally, usually through MPO/MPS multiplication,

resulting in an MPS with increased bond dimension, and then compressed to

the original bond dimension or according to truncation threshold. The second

group is based on the TDVP (Dirac, 1930). Depending on the different ways

to derive the EOMs, this group includes the original method with fixed gauge

freedom (Haegeman et al., 2011) and the more recent projector splitting (PS)

method (Haegeman et al., 2016). The third group is more inspired by the origi-

nal DMRG, which is formulated in the local renormalized space and the basis

is adapted by the averaged reduced density matrix. The representatives are the

time step targeting method (TST) (Feiguin and White, 2005b) and some

related variants (Dutta and Ramasesha, 2010; Ronca et al., 2017). Among the

above evolution schemes, all schemes can be directly applied to models with

long-range interactions except TEBD, which requires modifications such as

unitary transformation of the Hamiltonian in the system-reservoir quantum

models (Prior et al., 2010) and the introduction of swap gates (Stoudenmire

and White, 2010). In addition, the global evolution scheme is the most straight-

forward one when the modern framework of matrix product state / matrix product

operator (MPS/MPO) is investigated, while the PS scheme seems to have become

the most popular choice as it has been widely employed in the recent articles

(Baiardi and Reiher, 2019; Borrelli and Gelin, 2017; Kloss et al., 2019; Li et al.,

2020b, 2021; Xie et al., 2019).

Computationally, all of the time evolution algorithms involve intensive

tensor multiplications, which can be effectively accelerated by GPUs

(Li et al., 2020a). Particularly high acceleration ratio is achieved for algo-

rithms that do not require the compression of the MPS (which are primarily
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TDVP based algorithms) because matrix decompositions are not the strong

point of GPUs.

8.2.1 Propagation and compression

One of the most intuitive way to study the dynamics of an initial state

Ψj iðt5 0Þ under Hamiltonian Ĥ is to numerically integrate the time-

dependent Schrödinger equation:

@jΨðtÞi
@t

52 iĤ ΨðtÞi
�� ð8:5Þ

ℏ is set to 1 hereinafter. Based on the simplest forward-Euler scheme, for

each integration step τ the Ψj i should be propagated as:

Ψðt1 τÞi5 ΨðtÞi2 iĤτ ΨðtÞi1Oðτ2Þ������ ð8:6Þ
Since MPO/MPS multiplication and MPS/MPS addition are routine operations,

the equation can be translated into TD-DMRG algorithm with ease (Algorithm 1).

The resulting state Ψðt1 τÞ
�� �

typically has a much larger bond dimension than

ΨðtÞ
�� �

, and thus it is usually compressed before the next iteration. This two-step

scheme is therefore summarized as propagation and compression (P&C).

A straightforward improvement for the simple scheme is to replace the first-

order forward-Euler integration scheme with the classical 4th-order Runge-Kutta

(RK4) integration scheme (Garcı́a-Ripoll, 2006; Ren et al., 2018):

jk1i52 iĤðtÞjΨðtÞi

jk2i52 iĤ t1 τ=2
� � jΨ tð Þi1 1

2
τjk1i

0@ 1A
jk3i52 iĤ t1 τ=2

� � jΨ tð Þi1 1

2
τjk2i

0@ 1A
jk4i52 iĤðt1 τÞðjΨðtÞi1 τjk3iÞ
jΨ t1 τð Þi5 jΨ tð Þi1 1

6
τ jk1i1 2jk2i1 2jk3i1 jk4ið Þ1O τ5

� �
ð8:7Þ
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For time-independent Hamiltonian, the RK4 algorithm is nothing more

than a fourth-order Taylor expansion of the formal time evolution operator

e2iĤτ :

jΨðt1 τÞi5
X4
n50

1

n!
ð2iĤτÞn ΨðtÞi1O τ5

� ��� ð8:8Þ

Thus, the n-th order term ð2iĤτÞn ΨðtÞ
�� �

could be calculated based on the

ðn2 1Þ-th order term one by one from ΨðtÞ
�� �

.

The mathematical foundation of the P&C schemes is quite different, but

they can be translated to similar TD-DMRG algorithms. The most well-

known P&C time evolution scheme in physics is probably TEBD (Daley

et al., 2004; Vidal, 2004; White and Feiguin, 2004) which is efficient and

easy to implement. However, the algorithm cannot be directly applied to

models with long-range interactions, thus it is rarely used in chemistry pro-

blems. For any nearest-neighbor Hamiltonian with 2N DoFs:

Ĥ5
X2N21

j551

ĥj;j11 ð8:9Þ

where ĥj;j11 acts on the jth DoF and the (j1 1)th DoF, it is observed that the

Hamiltonian can be decomposed into two parts Ĥ5 Ĥ1 1 Ĥ2:

Ĥ1 5
XN
j51

ĥ2j21;2j

Ĥ2 5
XN21

j51

ĥ2j;2j11

ð8:10Þ

e2iĤτ can be decomposed into two parts by first-order Trotter

decomposition:

e2iĤτ 5 e2iĤ1τe2iĤ2τe2iτ2½Ĥ1;Ĥ2�

5 e2iĤ1τe2iĤ2τ 1Oðτ2Þ ð8:11Þ

Although Ĥ1 and Ĥ2 do not commute with each other, all terms within

Ĥ1 and Ĥ2 commute. In other words:

e2iĤ1τ 5L
N

j51

e2iĥ2j21;2jτ

e2iĤ2τ 5 L
N21

j51

e2iĥ2j;2j11τ
ð8:12Þ

Both e2iĤ1τ and e2iĤ2τ can be efficiently expressed as MPO with two

sites. Applying the operators onto Ψj i and then compressing it constitute one
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step of time evolution. A second-order decomposition can be constructed by

symmetrizing the decomposition:

e2iĤτ 5 e2iĤ1τ=2e2iĤ2τe2iĤ1τ=2 1Oðτ3Þ ð8:13Þ
For models with long-range interactions, TEBD must be combined with

additional techniques such as unitary transformation of the Hamiltonian in

the system-reservoir quantum models (Prior et al., 2010) and the introduction

of swap gates (Stoudenmire and White, 2010).

Interestingly, it’s possible to combine the Trotter decomposition with the

Taylor expansion of time evolution operator scheme described above

(Greene and Batista, 2017). The idea is to split the kinetic part out of the

Hamiltonian so that the MPO in the time evolution operator has a smaller

bond dimension.

The WI, II method (Zaletel et al., 2015) aims to explicitly approximate

the time evolution operator e2iĤτ as an MPO to the first order, based on the

form of the Hamiltonian Ĥ. The advantage of the method against RK inte-

grator is that integration error per site is constant.

The Krylov subspace method (also known as the Lanczos method)

instead is an efficient algorithm for approximating e2iĤτ Ψj i (Garcı́a-Ripoll,
2006; Wall and Carr, 2012). The Krylov subspace is defined as the space

spanned by f Ψj i; Ĥ Ψj i;?; Ĥ
N21

Ψj ig with dimension N. For numerical con-

venience the vectors are orthonormalized to give Krylov vectors

fk0; k1;?; kN21g. The overall goal of the method is to find the best approxi-

mate for e2iĤτ Ψj i in the Krylov subspace. Although the exact limit is

achieved when N is equal to the dimension of the original Hilbert space for

Ψj i, in practice usually a few Krylov vectors are sufficient for decent accu-

racy. Define the projector to the Krylov subspace:

P̂5
XN21

i50

kij i kih j ð8:14Þ

The approximate solution for Ψðt1 τÞ
�� �

is given by:

jΨðt1 τÞi5 e2iĤτ ΨðtÞ
�� � � P̂

y
e2iĤτP̂ ΨðtÞi

�� ð8:15Þ

Note that the dimension for hkijĤ kji
�� is N and the matrix can be diagonal-

ized with negligible computational effort. The Krylov subspace method is

typically a much more efficient way to approximate e2iĤτ Ψj i than simple

Tayler expansion such as Eq. (8.8); however, due to truncation error caused

by MPS compression, it is difficult to fulfill the orthonormal condition of the

Krylov vectors, which can severely deteriorate the quality of the outcome

(Frahm and Pfannkuche, 2019).
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The Chebyshev expansion method expands e2iĤt with Chebyshev polynomials

and calculates Chebyshev vectors according to the recursive relation (Halimeh

et al., 2015):

t0j i5Ψðt5 0Þ
t1j i5 Ĥ0 t0j i

tnj i5 2Ĥ0 tn21j i2 tn22j i
ð8:16Þ

here Ĥ05 Ĥ2 b
a

is the rescaled Hamiltonian so that the eigenspectrum falls

within ð2 1; 1Þ. For a Hamiltonian with ground state energy Eg and highest

excited state energy Es; a5Es 2Eg and b5
Eg 1Es

2
can be adopted. In practi-

cal computation, allowing a few eigenvalues of the rescaled Hamiltonian to

exceed ð2 1; 1Þ may improve computational efficiency. After the Chebyshev

vectors are obtained, propagated wavefunction is given by:

ΨðtÞ
�� �

5 e2ibt
XN21

n50

φnðtÞ tnj i ð8:17Þ

where φ0ðtÞ5 c0ðtÞ and φn. 0 5 2cnðtÞ with cnðtÞ defined as

cn tð Þ5 2ið ÞnJn atð Þ ð8:18Þ
where Jn is the Bessel function of the first kind.

Of all the P&C time evolution methods, Taylor expansion of e2iĤτ ,

TEBD, and Krylov subspace method is the most popular. For Hamiltonian

which processes only nearest-neighbor interaction or can be transformed to a

form with only nearest-neighbor interaction, TEBD strikes a balance between

easy to implement and high accuracy (Chin et al., 2013; Ma and

Schollwöck, 2008; Mannouch et al., 2018; Xie et al., 2019).

8.2.2 Time-dependent variational principle

The Rayleigh-Ritz variational principle is widely used in finding an approxi-

mate ground state in time-independent Schrödinger equation. Similarly,

TDVP also provides a strong tool to find an optimal time-dependent wave-

function if the wavefunction ansatz and the initial state are known. The

Dirac-Frenkel TDVP is (Dirac, 1930; Gatti et al., 2017)

δΨh ji @
@t

2 Ĥ Ψj i5 0 ð8:19Þ
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It has been proved that TDVP could strictly conserve the norm of the

wavefunction and the total energy in the real-time propagation (Gatti et al.,

2017), which is essential for long-time dynamics. In a geometric fashion,

TDVP could be understood as an orthogonal projection of 2iĤjΨi onto the

tangent space of ΨðtÞ
�� �

at the current time:

@ Ψj i
@t

52 iP̂Ĥ Ψj i ð8:20Þ

where P̂ is the projector constructed by the orthonormal vectors in the tan-

gent space. For a general MPS:

Ψj i5
X
fag;fσg

Aσ1

a1
Aσ2

a1a2
?AσN

aN21
σ1σ2?σNj i ð8:21Þ

the tangent space projector is defined as:

P̂5
XN
i51

P̂½1:i2 1g � Îi � P̂½i1 1:N�2
XN21

i51

P̂½1:i� � P̂½i1 1:N� ð8:22Þ

where

P̂½1:i�5
X
ai ;ai0

ja0i½1:i�iS½1:i�21
a0
i
ai
hai½1:i�j ð8:23Þ

P̂½i1 1:N�5
X
ai;ai0

ja0i½i1 1:N�iS½i11:N�21
a0
i
ai
hai½i1 1:N�j ð8:24Þ

ai½1:i�
�� �

5
X
fag;fσg

Aσ1

a1
Aσ2

a1a2
?Aσi

ai21ai
σ1?σij i ð8:25Þ

aj½j1 1:N�
�� �

5
X
fag;fσg

Aσj11
ajaj11

?AσN

aN21
σj11?σN

�� � ð8:26Þ

S½1:i�aia0i 5 hai½1:i�ja
0
i½1:i�i ð8:27Þ

S½j11:N�aja0j 5 haj½j1 1:N�ja0j½j1 1:N�i ð8:28Þ

Îi 5
X
σ0
i

jσiihσij ð8:29Þ

P̂½1:0�5 P̂½N1 1:N�5 1 ð8:30Þ
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or graphically:

ð8:31Þ

The inversion of the overlap matrix S21 accounts for the non-

orthogonality of the renormalized basis and the “-” terms are to eliminate the

parameterization redundancy (Haegeman et al., 2011; Wouters et al., 2013).

In the literature, there are two different time evolution schemes based on

TDVP. They differ in choosing the specific gauge condition of the MPS and

in solving Eq. (8.20), which will be discussed in detail in the following.

In the first TDVP evolution scheme, the gauge freedom of MPS is

fixed. For convenience, the projector in Eq. (8.22) could be transformed

to Eq. (8.32) by combining the neighboring “1 ” term and “-” term

together except one “1 ” term with i5 n:

P̂5 P̂½1:n2 1� � În � P̂ n1 1:N½ �
1
Xn21

i51

Q̂½1:i� � P̂½i1 1:N�1
XN
i5n11

P̂½1:i2 1� � Q̂½i:N� ð8:32Þ

where

Q̂½1:i�5
X

ai21;ai21 0 ;σi;σ0i

ja0i21½1:i2 1�σ0iihai21½1:i2 1�σij

UðS½1:i21�21
a0
i21

ai21
δσ0

i
σi
2
X
a0
i
;ai

A
σ0i
a0
i21

a0
i
S½1:i�21

a0
i
ai
Aσi

�
ai21ai
Þ ð8:33Þ

Q̂½i:N�5
X

ai ;ai 0 ;σi ;σ0i

ja0i½i1 1:N�σ0iihai½i1 1:N�σij

UðS½i11:N�21
a0
i
ai
δσ0

i
σi
2
X

a0
i21

;ai21

A
σ0i
a0
i21

a0
i
S½i:N�21

a0
i21

ai21
Aσi

�
ai21ai
Þ ð8:34Þ
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This type of projector or the corresponding tangent space vectors was

firstly proposed by Haegeman et al. (2011) for uniform MPS and restated by

Wouters et al. (2013) to derive several post-DMRG methods for the ground

state and excited states.

Eqs. (8.33) and (8.34) could be further simplified by adopting a specific

gauge condition, and then some overlap matrices turn to identity. Assuming

that the MPS is left-canonical with gauge center at site N; S½1:i� is reduced
to I and it is most convenient to set n5N in Eq. (8.32). Inserting the simpli-

fied projector into Eq. (8.20) yields:

i
@C

σ0N
l0
N21

@t
5

X
σvN ;lvN21

H½N�l0
N21

σ0
N
;l0 0

N21
σvNC

σvN
lvN21

ð8:35Þ

i
@L

σ0i
l0
i21

l0
i

@t
5
X
li21;σi

ðδl0
i21

li21δσ0iσi
2 p½i�l0

i21
σ0
i
;li21σi
Þ
X
li

S½i11:N�21
l0
i
li

X
lvi21;σvi ;lvi

H½i�li21σili ;lvi21σvi lviL
σvi
lvi21lvi

ð8:36Þ

where

H½i�l0
i21

σ0
i
l0
i
;li21σi li

5
X
fwg

h½1 :i21�fl0 ;w;lgi21W
σ0i;σi

wi21wih½i11 :N�fl0 ;w;lgi ð8:37Þ

h 1 :i21½ � l0;w;lf gi21 5
X

l0f g; wf g; lf g
h 1½ � l0;w;lf g1?h i21½ � l0 ;w;lf gi22; l0;w;lf gi21 ð8:38Þ

h i11 :N½ � l0;w;lf gi 5
X

l0f g; wf g; lf g
h i11½ � l0;w;lf gi ; l0 ;w;lf gi11?h N½ � l0;w;lf gN21 ð8:39Þ

h i½ � l0 ;w;lf gi21; l0 ;w;lf gi 5
X
σi ;σ0i

A
σ0i
�

l0
i21

l0
i
W

σ0i;σi

wi21wiA
σi

li21li
A5 L or Cð Þ ð8:40Þ

p½i�l0
i21

σ0
i
;li21σi

5
X
li

L
σ0i
l0
i21

li
Lσi

�
li21li

ð8:41Þ

Eqs. (8.35) and (8.36) together form a set of coupled nonlinear equations

that are very similar to the standard EOMs of (ML-)MCTDH (Beck et al.,

2000; Meyer et al., 1990; Wang and Thoss, 2003), and ideas from the

MCTDH community called variable mean field (VMF) and constant mean

field (CMF) can be borrowed to integrate these equations (Li et al., 2020a).

VMF regards the time evolution as an initial value problem for all individual

MPS parameters and employs an all-purpose solver such as forward-Euler to

directly solve the coupled equations, as demonstrated when TDVP is firstly
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proposed for MPS (Haegeman et al., 2011). In CMF, it is assumed that H½i�
and S½i1 1:N� generally change much slower in time than the local matrices

CσN and Lσi . As a result, during the integration of Eqs. (8.35) and (8.36) one

may hold the so-called mean field H½i� and S½i1 1:N� constant for τ and

evolve only the local matrix with time step smaller than τ. Hence, CMF can

be regarded as an approximation of VMF. We outline the TDVP-VMF pro-

cedure for left-canonical MPS in Algorithm 2.2.

Another aspect should be concerned is that the inversion of S would be

unstable numerically if some eigenvalues of S are very small. This problem

will be severe when the state is weakly correlated (such as a Hartree product

state which is usually an initial state) and the bond dimension is much larger

than what is required. To some extent, this instability problem makes this

evolution scheme paradoxical in that a large bond dimension should in prin-

ciple push the result to a numerically exact limit but in fact deteriorates it if

the time step is hold as constant. The same problem also arises in (ML)-

MCTDH, where in order to make the EOMs more well-behaved, S is usually

replaced with a regularized overlap matrix ~S (Beck et al., 2000):

~S5 S1 εe2S=ε ð8:42Þ
Here ε is a small scalar commonly from 1028 to 10214. More recently, an

improved regularization scheme based on the matrix unfolding (MU) of the

coefficient matrix by SVD in (ML-)MCTDH is proposed by Meyer and
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Wang, which has been proved to make the time integration more accurate

and robust (Meyer and Wang, 2018; Wang and Meyer, 2018). The same idea

can be adopted to integrate Eq. (8.36), giving the name of the scheme

“TDVP-MU.” When calculating the overlap matrix S½i11:N�21
a0
i
ai
, a copy of

the current MPS is made and the gauge center of the copy is moved to the

ði1 1Þ th site and the matrix at this site is further decomposed by SVD:

li½i1 1:N�
�� �

5
X
flg;fσg

Lσi11

lili11
?LσN21

lN22lN21
CσN

lN21
σi11?σNj i

5
X
frg;fσg

UliriΛririR
σi11
riri11

?RσN21
rN22rN21

RσN

rN21
σi11?σNj i ð8:43Þ

where jrij equals jlij (the symbol j	j denotes the size of the given index). Thus,

the overlap matrix S½i1 1:N� and its inversion could be expressed as U
�
Λ2UT

and U
�
Λ22UT , respectively. The Hamiltonian matrix in Eq. (8.37) is also recon-

structed. For site from i1 1 to N the matrix Aσi in Eq. (8.40) is replaced with

matrix Rσi in Eq. (8.43) and then Eq. (8.36) with MU algorithm becomes:

ð8:44Þ
The expression inside ‘‘½?�’’ is S½i11:N�21. The key point of this new regu-

larization scheme is that the underlined part could be contracted first, which is

δr0
i
ri . Thus, only the singular matrix Λr0

i
r0
i
instead of Λ2

r0
i
r0
i
should be regularized:

~Λr0
i
r0
i
5Λr0

i
r0
i
1 ε1=2e

2Λr0
i
r0
i
=ε1=2 ð8:45Þ

The power 1=2 here is for consistency with the original regularization

scheme Eq. (8.42) and Λr0 0
i
r0 0
i
in Eq. (8.44) is untouched in order to be mini-

mally invasive as stated in the MCTDH literatures (Meyer and Wang, 2018;

Wang and Meyer, 2018). Although in the MU scheme, it is necessary to per-

form canonicalization on the environmental part li½i1 1:N�
�� �

, the gauge con-

dition of the MPS that is evolved remains unchanged.

The second evolution scheme based on TDVP is called PS. The idea of

PS is that the tangent space projector in Eq. (8.22) is invariant under differ-

ent gauge conditions. More specifically, after canonicalization of a general

MPS in Eq. (8.21) from site N to i1 1, jri½i1 1:N�i becomes the right-hand

orthonormal renormalized basis, which is related to jai½i1 1:N�i by:
jai½i1 1:N�i5

X
ri

Dairi jri½i1 1:N�i ð8:46Þ
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The matrix D is an upper triangular matrix in RQ decomposition. Therefore,

the overlap matrix S½i1 1:N� equals D
�
DT and the projector P̂½i1 1:N� in

Eq. (8.24) defined for a general non-canonical MPS is transformed to:

P̂½i1 1 :N�5
X
r0
i
;ri

jr0i½i1 1 :N�i
X
a0
i
;ai

DT
r0
i
a0
i
ðD�DT Þ21

a0
i
ai
D
�
airi

24 35
5δr0

i
ri

hri½i1 1 :N�j

5
X
ri

jri½i1 1 :N�ihri½i1 1 :N�j ð8:47Þ

Similar result can be obtained for P̂½1:i�:
P̂½1:i�5

X
li

jli½1:i�ihli½1:i�j ð8:48Þ

This definition of the tangent space projector does not contain any inversion

operations of the overlap matrix, which seems to be a remarkable improvement over

the first definition in Eqs. (8.23) and (8.24). However, since the gauge is not fixed in

different terms of this projector, the VMF and CMF integration algorithm described

above could not be directly applied. Lubich and Haegeman et al. proposed to use a

symmetric second-order Trotter decomposition to split the formal time evolution

operator into the individual terms (Haegeman et al., 2016; Lubich et al., 2015):

e2iP̂Ĥτ 5 L
2

i5N

e2iP̂½1:i21��Î i�P̂½i11:N�Ĥτ=2UeiP̂½1:i21��P̂½i:N�Ĥτ=2
� �

Ue2iÎ1�P̂½2:N�Ĥτ

U L
N

i52

eiP̂½1:i21��P̂½i:N�Ĥτ=2Ue2iP̂½1:i21��Îi�P̂½i11:N�Ĥτ=2
� �

1Oðτ3Þ

ð8:49Þ
Based on the time evolution operator in Eq. (8.49), a single step of time evolu-

tion consists of a right-to-left sweep and a subsequent left-to-right sweep each

with step size τ=2. Taking left-to-right sweep as an example, the matrix at the

gauge center Cσi

li21ri
is firstly evolved forward in time by applying the projector

P̂½1:i2 1� � Îi � P̂½i1 1:N�:

i
@ C

σ0i
l0
i21

r0
i

@t
5

X
li21;σi ;ri

H½i�l0
i21

σ0
i
r0
i
;li21σiri

Cσi

li21ri
ð8:50Þ

where H½i� and the ingredients h½1:i2 1�; h½i1 1:N�; h½i� all have the same

definitions as in Eqs. (8.37)�(8.40) except that the Aσi in Eq. (8.40) is replaced

with Lσi or Rσi accordingly. Then, the evolved matrix Cσi

li21ri
is decomposed by

QR to obtain the left-canonical matrix Lσi

li21li
and the coefficient matrix Dliri . Dliri

is evolved backward in time by applying the projector P̂½1:i� � P̂½i1 1:N�:

i
@Dl0

i
r0
i

@t
5
X
li;wi ;ri

h½1 :i�fl0 ;w;lgi h½i11 :N�fr0 ;w;rgiDliri ð8:51Þ
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Afterwards, the gauge center is moved to site i1 1 by contracting the

evolved Dliri and Rσi11
riri11

together to obtain Cσi11

liri11
5
P

ri
DliriR

σi11
riri11

. Following

the procedure above, the sweep continues until all the individual projectors

in Eq. (8.49) are applied. The Krylov subspace method is preferred over

other general-purpose integrator for solving Eqs. (8.50) and (8.51) since they

are linear equations. The procedure for one time step of the TDVP-PS time

evolution is listed in Algorithm 3.

Similar to the original two-site DMRG algorithm, it is also possible to

formulate TDVP-PS into a two-site algorithm so that the bond dimension
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could grow up adaptively (Haegeman et al., 2016; Xie et al., 2019). The

two-site algorithm is found to be more numerically stable than the single-site

algorithm (Paeckel et al., 2019; Xie et al., 2019). However, just as the

ground state algorithm, the two-site algorithm is much more expensive than

the single-site algorithm both in the tensor contraction and QR

decomposition.

In summary, since TDVP-MU and TDVP-PS are both based on the

TDVP, ΨðtÞ
�� �

should be the same if not considering the numerical error. In

contrast to the P&C scheme discussed in the last section, TDVP-MU and

single-site TDVP-PS schemes both require to define a fixed bond dimension

a priori, and additional renormalized basis should be constructed smartly to

complement the empty MPS space if the initial state is weakly correlated.

Two-site TDVP-PS usually do not need to construct additional renormalized

basis, because SVD decomposition of the two-site matrices allows adaptive

adjustment of the bond dimension. The main difference between TDVP-MU

and TDVP-PS lies in that TDVP-MU would introduce a minor artificial reg-

ularization, while TDVP-PS is inherently free of it. It is worth noting that

TDVP provides a deterministic wavefunction path during the time evolution

determined by tangent space projections with infinitesimal time step, which

is locally optimal. As discussed in a recent review (Paeckel et al., 2019), the

TDVP path suffers from the projection error due to the restricted bond

dimension and it may not be the globally optimal path in some models.

8.2.3 Time step targeting

The time step targeting algorithm is inspired by the state-averaged DMRG

for the ground state and low-lying excited states. Its mathematical foundation

is not as rigorous as other algorithms introduced in this section (Feiguin and

White, 2005b; Paeckel et al., 2019). Here we only provide a hand-waving

explanation on the basic idea of the time step targeting algorithm due to lim-

ited length.

At each time step, the matrix at the gauge center Cσi

li21ri
ðtÞ is evolved

based on Eq. (8.50), yielding Cσi

li21ri
ðt1 1

3
τÞ, Cσi

li21ri
ðt1 2

3
τÞ and Cσi

li21ri
ðt1 τÞ

(the time steps here are arbitrary). However, Cσi

li21ri
ðtÞ is not replaced by

Cσi

li21ri
ðt1 τÞ immediately. Rather, Cσi

li21ri
ðtÞ is replaced by the eigenvectors

Lσi

li21li
of the state-averaged reduced density matrix, constructed from the

above four Cσi

li21ri
matrices at different time steps with empirically determined

weights. Then, the eigenvectors Lσi

li21ri
and Cσi

li21ri
are contracted with Rσi11

riri11
to

move the gauge center into the next site.

Cσi11

liri11
5

X
li21;σi ;ri

Lσi
�

li21li
Cσi

li21ri
Rσi11
riri11

ð8:52Þ

At this stage, the MPS still represents the wavefunction at time t, yet the

basis is updated to adapt the next time step. We note that this update is not
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rigorous and an error is introduced into the current MPS. The iterative sweep

continues until convergence, at which point it is assumed that the basis for

the MPS has transformed to best describe both ΨðtÞ
�� �

and Ψðt1 τÞ
�� �

. After

that, the actual time evolution over the current gauge center takes place and

finishes one step of the time evolution.

8.3 Finite temperature algorithms

The effect of temperature plays an indispensable role in a large fraction of

vibronic models in chemistry. There are in general two methods to incorpo-

rate temperature effect in TD-DMRG. The first method is called the purifica-

tion or ancilla method or thermal field dynamics, well suited for high and

intermediate temperature (Feiguin and White, 2005a; Verstraete et al., 2004),

and the second method is called the minimally entangled typical thermal

state (METTS) method, particularly effective at low temperature

(Stoudenmire and White, 2010; White, 2009). A purification-METTS hybrid

algorithm has also been proposed (Chen and Stoudenmire, 2020). Neither of

the two approaches are specially designed for MPS or tensor network states

and they can be applied to any wavefunction-based methodologies. In the

chemistry regime, the purification method is used most often.

8.3.1 Purification in an enlarged Hilbert space

The essence of the purification method is to express mixed states (density matri-

ces) as pure states (wavefunctions) in an enlarged Hilbert space (Feiguin and

White, 2005a; Takahashi and Umezawa, 1996; Verstraete et al., 2004). For any

physical observable Ô, the finite temperature expectation can be expressed as:

Ô
� �

5
X
n

njÔjn� �
e2βEn=Z5Tr Ôρ

� � ð8:53Þ

where nj i is a set of orthonormal basis in energy representation with eigen-

energy En, Z5
P

ne
2βEn is the partition function, and ρ is the density matrix.

Suppose the space in which we build the physical model and make observa-

tion is called the physical space P, it can be proven that for general cases

there does not exist a wavefunction in the P space Ψj i that fulfills

(Takahashi and Umezawa, 1996):

Ψh jÔ Ψj i5
X
n

njÔjn� �
e2βEn=Z ð8:54Þ

and that’s exactly why density matrices should be introduced to describe the

temperature effect. Since MPS is an ansatz for wavefunction, it would be

ideal if we can avoid density matrix and find a pure state that produces the

correct formula for the expectation Eq. (8.54). This goal can be achieved by

adding an auxiliary space Q to the P space and working in the resulting
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P� Q space. The Q space is chosen as a copy of the P space in terms of

states and operators. If the energy eigenstate in the Q space is labeled with a

tilde ~mj i, the basis for the enlarged Hilbert space can be expressed as n; ~mj i.
Define wavefunction Ψj iPQ in the enlarged space:

Ψj iPQ 5
X
n

e2βEn=2 n; ~nj i=Z1
2 ð8:55Þ

By noting that Ô only acts on the P space, it is straightforward to prove that

Ψj iPQ fulfills Eq. (8.54). If desired, the thermal equilibrium density matrix can be

explicitly constructed by partial trace (or partial inner product) over the Q space:

ρ5TrQ Ψj iPQ PQ Ψh j ð8:56Þ
Ψj iPQ can be calculated by TD-DMRG via imaginary time evolution

from the identity state in P and Q space:

Ij i5
X
n

n; ~nj i ð8:57Þ

Ij i is also called a maximally entangled state in the sense that the P and Q

space are maximally entangled. Imaginary time evolution from Ij i yields the
thermal state Ψj iPQ:

Ψj iPQ 5 e2βĤ=2 Ij i=Z1
2 ð8:58Þ

Note that Ij i is invariant under basis transformation so usually an appro-

priate set of basis is chosen for computational convenience and it’s not nec-

essary to calculate nj i. The partition function Z
1
2 typically does not need to

be calculated in practice either, because it can be viewed as the normaliza-

tion factor for Ψj iPQ. Further real time evolution may be performed on Ψj iPQ
to obtain time-dependent properties.

In the context of TD-DMRG, the fact that the initial state for the imaginary

time evolution Ij i is maximally entangled is quite alarming, since the larger the

entanglement, the larger the required bond dimension and computational cost.

Indeed, finite temperature calculation is typically much more time-consuming

than that of zero temperature, particularly when vibrational DoFs are involved,

not only because the number of the DoFs is doubled, but also because the bond

dimension required during imaginary and real time evolution is much larger

than that of zero temperature. For example, suppose there are two uncoupled

harmonic vibration DoFs in the system termed λ1 and λ2 with occupation num-

ber basis n1j i and n2j i. At zero temperature, the ground state 00j i can be trivi-

ally described by an MPS with bond dimension 1 because λ1 and λ2 are not

entangled. Yet at finite temperature β, the thermal state in P and Q space reads:

Ψj iPQðβÞ5
X
n1

e2βn1ω=2 n1; ~n1j i
X
n2

e2βn2ω=2 n2; ~n2j i=Z1
2 ð8:59Þ
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While the entanglement entropy between ðλ1; ~λ1Þ and ðλ2; ~λ2Þ is still zero
due to their uncoupled nature, the entanglement entropy between λ1 (λ2) and
~λ1 ( ~λ2) is βω

eβω 2 1
2 lnð12 e2βωÞ, which is only zero when βω-N. If the

state is represented by an MPS:

ð8:60Þ

Then the bond dimension between ~λ1 and λ2 is 1 as expected from the

uncoupled model, whereas the bond dimension between λ1 (λ2) and ~λ1 ( ~λ2)

is in general much larger than 1. In view of the strong entanglement between

the P space and the Q space at finite temperature, in practical implementa-

tion sometimes it is desirable to merge the P space and the Q space of each

DoF into the same site:

ð8:61Þ

In this case, the strong entanglement between the P space and Q space seems

to be eliminated. However, adding another physical index into each site results in

an unfavorable computational scaling and the overall computational cost is hardly

reduced. Although the form of Eq. (8.61) closely resembles an MPO and it is

tempting to recognize Eq. (8.61) as a density matrix, according to Eq. (8.56), the

density matrix is only constructed after contracting out the Q space:

ð8:62Þ

Eq. (8.61) is a more efficient representation of the thermal state than

directly expressing the density matrix as an MPO (Feiguin and White,

2005a; Zwolak and Vidal, 2004) because Eq. (8.62) guarantees that ρ is posi-

tive semi-definite and Hermitian. A more intuitive viewpoint is to note that

if the bond dimension for Eq. (8.61) is M then the bond dimension of the

corresponding density matrix in Eq. (8.62) is M2.
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The fact that the Q space is traced out before physical observables are

extracted from the MPS leaves the room for arbitrary unitary transformation

over the Q space. This opportunity has been exploited to reduce the entangle-

ment growth of purified states during real time evolution (Karrasch et al.,

2012, 2013). The transformation applied to the Q space is simply the “back-

ward time evolution” ei
~̂H t, which hopefully should reverse the growth of

entanglement caused by the forward time evolution in the P space. Recently

an algorithm for finding the purification with minimal entanglement is pro-

posed and has proven more effective in reducing entanglement entropy than

the “backward time evolution” method (Hauschild et al., 2018).

For a number of vibronic models that frequently appear in chemistry, it is

possible to perform a basis transformation known as Bogoliubov transforma-

tion over the PQ space so as to truly eliminate the entanglement between

them (Borrelli and Gelin, 2016, 2021; de Vega and Bañuls, 2015). In these

models, the vibrations are described by harmonic oscillators, and the non-

equilibrium dynamics starts with an electronic excitation from the thermal

equilibrium state in which electron and phonon parts are not correlated.

Suppose that the initial electronic ground state is g
�� � and the vibrations are

at thermal equilibrium, the total thermal density matrix of the system is:

ρe;λ 5 g
�� � g
� ��ρλ ð8:63Þ

The setup is common in chemistry since usually the gap between g
�� � and

its excited state is much larger than the thermal energy. The thermal equilib-

rium density matrix Eq. (8.63) can be constructed as an MPS through the

purification method. Unfortunately, due to the reasons mentioned above, the

entanglement entropy in this seemingly trivial model is actually quite large.

Suppose the Hamiltonian of the harmonic vibrations is

Ĥλ 5
X
λ

ωλb̂
y
λb̂λ ð8:64Þ

Mathematically, it can be proven that the purified thermal state

Eq. (8.55) is identical to a unitary transformation over the ground state

(Takahashi and Umezawa, 1996):

L
λ

X
n

e2βnλωλ=2 nλ; ~nλj i=Z1
2 5 e2iĜ L

λ
0λ; ~0λ
�� � ð8:65Þ

where Ĝ takes the form:

G52 i
X
λ

θλ b̂λ ~̂bλ 2 b̂
y
λ
~̂b
y
λ

� �
θλ 5 arctanh ðe2βωλ=2Þ ð8:66Þ

The state Lλ 0λ; ~0λ
�� �

is completely not entangled and can be efficiently

represented by an MPS with bond dimension 1, so it is an ideal initial state

for the study of non-equilibrium dynamics. To use Lλ 0λ; ~0λ
�� �

as the initial
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state, it is necessary to deduce the form of the operators such as the

Hamiltonian after the transformation:

Ĥθ 5 eiĜĤe2iĜ ð8:67Þ
Take the Holstein-Peierls Hamiltonian as an example:

Ĥ5
X
mn

εmnâymân 1
X
λ

ωλb̂
y
λb̂λ 1

X
mnλ

gλωλâ
y
mânðb̂

y
λ 1 b̂λÞ ð8:68Þ

The transformed Hamiltonian is

Ĥθ 5 eiĜðĤ2
X
λ

ωλ ~̂b
y
λ
~̂bλ Þe2iĜ

5
X
mn

εmnâymân 1
X
λ

ωλðb̂yλb̂λ 2 ~̂b
y
λ
~̂bλÞ

1
X
mnλ

coshðθkÞgλωλâ
y
mânðb̂

y
λ 1 b̂λÞ

1
X
mnλ

sinhðθkÞgλωλâ
y
mânð ~̂b

y
λ 1

~̂bλÞ ð8:69Þ

The additional term added to the Hamiltonian
P

λωλ ~̂b
y
λ
~̂bλ is only for

computational convenience because it acts on the Q space and thus does

not affect the time evolution of physical observables. In the transformed

Hamiltonian, the vibrations in the Q space have negative frequency and the

electron-phonon coupling strengths are renormalized by the inverse temper-

ature β. To summarize, the finite temperature dynamics is reduced to zero

temperature dynamics with temperature-dependent Hamiltonian. We note

that similar idea (extending phonon bath spectral density to negative fre-

quency domain for finite temperature properties) has been proposed

through the equivalence of phonon correlation function (Tamascelli et al.,

2019).

8.3.2 Minimally entangled typical thermal states

At low temperature, the purification method becomes less effective for TD-

DMRG. In the β-N limit, the thermal state is actually the ground state, so

the Q space introduced by the purification method becomes a burden for the

MPS representation. On the other hand, the fact β-N itself implies infinite

steps of imaginary time evolution (Schollwöck, 2011). The METTS method

avoids the purification by sampling and is more efficient at the low tempera-

ture limit (Stoudenmire and White, 2010; White, 2009).

Time-dependent density matrix renormalization group Chapter | 8 301



The starting point of METTS is the introduction of typical thermal states.

Eq. (8.53) expresses the finite temperature physical expectation Ô
� �

in

energy basis. For any complete orthonormal basis j
�� �, the expectation can be

written as:

Ô
� �

5
X
j

j
� ��e2βĤ=2Ôe2βĤ=2 j

�� �=Z5
X
j

pjðβÞ φjðβÞ
� ��Ô φjðβÞ

�� �
=Z ð8:70Þ

where φjðβÞ
�� �

is defined as a set of normalized typical thermal states (while

the energy eigenbasis is argued to be “not typical” (White, 2009)):

φjðβÞ
�� �

5 pjðβÞ2ð1=2Þe2βĤ=2 j
�� �

pjðβÞ5 j
� ��e2βĤ j

�� � ð8:71Þ

By noting that
P

jpjðβÞ=Z5 1, Eq. (8.70) can be viewed as the statistical

average of the typical thermal states. The problems now are how to choose

j
�� � and how to calculate pjðβÞ=Z efficiently (if necessary).

For TD-DMRG, an ideal choice of j
�� � is to let φjðβÞ

�� �
minimally

entangled. Although this is a non-trivial task, an intuitive attempt is to use

Hartree product states for j
�� �:

j
�� �5 L

n

jn
�� � ð8:72Þ

Here n denotes different DoFs. The hope is that if the initial state j
�� � is

minimally entangled, the typical thermal state φjðβÞ
�� �

is also minimally

entangled. The METTSs can be sampled efficiently through a Markov chain

of states without the calculation of pjðβÞ=Z. The probability of transition

from φjðβÞ
�� �

to φj0 ðβÞ
�� �

is simply j0jφjðβÞ
� ��� ��2. Suppose that in one step of

the Markov sampling, all states φjðβÞ
�� �

are already correctly sampled with

probability pjðβÞ=Z, then for the next step the probability of transition to a

particular state φj0 ðβÞ
�� �

is

p5
X
j

pjðβÞ
Z

j0jφjðβÞ
� ��� ��2 5X

j

1

Z
j0
� ��e2βĤ=2 j

�� � j
� ��e2βĤ=2 j0

�� �5 Pj0 ðβÞ
Z ð8:73Þ

which is exactly the desired probability. The existence of a fixed point indicates

that after enough steps the Markov sampling should converge to the correct

probability. An additional trick for efficient sampling with MPS is carrying out

the “collapse” from φjðβÞ
�� �

to j0
�� � by taking local measurements site-by-site.

8.4 Applications

In this section, we describe several groups of scientific problems in chemis-

try that TD-DMRG has been successfully applied to. We shall firstly focus
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on nonadiabatic dynamics with vibronic models and then move on to elec-

tron dynamics based on ab initio Hamiltonian.

8.4.1 Exciton and charge transfer dynamics

Exciton dynamics and charge transfer dynamics are of great significance

for the energy and charge transfer in bio-molecules and novel materials,

which are usually modeled by Frenkel-Holstein Hamiltonian and its var-

iants. In the photosynthesis process, ambient photons are absorbed by

optically active molecules, leading to the formation of molecular exci-

tons. The molecular excitons transfer the solar energy received to the

reaction center in an efficient manner, and the study toward its mecha-

nism can provide helpful information on the design of artificial light-

harvesting system. Chin et al. (Chin et al., 2013). used TD-DMRG to

study the exciton dynamics in pigment-protein complexes exemplified by

the Fenna�Matthew�Olson complex. The authors used a two-pigment

model and the Hamiltonian can be transformed to an equivalent

Hamiltonian with only nearest interactions such that the TEBD time evo-

lution algorithm can be efficiently applied (Prior et al., 2010).

Subsequently, Gelin and Borrelli extended the study to seven-pigment

model as well as electron transfer model in reaction center via the TDVP-

PS algorithm (Borrelli, 2018; Borrelli and Gelin, 2017). The finite tem-

perature effect is also taken into consideration using the purification

method coupled with Bogoliubov transformation. Later, with the aid of

TD-DMRG, they also demonstrated that the long-time exciton dynamics

of identical pigments with static disorder is dominated by vibrational

dynamics (Gelin et al., 2019).

Similar simulations can be carried out for the ultrafast exciton dissocia-

tion at donor/acceptor interface in organic solar cells (Yao et al., 2018,

2016). These models include both exciton and charge transfer states as well

as electron-phonon couplings. Yao et al. (Yao et al., 2016) reported the evo-

lution of the charge density of the hole in the donor part and the electron in

the acceptor part obtained by TD-DMRG at different electron-phonon cou-

pling strength α. The electron-phonon coupling is characterized by the pho-

non spectral density function JðωÞ

JðωÞ5 2παω
1
2
cω

1
2e2ω=ωc ð8:74Þ

where ωc is the cutoff frequency. The results are shown in Fig. 8.1. It is

found that ultrafast long-range charge separation in organic photovoltaics

devices should be ascribed to the quantum resonance between local Frenkel

excited states and a broad array of long-range charge transfer states assisted

by the moderate off-diagonal vibronic couplings. There are also reports on

the ultrafast relaxation, decoherence, and localization of excitons in
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π-conjugated polymers such as poly(para-phenylene) and poly(p-phenylene-

vinylene) (Barford and Mannouch, 2018; Mannouch et al., 2018). By adding

triplet pair state to the electronic basis, TD-DMRG can be applied to study

the singlet fission of an exciton based on three-state or more complex models

as well (Xie et al., 2019; Yao, 2016).

FIGURE 8.1 Charge density evolution of hole in the donor part and electron in the acceptor

part with different α values where α is the electron-phonon coupling strength. Reproduced from

Yao, Y., Xie, X., Ma, H., 2016. Ultrafast long-range charge separation in organic photovoltaics:

promotion by off-diagonal vibronic couplings and entropy increase. J. Phys. Chem. Lett., 7,

4830�4835. https://doi.org/10.1021/acs.jpclett.6b02400, with permission from American

Chemical Society.
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The typical workflow for the simulation of exciton dynamics (or charge

transfer dynamics) is quite straightforward. Firstly, the zero temperature pure

state or thermal equilibrium ground state without excitons (or charges) are

prepared as an MPS, which are usually uncorrelated. After that, an exciton

(or a charge) is injected into the appropriate molecule(s) in the system by

applying the creation operator to the MPS, and then the out-of-equilibrium

state is evolved according to an appropriate time evolution algorithm and

interested quantities such as elements of the electronic reduced density

matrix are computed along the way. It should be pointed out that the dynam-

ics of the vertical Franck-Condon excitation mentioned above could be sig-

nificantly different from the dynamics of vibrationally relaxed excitations

according to a recent TD-DMRG study (Kloss et al., 2019). Lastly, we note

that as long as the vibrations are described as harmonic oscillators and addi-

tionally the initial electronic and vibrational parts are uncorrelated, the finite

temperature effect is probably best treated by the Bogoliubov transformation

(Borrelli, 2018; Borrelli and Gelin, 2017).

8.4.2 Excited state dynamics and spectra

The excited state dynamics is closely connected to exciton dynamics

described in the last subsection, however in this subsection we concentrate

on the dynamics that involves complex potential energy surface and/or appli-

cation to molecular spectra. An exemplary case is the S1=S2 interconversion

dynamics of pyrazine after UV photoexcitation to the S2 state, which is

already explored in detail by a number of methods including MCTDH (Raab

et al., 1999; Worth et al., 1996). Pyrazine features a conical intersection

between the S1 and the S2 states and strong vibronic couplings with 24 vibra-

tion modes. Thus, the molecule serves as a rigorous benchmark platform for

quantum dynamics methodologies. The absorption spectra IðωÞ is calculated

via the Fourier transformation of dipole�dipole correlation function CðtÞ by
virtue of linear response theory:

IðωÞ~ ÐN2N eiωtCðtÞdt
CðtÞ5 μ̂ðtÞμ̂ð0Þ� �

g

ð8:75Þ

Here μ is the dipole operator and the subscript g denotes the ground state.

At zero temperature, the calculation of CðtÞ reduces to the calculation of the

overlap between the time evolved wavefunction ΨðtÞ and the initial S2 wave-

function Ψð0Þ:

μ̂ðtÞμ̂ð0Þ� �
g
5 eiĤtμ̂e2iĤtμ̂
D E

g
5 eiEgt μ̂e2iĤtμ̂

D E
g
~ Ψð0ÞjΨðtÞ� � ð8:76Þ

Here Eg is the ground state energy which can be set to 0 when defining

the Hamiltonian. Both the P&C and TDVP time evolution schemes have

been applied to tackle the problem (Baiardi and Reiher, 2019; Greene and
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Batista, 2017; Xie et al., 2019). Coupled with ab initio parameters from

highly accurate electronic structure methods, the calculated spectra coincides

with experimental spectra remarkably well.

The same formulation can be extended to the spectra of molecular aggre-

gates such as perylene bisimide dyes (PBI), also pioneered by MCTDH

(Ambrosek et al., 2012; Baiardi and Reiher, 2019; Ren et al., 2018). With

slight modification, the finite temperature spectra can also be obtained (Ren

et al., 2018). The key ingredient is to perform two sets of time evolution

simultaneously over the purified finite temperature state Ψj iPQ for the evalu-

ation of CðtÞ:

CðtÞ5PQ Ψh jeiĤtμ̂e2iĤtμ̂ Ψj iPQ ð8:77Þ
with the first time evolution being e2iĤtμ̂ Ψj iPQ starting from μ̂ Ψj iPQ and the

second time evolution being e2iĤt Ψj iPQ starting from Ψj iPQ. Benchmarks at

zero temperature indicates that the results by TD-DMRG are in exact accor-

dance with ML-MCTDH. Fig. 8.2 shows the absorption and emission spectra

of PBI dimer at 298 K calculated by TD-DMRG. It is observed that the fine

spectra are in agreement with experimentally determined broad peaks.

Besides, the results derived from TD-DMRG are more accurate than the

results by the popular n-particle approximation (Ren et al., 2018).

Furthermore, the two-dimensional electronic spectra can be simulated by

TD-DMRG through calculating the third-order nonlinear response function

(Yao et al., 2018).

FIGURE 8.2 Calculated absorption and fluorescence spectra of PBI dimer at 298K from finite

temperature TD-DMR, with comparison to experiments. Please check the online version to view

the color image of the figure. Reproduced from Ren, J., Shuai, Z., Chan, G.K., 2018. Time-

dependent density matrix renormalization group algorithms for nearly exact absorption and fluo-

rescence spectra of molecular aggregates at both zero and finite temperature. J. Chem. Theory

Comput., 14, 5027�5039. doi: 10/gpggr5, with permission from American Chemical Society.
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8.4.3 Charge transport

Charge transport properties in conjugated polymers are one of the first appli-

cations of TD-DMRG in chemistry (Ma and Schollwöck, 2008, 2009; Zhao

et al., 2009, 2008). In these works, while the electron motion is simulated

with high precision by TD-DMRG, the nuclear motion is approximated by

classical dynamics, forming a hybrid TD-DMRG/Ehrenfest time evolution

scheme. More recently, the finite temperature carrier mobility for organic

semiconductors is calculated by TD-DMRG through the Kubo formula:

μ5
1

2kBTe0

ðN
2N

ĵðtÞĵð0Þ� �
dt ð8:78Þ

where ĵ is the current operator represented analytically by an MPO (Li et al.,

2020b). The calculated mobility based on ab initio parameters correctly

reproduces the experimental mobility-temperature relationship and further

confirms the negative isotope effect for mobility. Later, the study is extended

to include the effect of nonlocal electron-phonon coupling and a general

charge transport picture unifying previously contradicting theories (Fig. 8.3)

is presented (Li et al., 2021). We note that (ML)-MCTDH will struggle for

the very same task because the effect of applying ĵ to a quantum state is dif-

ficult to model without MPO.

8.4.4 Electron dynamics

Although in a large number of literatures TD-DMRG is targeted to vibronic

problems, pure electronic dynamics also emerges in recent literatures, owing

to the general nature of TD-DMRG. Ronca et al. (Ronca et al., 2017).

FIGURE 8.3 A schematic regime diagram determined by TD-DMRG showing different charge

transport regimes according to the transfer integral V and its room temperature thermal variation

ΔV for the charge transport of the Holstein-Peierls model. Reproduced from Li, W., Ren, J.,

Shuai, Z., 2021. A general charge transport picture for organic semiconductors with nonlocal

electron-phonon couplings. Nat. Commun., 12, 4260. https://doi.org/10.1038/s41467-021-24520-

y, with permission from Springer Nature.
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TD-DMRG to study the oxygen core-excitation energy in the water and

dynamical properties of hydrogen chain with an improved version of the

time step targeting algorithm. Coupled with frequency domain algorithms,

they were able to extract density of states and complex polarization function

from the ab initio system Hamiltonian, as indicators for the metallicity and

delocalization at different bond lengths. Frahm & Pfannkuche (Frahm and

Pfannkuche, 2019) simulated the ultrafast charge migration dynamics in the

iodoacetylene molecule with TD-DMRG (Fig. 8.4) and their result is in

direct agreement with experiments. Very recently, Baiardi (Baiardi, 2021)

applies TD-DMRG to the calculation of molecular (hyper)polarizabilities,

electronic absorption spectra, and ultrafast ionization dynamics.

8.5 Summary and outlook

In this chapter, we introduce several key algorithms for TD-DMRG and

some of their recent applications to chemistry problems. Owing to the deli-

cate and compact mathematical structure of MPS, a variety of time evolution

schemes have been invented for TD-DMRG. The schemes have distinct fea-

tures and almost all schemes are under active usage in the community. It is

common practice to choose the appropriate scheme according to the scien-

tific problem at hand. Furthermore, in Section 8.3, we introduced several for-

mulations that enable TD-DMRG to capture the finite temperature effect,

which makes TD-DMRG an even powerful tool in modeling realistic

systems.

As demonstrated in Section 8.4, with the state-of-the-art algorithms, TD-

DMRG is able to simulate a wide range of dynamic processes with nearly

exact accuracy. Its applications include exciton dynamics in various systems,

singlet fission, 1D and 2D spectra of small molecules and aggregates, charge

transport in organic semiconductors, and electronic dynamics at ab initio

level. For some of the cases such as exciton dynamics, TD-DMRG serves as

an alternative to (ML)-MCTDH, while in other cases such as charge

FIGURE 8.4 Hole density of the iodoacetylene molecule at four different points in time.

Reproduced from Frahm, L.-H., Pfannkuche, D., 2019. Ultrafast ab initio quantum chemistry

using matrix product states. J. Chem. Theory Comput., 15, 2154�2165. https://doi.org/10.1021/
acs.jctc.8b01291, with permission from American Chemical Society.
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transport, TD-DMRG has emerged as the most accurate methodology for

complex systems. In near future, we expect TD-DMRG to be applied to the

dynamics of more realistic systems, probably combined with ab initio poten-

tial energy surfaces. Moreover, it is natural to generalize the charge transport

formalism to study heat transport, spin transport, thermoelectric effect, and

so on. Nevertheless, to go beyond one-dimensional models is still one of the

major challenges of simulating transport phenomenon in bulk materials for

TD-DMRG. As high dimensional models are much more computationally

demanding than the one-dimensional models, efficient simulation still

requires further development of the TD-DMRG methodology.

One possible approach for larger scale TD-DMRG calculation is to adopt

more flexible tensor network structure, such as tree tensor networks

(Larsson, 2019; Nakatani et al., 2014). In tree tensor networks, the average

distance in terms of virtual bonds between two DoFs is OðlogNÞ instead of

OðNÞ in MPS. Therefore, with the same bond dimension tree tensor net-

works should in principle be more accurate than MPS to approximate a gen-

eral state. Besides, it is possible to overcome the formally higher scaling of

tree tensor networks by separating the nodes with physical bond from the

nodes with only three virtual bonds (Gunst et al., 2018). Compared to even

more powerful loop-containing tensor networks, there are no fundamental

difficulties regarding porting existing MPS algorithms to tree tensor net-

works, however, reports on the application of tree tensor networks to time-

dependent chemical problems are so far rather limited (Schröder et al.,

2019).

Before closing the chapter, we would like to discuss a notable drawback

of TD-DMRG, which is the limitation on the computationally reachable evo-

lution time. In almost all time evolution scenarios relevant to chemistry as

discussed in Section 8.4, the bipartite entanglement entropy of the system S

grows linearly with time: S~ t (Calabrese and Cardy, 2005; Žnidarič, 2020).

The situation is similar for imaginary time evolution (Dubail, 2017). The

consequence of this seemingly arcane assertion is that the required bond

dimension for numerically exact time evolution grows exponentially with

time: M ~ et, according to the relation between the upper bound of entangle-

ment entropy for an MPS and the corresponding bond dimension(M)

S5 lnM. In other words, for a fixed bond dimension, the time evolution error

grows exponentially (Schollwöck, 2011). Thus, in general, TD-DMRG is not

a suitable tool to study the long time limit behavior. However, as have

shown in Section 8.4, in many cases the state-of-the-art TD-DMRG algo-

rithms are well capable of offering a reliable solution to the time-dependent

Schrödinger equation up to a decent time scale. And a helpful strategy to

bypass the limitation of evolution time is to compute the interested physical

observable through time correlation function, which for most realistic chem-

istry systems should decay to zero at long time limit. Another strategy is to

use frequency-domain DMRG algorithm instead, which is discussed in
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Chapter 7 of this book. Techniques to overcome the entanglement barrier

directly are hitherto under development (Rams and Zwolak, 2020).
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