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Preface

Chemistry is an experimental science. Nevertheless, quantum chemistry is
quite different and remained an enigma to most of the chemists and students of
chemistry. Thisis mainly because its foundation lies in ‘ quantum mechanics’,
a collection of abstract laws and equations. Therefore, there is a need to bring
the students out of this frame of mind and make them look beyond and enjoy
the beauty of quantum mechanics. At the very fundamental level, the reader
has to realize quantum mechanics as a model of reality.

The French philosopher - mathematician Henri Poincare said, “it is hardly
necessary to point out how much quantum theory deviates from everything that
one has imagined until now; it is, without doubt, the greatest and the deepest
revolution to which natural philosophy has been subjected to since Newton”.
Truly, it is very difficult to accept such arevolution, which is quite contrary to
everyday experience. The main trouble in learning quantum mechanics is that
the mind will not be ready to accept the facts connected with situations
unfamiliar to us. This can be achieved by gaining “QUANTUM INSIGHT”
into the nature of reality and such an insight will allow us to think about the
universein adifferent perspective.

Unfortunately, most of the students and even the teachers are reluctant to
look into the text books of quantum mechanics, simply because of the
discomfort resulting out of the diffidence developed over the years. In view
of this fact, an attempt made to bring out a book on Quantum Chemistry, to
provide the reader with necessary background to venture into the realms of
higher quantum mechanics. To make the book more appealing and interesting
little chunks of history, philosophy and biographies are included at appropriate
placesin the text. | consider my effort be rewarded if it can make the average
student realize and extract the beauty of quantum mechanics from its abstract
laws and equations, applicable not just to the atomic domain, but to the real
world aswell.

- Author
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CHAPTER 1

Historical Background

1.1 Newtonian Mechanics

Newtonian mechanics or classical mechanicsin its simplest form, known as the
laws of mechanics is written in terms of particle trgjectories. In fact, the
trajectory underlies the structure of classical physics and the particle underlies
the model of physical readlity. The underlying assumptions and philosophical
implications of classical physics are so familiar that we have never given them
a second thought. Classical physics ascribes to the universe an Objective
Reality, an existence externa to and independent of human observers.

Our central assumption about the nature of classical universe is that, it is
predictable. Knowing the initial conditions of a system, however complicated it
might be, we can use Newton's laws to predict its future. This notion is the
essence of determinism that supported Newtonian mechanics for more than
three centuries.

Newtonian mechanics has taken such strong roots and everybody believed
that everything in this universe can be explained on the basis of these laws.
Many scientists have predicted the end of science as they thought that there is
nothing new to know and nothing more to investigate. In fact, Prof. John
Trowbridge at Harvard University, the then Head of the Department, felt
compelled to warn bright students away from physics. He told them that the
essential business of Science is over. All that remains is to dot a few 'i's and
cross afew 't's, atask best left to second rate.

In 1994, Albert Michelson, the future recipient of the Noble Prize told the
audience in one of the conferences that "it seems probable that most of the
underlying principles have been firmly established and that further advances
are to be sought chiefly in the rigorous application of these principles to all
phenomena which come under our notice. The future truths of physics are only
to be looked for, in the sixth place of decimals’.

However, these ideas did not long lost and with the discovery of x-rays,
radioactivity and electron in the last decade of the 19th century, the scientists
had to think afresh about the universe.
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Rdentgen discovered x-rays in his laboratory at Wurtzburg in 1895. For this
discovery, he received Rumford medal of the Royal Society in 1896 and the
first Nobel Prize in physics in 1901. Henry Bacquerel in 1896 trying to
reproduce Roentgen's x-rays, accidentally discovered radioactivity in potassium
uranyl sulphate, a phosphorescent rock available in his laboratory. For this
discovery, he shared the 1903 Noble prize in physics with the Curies.

In 1897, the British Physicist J. J. Thompson demonstrated that the beam
that leaves the cathode, the so-called cathode rays, consists of a beam of
negatively charged discrete particles. By balancing this beam between an
electric and magnetic field, Thompson was able to measure the charge to mass
ratio of these particles, the currently accepted value being 1.7588 x 10%
Coulombg/Kilogram (C.Kg?). Thompson aso estimated the charge on the
electron by utilizing the observation by C. T. R. Wilson (of the Wilson cloud
chamber) that a charged particle acts as nucleus around which water vapour
condenses. Thus by performing an early version of the famous oil drop
experiment of Millikan, Thompson calculated the charge on the electron to be
about 1 x 10°C and its mass to be about 6 x 10 Kg. Although Thompson's
charge to mass measurement was quite accurate, his determination of charge
itself wasin error by 50%. Consequently, his calculation of the electronic mass
was in error by 50%. Nevertheless, he did show that an electron was much
lighter than the lightest atom and so it should be a subatomic particle. A little
over 10 years later, Millikan refined the electron charge as 1.60 x 10 C
almost getting the modern value of 1.6022 x 10 C.

Although these experiments did not lead immediately to the realization of
the inadequacy of the classical physics, they showed that the atom was far more
complex than had previously been thought. It was a maor challenge to
classical physicsto provide a structure for the atom, but this was a challenge to
which classical physics never rose.

Thompson Studied Engineering at Owens College
where he developed interest in Science. In 1876,
he went to Cambridge University on a scholarship
and remained there for the rest of his life. In
1884, he succeeded Lord Rayleigh as the
Cavendish Professor of Physics and Director of
the Cavendish laboratory. Thompson was an
J. J. Thompson excellent teacher and administrator. Seven Nobel

(1856-1940) Prize Winners were trained under Thompson at
the Cavendish. In 1919, he resigned his
Directorship in favour of Ernest Rutherford, in
part because of his lack of sympathy for the new
Physics of Niels Bohr. Thompson was awarded
the Nobel Prize in Physics in 1906 and was
knighted in 1908.
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1.2 Black Body Radiation

When a body is heated it emits thermal radiation, and the nature of this
radiation depends on the temperature of the emitting body. When the heating
element of an €electric stove is turned on, it emits radiation. This radiation can
be detected by placing one's hand at some distance above the heating element.
If the stoveis on low heat, the radiation can be detected by feeling only and not
by sight. If the heat is turned up, the stove element will begin to glow first red,
then white and if the temperature could be raised high enough, even blue. This
change in colour is evidence that the frequency distribution of the radiation
emitted by the hot body is changing with temperature.

In order to study such radiation, it was found that a particularly desirable
system was one known as a “black body”. When radiation falls on a surface,
some of the radiation is reflected and some is absorbed. The absorptivity of a
surface is defined as the fraction of the light incident on the surface that is
absorbed, and a black body is defined as one that has an absorptivity of unity.
That is, it absorbs al the radiation that is incident upon it. In addition, it has
been shown (Kirchhoff's law) that the ratio of emissive power, 'E', to the
absorptivity, 'A'i.e.

E, E

A, A
is aconstant for a given temperature.

Now, since the absorptivity of a black body has been defined as unity
(A, =1), we see that the total emissive power of any surface must be given by,
E = AE, where E; = total emissive power of a black body. Since ‘A’ is
necessarily less than unity for any surface other than a black body, it is obvious
that no surface can emit more strongly than a black body. Therefore, it is seen
that a black body is both the most efficient absorber and also the most efficient
emitter of radiant energy.

Many experiments were carried out on the black body radiation. The
apparatus used for the study of black body radiation consists of awell insulated
cavity with a small opening in one of the walls, and this type of furnace is kept
at constant temperature. This furnace is called an isothermal enclosure and the
radiation is observed as it passes through the small hole or opening. In 1858,
Kirchhoff was able to show that if the walls and contents of the cavity are kept
a a constant temperature at equilibrium, the stream of radiation in one
direction must be the same as that in any other direction. It must be the same at
any point in the enclosure and makes no difference of what material the walls
are composed.

In 1879, Stefan had given an empirical relation for the rate of emission of
radiant energy per unit area of a surface. (The law was experimentally
discovered by Sefan in 1879 and derived by Boltzman in 1884 based on the
principles of thermodynamics)
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E-eoT?

where E = Rate of emission of radiant energy per unit area, (or the total
emissive power), T = Absolute temperature, e = emissivity of the surface, ¢ =
Stefan-Boltzman constant. (Emissivity is defined as E/E, and for a black body
emissivity, E = 1).

A problem that was of considerable interest at that time was the distribution
of energy in the spectrum as a function of wavelength and temperature. In
1894, Willy Wien has provided another useful piece of information in the form
of displacement law. It says that the wavelength that corresponded to the
maximum of the energy distribution of the black-body radiation, obeys the
relation,

A e = Constant.

This is a consequence of the theoretical attempts made to calculate the
shapes of the energy spectra as afunction of wavelength.

In an attempt to find an expression for the monochromatic emissive power,
Wien utilised the classical methods of thermodynamics to obtain the equation

a
E; =% f(4T)

where‘a isconstant and f(AT) isafunctionof AL & T.

In order to determine the function f((AT), it was necessary to consider the
mechanism by which the radiation is emitted. Since, Kirchhoff had shown that
the nature of the walls, and therefore the nature of the radiator, is not important
in an isothermal enclosure, any reasonable model can be chosen. Wien chose
oscillators of molecular size and applied the laws of classical electromagnetic
theory. He obtained the equation,

E, = % e

where‘a and ‘b’ are constants.

Another theoretical attempt to determine a distribution law was made in
1900 by Rayleigh, by applying the equipartition principle to electromagnetic
field. This calculation consists of two parts. In the first, one calculates the
number of oscillators in an enclosure that correspond to a wavelength, A. The
second part, in accord with the classical equipartition principle, involves
associating an energy, KT with each oscillator. Jean commented on some of the
mistakes in the calculation and their combined effort, resulted in the form of a
modified equation, known as Rayleigh-Jeans equation,
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Almost simultaneously in 1899, Lummer and Pringsheim made the
experimental determination of the energy distribution from a black body at
various values of the temperature. The results are shown in Fig. 1.2.1.

1700°C
C
e >
B on
= b.d a 5
3 &
1250 'C
“\“
Wavelength, °A
720°C

Wavelength, °A

Fig. 1.2.1 Comparison of the three radiation laws with the experimental data.
(a) Wien (b) Planck and (c) Rayleigh-Jeans with (d) the dotted experimenta curve.

Wien equation gives excellent agreement with experiment in the region of
short wavelengths and the Rayleigh-Jeans equation appears to be
asymptotically correct at long wavelengths. This equation is clearly not correct,
since, it predicts an impossible situation, namely, at shorter and shorter
wavelengths the radiation intensity should increase without bound. This
paradox known as the “ ultraviolet catastrophe”, dealt a terrible blow to the 19"
century classical physics. Hence, neither of the equations is consistent with the
experimental curves over the complete spectral range.

Many attempts were made to propose equations to fit into the total
experimental spectrum. Such an attempt by Max Planck has brought out the
most revolutionary hypothesis of the era.

For the same reason, Wien was able to choose any type of energy radiator
that he wished, Planck too made such a choice. It had to be a system capabl e of
emitting and absorbing radiation, and among those the simplest type for the
purpose of calculation is a set of simple harmonic oscillators. Now, according
to classical ideas, an oscillator must take up energy continuously and emit
energy continuously. However, in order to find a formula that would fit the
experimentally determined spectrum of a black body radiator, Planck found it
necessary to postulate that such an oscillator cannot take up energy
continuously as demanded by classical theory, but rather it must take energy in
discrete amounts.
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These amounts are integral multiples of a fundamental energy unit ¢, that
iS,0, g,,28,, e Ne

0"

Using thisidea, Planck was able to derive the equation,

2o s,
A /14 es%_r _1

for the monochromatic emissive power of a black body. Here, ‘C’ is the
velocity of light and ‘k’ is the Boltzman constant. Since the Wien equation is of
thermodynamic origin, and therefore correct, it is necessary for the distribution
law of Planck to contain the temperature in the combination, T or (T/v) or
(VIT).

Conseguently, it can be seen that the quantum of energy, gomust be
proportional to /A or v. Wefind that €5 = hv, where h = Planck’ s constant. By
making the substitution for & .

2t 1
4 /15 ec%kT _1

Whereas the energy distribution laws for black body radiation deduced from
classical concepts had consistently failed to explain the experimental data, the
guantum hypothesis of Planck succeeded. The hypothesis involves no
extension of classical ideas, but it isaradica change from the prevalent line of
thought of that time. Quite in contrast to the classical idea that an oscillator can
absorb and emit energy continuously from wavelengths of zero to infinity,
Planck proposed that the energy must be emitted or absorbed, only in discrete
amounts. This implies that any system capable of emitting radiation must have
a set of energy states, and emission can take place only when the system
changes from one of these energy states to another. Intermediate energy states
do not occur. Thus, we may find an oscillator emitting an energy of 2hv, but
not 0.5 hv.

E

Physical Basisfor the Success

The physical basis for the success of the quantum hypothesis may be, due to
the fact that, at a particular temperature there may not be sufficient energy
available to excite the higher frequency oscillators. It is because, based on the
guantum hypothesis, they can be excited only by absorbing not less than one
guantum of energy, hv. On the classical theory, the oscillators could be excited
in a continuous manner. Therefore, at the temperature T, when the mean
thermal energy available is kT, even the highest frequency oscillators could be
excited with a frequency ‘v’ (and by equipartition, an energy kT) and so
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contribute to the radiation from the emitter. Planck’s quantum hypothesis
therefore has the effect of damping out the high-frequency oscillators, just as
we realised was necessary.

Black body radiation is a fundamental problem, and we have arrived at a
solution by making aradical alteration to classical theory. Therefore, we should
expect to discover ramifications of hypothesis in other parts of physics and
chemistry.

It was not long before Planck’s hypothesis had another application. In 1905,
in order to explain photoelectric effect, Albert Einstein postulated that light
energy had to be quantized.

1.3 ThePhotoelectric Effect

In 1887, Hertz observed photoel ectric effect
and the first outstanding application of
guantum theory was in its explanation by
Albert Einstein in 1905. It should be noted =
that though Planck introduced the idea that

radiation must be emitted in quanta or

bundles of energy, he however believed

that, after being so emitted, the radiation _
spread in waves. Einstein extended Planck’s —
idea further and introduced the important

*

concept that the radiation energy is not only ~

emitted in quanta but the quanta also 8)

preserved their identity until they were . -
finally absorbed. Fig. 1.3.1 Schematic diagram of

apparatus for investigating the
Photoelectric effect is the gection of photoel ectric effect.

electrons from various materials when

irradiated by visible or ultraviolet light. This effect is the basis of photoelectric

cell, an extremely sensitive instrument used for detection and measurement of

radiation. An arrangement that can be used for this study is shown in Fig.1.3.1.

Laws of photoelectricity, established from experimental facts are as follows:

(@ The total photoelectric current is proportional to the intensity of the
light striking the surface.

(b) For each particular metal used to form the surface, there exists a
threshold frequency or (wavelength) such that, at frequencies below the
threshold, no electrons are emitted, no matter how great the intensity
might be.
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(c) The maximum energy of the emitted electrons is independent of the
light intensity.

(d) The maximum energy of the emitted
electrons is linearly dependent on the
freqguency of the incident light. =
Fig.1.3.2.

Item (a) is quite expected, item (b) involving
discontinuity is surprising, item (c) is totally
unexpected and item (d) is an unexplained  Fig 132 variation of the
phenomenon. maximum energy of the

Clearly, the photoelectric effect must photoelectrons with
require an explanation radically different from  freduency of theincident
classical electromagnetic theory. Einstein's radiation.
celebrated note of 1905 provided the correct explanation. Going even further
than Planck, who limited himself to the introduction of discontinuity in the
mechanism of absorption and emission, Einstein postulated that light radiation
itself was discontinuous, consisting of beam of corpuscles, named as photons.
A photon is thus a single quantum of electromagnetic radiation and has the
energy, hv.

'max

v

According to the Einstein’'s explanation, when a photon strikes a metal
surface, a given electron on the surface would receive either al of its energy
'hv' or no energy at all. Again as the electron escapes from the metal, it uses up
certain energy, W, in overcoming the surface forces, called the work function.
Moreover, if the electron originates below the surface, additional amount of
energy may be used up in reaching the surface. So, for an electron originating
at the surface or one which loses no energy in reaching the surface, the Kinetic
Energy (K.E.) after leaving the surface will be the maximum.

Obvioudly, thisK.E. is the difference between hv and W.
So (Y2) mv2=hv —w
=hv -hv,

So (Y2 mv2 = stopping potential = hv —w or hv — hv,.

Thus, we can see that if the energy of the incident photon is less than the
energy needed by the electron to escape from the surface, no emission can take
place, regardless of the intensity of the incident light, i.e.,, the number of
photons, which strike the surface per second.

According to classical physics, electromagnetic radiation is an electric field
oscillating perpendicular to its direction of propagation, and the intensity of
the radiation is proportional to the square of the amplitude of the electric field.
As the intensity increases, so does the amplitude of the oscillating electric field.
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The €electrons at the surface of the metal oscillate along with the field. As the
intensity (amplitude)of the field increases, the electrons oscillate more violently
and eventually break away from the surface with a kinetic energy that depends
on the amplitude (intensity) of the field. This nice classical picture is at
complete variance with the experimental observations. Further, this classical
picture predicts that the photoelectric effect should occur for any frequency of
the light aslong as the intensity is sufficiently intense.

1.4 TheCompton Effect

The Compton effect provided further evidence for the quantum nature of
radiation. If photons are redly particles, they should possess a momentum, 'p',
equivaent to hv/c. This momentum should be observable by alowing a beam
of light to fall on a beam of electrons, when atransfer of momentum should be
observed as a scattering of the electrons by the light beam, or as a scattering of
the photons by the electrons. Compton performed this experiment using x-rays
as the light beam in 1922, and the results he obtained were in complete
agreement with the predictions.

It has been observed that when monochromatic X-rays impinge on elements
of low atomic weight, the scattered X-rays were found to be of longer
wavelength than those of the impinging beam. This phenomenon cannot be
explained based on the classical theory, because as per this theory
monochromatic light falling upon matter should be scattered without change in
frequency.

However, the effect could be satisfactorily explained as resulting from an
impact between the X-ray photon and the electron. Because of this collision,
the electron recoils and the photon is scattered. In the process the electron gains
momentum and the photon loses momentum. The decrease in momentum of the
photon is manifested in the form of lowering of its frequency or increase in its
wavelength.

It has also been shown that only one vaue of the wavelength shift is
observed at a given scattering angle: this implies that the momentum transfer
takes place only in a discrete manner and not continuously.

The photoelectric effect is stronger than Compton effect when X-rays of
energy less than 0.1 MeV are used. In the process of the photoelectric effect,
the energy of an X-ray photon is completely given up to an electron of the
atomic system. Since it is impossible for a photon to give up al its energy to a
free electron, the photoelectric effect can take place only when photons strike
bound electrons. At higher X-ray energies (about 0.1 MeV) the Compton
Scattering becomes more important. In this case, an X-ray photon is scattered
and not really absorbed, since it does not lose a very large fraction of its
energy. At ill higher energies, above 1 MeV (wavelengths less than
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0.0120,&), the process of pair formation plays a part in the absorption of
X-rays. As the photon energy increases this process becomes more important
than either photoel ectric absorption or Compton Scattering.

Gamma rays are very short electromagnetic waves whose energy range
overlaps that of X-rays and extends to several MeV. Under suitable conditions,
a gamma-ray-photon converts itself into a pair of material particles, a positive
electron and a negative electron. The former is caled the positron, while the
word electron is used only for negative electrons. In this process of pair
formation discovered by Anderson in 1932, two particles each of mass m, are

created out of the energy of the gammacray, if theinitia energy is at least equa
to 2m c?. According to Einstein’s mass-energy relation E = mc?, the energy
required to create an electron is 0.511 MeV. Thus, pair formation cannot take
place until the energy of the photon is at least 1.022 MeV the threshold energy
for pair formation. Experimentally also this is found to be true. If the initial
photon energy is greater than this threshold value, the excess appears as kinetic
energy shared equally by the positron and the electron.

15 Atomic Spectra

At a time when people were engaged with the problems of black body
radiation, a similar development was taking place in the field of atomic spectra.

1. It was observed that when an electric discharge is passed through an
element in the gaseous state, light will be emitted

2. Analysis of this light by a prism or grating spectrometer gives a series of
sharp lines of a definite wavelength, which prove to be characteristic of the
particular element.

In the case of light element such as hydrogen, this line spectrum turns out to
be simple, but for heavier elements, it is more likely to be extremely complex.
As the experimental data accumulated, people observed some sort of
orderliness, and so, tried to obtain empirical relations to predict the sequence of
lines.

1. In 1883, Liveing and Dewar realised that several possible series exist in the
spectra of alkali and akaline earth metals but could not discover an
empirical relation to present the order.

2. In 1885, Balmer discovered the equation.
bn?
nZ_4

where ‘b’ is a numerical constant and ‘n’ is an integer, e.g. 3, 4, 5......€tc.
The agreement between the observed values, of the lines in the hydrogen

}\‘:
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spectrum and their values calculated by the Balmer formula, turns out to be
extremely good.

2
c(n“-4) [1 1)
v==— o Re| -

bn? 22 n?
The above equation can be expressed as

_ 1 1
R[z__j

where R = Rydberg constant.

The Rydberg constant has been found to be specific for a given element and
very nearly constant for all elements. The difference in its value is due to the
atomic weight of the element, and it has been found to have a value of
109,677.58 cm* for hydrogen.

At the time when the Balmer series was discovered, the known portion of

the electromagnetic spectrum was the visible region (4000 to 8000A) alone.
After this discovery, the same genera type of other series were discovered.
The Lymann series was found in the ultraviolet region and the Paschen,
Brackett and Pfund series were found in the infrared.

The genera equation can be written as:

=)

where n=1  Lyman series u.v.
n =2  Bamer series Visible
n=3 Pashenseries  Near IR
n =4  Brackettseries FarIR
n =5 Pfund series Far IR
and n,>n

2 1

Although the early developments in atomic spectra were significant, they
were nevertheless empirical. For the most part, they were restricted to
classifying and correlating the observed data by means of empirical relations,
and there was no clue how these spectral lines arouse.

1.6 Atomic Models

The origin for the spectral lines could be the atoms, is a reasonable assumption.
But, how the atoms are able to emit such characteristic lines has remained a
matter of speculation because of the absence of any satisfactory concept of the
structure of the atom. Subsequently things became clear.
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1.

With the discovery of radioactivity and the emission of positive, negative
and a number of combinations of these particles, it became clear that atomis
composed of these newly found particles. So immediately the next question
will be, how many of each category are there and how they are arranged in
an atom.

. Basing on the available data at that time, J. J. Thompson proposed a model

of the atom with the positive charge distributed uniformly throughout a
sphere of diameter 10° cm. The electrons are embedded in the sphere in
equilibrium positions and when disturbed, they oscillate about these
equilibrium positions.

Though it is a crude model, it could account for the occurrence of spectral
lines, but it could not explain the scattering of ‘o' particles

One of the ways by means of which these ‘o’ particles can be observed is
by the scintillations they cause on a fluorescent screen coated with zinc
sulphide. When a thin gold foil is placed in the path of the ‘o’ particles,
naturally a change in pattern on the screen is expected, compared to the one
obtained without the gold fail in the path. However, the immediate question
will be “How it will change?’ Therefore, Thompson calculated theoretically
and concluded that the average deflection of the ‘o’ particles should be
small and the probability of the large scale scattering is essentiadly zero.
But, Geiger and Marsden noted experimentally that about 1 in 8000 ‘o’
particles, incident on a gold foail, is deflected through an angle greater than
900. This is in complete disagreement with Thompson's model and his
predictions.

. To resolve this, Rutherford proposed a new model of an atom in which the

positive charge is concentrated in a small volume at the centre of the atom.
The electrons are then assumed to move around this centre of positive
charge in various orbits, as the planets in the solar system. This is an
improvement over the Thompson's model as it accounts for the wide angle
scattering of the ‘o’ particles in the gold leaf experiment. However, it aso
met with some difficulties.

(a) The electrons could not be considered to be stationary because the
unlike charges of the electron and the nucleus cause them to come
together.

(b) If the electrons are assumed to be moving around the nucleus, another
problem arises. When an electric charge is accelerated, it emits or
absorbs radiation. If the electrons are pictured as moving around the
nucleus, they are subject to centripetal acceleration. According to the
principles of electromagnetic theory, the electrons therefore must
radiate energy. The only place for this continuous supply of energy is
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the atom itself, and eventually the electron should spira into the
nucleus and in essence run down. Hence, Rutherford’s model is not the
final answer.

1.7 TheBohr Atom

Through many models were proposed, the model proposed by Niels Bohr
(1913) for the hydrogen like atom, is unique in gaining universal recognition.
Using the structural ideas of the Rutherford atom, Bohr was successful in
guantitatively applying the concepts of quantum theory to explain the origin of
line spectra as well as the stability of the atom.

Bohr was able to overcome the difficulties encountered in the earlier model,

by applying the quantum concept of discrete energy states.

Assumptions

1

2.

The electron in an atom is restricted to move in a particular stable orbit, and
aslong asit remainsin this orbit, it will not radiate energy.

Using the quantum principle, that an oscillator will not emit energy except
when it jumps from one energy state to another, Bohr postulated that when
the electron jumps from a stable energy state of energy E, to another state of
lower energy E,, a quantum of radiation is emitted, with an energy equal to
the difference between the two states.
hv=E, -E,

In the final form of the theory, Bohr assumed the orbits to be circular with a
Size such as to satisfy the quantum condition that the angular momentum, p,
of the electron is an integral multiple of the quantity h/2r. Thus

p—n—h—mvr
2n '

_nh
2mmr

where m and v are the mass and velocity of the electron. ‘h’ isthe Planck’s
constant and ‘n’ is a positive integer known as a quantum number.

For a quantitative treatment of a one electron system, the force of attraction
between the electron and the nucleus is considered to arise from the
electrostatic attraction between the positive charge of the nucleus and the
negative charge of the electron, thus F = Z e 2/r 2, where Z is the atomic
number of the element and 'r' is the distance between the nucleus and the
electron.

This electrostatic attraction should be equal to the centripetal force resulting
from the motion of the electron about the nucleus
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2

Ze2 mv
2 r

r

But according to the quantum condition
p= n.L = mvr
21
Hence, substituting the value of 'v' in the above equation

4n?  mze?

for the hydrogen atom, Z = 1 and if the electron is considered to be in the
ground state (n = 1) the radius of the atom can readily be calculated to ber =
0.529 A°.

Energy of the Electron in the Atom

The total energy of the electron of the atom is made up of its kinetic and
potential energies. If zero of potential energy is defined as the energy of the
electron when it is at rest at an infinite distance from the nucleus, its potentia
energy with respect to the nucleus at any distance ‘r’ isfound to be

V= der j—dr_

Thekinetic energy, T = %mu2 = Zzi
r

.. Tota energy of theelectron=T +V
-ze° 788 _-7¢
r 2r 2r
. The energy of the electron in the n™ quantum state
26> —z7e® x An’mze?
2r 2n°h

n

_ —2r'me'Z
- e
Thus the transition between two energy states of energy E, and E, an be
written as
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_ _ 2r'me* (1 1
E2 El or Vv = T(—Z——Zj
h n m

If n, =2, itisexactly same as the Balmer equation. The constant term in the

above equation has given a reasonable agreement with the Rydberg constant.
This gave overwhelming support to Bohr’ s theory.

Now that it has been shown that the equation for the wave number
developed by Bohr is same as that found by Balmer, it is now possible to
explain the origin of spectral series.

In the equation

1 1
V=R S -—
[nf n%J

n, = 2 arises from the fact that the electron transitions are to the second shell. In
asimilar manner, an analogous relation exists between n, = 1 and the Lymann
series and n, = 3, 4 and 5 for the Paschen, Brackett and Pfund series,
respectively.

Extensions of the Bohr’s Theory

Even though Bohr’s theory could predict the energies of the spectral lines of
the hydrogen like atoms, it met with some difficulties also.

1. It could not explain the fine structure in the line spectrum of the hydrogen-
like atom. When Bohr proposed the theory, only single lines were observed
and the theory successfully predicted them. But as better instruments and
techniques are developed, it was realised that what were thought to be single
lines, were actually a collection of several lines close together. Thisimplies
that there are several energy levels close together rather than a single level
for each quantum number 'n'. This would require new quantum numbers and
there is no way to obtain them directly from Bohr model.

This problem was solved by Sommerfeld when he considered in detail the
effect of elliptical orbits for the electron. For an elliptical orbit, both the
angle'¢' and the radius vector ‘r’ can vary.

Summerfeld found that the degeneracy in this atomic model can be removed
by considering the relativistic change in the mass of the electron during its
motion around the nucleus. As the electron revolves around the nucleus, its
velocity changes continuously, depending on its proximity to the nucleus.
From the special theory of relativity it is known that the mass of a particle
increases as its velocity increases. If this effect is taken into consideration, a
small difference in energy is found to exist between a circular orbit and an
eliptical orbit. This differenceis afunction of 'n¢', and can be related to the
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physical picture of energy level in the Bohr atom by considering each major
energy level to be composed of severa sub-levelslying very close together.

The change in mass of the electron produces slight changes in the effective
columbic forces operating between the electron and the nucleus. If this
effect is taken into consideration, a small difference in energy is found to
exist between orbits of different eccentricities, which will be reflected as
fine structure in the spectrum.

The explanation of the fine structure of the spectrum of hydrogen is a
notable achievement of the Sommerfeld’s modification. But, the greatest
single contribution of the Sommerfeld’'s concept, however, lies in the
subdivision of the original Bohr stationary states into several sub-states of
dightly differing energies as characterized by orbits of different
eccentricities. Inherent also in the concept of eliptical orbits is the concept
of penetrating orbits. We shall see |ater that these features form the basis to
the modern concepts of electronic configuration.

Zeeman Effect

When the source emitting the spectral lines 3

was placed in a strong magnetic field, a 2

further splitting of lines was noticed. In 1

order to account for this phenomenon %’5‘3’ 0

called the Zeeman effect, a third quantum -1

number known as the magnetic quantum )

number was postul ated. -3

An electron in space requires three  Fig. 1.7.1 Space quantization
coordinates to describe its position. This in amagnetic field.

has three degrees of freedom and should

require three quantum numbers to describe its energy. Without a spatial
reference, the arrangement of the orbital plane of the electron is completely
arbitrary, and this third degree of freedom is degenerate.

However, in the presence of an external field, the orbital plane of the
electron will precess about the direction of the field, and thereby remove the
degeneracy. The possible positions the orbital plane (Vector representing the
orbital angular momentum) can assume in space are limited (Space
quantisation) and the magnitude of its component in the direction of the
magnetic field is given in terms of the magnetic quantum number ‘m’.

The third quantum condition, similar to that of the angular momentum is
P, = mL
z 2n
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The magnetic quantum number may have any integral value including zero
from- to + | giving atotal of 2| + 1 values.

The possible values of m when | = 3 are shown in Fig.1.7.1. Positive values
of ‘m’ describe the components of orbital angular momentum oriented in the
direction of the applied magnetic field, and the negative values represent
those oriented in the opposite direction.

Spin
The presence of ‘double lines' in the spectra of alkali metals was attributed
to the axial spin of the electron by Goudsmit and Uhlenbeck (1925).

A simplified account of the way in which this

property leads to new energy levels can be

understood, if we remember that a spinning H
electron behaves as a small magnet. Now, the

electron moving around in its orbit produces a

magnetic field just as an electric current in a

coil of wire produces a field. The arrow

marked 'H' represents this field. Since the

electron, because of the axial spin behaves as

a small magnet, there will be an interaction

between the two magnetic fields. The field produced by the axia spin either
reinforces or opposes the field ‘H’ depending on the direction of the spin
whether it is clockwise or anticlockwise.

p¥

This interaction will produce energy changes, wherein, a single energy level
representing a non-spinning electron moving in an orbit, becomes two
energy levels close together. Additional electron transitions are therefore
possible, and new lines appear in the spectrum. Goudsmit and Uhlenbeck
showed that the spectroscopic observations required that the angular
momentum associated with the spin of the electron is given by megh/2r,
where ms iscalled the ' Spin quantum number’ and can have the value +1/2
or -1/2.

1.8 Failureof the Old Quantum Theory

The success achieved by the Bohr-Sommerfeld theory in explaining the atomic
spectrum of hydrogen prompted its extension to other systems. Although it
achieved some success in accounting for the spectra of such hydrogen like
species as singly ionized helium (He"), doubly ionized lithium (Li%*) and triply
ionized beryllium (Be*), it failed to predict the spectral lines and spectral
intensities in the case of many electron atoms. Apart from this, there are certain
other unsatisfactory features in the theory. For instance, there is no justification
for the assumption that an electron can move in only those orbits wherein the
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angular momentum of the electron is an integral multiple of h/2x. Further
whenever it has become necessary to explain an experimental observation a
new gquantum number has been introduced; thus, the introduction of the various
guantum numbersis arbitrary.

Finally, the theory contributed virtually nothing to an understanding of the
geometry of the molecules.

The unsatisfactory features in the old quantum theory led scientists to search
for new mechanics for the treatment of atomic systems that would relieve the
wave particle conflict and introduce quantized energy. As a consequence of
some more efforts in this direction culminated in the formulation of ‘matrix
mechanics' by Heisenberg and ‘ Wave mechanics' by Schrodinger. Afterwards,
Schrodinger and Eckart have shown that both matrix mechanics and wave
mechanics lead to the same conclusions. Now these two forms of mechanics
are covered by the term ‘quantum mechanics': that means matrix mechanics
and wave mechanics are merely two different mathematical treatments of
guantum mechanics. Of these two forms, since wave mechanics are easy to
understand and can explain all the phenomena in chemistry, this method is
widely used in quantum chemistry.

Quantum mechanics, not only could explain the phenomena associated with
chemistry, it helped to amalgamate physics, chemistry and material science.
Earlier also the attempts of Newton were successful in applying common laws
to the celestia and terrestrial objects alike. Similarly, Mayer and others have
unified the laws of heat and mechanics, while Faraday and Maxwell have
shown that electricity, magnetism and optics are closely related. Einstein was
responsible for bringing together space, time, matter and gravity. The scientific
community is eagerly awaiting for a theory which can explain everything in the
atomic, nuclear and sub nuclear levels and beyond that includes the bigger than
the biggest and the smaller than the smallest, known to us at this point of time.
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The Wave Equation

2.1 deBroglie' s Concept of Matter Waves

It has aready been pointed out that electromagnetic radiation exhibits a
dualistic character. Under certain experimental conditions, it is found to behave
as wave, and at other times, it appears to be corpuscular in character. For
example, in the explanation of the phenomena like the photoelectric effect and
the Compton effect, we have to assume that radiation is corpuscular in
character, whereas in the explanation of some of the optical phenomena like
interference and diffraction it is necessary to assume that it is wave like in
nature. Thus, depending on the need of the situation, we have to invoke the
corpuscular or wavelike nature and even though a behaviour such as thisisin
complete contradiction to al physical experience, today scientists are
reconciled to this Jekyl and Hyde nature of radiation.

J.J. Thompson wrote that the struggle between
the two models was like “ a struggle between a tiger
and a shark: each is supreme in his own element, but
helplessin that of the other”

Banesh Hoffmann has written on the impact of
Confusion® this puzzie on Physicists of the time in his delightful
and hilarious book “ The strange story of quantum’”.
He wrote they could but make the best of it, and went
around with woebegone faces, sadly complaining
that on Mondays, Wednesdays and Fridays they must
look light as wave, on Tuesdays, Thursdays and
Saturdays as a particle.  On Sundays, they simply
prayed.

To add to this dilemma, Louis de Broglie proposed in 1924 that this duality
should apply to matter also, thus leading to the concept of ‘matter waves. We
know that nature manifests itself in two fundamenta forms, namely, matter and
radiation. de Broglie reasoned that, since nature loves symmetry, if one form
of nature is exhibiting duality in properties, the other form also must be equally
capable of exhibiting dualistic behaviour. Alternatively, in other words, every
material particle must also have a wave associated with it. This brilliant

19
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prediction was equally brilliantly verified by Davisson and Germer of the Bell
Telephone Industries, USA in 1927. Using a nickel crystal as a diffraction
grating, they were able to obtain diffraction patterns with a beam of electrons,
thereby proving that electrons also have wave nature. At the same time, similar
diffraction effects were also observed by Thompson by using extremely thin
films of metal as diffraction gratings. Further confirmation of the idea of the
association of waves and matter was provided by the diffraction phenomenon
observed with the particles of hydrogen and helium. Theoretically, such effects
should exist for all particles, but when the masses are relatively high, the
equivaent wavelengths are too small to be measured.

We have dready seen that E = hv and the frequency is a variable that is
associated with wave motion, whereas the energy of the system can be
expressed in terms of particle concepts such as mass and velocity.

According to the theory of relativity the energy of a particle of mass‘m’ and
velocity ‘¢’ isgiven by E = mc?,

By equating the above two hv= mc?

or hvic =mc=p

where 'p’ isthe momentum of the particle

or hA =mc= p

If we now consider a materia particle of mass ‘m’ and velocity ‘v’ the
wavelengthisgiven by L = h/mv = h/p, such awavelength is often referred to
as de Broglie' s wavelength.

There is associated with the motion of each
material particle a “fictitious wave” that
somehow guides the motion of its quantum
. of energy. Using the methods of classical
deBroglie's optics to describe the propagation of
hypothesis guanta, de Broglie was able to explain how
photon (for that matter electron) diffract
and interfere. It is not the particles
themselves, but rather their “ guide waves’
that diffract and interfere.

Wave length and momentum of a particle
The photon isarelativistic particle of rest mass m, = 0.
Therefore, P=E/C (m,=0and E = Tota energy)
hv h

But E = hv - P —
c A
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In contrast to a photon, a materia particle such as an electron has a non-zero
rest mass, m,. Therefore, the relationship between the energy and momentum
of a particle moving at relativistic velocities (in a region of zero potentia
energy) is

E*=P°C*+mgC’
2

Therefore Kinetic Energy, T=E-mC? or if v<< C, T =2P—. In either
My

case the derivation of P :% cannot be applied to material particle.

However, de Broglie proposed that P=£ and E=hv can be used for

material particles and photons. Notice that the de Broglie eguation
A= % implies an inverse relationship between the total energy E of a particle

and its A ; namely

hc
7»:#2 for photon X:% asmp=0
2
_[me /
")
de Broglie based his arguments on special theory of relativity. First he
equated the rest energy, mec” of a material quantum to the energy, hvp to its

‘periodic internal motion’” where ‘vy' is the intrinsic frequency of the particle.
Next he considered a quantum moving at a velocity ‘v’ with momentum,

p oMV

1-
c2

and used relativistic kinematics to show that the frequency and wavelength of
such a particle are given by the above equations.

It has been pointed out by M. Jammer
that J. J. Thompson in 1906 (discharges
through gases) was awarded the Nobel
o Prize for showing that the electron is a
Sirange coincidence particle, and his son, G. P. Thompson in
1937 (electron diffraction of crystals)
was awarded the Nobel Prize for
showing that the electron is a wave.
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2.2 Heisenberg sUncertainty Principle

In the wave nature of the electron, we find the first of the two underlying
precepts of quantum mechanics. The second of these is the Heisenberg's
uncertainty principle, which states that it is impossible to determine the
position and momentum of any particle precisely and simultaneously. The
statement, which was first enunciated by Heisenberg in 1927, can be illustrated
by the following discussion.

Suppose we device a hypothetical experiment to measure the position and
velocity of an electron. We would set up two ‘y’ ray microscopes that could
see electrons, and measure the time taken for the electron to pass from one to
the other.

P in the Fig.2.2.1 represents the electron. It can only be observed, if a
photon incident upon it is scattered into the aperture of the microscope, i.e.
within the cone of the angle 2a. Now a photon of frequency ‘v’ will have an
associated wavelength A and hence A = h/p = c/v.

Therefore, p =hvic.

hv P X

Fig. 2.2.1 The‘y’ ray microscope.

If the photon is scattered in a direction making an angle ‘6’ with the ‘X’
axis, the electron will receive a component of momentum

&(l— cos0)

c

along the *x’-axis and since the electron will be detected for any value of the
angle ‘0’ between 90° + q, the momentum may have any val ue between

h—g[l— cos(90- oc)] and h—cv[l— cos(90+ oc)]
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i.e. between &[1—sina] and &[1+ sina].
c c

If we define this spread of values, as the ‘uncertainty’ in the value of ‘p’ and
denoteit as‘Ap’, then

Ap:@sina
c

we would try to reduce this uncertainty by making ‘o’ small, i.e. by using a
microscope of smaller aperture; but the accuracy with which an object can be
located by a microscope is defined by the Rayleigh equation for the resolving
power,

c
vsina

AX=
where Ax isthe uncertainty in ‘x’, the coordinate denoting the position of the

electron.

Thus a smaller aperture, while decreasing the uncertainty in momentum,
would increase the uncertainty in position.

In this experiment

Ax.Ap:&sina. C
c 2sina

=2h.

In general, the product, AX.Ap is of the order of the Planck’s constant, ‘h’.
Thisis oneway of expressing Heisenberg’ s uncertainty principle (1927).
We canillustrate its importance by an example. Suppose that we can locate
—11
the position of an electron with an uncertainty of 0.001A, i.e. Ax =10  cm.
We know that AXAp=h
Substituting in equation

10% g.om?.sec™?

Ap=6.6
P 10 M emsec™

=13.2x10**g.cmsec™

This uncertainty in momentum, which is the result of uncertainty in
velocity, is quite negligible in macroscopic systems, but it is far from negligible
in systems containing electrons, since, there we are dealing with masses of the
order of 102" grams. So precise statements of the position and momentum of
the electrons have to be replaced by statements of probability that the electron
has a given position and momentum.

Theintroduction of probabilitiesinto description of electronic behaviour isa
direct consequence of the uncertainty principle; a small uncertainty in position
implies a high probability that the electron is at a given point.
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This probability concept can be further illustrated, if we consider the
electron diffraction experiments of Thompson in which the diffraction rings
obtained correspond to regions of high electron density. If a single electron is
sent through the diffraction apparatus, it obviously cannot interfere with itself
to give a diffraction pattern, and the Heisenberg’ s uncertainty principle tells us
that we cannot follow its course precisely. We can say, however, that thereisa
certain probability that it will take a particular path, and that the electron is
most likely to be found in those regions where we get the greatest electron
density in experiments using beams of electrons. Thus, a high intensity in a
diffraction experiment, measured by the square of an amplitude factor in a
wave equation, can be related to a high probability, that an electron isin a unit
volume around a given point.

We will make use of both the concepts, electron density and electron
probability.

It is not difficult to see why the uncertainty relation should exist. Any
measurement must, by necessity, result in some disturbance on the system.
Thus, when we determine the position of a quantum mechanical object, say, an
electron, we have also supplied some energy to it (for example by shining light
on it) so that its velocity or momentum becomes less well defined. However,
in dealing with macroscopic bodies, the amount of perturbation is so negligibly
small that its momentum can be accurately measured at the same time.

The Heisenberg's uncertainty principle can also be expressed in terms of
energy and time as follows.

Since, momentum/time = force and energy = force x distance, we write

h/2IT =A(momentum).A(distance)
=A(force x time).A(distance)
=A(force x distance).A(time)
=A(energy).A(time) = AE.At

Thus, we cannot measure the kinetic energy of a particle with absolute
precision (that is, to have AE = 0) in a finite span of time. This equation is
particularly useful for estimating spectral line widths.

The uncertainty principle comes into force because of the wave like
properties of “particles’ like electrons and protons. The waves tell the
dynamics of the particle — its momentum, its energy and even its angular
momentum.

The wave runs through time and space. The wavelength of the wave
running through space gives the particle’'s momentum. The frequency of the
wave running through time gives the particle's energy. However, a wave
cannot really represent a particle. A particle islocated in, at only one place in
space. A waveis not located in only one place.
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The conflict between a wave and a particle can never be resolved. It can
only be compromised, and can only be compromised by the ‘uncertainty
principle’. The compromise goes like this: If you get a wave that will not run
forever, but will just wave, in one location, and then kill itself, it will be like a
particle. Thiskind of waveis called a‘wave packet’.

M
—  ~ — 3 —— T
Pl N S S T i,

o N

Wave packet

Fig. 2.2.2 A wave packet made of simple harmonic waves (1,2,3 ..n).

Wave packets are made by adding together many simple (harmonic) waves
that run forever. They do this because the waves have different wavelengths
and frequencies, so some are in phase while others are not. However, they do
not cancel each ather completely. At one special place, the location where you
want the particle to be, all the waves should be in phase. That way the added
effect of the waves is constructive in that one special location and destructive
everywhere else.

Therefore, it takes a mixture of different waves to make a wave packet,
which we call a particle as shown in Fig.2.2.2. Now comes the catch. The
wavelength or frequency represents the momentum or energy of aparticle. If a
mixture of different waves makes a particle, the particle automatically has a
mixture of momenta and energies. That mixture is the uncertainty. Of course,
you can make the particle out of only one wave, so that there is no uncertainty
in momentum and energy. But, one wave will not make a wave packet and it
runs forever. So, if you make a particle from one wave, you cannot tell, at
what location or what time it exists. Uncertainty again. However, you do not
have to have uncertainty in momentum or energy - if you are willing to accept
uncertainty in location or time — if you accept uncertainty in momentum or
energy you can avoid uncertainty in location or time. You can get some
uncertainty in anything, but you cannot rid of all the uncertainty in everything.

The number ‘h’ known as Planck’s constant tells us how much uncertainty
there must always be. The quantity ‘h’ is a basic constant of universe. The
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product of the two uncertainties together has a minimum value of ‘h’. It does
not become obvious until you enter into the world of photons and electrons.

Energy & Time and Position & Momentum are conjugate variables.

T}

AX or At b

X

o

<
AXx Ap=h
Atx AE=h

AX Or At

2.3 WaveEquation

If electrons have the wave properties then there must be a wave equation and a
wave function to describe the electron waves just as the waves of light, sound
and strings are described. Let us consider the motion of a string which is held
fixed at two ends, x = 0 and x = a. It is possible to excite with care certain
kinds of vibrations, in which all points of the string move, so that their
displacements vary with time in the same way and al points are at their
maximum displacements at the same time and have their maximum velocity at
the same time. If the displacements occur in the y-direction, mathematically
these motions can be described by functions of the form

y(xt)=f(x)®t) . (231)
where f(x) is independent of t and @(t) isindependent of x. Such motions are
called normal modes of vibration. The wave equation has the general form

d’y_1dy

dx* c? dt?
where ‘C’ is called the wave velocity. Substituting for ‘y’ from the Eg. 2.3.1 in
Eqg.2.3.2 one obtains
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2 d*f(x) 1 qu)(t)__ ,
f(x) & o) d?> o (2.3.3)

In Eq. 2.3.3 the variables are separated and they may be equated to the same
constant, say —»®. This gives us two ordinary differential equations

2
sz(t) + 02D (ty=0 .. (2.3.4)
dt
d*f(x) f(x)
o o? = - o L. (2.3.5)
Eq.2.3.4 has the solution
®(t)= Asnot+Bcosot . (236)

where the two constants A and B are determined from the laboratory
conditions, and o is called the circular frequency which is related to the

ordinary frequency ‘v’ as
0o=2tv. (2.3.7)

Eq. 2.3.5 may therefore be written as

2f 2.2
d dX§X> + 4"CZV f(x)=0 . (238)

Setting A = ¢/v the general solution of Eqg. 2.3.8 may be written as

d*f(x) 4n?
dxz +?f(x)=0

F(x)= ﬂexp(+iZTﬂX)+AzeXp[_i2nxj ..... (2.3.9)

A
or f(x)= csin(% xj+ Dcos(% xj ..... (2.3.10)

where A4, Ao, C and D are constants. Let us consider Eq. (2.3.10) and impose
the boundary conditions

(i) f{x)=0 atx=0; and

(i) fx)=0 ax=a
where ‘@ is the length of the string. From the boundary condition (i), D =0

and from the condition (ii), csin%a: 0 or sin%a: 0 or
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%a: n,wheren=123,....... .. (2.3.11)
where nisapositive integer. Thus
a= n% ..... (2.3.12)

The normal modes are thus the stationary sine waves given by
f(x):csinmx ..... (2.3.13)
a

and the wavelengths A are such that the length of the string is an integra
number of half waves. The complete solution for a norma mode in a stretched
string therefore follows from Egs. 2.3.6, 2.3.7, 2.3.11 and 2.3.13 and is given

by
y(x.t)= CsinnT:x.(Asinvat +Bcos2mvt) (2.3.14)

Eg. 2.3.14 is an expression for the amplitude of waves generated during the
normal modes of vibration in a stretched string. The same equation should
represent the amplitude of a de Broglie wave associated with a moving particle.
We are primarily concerned here, with the time independent or stationary
waves. Therefore, the equation for a standing sine wave of wavelength A is
given by

\|/=CsinEX=CSin%X ..... (2.3.15)
a

where ‘v’ is called the wave function with the amplitude of the wave varying
sinusoidally along x and C is the maximum amplitude. Double differentiation
of Eq. 2.3.15 with respect to x gives
d?y 4n® . 2n vals
=-——Csn—x=-——y .. 2.3.16

o a2 o Y (2:3.16)

The kinetic energy T of a moving particle of mass m and velocity ‘V' is
given by

T="mv?’=—o—- . (2.3.17)
2 2m
Following the de Broglie relation, T becomes
h2
= 2.3.18
— ( )
By using Eqg. 2.3.16 to eliminate A2 from Eq. 2.3.18 we get
2 2
7o M 1dv (2.3.19)

8n?m’y dx?
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If the particle movesin afield, whose potentia energy isV, then
h? 1d%

8n’m vy o

where E isthe total energy. Thisis Schrédinger's equation for a particle in one

dimension. Itisusualy written as

T=E-V=-

..... (2.3.20)

d?y N 8n°m
dx>  h?
In three dimensions this equation becomes:

(E-V)y=0 . (2.3.21)

2 2 2 2
d \u+d \y+d \|/+8nm
dx* dy? dz? h?

(E-V)y=0 .. (2.3.22)

2.4 Interpretation of Wave Function

The success of wave mechanics was well demonstrated by Erwin Schrddinger
before an acceptable interpretation of the wave function was known. Max
Born utilized the probability concepts of the uncertainty principle to give us the
presently accepted ideas of the wave function. According to Born, the wave
function of a particle is not an amplitude function in the common sense used
for the ordinary waves, but rather, it is a measure of the probability of a
mechanical event.

It might then be expected that a quantum interpretation that seems quite
reasonable for photon should aso hold for an electron. This leads to the
postulate that the square of the wave function of an electron is proportional to
the probability of finding the electron in a given volume element dx.dy.dz.
Such an interpretation is just a postulate and may or may not be legitimate.
One of the most significant indications of its validity lies in the treatment of
directional bonding in molecules. The positions, at which the density of the
bonding electrons is calculated to be the greatest, are where the bonded atoms
are found to be located. For example, in the molecule H,S, the hydrogen atoms
lie at an angle of about 92° with respect to each other, and according to simple
theoretical calculations the electron density is amaximum at an angle of 90°.

The symbol v is usualy used to denote the wave function of an electron,
and very often contains, ‘i’ the square root of ‘—1'. Since the probability that
an electron is in a given volume element must be a real quantity, the product
\|n|/* will always be real, where y can possibly be imaginary. Asan example
a + ib can be considered to be the complex quantity. Its complex conjugate
can be obtained by changing ‘i’ to ‘*-i’ giving a - ib. The product will then be
a® +b?, which isawaysareal quantity.
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Ex.If y=a+ib
vy =a—ib
The product yy’ =(a+ib)(a-ib)=a’+b?

If ¢ turnsout to be areal quantity initially, then v and its complex conjugate are
the same.

2.5 Normalized and Orthogonal Wave Functions

The sguare of the wave function is said to be proportional rather than equal to
the probability that the electron is in a given volume element dxdydz. This
arises from the fact that if the wave function, v is a solution to the wave

equation, multiplication by any constant such as A will give a new wave
function, A v , which is also a solution to the wave equation. This means that
it is not possible to say that y? is equal to the probability, but it is only
proportional to the probability that the electron is in the given volume element.
However, since multiplication by a constant is possible, it is usually convenient

to multiply the wave function by a constant that will make the square of the
resultant wave function equal to probability.

The probability of a certainty is defined as unity. Thus, if it isaknown fact
that the electron isin a given volume element, dxdydz, then we can say that the
probability that it isin this volume element isunity. Thisleadsto the relation

J wy dxdydz=1
If awave function satisfies thisrelation, it is said to be normalized. If the
electron is in the volume element, dxdydz then jww*dxdydz, will be equal to

the probability that the electron isin this volume element.

Very often v is not a normalized wave function. However, we know that
it is possible to multiply v by a constant, A, to give a new wave function
A v , which is aso a solution to the wave equation. The problem is to choose
the proper value of A to make the new wave function Ay normalized
function. In order for the new wave function, Ay, to be a normalized
function, it must meet the requirement

j AyAy dxdydz=1
Since A isaconstant, it can be removed from under the integral sign giving

A I wy dxdydz=1
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A is known as a normalizing constant and can be determined from the above
equation.

If v, and y, are two wave functions then these two wave functions are
orthogonal to each other in case

I W,y ,0xdydz =0

If vy, and vy, are also normalized wave functions then they are called
orthonormal wave functions.

2.6 Exercises
Q.1: Determine the value of A to make the wave function,

nzx
v = Asin—

a
a normalized wave function within the limitsx = 0 to a.
Solution:
Let A isthe normalization constant and v, the normalized wave function.

Then
n
= Asin &%
a

withinthe limits 0> a
The normalizing conditionis
IWN ‘//:\l dx=1
0
. Substituting the value of  in the above equation
[ Asin™ Asin " dx=1
o a a

T(Asnaj dx=1

0

2
_[Asm P ax=—=  put gnzg =175 ¢
a AZ 2
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Substituting
_Tl_ cos(zzn%) - %

0

a a 2n7x

J;%dx— l—""s( : A‘)dx:%

1 1Sl g

2Ty 2nzja | A
0

The normalized wave function is

\F. nax
Wy =4 ZSin—
a a



CHAPTER 3

The Postulates

3.1 TheFormulation of Quantum Mechanics

In its beginning, quantum mechanics was approached in two completely
different ways. Schrodinger, reasoning that electronic motions could be treated
as waves, developed wave mechanics. In this treatment, he took over the great
body of information from classical physics about wave motion and applied it to
electronic and molecular motions. The stationary states that an electron or
molecule might have were analogues to standing waves set up by applying
appropriate boundary conditions. Later on, a mathematical formalism becomes
associated with the Schrodinger method that related observable quantities to
certain mathematical operators. Werner Heisenberg, independently and slightly
earlier, had used the properties of matrices to get the same results as
Schrodinger. This approach to quantum mechanics looked very different, but a
little later Born and Jordan showed that they are equivalent. Later still, in the
more general treatments of quantum mechanics by P. A. M. Dirac and J. Von
Neumann, the Schrodinger and Heisenberg approaches were shown to be
specific cases of amore general theory.

Schrédinger Wave Equation

Bohr’s theory could not explain the Stark and Zeeman effect, and the spectra of
atoms more complex than alkali metals. With the formulation of wave particle
duality of matter by de Broglie in 1924, it was possible to treat particles such as
electrons as waves and a wave equation for such a purpose was sought. de
Broglie related the wavelength of awave associated with the linear momentum,

P = mv, of a particle by the celebrated equation A =D or with the energy
p

h
J2m(E-V) .

In 1927, Heisenberg added one more dimension to the problem through the
uncertainty principle. The uncertainty principle states that “it is impossible to
determine precisely and simultaneously both the position and momentum of an

33
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electron”. So the product of the uncertainties in linear momentum and in
position is at least of the order of Planck’s constant, i.e.., AXxAp~h,

Both these important relations are incorporated in the wave eguation
constructed by Schrédinger and known after his name. It is written as,

8n°m
V3 + 2 (E-V)y=0
2 2 2
where, V2:%+%+%
X

E = Total Energy, V = Potential Energy,

E-V =T = Kinetic Energy,

m = mass,

v = the wave function which takes care of the wave nature, of the particle
having mass ‘m’.

Such awave equation can easily be derived based on postulates of quantum
mechanics.

3.2 ThePostulates of Quantum M echanics

The postulates of any theory are a set of fundamental statements that are asked
to be believed and draw conclusions from them. These conclusions are then
tested by experiment and if they are confirmed, the belief in postulate is
justified. Before going into the postulates themselves, it is necessary to
understand the meaning of the terms“dynamical variables’ and “observables’.

Any property of a system of interest is called a dynamica variable. Thus
the position ‘r’, the energy ‘E’, the ‘X’ component of the linear momentum P,,
and so on, are dynamical variables even though in a given system some of
them may be constant. In general, any quantity of interest in classical
mechanics is a dynamical variable. An observable is any dynamica
variable that can be measured. In classical mechanics, al dynamical
variables are observables, but there are certain fundamental restrictions
placed upon simultaneously measurable quantities in quantum mechanics.
To measure the components of the momentum vector, which the particle has
at some point P, it is necessary to make a simultaneous measurement of the
position and momentum of the particle However, there exists an
uncertainty relation for such a simultaneous measurement of dynamical
variables on microscopic particles. With this background in mind, we
introduce the basic postulates of quantum theory.
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3.2.1 Postulatel
(8 Any state of dynamical system of ‘N’ particles is described as fully as
possible by afunction, (0,0, 0, eevenv. Ok, t) such that

(b) the quantity yy'dt is proportional to the probability of finding @,
between ¢, and g, +d,; O between G, and g, +dgy;.evveevennenne , Oy

qt
between g, and s, + Ugznat aspecifictime‘t'.

What this postulate says is that all the information about the properties of a
system is contained in a ‘ ' function which is a function only of the
coordinates of the ‘N’ particles and the time ‘t’. If the wave function includes
the time explicitly, it is called the time dependent wave function. If the
observable properties of a system do not change with time, the system is said to
be in a stationary state. A * ' function describing such a state is called a

stationary state wave function, and the time dependence of such a wave
function can be separated out.

The second part of the postulate gives a physical interpretation of the * v’

function. This interpretation is the easiest to visualize for a system containing a
single particle constrained to move in one dimension. The quantity dx is then
the probability of finding the particle between x and x + dx at a given time ‘t'.
A 'y’ function may be complex; hence the probability density is a product of

v with its complex conjugate.

In order for these functions to be in accord with physical redlity, they are
subject to certain restrictions. These restrictions are the following:

3.2.2 Well Behaved Wave Function

Even in the weird world of guantum mechanics, the condition that a particle
must exist somewhere, restricts the class of physically admissible functions to
those that are normalizable. But, normalizability is the only mathematical
condition afunction should satisfy, if it is to represent a quantum state.

1. The first of these restrictions follows from the Born interpretation of the
state function, as a position probability amplitude. At any time the value of
the probability of finding the particle in an infinitesimal region of space
must be unique. This implies that the state function must assume only one
value at each timei.e., it must be*Sngle Valued'.

y(x,0)
y(x,0)

OK Not OK
(a) Single valued
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< B
& &
> = _’\
OK Not OK
(b) Continuous
B B
SN =

OK Not OK

(c) Smoothly varying

Additional restrictions follow from the equation of motion of quantum
mechanics.

Consider the first term, the second derivative with respect to x. We cannot
even define this derivative unless the first derivative of the function in question
is continuous. Mathematicians call a function, whose first derivative is
everywhere continuous, a smoothly varying function. Therefore, the wave
function should be continuously varying and should not have any kinks.

Another condition also follows from the presence of second derivative in
the Schrodinger equation. We define the second derivative in terms of the first
derivative, and we can define the first derivative, only if, the function being
differentiated, is itself continuous. Incidentally, the Born interpretation
provides another incentive to require that ‘ v ’ be continuous: if it weren't, then
at a point of discontinuity, the value of its modulus squared would not be
unique, in which case we cannot meaningfully interpret this value as the
position probability density.

Thefitness of the wave function

State functions are usually finite at all points. However, do not misconstrue this
observation as arequirement. A state function can befinite at a point only if the
mathematical nature of this singularity is such that the normalization integral
formed from the function is finite.

¢ The function should be continuous and smooth. This implies that its first
derivative will be continuous as well. If the first derivative is not
continuous, the second derivative cannot be defined.

¢ The function should be single valued.
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¢ Thefunction should have an integrable square. This requirement can be
interpreted, to mean that the function is everywhere finite. It al'so means that
‘v willgotozeroat + o .

These restrictions all arise from the postulate that yy dt represents a

probability. The restriction of integrable squares is ssimply the requirement that
the probability of finding the system in all space must be finite. A specia case
of this requirement is when the integral

T\y\y*drzl

When this is true, the function is said to be normalized. The physica
meaning of this, for a single particle system is that, the probability of finding
the particle in some region in space must be ‘1’ i.e, the probability of a
certainty is defined as unity.

3.2.3 Postulatell

For every observable property of a system, there exists a linear Hermitian
Operator.

Let usfirst define the four new terms found here.

1. Observables. These are properties of a system that can be
experimentally determined. Thus position, x; velocity, v; linear
momentum, p; angular momentum, L; potential energy, V; kinetic
energy, T; total energy, E are some observables.

2. Operator: An operator is a mathematical symbol, which tells usto carry
out an operation. It is represented by a tent or circumflex on its sign
Eg. O. Thus in the expression V2, the J[ isan operator telling one to
take the square root of what follows, in this case 2.

3. Linear operator: In quantum mechanics, luckily the operators used are

of limited type. They are linear only. A linear operator obeys the
following rule.

O(ax® +bx+¢) = O(ax* ) + O(bx) + O(c)
Thus, a linear operator operates on each quantity within the bracket
separately. E.g. Operator of integration, differentiation etc.
Here is an operator telling one to take the derivative with respect to ‘X

of what follows, that is di The algebra of operators follows definite
X

mathematical procedures.
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Thusif, §=(§J mdé:(ﬁJ
OX v ),

~no oo ol
PQ‘[&(ELL‘M

The operator given above, it turns out that P and Q do commute.

2
Since 8_

oxdy  oyox

but, thisin general will not be the case.

Thatis, PQ=Q P
82

The quantity ISCA) - (Ag IAD is the commutator of IA3 and (A) It is often
symbolized as {P,Q] If IAD and 6 commute, then the vaue of the

commutator is zero. Conversely, if the value of the commutator is zero, the

operators P and Q commute.

If an operator P is complex, the complex conjugate, P is formed by
replacing ‘i’ by ‘-i’, wherever it occurs.
LA i /\* d
Thus, if P:ﬂ and P __9
dx dx

In guantum mechanics, only linear operators are used. An operator is linear
if itistrue that,

IAD(f+g):IA3f+IADg
and E’af =aFA>f
where ‘@ is a constant. One may easily verify that di is alinear operator,
X

whereas \/— is not.

Hermitian operator

A Hermitian operator makes the calculation of an observable real. A Hermitian
operator is defined by the relation
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+00 N +00 N *
[ v ay,de= I\v;[a\vi) dr

where y; and v ; areany two wave functions which satisfy the conditions for

acceptability stated above and a isan operator of interest.

At this point, it is convenient to introduce a new notation for integrals of the
type used above. This notation represents the integration over all space by
parentheses or angular bracket.

Thus,

TWT&\vjdr=<wi \&\\vj>

Tw?wjdr=<wi\\v;>

. oy d
Lol LV
WM Ty

—00

and TW:Wde:<Wi‘Wj>

—00

The condition for Hermitian operator in this notation becomes

<\Vi ‘&|\v,->=<\v,- EIy
Coming back to postulate I, we find that every observable has its linear
Hermitian operator. Since we are interested in observables, which are real, the

operator, O hasto be Hermitian. The guestion naturally arises, as to how; one
gets the operators for a given observable. First, the classical expression for the
observable of interest is written down in terms of coordinates, momenta and
time. Then classical expression for the operator is changed into the quantum
mechanical form of the operator. This can be done as per the following.

These operators have been derived for many observables.

1. The quantum mechanical form of the operator for Cartesian
Coordinates x, y and z are the same as those for the classical
representation.
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2. The potentia energy ‘V’' and time ‘t’ are unchanged in both the
systems. The linear momentum, B, =mv, in classica mechanics, is

replaced by the quantum mechanical operator,

203

2n
for asingle particle moving along x-axis.
Similarly fory and z

B, =" and P, = "h[ j
2n 2n\ 0z
Similarly for angular momentum, the classical form is replaced by the
guantum mechanical operator.

—ih( o 0
LX = sz —ZPy :E(y5—25j

and L, =27R —XP, :lh(zi— xgj

2n\ ox 0z
L, =xP, - yP, =%h[x%— XGEJ
n X

The operator for kinetic energy, T can be constructed from the relations
from the classical mechanics namely,

1, p
2% 2m
The classical expression for the kinetic energy of a particle in Cartesian
coordinatesis,

1
=%(pf+ py + pf)
Let us now construct the quantum mechanical operator for Kinetic

Energy, T
The momentum operator I3 = _lh(a j
X

Substituting this,

. (—'ha) ﬂil(ﬂzf
2m| | 2n ox 21 oy 2n 0z
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~ h* (0* o° &°
T= et et
8r°m| ox~ oy° oz

Hence, the kinetic energy operator is,
h2
87°m
Perhaps the most important operator that will concern us is the operator

T= v?2

connected with the total energy, E of a system. The classica
expression for the total energy is Hamiltonian function, and the
corresponding operator is called the Hamiltonian. The expression for
the Hamiltonian for asingle particle systemiis,

Ry
T has already been derived and vV is only afunction of coordinates, q,
that according to our prescription, remain the same.
Therefore,

h2
8n°m

H=-—1_v?+V(q)

3.2.4 Postulatelll

Eigenfunctions and Eigenvalues: When an operator a operates on a wave
function, y, such that the resultant is a constant times, y. That is,

& w = Constant X
&w:mx
where ‘m’ isanumber.

Such a wave function is called the eigenfunction of the operator and the
constant ‘n is called the eigenvalue of the same operator.

This is one of the postulates that bridges the gap between the mathematical
formalism of quantum mechanics, and the experimental measurements in the
laboratory.

Experiments are the only means of knowledge at our disposal.
Therest ispoetry and imagination.  Max Planck

The above equation is basic to a large number of calculations in quantum
mechanics as this gives us a method of obtaining the observables. This, if we
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operate upon awave function with the operator for linear momentum, B, ; if the
result is the number times the same wave function, then this number (constant)

isthe linear momentum P,
Pxy =By
Suppose one is interested in calculating the alowed energies in a molecular

or atomic system, one has to use the Hamiltonian operator, H the total energy
operator. Let the state of the system is described by a function, w, which is an
eigenfunction of the operator corresponding to the total energy, the
Hamiltonian.

Then the eigenvalue equation for thisis,

If| vy =Ey
A h? )
But H :_8n2mv +V(q)
Substituting this,
h*
(_STEZmV +V]\|} =Ey

Rearranging this,

{— ’ vzwjz(E—v)w

8n°m
2
V2 =—8’;—Zm+(E—v)y/
or
2
ie. V2W+87;2m(E—V)\u:O

This is the Schrédinger wave equation for a single particle in a stationary
state.

If one is interested in calculating other properties of the system, such as the
value of the angular momentum about the ‘Z’ axis, the procedure is the same,
but the appropriate operator must be used in deriving the eigenvalue equation.

3.2.5 Postulate IV

Given an operator o and aset of identical systems characterized by afunction,
vy that is not an eigenfunction of a series of measurements of the property
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corresponding to a on different members of the set will not give the same
result. Rather, a distribution of results will be obtained, the average of which
will be,

R yayd
Lol LV
+00

—00

This is called the “mean value” theorem that tells what the experimental
result will be when a system is not described by an eigenfunction of the
operator involved. The symbol (&) is the average or expectation value of the

quantity associated with & . The average value in quantum mechanics should
not be confused with a time average in classical mechanics. Rather, it is the
number average of a large number of measurements of the property

corresponding to a. Obviously, if y, is an eigenfunction of a, the average
value will be the same as the eigenvalue.

Much modern research in quantum chemistry and spectroscopy is concerned
with time dependent phenomena. In this case, the problem is to know how the
state function y(q,t) developsin time. We therefore introduce postulate V.

3.2.6 PostulateV

The evaluation of astate vector, y (q,t) intime, isgiven by the relation,
thov _4
2 ot

where H is the Hamiltonian operator for the system. The above equation is
called the time dependent Schrédinger equation.

3.3 Exercises

1. Show that the eigenvalues of a Hermitian operator arereal
Let R be aHermitian operator with eigenvalue ‘r’.

Then Ry =ry (331
Taking the complex conjugate of both sides, we have
Ry =r'y’ (3.3.2)

Multiplying Eq.3.3.1 by " and Eq.3.3.2 by y and integrating, yields

—+o0 ~ +00 +00
J. v Rydt= I v rydt=r I v ydt
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and Jj:wli*w*dr:f:wr*w*dr:r*.[j:ww*dt
Since R is Hermitian
rjj:w*wdrz r*f:ww*dr
Therefore, r=r", i.e. eigenvalues of Hermitian operator are real.

Show that the eigenfunctions of any Hermitian operator are orthogonal

If RisaHermitian operator then the corresponding eigenvalues for y; and
v, may be determined as

Ry, = Ly, (3.3.3)
and Ry, = Ly, (3.3.4)
Multiplying (3.3.3) by v, and integrating

[wiRy dr=r,[yyy,de

Then applying the definition of a Hermitian operator and the fact that the
eigenvalues be real we have

[wiRydt=[y,Ryidr = [y yhde
=1; [wayidr=r, [yoysde
That is
rljw;wldr = rzjwl\v*zdr or (r,— rz)jw*z\yldr =0
If n#r, then [yoy,dr=0.
Hence, the eigenfunctions of the Hermitian operator are real.

Calculatethelinear momentum in ‘X’ direction for y = Ae™

Find out whether *v’ is an eigenfunction for the momentum operator, IADX or
sguare of the momentum operator, 'sz .

If the operator operates on ‘' and we get the constant times the same wave
function, then the wave function is the eigenfunction of the operator.
A ih d
P=-——— and y=Ae™
X 271 dx v
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. ih d ih d ih ih
Py=- =- Ae™ = ——( Ae™ )= ——
N ax Y T 2n dx 2< ) 2

Hence, ‘v’ is an eigenfunction of the operator, IADX. The eigenvalue is

—gwhich isthe linear momentum.

Let ustry for P2

. 2 2 2
B,= -1 9 andhence B2 = hz d —
2 dx dx
2 2 42
h® d
P Ae"
V= 4n® dx® ( )

5 h? h?
R =—Z(A )=-—v

So stz\v = sz\ll
2

. . . - . . —h
Hence, y isan eigenfunction of the operator P?. The eigenvaueis 2

. Show that the linear momentum operator isHermitian
An operator is defined to be Hermitian, if it satisfies the equation

o o
I W;R\det = f WmR*W;dT

Show that P _—ﬂi is Hermitian.
21 OX
i ih 0 ih 0. «
Jvnlo 2 mdx= J V(=2 =) Wk

To show this, integrate the LHS of the equation by parts that resultsin RHS.

ma ih, « . ,ih'T 0 .
j Wl WX = (- wwn) + () j Wi WX

-T S jwm( ) vk

This proof of course follows for functions which vanish at the limits.
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5.

Definethe Unitary Operator
A unitary operator is also alinear operator and defined as

[wil tyode=[y,Uyide (45.1)

where the operator U™ isthe inverse of U , such that U~ =UU* where
y; and y, are any two eigenfunctions of U . The asterisk stands for the
complex conjugate quantity.

Consider the equation

Uy =ry (4.5.2)
where A isthe eigenvalue. Then

Uy =y (45.3)
or Uy=y=2U0""y (45.4)

Inverse operator U™ has the same eigenfunction as U but with reci procal
eigenvalue.

Multiplying Eq.4.5.4 with " and integrating over all space one gets

[w'Utydr=2"y ydr (45.5)
Taking the complex conjugate of Eq.4.5.2

Gy =y’
Then  [yU'y'dr=2"[y ydr (4.5.6)

Following the definition of unitary operator, the RHS of Egs. 4.5.5 and 4.5.6
are equal so that

At=0" or Al =1

Thus eigenvalues of an unitary operator have modulus one.
Find out whether the following functions are well behaved or not.
1. y=X%x, x>0

v isnot awell behaved function.

v does not remain constant as x — w .
2. y=x°

v isnot awell behaved function.

v does not remain constant as |x| - « .
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. =COSX
vy isawell behaved function

L y= e

v isnot awell behaved function

Thefirst derivative is not continuous at x = 0.
MRVES e

vy isawell behaved function

.y =sin|x|

v isnot awell-behaved function

Thefirst derivative is not continuous at x = 0.



CHAPTER 4

Applications of Schrodinger Equation-1

(Simple systems with constant potential energy)

4.1 Particlein a One-dimensional Box

As an application of the postulates of quantum mechanics, we now discuss a
simple problem that of a particle constrained to move in a one dimensional box.
This problem is an excellent one because it illustrates a number of quantum
mechanical principles, and at the same time shows how discrete energy levels
inevitably arise, whenever asmall particleis confined to aregion in space.

For the sake of simplicity, a one-dimensional box will be considered. In
three-dimensional box, the wave function is represented by v, , and in one-
dimensional box by v, . Since the particle is to be some sort of a realistic

particle, such as an electron, our wave function must be a function that does
things a real particle will do. Such a function is known as a well behaved
function. This requires that it is everywhere continuous, smooth, finite, and
single valued.

Let a particle be placed in a one-dimensional box shown below.

Particle in a one-dimensional box
To solve a problem in wave mechanics, it is necessary to solve the wave
equation for the particular problem at hand.
8n’m
2
\Y nyz +T(E_V)wxyz =0
For the case of one-dimensional system, the wave equation reduces to
d%y, 8r’m
2 + 2
dx h

(E-V)y, =0

48
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For the case of one-dimensional system, the wave equation reduces to
d?y, . 8n°m

dx*  h?
It was assumed that while the particle remained in the box, it had zero

potential energy. Thus, as long as the particle remains in the box, its potential
energy will be zero and the wave equation will reduce further to,

(E-V)y, =0

d?y, N 8n°m

dx? h?
This can be simplified to,
d2

Ey,=0

o + az\px =0

by letting

d?y
dx?
This is a second order differential equation whose solutions are, functions,

that when differentiated twice, will give the same functions back, multiplied by
a constant. The solution to the above equation was shown to be,

vy, = Asinax+ Bcosax

X _ 2
=0 Wy

The above function is a solution to the wave equation for the particle in a
one-dimensional box. (A second order differential equation will in genera
contain two arbitrary constants).

As such, the general solution to the differential equation gives very little
information. However, we know certain restrictions that apply to this particular
system. These are known as boundary conditions. For instance, since the
particle must not exist outside the box, it is necessary for the wave function,
v, to go to zero at the walls of the box. This means that for our one-

dimensional box shown in the above figure, v, = 0 at the point x = 0. Thus we
find out at the point x =0,
Bcosa (0)=0

In order for the equality to hold good, it is obvious that the constant, B, must
equal to zero.

As aresult of this boundary condition, the wave function reduces to,
vy, = Asinax
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At the other wall it is seen that the wave function must again go to zero, and
therefore at the point X = a, it is again necessary that y, = 0. This condition
offers two possible solutions. For the point x = a, the wave function becomes,

Asnox=0

The left side of the equation may be forced to equal to zero by letting A

equal to zero. This would maintain the identity, but it would accomplish

nothing towards a useful solution. Such a solution is a trivial solution.
However, there is another way in which the identity may be maintained. The

. . : . . n
sine of an angleis zero at any integral multiple of ©. Thus if oc=;7E , where ‘n’

is an integer, the identity can till be satisfied. As a result of applying these
boundary conditions, the wave equation for the particle now becomes,
nm

v, = Asin—x
a

The only term yet to be determined is the coefficient, A. This can be
determined by normalizing the wave function. Since it is known that the
particle must be in the box, the probability that it is in the box is unity.
Knowing that this probability is represented by the square of the wave function,
we can say that,

a *
[ wawdx=1
But \yX:AsinEx and o =",
a a
I:Azénz axdx=1

A= |2
a

Therefore, the normalized wave function for the particle in a one-dimensional

box is,
2 ..nm
v, = f—sm—x
a a

It is apparent that the wave function does not have to be determined in order
to find the energy of the particle,

2 87t2m

h2E
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2_2
n
But o= oroczzngc
a a
87°m E_ n’n?
h? a’
This can be solved for energy, giving,
21,2
E - n h2
8ma

These results are represented diagrammatically Fig.4.1.1

=N\ /)
8ma2 \i/
on’ :

:

g

2
8ma

\/ W
an’ /\ ! ! !
8ma’ ; ] : ;
2 L
$ma’ i E E ;
0 a 0 a
X X

Fig. 4.1.1 Schematic drawing of E , v, and \yﬁ for the case of aparticlemovingin a

one-dimensional box. Note that v, changes sign at each node while \yﬁ aways
remains positive.

411 Salient Instructive Features of the Problem

1

For the same value of the quantum number ‘n’, the energy is inversely
proportional to the mass of the particle and square of the length of the box.
Thus, as the particle becomes heavier and the box larger, the energy levels
become more closely spaced. It is only when the quantity, m& is of the
same order as h?, that quantized energy levels become important in
experimental measurements. When dealing with dimensions of 1 g and 1
cm, the energy levels become so closely spaced that they seem to us, to be
continuous. The quantum mechanical formula, therefore, gives the classical
result for systems with dimensions such that, ma&? >> h? This is an
illustration of the “correspondence principle’ that states that the quantum
mechanical result must become identical with the classical one in the limit
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where the quantum numbers describing the system become very large,
where, n?h? is comparable to ‘ma?, then even the macro particles need
guantum mechanical treatment.

The second feature of the solutions to the particle in a box problem that
should be pointed out is the relationship between the energy of a state and
the number of nodes in the wave function. A node is a point where the wave
function becomes zero. Neglecting the nodes at the end of the box, in the
state n = 2 there is one node, in n = 3, two nodes and in state n, n-1 nodes. It
is a general property of the wave functions that the greater the number of
nodes in a wave function, the higher the energy of the corresponding state.
This is shown in the above figure and is reasonable when considered along
with the de Broglie relationship. The greater the number of nodes along the
length of the box, the shorter the wavelength must be. According to the de

Broglie relation k:%, if the wavelength A becomes shorter, the

momentum and hence the kinetic energy of the particle, must be greater.

One of the conditions of Bohr’s postulates in deciding the size of an orbit is
that the angular momentum of an electron circulating in that orbit should be
an integral multiple of 7. This can be explained on the basis of associating
wave and particle properties to the electron. As per the postulate the angular
momentum of the electron, mvr = n7 . Because the electron exhibits dual

: . h
properties, the linear momentum, ‘mv’ can be equated to T

h . .
.. mvr =n— where, nisan integer
T

Er = nL and hence 2nr =ni
A 2n

This clearly shows that unless the circumference of the orbit is an integral
multiple of the wavelength of the wave associated with the electron, the
wave destroys itself, and the electron cannot have existence. When this
condition is satisfied, it results in a stationary wave confining the electron to
afixed orbit, until it gains or loses energy to go to a higher or lower orbit.

Another feature is the explanation for the stability of the atom and the
energy of confinement, which can be done more elegantly based on the
above observations.

The stability of an atom can be explained based on energy of confinement.
Asit is seen above, as the wavelength decreases with decrease in the size of
the orbit, the energy of the electron increases. Thus, it opposes the attractive
force due to the opposite charges of the nucleus and the electron. Therefore,
an optimum condition is reached, at which, the attractive forces just
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balances the opposing forces, due to confinement energy and that state of
the electron corresponds to its presence in an orbit.

This gives a better explanation for the observation why an accelerating
charge like an electron while moving round the nucleus does not radiate
energy and fall into the nucleus, rather than simply saying that aslong as the
electron isin an orbit it neither gains or loses energy.

. An important feature of the solutions to the particle is a box problem is
illustrated by integral,

X . 21X
(wilw,)= J' smn—smidx
To evaluate the integral we make the substitution,
X
a

then  (yy|w,)= Ismystydy

=0
Whenever an integral of the type <\|/i |\|/ j> equals to zero, then y; and v
are said to be orthogonal. Thus, the wave functions v, and y, are
orthogonal. In fact, it can be shown that the integrals of the type <\Vi |\|/ j> ,
wherei = j, are equal to zero for the particle in a box.

The general theorem is that “the eigenfunctions of a Hermitian operator
belonging to different eigenvalues of a Hermitian operator are orthogonal”.
§;=1 fori=]j

So we write, <\Vi|\llj> =9y

;=0 fori =0
Where §; iscalled the Kronecker delta

. We next inquire about some other properties of the particle in a box.
Suppose we are interested in measuring the component of momentum in the
‘x" direction for a set of identical systems in which the particle is known to
bein the lowest energy state.
The operator for the momentumiis, I5X :lhi

2 dx
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It is clear that y, is not an eigenfunction of |5X. Therefore, according to

postulate |V, a series of measurements of P, will not yield the same result.
We must use the average value theorem to calculate the expectation value
of P,. This gives,

a
<|:3X>_M (4.1)

~ ea
_[O\Ifl-‘lfldx
a| [2 . na[—ih]d\F. X
J —sin—| — |—,[—sin— |dx
ol Va al\2r Jdx\a a

2
j( Zsinnxj i
olya a

(B)-=

Accordingly, the average of alarge number of measurements of < |3X> onthe
set of identical systemsis zero.

Suppose one now considers the square of the momentum in the ‘X
direction. The appropriate operator is,

52 _ [ﬂgf
X 2n dx )

Applying the operator we obtain,
R —ihd (.. mx
Py,=| ——| | Asin—=
G a) (4903

5 h? (, . mx) K
PXZWl:E[AS”;j=EW1 (42)

A constant times the wave function is generated and hence the constant is
the eigenvalue for the operator PX2 . Hence the square of the momentum is,

h2

2
PX —R=2mE
P, =+v2mE
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The results calculated in equations (4.1) and (4.2) present interesting
dilemma. The result of equation (4.1) indicates that the average value of P,

is zero. The result of equation (4.2) indicates that the value of B, must be

either ++/2mE .
The apparent contradiction is resolved by considering the meaning of
postulates 111 and V. Since a measurement of P? always gives the result

2mE, the momentum P, must always be either +./2mE or —/2mE. A

single measurement of P, will give one of these values. What the mean
value postulate states is that, if one makes a large number of measurements

of P, we end up with P, =+v2mE as often as P, =—2mE and the
average value of Py is zero. The important point is that we never know in
advance whether an experimental result will give plus or minus ~/2mE . It
can therefore be said that an uncertainty exists in our knowledge of the
momentum, and the magnitude of this uncertainty is equal to 2v/2mE .

In asimilar manner, we can argue that if we know that the particleisin state
v, , the only thing that can be said about the position of the particle isthat it
is somewhere in the box. That is, our uncertainty in the ‘x’ coordinate of the
particle in the length of the box, a. It is of interest to calculate the product of
our uncertainties in the position and momentum of a particle in a box. This
is,

AXAp > ax 2+/2mE

h2
AXAPp = ax2,|—
P \ 422

AXAp>h oringenera nx h.

This will have its smallest value when n = 1, and thus we obtain the result
that AxAp~h. Thisis a form of the Heisenberg's uncertainty principle,
which states that the simultaneous measurement of both the position and
momentum of a particle cannot be made to an accuracy greater than
Planck’s constant ‘h’.

4.1.2 Zero Point Energy

The above conclusion is aresult of the zero point energy.
. . NmX
Consider vy, = Asn—=
a
In this equation although the value zero for ‘n’ is permitted, it is not
acceptable because y becomes zero, as it contradicts the assumption that an
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electron is assumed to be aways present inside the box. Therefore, the lowest
kinetic energy, called the zero point energy, E, of an electronin abox is given

by [Substitute n = 1],

This shows that the electron inside the box is not at rest even at 0 K.
Therefore, the position of the electron cannot be precisely known. Since only
the mean value of the electron is known to be zero and the exact energy is not
precisely known, the occurrence of zero point energy is therefore in accordance
with the Heisenberg’ s uncertainty principle.

41.3 FreeParticle

If the walls of the box are removed and the electron is free to move without any
restriction in afield whose potential energy may be assumed to be zero then the
Schrodinger’ s wave equation and its solutions are given by,

d?y, 8r’m
o e 0
2
and vy, = Asinox+ Bcosax, where a2 = Srme
X h2

The arbitrary constants A, B and a.? can now have any vaue. Then the
energy,

2

E = > isnot quantized.
8ma

Thus, when an electron is bound in a system, it has quantized energy levels,
and it leads to discrete spectrum. On the other hand, a free particle (electron)
moving without any restriction has the continuous energy spectrum. This
qualitatively explains the occurrence of continuum in the atomic or molecular
spectra. But, on ionization, an electron lost by an atom or molecule is free to

move without any restriction.

4.2 TheParticlein a Three Dimensional Box

For the particle in athree dimensional box, the wave function will be afunction
of all three space coordinates. The wave equation for such a particle moving in
aregion of zero potential energy is,

8n°m

Vz\jlxyz +TE\|IXYZ =0
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This is a partia differential equation containing three variables, and the
standard approach to the solution of such an equation, is about the same, as that
used to separate the time and space parts of the time dependent wave equation.

First, it is assumed that the total wave function can be represented as a
product of wave functions. For a particle in three-dimensional box, it is then
assumed that,

Wz = %Yy Z,
where X, represents a wave function that depends on the variable ‘x’ only, y,
represents a wave function that depends on the variable on 'y’ only and so on.

Therefore, we obtain

0° 207 87°m
[y'i‘y'f'? XnyZZ +? EXnyZZ = 0

2 2
Since the operator % has no effect on 'y’ and ‘Z' and the operator 5—2 has
X Yy

no effect on ‘x’ and ‘'z’ etc., the wave equation after division by x,y,z, may be
rearranged to give,
1%, 10%, 10°2, 8r°m
X oy, oy z, 07 h?

E

It is to be noted that each term on the left side is a function of one variable
2

and the sum of these terms is the constant, _87:]_2m E. If we keep the variables

'y’ and ‘Z° constant and allow ‘X’ to vary, it is seen that the sum of the three
termsis still the same constant. Such a situation, can only exigt, if the term,
1.0%,
X, OX*
isindependent of ‘x’, and therefore itself is a constant. The same argument will
apply equally well to the 'y’ and ‘Z' terms. Thus, each variable is seen to be

independent of the other variables, and we have succeeded in separating the
variables.

Now, if the constants are represented by —a.2 for ‘X’ term, —onf, for the 'y’

term and —a2 for the ‘Z term, the following three differential equations are
obtained.
1d%, 2

=—a
X, dx? )
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1d%,
N - y

y, dy’

2
ol + ocf, +ol= 87}:_2m E
Thus, each degree of freedom can make its own contribution, such that,

2
2:87'C mE

h> *

Now that the variables have been separated, it is necessary to solve each of
the equations. In this particular problem, all three of the resulting equations are
of the same form. Thus, the solution of one is sufficient to demonstrate the
method. If the equation in ‘X’ is used as an example, it is seen that on
rearrangement, it is of the exact form as the wave equation we have just solved
for the one-dimensional box.

d?x,

dx?
Then the normalized solution for the above equation is,
\F n
X, =,|—sin X
a a

and an anal ogous solution would be obtained for the‘y’ and ‘'z’ equations.

+aix, =0

nm n,m

. nyTC .
X.sn——y.sn—*%-z
c

Since, = isin

w Y T a

it is significant to note that there is a quantum number for each degree of
freedom. This same idea was emphasized in the Sommerfeld's quantization of

hydrogen atom, but here the quantization is a natural consequence of the
mathematics.

. . n
Asinthe previouscase o = i , and here
X
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Hence,

But E=E,+E,+E,=

=)

N

jn}
N[<N

>
NN

N

c

and

8m

2 2 2
h“ [ ng ny
a® b?

_+_

2
r-12
)
C

Here, again, it is seen that the energy of the particle is quantized.

(This might lead one to wonder at the success of the classical approach to
the mechanics of atoms and molecules as found in the kinetic theory of gases.
Actually, no conflict exists between the two approaches. If quantum numbers
and containers of reasonable size are chosen, it is found that the separation of
energy levels is so small that the energy distribution will essentially be
continuous.)

Degener acy

For a complete description of the energy states of a particle in a three
dimensional box, we see that it is necessary to consider three quantum
numbers. This, of course, is what one should expect. The idea of quantum
numbers in atomic spectra, for instance, came from an attempt to understand
the positions of the spectral lines and the energies they represent. The
observation of new lines necessarily led to a new quantum number, which
could be associated with the corresponding new energy levels. Thus, we are
prone to conclude that each quantum number represents a contribution to the
energy of the system. However, it is frequently found that for various reasons, a
particular set of quantum numbers may not be unique in defining the energy of
aparticle.

To consider again, ifa=b=c,
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2 2 2
n; +n;+n
E:Ex+Ey+Ez:M 2

8ma?
where, n, or n,orn=12 3 4. The occurrence of three quantum

numbers n,, n_and n, is characteristic of a three-dimensional problem in wave

mechanics. The zero point energy is three times that observed in the one-
dimensional box, there being a part associated with each of the three
coordinates.

Since each state is characterized by three quantum numbers, it is possible to
construct severa excited states of the same energy. For example, there are three
independent states having the quantum numbers (2, 1, 1), (1, 2, 1) and (1, 1, 2)

2

8ma®’

state is threefold degenerate or triply degenerate. In the Fig. 4.2.1 below, is
shown a few energy levels illustrating the degeneracy and the zero point
energy.

for the same energy. All these three states have the same energy Such a

A
e 0200
(2,3,1), (3,1,2), 3,2,1)
H 3 (2,2.2)
i 8ma
bo1n’
: | (3,1,1), (1.,3.1), (1,1,3)
i 2
v 8ma
.
E > ] (2,2,1), (2,1,2), (1,2,2)
5 8ma
6h’
! 5 ] (2,1,1), (1,1,2), (1,2,1)
' 8ma E
il 5 !
h :
7 A (L.1,1)
8ma !
H Zero point energy
| v R

Fig. 4.2.1 Degeneracy of various states.



Chapter 4 | Applications of Schrédinger Equation-1 61

Note.
Although the value of zero for ‘n’ is permitted for a wave function,

. nmx L , . -
Y, = Dsin—= in the case of a particle in a one dimensional box, it is not
a

acceptable because then ,, becomes zero. However, the electron is assumed

always present in the box. Therefore, the lowest K.E. called the zero point
energy, of an electron in aone dimensional box is given by,

h2
 8ma?

This shows that the electron inside the box is not at rest at 0 K. Therefore,
the position of the electron is not precisely known.

EZPE

In the case of athree dimensional box the zero point energy is three timesto
2

that of

P~ as there being, a part associated with each of the three
ma

coordinates.

The wave functions of the three members of the above triply degenerate
levels are different.

Consider a dlight distortion of the cube by ‘da aong the ‘x’ axis. For the
state (2, 1, 1) the energy of the electron in the undistorted cube may be given
%,

E=E+E +E,
4n? h? h? 6h?
- 2t 2t 2= 2
8ma”~ 8ma”® 8ma”~ 8ma

The new energy on distortion along the ‘x’ axisis,
E+d: =E,+dE,+E +E,
4h?  h? h? h? 6h?  h?

= - da+ + = - da
8ma’? ma’ 8ma® 8ma’ 8ma’ ma’

whereas the new energy for the other two states, i.e.(1,2,1) and (1,1,2) is,

6h? h?

8ma’? 4ma®

E+dc = da

Thus, the initial threefold degenerate levels are split on distortion of the
cube into a non-degenerate level and doubly degenerate levels.

It is a common phenomenon in chemistry that the electronic degeneracy is
removed on a dlight distortion of a system. This is analogous to the “Jahn-
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Teller effect” which states that, “in a nonlinear molecule, where electronic
degeneracy occurs, there always exists a vibrational mode, which can remove
the degeneracy”. The molecule can, therefore, spontaneously distort from its
most symmetric configuration, until it assumes a configuration of lower
symmetry and lower energy.

4.3 The Structureof Matter

The structure of matter can be analyzed according to increasingly more
fundamental levels of organization. Table 4.3.1 shows this in an elementary
way. A piece of metal, for example, is made of atoms, which are kept together
by a chemical force that does not contain very high energies. Using electron
volts as a measure of energy, we would need only afew €V to separate an atom
from the piece of metal. If we look at one of the atoms, we see that it consists
of a nucleus surrounded by the electric force, which is somewhat stronger than
the chemical forces. From ten to few hundred electron volts are needed to tear a
few electrons from an atom. The size of an atom is about an angstrom.

Table 4.3.1: Fundamenta Structural Levels of Matter

Constituent Bonding Relevant

particles force energies, eV

Matter Atoms Chemical 1

forces

Atom Electrons, Electric force 10-1000
Nucleus

Nucleus Protons, Nuclear force 10°
Neutrons

Nucleon Quarks Strong force 10°

Now let us look at the nucleus, which is considerably smaller, of the order
of a pico-meter. The nucleus consists of protons and neutrons kept together by
the nuclear force; a force that is much larger than the chemical and electric
forces. Energiesin the range of about 10 MeV are required to tear a proton or a
neutron from a nucleus.

We know today that protons and neutrons, the so-called nucleons, are
themselves not elementary but probably consist of three elementary particles
that carry the unhappy name ‘quark’. One wishes, a better sounding name had
been chosen, such as ‘parton’ for example, but ‘quark’ has been taken. The
forces that keep the quarks within the nucleon are again much stronger. The
size of the nucleon is about 10® cm, and the effects of the forces involve
energies of the order of one billion eV(GeV). The nuclear force that binds
protons and neutrons in the nucleus is understood today because of the ‘ strong
force', which keeps quarks together.
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This analysis brings us to the two related concepts that play an important
role in many theories of the history of the universe: the ‘ quantum ladder’ and
the ‘conditional elementarity’ of particles. We may distinguish three different
realmsin nature, three levels on the quantum ladder as shown in Table 4.3.2.

Table 4.3.2: The quantum ladder

Subj ect Energy range, eV | Main location
Atomic and molecular realm
. ; ) Earth and
C_hermstry, optics, materidls, up to 1000 planets of other
biology, complexity, <
20 ™ ) ars
organization, order-disorder
Nuclear realm
Radio activity, 5 7 ;
Nuclear reactions, 10°-10 Interior of stars
fission, fusion
Sub nuclear realm Big-ban
Antimatter, mesons, o g 9
10°- ? neutron stars,
heavy electrons, short
. o unknown
lived entities, quarks

The first is the atomic realm, which includes the world of atoms, their
interactions, and the structures that are formed by them, such as molecules,
liquids and solids, gases and plasmas. This realm includes all phenomena of
atomic physics, chemistry, and in a certain sense, biology. The energy changes
taking place in this realm are a few eV. If these exchanges are below 1 eV,
such as in the collisions between air molecules in the room, then even atoms
and molecules can be regarded as elementary particles, That is they retain the
‘conditional elementarity’ depicted in Table 4.3.3, as they keep their identity
during any collisions or in other processes at these low energy exchanges. If
one goes to higher energy exchanges, say 10,000 eV, atoms and molecules will
decompose into nuclei and electrons. At this level, the nuclei and electrons
must be considered as elementary. The structures and processes of the first
rung of the quantum ladder are found on earth, on planets and on the surface of
stars.

Table 4.3.3: Conditional Elementarity of Particles

Particles Energy limit
Molecules, Photons <0leVv
Atoms, Photons <1l0eVv
Nuclei, Electrons <10*ev

Protons, Neutrons, Electrons,
Nutrinos, Photons

Quarks, Electrons, Muons, Tauons,
W, Z, Gluons, Photons

<10° eV

>10° eV
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The next rung is the nuclear realm. Here the energy changes are much
higher, of the order of mega(million) electron volts(MeV). As long as we are
dealing with phenomena in the atomic realm, such amounts of energy are
unavailable, and the nuclei remain inert and do not change. However, if one
applies energies of millions of eV, nuclear reactions like fission and fusion, and
the processes of radio activity occur, Our elementary particles then will be
protons and neutrons, together with electrons.

In addition, radioactive processes produce neutrinos, particles that have no
detectable mass or charge. In the universe, energies at this level are available in
the centers of stars and in star explosions. Indeed, the energy radiated by the
stars is produced by the nuclear reactions. The natura radioactivity we find on
earth is the long-lived remnant of the time when earthly matter was expelled
into space by a supernova explosion.

The third rung of quantum ladder is the sub-nuclear realm. Here we are
dealing with energy exchanges of many giga electron volts(GeV), or billions of
electron volts. We encounter excited nucleons, new types of particles such as
mesons, heavy electrons, quarks, gluons, and antimatter in large quantities.
Gluons are the quanta of the strong force that keeps quarks together. Aslong as
we are dealing with the atomic or nuclear realm, these new types of particles do
not occur and the nucleon remains inert. But at sub-nuclear energy levels,
nucleons and mesons appear to be composed of quarks, so that quarks and
gluons figure as elementary particles.

It is an interesting question whether the elementary particles established so
far are indeed truly elementary. It may well be that they are also conditional
and that the list has to be extended further and further.

4.4 FactorsInfluencing Color

The wave mechanical treatment of an electron in a box gives rise to large
number of discrete energy levels. On suitable excitation, the electron may
undergo transition from one level to another. The transition energy for the

transition y,, — v, isgiven by,
n?-n?

AE = > h?
8ma

Therefore, the frequency of transition obtained through Bohr’ s relation,
AE . .
v= Y isgiven by

n?-n?

8ma? h

V=
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or the wavelength of the transition is,

8mca?
(n'2 —nz)h

This relation shows that the longer the length of the box ‘&, the longer the
wavelength at which the optical transition in such a system occurs. Thus, by
suitably adjusting the length of the box, the wavelength of an electronic
transition can be made to appear in the visible range of the spectrum (roughly

7\4222
A%

0
from 4000 - 8000 A). This system then becomes colored. However, it should
be emphasized that transition between any two levelsis not always permissible,
because the transition probability for an electric dipole transition (which is the
most important cause of light absorption) depends on the magnitude of
transition dipole moment integrals defined as,

eIWn‘RWndX
Here it will be shown, under what condition the transition dipole moment
integral is different from zero for an electron in a box.
Consider the integra

[ 2¢v . nzr_. . nxw
IW Xy dx = —Ism—x,x, sin— x.dx
5 as a a

Letting ™ =0, x=2 and ax=2de
a T T

we may write
a T
J‘\Ifn-f(\VndX = Z—?Isin no.sinn0.0do
0 T o

2

2
T

Ejfcos(n— n')eede —%cos(n+ n')eede
0
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“lo+—=2 |- =2 it (n—n) isan odd number

(o) | fon)

=0 if (n—n) isan even number

and

l :chos(n+ n')e.e.de

={o+( 2 |__ 2 , if(n+n')isanoddnumber
n+
=0

n')2 (n+ n')2
if (n+ n') is an even number

This simple argument shows that the transition dipole integral I\ynf(\yndx

does not vanish if n+n is an odd number. Then the selection rule for the
electron dipole transition in this system may be stated as follows:

A transition between a pair of states is possible if the sum or difference in
guantum numbers is an odd number. If the sum or difference is an even
number, the transition is said to be strictly forbidden.

Note:

Let vy, and v, betwo orbitals of an atom, with corresponding energies E, and
E,. If an incoming electromagnetic wave is to excite an electron from y; to

y,, the electric field must bring about a displacement of charge. The

displacement must give rise to a dipole moment, however transitory; otherwise,
it will have no effect. We can put this idea in another way owing to its
occurrence during the transition of an electron between two different orbitals, a
transition dipole moment must occur. The recipe for calculating the value of
the transition dipole moment, ‘d’ is

d = [y,fiy,dv

{1 is the dipole moment operator. Fortunately, this operator does not directly
involve partial differentials. In fact it is precisely the same as we defined
earlier, i.e,, = exr. We can make some useful deductions about d without a
great ded of effort.

The atomic orbitals are of odd or even parity. Especially ‘s and ‘d’ orbitals
are even, and ‘p’ orbitals are odd. Now suppose y; isals, y,isa 2s orbital,
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and the electric field of the wave oscillate in the ‘x’ direction only. This field
can only interact with the ‘X’ component of the dipole moment, thus we have,

dx = J.WZSQWlSdV

= _eJ- WZsﬁ\Vlst
In terms parity the integral has the form,
W, XY = evenx odd x even=odd .

If we integrate an odd function over al space, for every region where the
function is positive, there will be an analogous region where it is negative.
Therefore, the overall contribution of the positive and negative regions will
cancel and the integral will be zero. This can be summarized as follows:

I(odd function)dv=0 and
I(even function)dv = 0.

Because the dipole moment is of odd parity we must have either y, as odd
and vy, aseven or vice versa. Thisfollowsfrom the fact that

Even x odd x odd = even
Odd x odd x even = even

Therefore, the Laporte selection rule can be summarized as
geu; g£50; ussu;.

45  Tunnéingin Quantum Mechanics

Tunneling is the quantum-mechanical effect of transitioning through a
classically-forbidden energy state. It can be generalized to other types of
classically-forbidden transitions as well.

Consider rolling a ball up a hill. If the ball is not given enough velocity,
then it will not roll over the hill. This scenario makes sense from the standpoint
of classical mechanics, but is an inapplicable restriction in quantum mechanics,
simply because, quantum mechanical objects do not behave like classical
objects such as balls. On a quantum scale, objects exhibit wavelike behavior.
For a quantum particle moving against a potential energy “hill”, the wave
function describing the particle can extend to the other side of the hill. This
wave represents the probability of finding the particle in a certain location,
meaning that the particle has the possibility of being detected on the other side
of the hill. This behavior called ‘tunneling’ is, as if the particle has ‘dug’
through the potential hill. Asthisis a quantum and non-classical effect, it can
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generaly only be seen in nanoscopic phenomena, where the wave behavior of
particlesis more pronounced.

Availability of states is necessary for tunneling to occur. In the above
example, the quantum mechanical ball will not appear inside the hill because
there is no available “space” for it to exist, but it can tunnel to the other side of
the hill, where there is free space. Analogoudly, a particle can tunnel through
the barrier, when there are states available within the barrier. The wave
function describing a particle, only expresses the probability of finding the
particle at alocation assuming afree state exists.

One example may clarify how the “new” and “old” mechanics differ,
namely the way George Gamow in 1928 explained alpha-radioactivity. The
atomic nucleus experiences opposing forces. the strong nuclear force holding
its particles together must overcome the electric repulsion between positive
protons sharing the nucleus, which tries to break it up. The nuclear force wins
out at short distances, that is why nuclei exist at al. But it falls off rapidly with
distance and at far away the electric repulsion dominates. Consider a proton
inside the nucleus. If something moves it a short distance away, the nuclear
force pullsit right back, but if it somehow got far enough, the electric repulsion
would push it away, never to return. An example is nuclear fission, possible in
heavy nuclei of plutonium or uranium-235. Here, the nucleus contains, so many
protons trying to push it apart with their electric repulsion. When an extra
neutron is allowed to be pulled into the nucleus, it releases and adds a modest
amount of energy that makes the entire nucleus break up into two positively
charged chunks. These are separated far enough that they never come back
again. Instead, electric repulsion pushes them apart even more and releases a
great amount of energy.

Such nuclei, and heavy nuclei close to them in mass, are all on the brink of
instability. Even without externally added energy, they find a way to get rid of
some of their disruptive positive charge. The forces on protons inside these
nuclel resemble those on a bunch of marbles inside the “crater” of a volcano-
shaped surface with smooth sloping sides outside, but a moderately deep crater
on top. The outline of the “mountain” can be viewed as representing the total
force on protons in a nucleus. Inside the crater the attraction predominates,
holding the protons together, while outside it the repulsion predominates,
pushing them away. In the analogy of marbles inside a crater, if a marble could
somehow get to the outside, say by carving a tunnel through the wall of the
crater, this repulsion would make it roll away and it would release energy.
Newtonian mechanics provides no such tunnels and the proton is imprisoned
inside the crater for eternity. According to quantum mechanics, however, the
proton’s location is determined by a spread-out wave function. That wave is
highest inside the “ crater” of the nucleus, and if the proton materializes there, it
stays trapped. The “if” clause here just helps one to imagine the process
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differently in quantum mechanics. If materialization of a process like thisis not
observable it amounts to saying it does not exist. However, the fringes of the
wave extend further out, and it always has a finite, though very small, presence
beyond the crater, giving a finite chance for the proton to materialize on the
outside and escape. It is as if quantum laws gave it a tiny chance to “tunnel”
through the barrier to the slope outside.

Systemswith discontinuity in the Potential Field

Consider an electron of mass m, moving in one dimension in the direction of
positive x-axis in potential field defined by the Fig.4.5.1.

Fig. 4.5.1 A ssimple potentia barrier.
V = 0 x<0 for
V = Vg x>0 for
The Schrodinger equations for regions | and 11 are respectively

%y, 8n?

ale + hzme Ey, =0 (4.5.1)
oy,  8r’m,

?-FT(E—VO)\VZ =0 (452)

Where y; and vy, arethe wave functions of the particlein regions | and Il
respectively.
Suppose, the energy issuchthat 0 < E <V and let

2 2
K = 8nh2me E and k7 = 8nh2me (Vo—E).

The appropriate wave functions for the two regions will clearly follow from
the above two equations with the following solutions, respectively.

v, = Aexp(ikx) + Bexp(—ikx) (4.5.3)
where A and B are arbitrary constants and
vy, =Cexp(—kx) + D exp(+k;X) (4.5.4)
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Where C and D are aso arbitrary constants.
The constant D has to be set to zero because, y, must vanish at infinity.

Thus v, =Cexp(-kX) .
In Eq.45.3 the first term exp(ikx) is an eigenfunction of the linear

momentum operator —iho with the eigenvalue, @ while the second term,
21 OX 2n

exp(—ikx) hasthe eigenvalue —2@ . This suggests that the first term represents
T

a wave travelling in the positive x-direction, i.e. the incident beam, and the
second term represents a wave travelling in the negative x-direction, i.e. the

reflected beam. Both the functions y and ;ﬂ are continuous and the boundary
X

conditions at x = 0 are therefore v, =y, and Ny _ vy
OX  OX
which give the following equations
A+B=C (4.5.5)
A-B=_K (45.6)
ik
Ky K
C(l— 4( Cl|1+ 4(
or A=—— "~ and B=———~ (4.5.7)
2 2
. |k 2
Therefore, B_ s !k = (k12+ 2 =q (4.5.8)
A k-ik  k'+k

The intensities of the reflected and incident beams are in the ratio |B|2 :|A|2 ,
but from Eq.4.5.8, |0L|2 =aa =1.

Hence, the intensity of the reflected beam equals that of the incident beam.
That the wave function in Eg. 4.5.2 in the region Il decays exponentialy is
indicative of the particles suffering aimost total reflection in theregion I.

However, thereisasmall but finite probability of particles being transmitted
in the region 11, which is not predictable from classical mechanics. We define

. . . . 2 .
the transmission coefficients by ‘C/AJ and it follows from Eq. 4.5.7 that

2 2k 2k G

Tik—k ik+k KE+K?

<
A
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Substituting for k; and k

©_4E

Vo

#0

C
A

This transmission coefficient is not zero unless the potential energy of the
barrier is infinite. This is the basis for the ‘tunneling effect’ observed in
guantum mechanics.

Hydrogen transfer reaction

As an example, take the hydrogen transfer reactions, especialy in low
temperatures. Tunneling effect is very important in these reactions. Consider a
reaction

AH +B=A+BH .

Since A and B are heavier than H-atoms, we may assume that hydrogen
moves between two centers which remain at a fixed distance. We represent the
proton wave by the Schrodinger's equation and the proton transfer by the
incidence of such a wave on the energy barrier as depicted in the following
figure, which shows the variation of ‘y’ with distance superimposed on
particular barrier. The wave equation is

%y 8r’m,
2 BV Jv=0
where m,, is the mass of the hydrogen atom, V

barrier as a function of ‘x’. On substituting for V
be solved in smple cases for v .

is the potential energy of the

« the resulting equation can

A%

X

E 3 /\/\

T — ¥

Fig. 4.5.2 Incidence of a portion wave on abarrier V(x) with energy E(E< V).
Variation of y (Psi) with ‘X’ is shown.
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For proton energies lower than the barrier height, the solutions show that
besides the reflected wave, there is also a transmitted proton wave. It means,
there is also afinite probability that proton will tunnel through the barrier.

- 1.0 L

Tunneling probability

0.0 1.0 2.0 0.0 1.0 2.0
EN —> EN —>

(@) (b)

Tunneling probability

Fig. 4.5.3 (a) The tunneling probability against energy E of proton expressed as E/V for
aparabolic barrier (b) The classical probability of crossing the barrier as a function of

This probability rises with the energy of the tunneling particle. Whereas the
classical theory predicts that, a particle can cross a potential energy barrier only
if its energy is equal to or greater than the barrier height.

It should be noted, in gquantum mechanics, that all protons with energy
greater than the barrier height (i.e. (E/V)>1) will not cross the barrier. The
curve in the figure shows that the tunneling probability is less than unity even
for them, indicating that partial reflection occurs.

4.6 TheRigid Rotor

Consider a system of two spherical masses mu
and me at fixed distances r1 and rz, respectively,
from the centre of the mass of the system. The
distance between the centers of the particles is
assumed to have a constant value ro, where ro =
ri+ ra.

We refer to the above system asrigid rotor because the distance between the
two particles is fixed and the system could rotate only about a fixed axis. In a
way, the rigid rotor is an idealized case of a diatomic molecule except that in
the latter the masses m; and m, (the atoms) can of course vibrate, so r,
varies dlightly but can be taken as equal to the equilibrium distance (re) in
a real diatomic molecule. We shall consider this example in some detall
since it serves as an introduction to the way in which certain important
functions arise.
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The theory of such, rigid rotor in space is useful in dealing with rotational
spectra of diatomic molecule.

Let the distance of m; from the centre of gravity be r, and distance of m, be
Iy, then

miry =mgarz; andry +12=1ro (4.6.2)
where,
Ml - _Mh (4.62)
m+m, m +m,
The kinetic energy of rotation of the atoms joined together by alink is given
by

r =

K.E. = [%j my V]_2 + (%j mp V22 (463)

where v; and v, are linear velocities of masses m; and m, respectively.
Since, r; and r, are assumed to remain unchanged during rotation about the
centre of gravity, one can write

1 1 1
K.E = [Ej mwr,? + (Ej mw’r, = EE)WZI

where | denotes the moment of inertia of the system. The equation shows that
the K. E. of the system is the same as that of a single particle of mass ‘I’
moving on the surface of a sphere of unit radius.

The Schrodinger equation takes the general form
Hy =Evy or (T+V)y =Ey (4.6.4)
and since no forces are assumed to act on therigid rotor
v=0. Therefore Ty =Ey
In spherical polar coordinates, T takes the form

—h? [1 d (r28)+ 1 a(gnea}r; 0 ] (465)

8c°m|r2aor or  r?sind o0 0) r2sin20 ap?

However, for the rigid rotator we can replace ‘m’ by the moment of inertia
‘I and ‘'r’ by unity and so the Schrédinger equation becomes

2
T @69
sin6® 00 00 ) sin“0dop h

Thisis adifferential equation with two independent variables (6 and ¢) and
we shall make a very common assumption at this stage, namely, that the
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function ‘y’ involving both 6 and ¢ can be written as a product of two
functions each involving one variable only,

v (6,0)=Y (6) Z(9) (46.7)
substitution in previous equation gives

22 an02) Y2 o 4so
sinB 0o 00 ) sin“0 o
2
where B= 8nh2IE
Multiplying Eq.4.6.6 by Sin0/YZ gives
: _ 2
S'—”ei[s;neﬁj Bsin29=—l% (4.6.9)
Y 06 00 Z o¢

The above equation must be valid for all vaues of 6 and ¢. This can only
occur if both sides are separately equal to the same constant, say m? for
convenience. That is

Snei(sined—YJ Bsin?0=m’

Y do do
and

‘?1 3:; 1P (4.6.10)
Solutions:
Consider the equation

3:; +m’Z=0

Which has solutions

Z =Cexp(ximo)

where C is some constant to be determined. Since the rigid rotor takes up an
identical configuration every time ¢ increases by 2,

Z(p)= Z(p +2n ) and Z(0) =Z(0+ 2x)
But Z(0)=C exp(0)
So Z(2n)=Cexp.(x2mim)
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Since Z (2 ) = C, it follows that
exp(F2mim)=1
whichisonly true, if ‘m’ iszero or an integer.
The constant C is easily determined by normalization of Z i. e.

2n
N2 j ZZ' dp=1 (4.6.11)
0

2n
N2I(cosmp+isinmnp)(cosmp—isinmcp)dq):l
0

N? [ dp=1

0

v2
N :(Lj
21

Hence the normalized functions are

wherem=0,+1,£2, ...... (4.6.12)

Now consider the equation for Y(8), which after multiplying through by
Y /sin’ and rearranging becomes

2
1 d( ned—Yj B _ly=0 (4.6.13)
sin0 do do sin?@
2 2
1 smedY+code +|B- Y=0
sin@ de? ao sin?@

(For details refer appendix 8.11)

2; 2
dY+cosedY+ b _m Y_0
do?> sind do sin’0

Put cosd = Z then the above eguation can be written as

2 2
—coseg—;+sn ed—Y+—COSG(— ed—Y) (B— m JY:O

dz? sin@ dz sin’@
The equation can be simplified as

2
sin ed—Y—ZZdY B-————=1Y=0
dz? de sin’e
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Substituting Z for cos 6

@—zﬁdw—2291+(ﬁ —Tijvzo

dz? do S 1-7?

Which isidentical with the differential equation shown in the appendix 8.11
defining the associated Legendre B™(Z) function. Thus we may
immediately identify Y (Z) with this function provided that

B=1(1+1)
where 1=0,1,2,3, ... ...
Since
h2
E= I(1+1
87'[2' ( )

where 1=0,1, 2, 3,...... ......

This means that only certain values of E, depending on the value of ‘I’, are
permitted; in other words, the energies of the rigid rotor are quantized.



CHAPTER 5

Applications of Schrodinger Equation-2
(Simple Systems with Variable Potential Energy)

5.1 One-dimensional Harmonic Oscillator

When two atoms, held together firmly in a stable molecule are caused to
vibrate, the vibrations may be treated approximately as motions of particlesin a
harmonic field. It had long been realized that the vibrational spectra of both
polyatomic and diatomic molecules should be treated by the theory of a system
of particles all moving in a harmonic field. One of the problems of the old
guantum theory was to explain the residual energy at 0 K within any system of
oscillating particles, the so-called ZERO POINT ENERGY . It was one of the
triumphs of the new wave mechanics (and also incidentally of Heisenberg's
matrix mechanics) that this residual energy came naturally from the application
of the basic postulates of quantum mechanics, in particular that  be a well
behaved function.

Consider the case of a particle of mass, ‘m’ moving in one dimension (the
‘X’ coordinate) in a potential,
V= % Kx? (5.1.1)

and subject to a force —-Kx. The constant K is called the force constant of the
system.

Case 1. In classical mechanics
Classically the equation of motion is
i
dt?
with the general solution

= —Kx (5.1.2)

X = X, COS2m Vo (t—t,) (5.1.3)
where X, and f{, areconstantsand
12
1k
Vo=—| — 514
0 ZTc(mj ( )
77
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Thetotal energy
H=T+V
S P+ Lye
2m 2

= 2mrPVi X3 (5.1.5)
and so al positive values of the energy, including zero, are alowed on the
classical picture.

Case 2: In quantum mechanics

In the quantum mechanical case we must again solve the wave equation H =
E v, subject to the condition that  is awell behaved function, where we obtain
the Hamiltonian operator, H from the classical expression by replacing P, by
+(h/2r i) (d/dx) (the momentum operator)

The Hamiltonian operator is thus
-h? d? Kx?

=+ 5.1.6
8r’mdx®> 2 (516)
and so the wave equation becomes
d?y 8r°m Kx?
+ E- =0 5.1
o h 2 )Y (-L17)

We must solve this equation subject to the conditions that y be well
behaved. The above equation can be written in the more convenient form

2
‘ZX‘Z" +(a-p?x?)y =0 (5.1.8)
12
2 2rn(mh
Where, o= ST]ZmE and Bz%

we require that y be well behaved in the complete range of the coordinate X,
that is from — oc to + oc . Let us first consider the asymptotic solution of this
equation, that is, the solution for large values of x. In this case ‘o’ can be
neglected when compared with % x* and Eq.5.1.8 becomes

dz\l’ 2,2
+B2%x 5.19
o B Xy (5.1.9)
which is satisfied by the exponentia functions
v = N.exp(i% szj (5.1.10)

where N is a constant.

[Note in checking this, that the second term in the expression for dz y/dx? is
neglected with respect to the first].
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However, the solution
1.2
y=N {exp(+EBx ﬂ (5.1.11)

is clearly not a well behaved function, since, as x tends to infinity,  aso tends
to infinity and does not remain finite, so only the other solution is acceptable.

It is now convenient to change the variable such that
y=x(B)"? (5.1.12)
Where

v(y)= Nexp[—%yzj (5.1.13)

Returning to the general equation, the above asymptotic solution suggests as
apossible genera solution

v(y)= f(y)exp[—%yzj (5.1.14)

where f(y) isapolynomia iny,
Substituting in equation (5.1.8) we find
g—zyi:[ﬁ—ljf =0 (5.1.15)
dy dy (B
(For details refer Appendix 8.12)
This eguation isidentical with the Hermite' s equation (see appendix 8.11) in
which

% 1292 5.1.16
B n ( )

In other words, the polynomials Nf (y) are the Hermite polynomials Hn(y).
The wave function

v(y)=N Hn(y)exp[—%yzj (5.1.17)

is thus a well behaved function for all positive integral values of ‘n’ including
zero, since it is only for this range that the Hermite polynomials are defined.
EqQ.5.1.16 which arises in order to terminate the polynomials, so that the
product Hn (y) exp(-1/2y2) tends to zero as y tends to o, thus leads to a
guantum condition.
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< _2n+1

and on substituting for o and 3 we find

Y2
E:L(n+lj(1J :(n+ljhvo (5.1.18)
2n 2){lm 2

In contrast to the classical result of a continuous spectrum of positive
energies, wave mechanics predicts a set of quantized levels whose energies are
12, 3/2, 5/2, ... .. multiplied by the energy of the classical frequency.
Moreover wave mechanics shows that the harmonic oscillator cannot have zero
energy but always possesses a residual or ‘Zero point energy’ (1/2) hvo. This
result was a triumph for the new wave mechanics since the older quantum
mechanics had not been able to account for thisresidual energy.

In fact the prediction of zero-point energy by wave mechanics could be
linked to the results of matrix mechanics by means of Heisenberg’s uncertainty
principle, namely that is only possible to specify simultaneously the
momentum ‘p’ and the position ‘g’ of a particle with uncertainties, Apand A q
respectively, where Ap.Aq=~ h.

Wave functions of the har monic oscillator
The wave functions for the harmonic oscillator were shown to be

y(y)=N Hn(y)exp(—%yzj

1
where Hn (y) are Hermite polynomialsand y = x(B)2

The normalization constant N is obtained from the usual condition
+0
[ waw, de=1
from which it can be shown that
y2 Y2
n) 2"N

and so the normalized wave functions for the one-dimensional harmonic
oscillator are

va(y)= {(%T/z anN r{Hn (y)exp(—%yzﬂ
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where y= x(B)%. It is instructive to list a few of the earlier members of the
Hermite polynomials:

Ho(y) =1 Hs (y) = 8ys - 12y

Hi(y) =2y Ha(y) = 16y - 48y2 + 12

Ha(y) =4y2—2  Hs(y) = 32ys - 160ys + 120y.

It is also interesting to examine the form of the above wave functions for

increasing values of ‘n’, the vibrational quantum number. The caseof n=0 s
the most interesting, since, in this case both yo(y) and w3(y) (where

w5 (y)dy measures the probability of finding the system in this state between

y andy + dy) possesses maxima at the origin, or zero probability at the extreme
of the vibrational mode. This is the exact opposite of classical mechanics,
where one would expect the particle to be most probably at the ends of its
motion. As discussed above, this contrast is due to the quantum mechanical
result of the particle possessing zero point energy, which in turn can be
correlated with the Heisenberg' s uncertainty principle. As‘n’ increases we note
that the wave functions are alternatively symmetric and antisymmetric and
finaly as ‘n" becomes very large (see Fig. 5.1.1b) the probability function

y5(y) approximatesto the classical probability curve (dotted line).

Normalized Hamiltonian Probability densities for the
eigen functions stationary states of SHO

)
/\ X/ WW\ e
NAE
EEbdl

/]

Ul

0 y 0 y
Fig. 5.1.1a Wave functions of harmonic  Fig. 5.1.1b The sgquare of the wave
yn(y) plotted against v. functions of a harmonic oscillator
wn(y) plotted against .
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According to correspondence principle, at high quantum numbers, the
oscillator should approach a macroscopic classical oscillator in behavior, e.g., a
pendulum. The figure shows that the probability distribution is concentrated
near the “turning points” where the system’s energy is purely potential. This
indeed describes a pendulum, which spends more time slowing down, reversing
direction, and accelerating near the extremes of displacement than in the centre
of the movement where it has its maximum speed.

5.2 TheHydrogen Atom

Transformation of coordinates: A new problem arises when we note that the
total energy, E in the wave function is made up of two parts as in the case of
hydrogen atom.

1. Thetrandational motion of the atom as awhole.

2. The energy of the electron with respect to the proton.

It is this latter portion of the energy, in which we are interested. This leads
us again to the problem of separation of variables. In order to obtain the desired
equation, it will be necessary to separate and discard the translational portion of
the total wave equation. To carry out this particular separation, it is necessary
to introduce a new set of variables x, y and z, which are Cartesian coordinates

of the centre of mass of the hydrogen atom and the variables r, 6 and ¢ which
are Poplar coordinates of the electron with respect to the nucleus.

A coordinate of the centre of mass of a system in general, given by
Z ma
q — |
2m

where, m is the centre of mass of the ‘i'th particle. For hydrogen atom, the
Cartesian coordinates of the centre of mass will be given by

mX + MyX,
m+m

_ MY+ MpY,

m +m,
_mz+mz

m+m

But for our purpose the transformation into spherical coordinates is

important.

X=

y

z
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Polar coordinates

The problem we are concerned with is that of calculating the “amplitude of the
electron waves’ at various points in a hydrogen atom. These points can be
defined by drawing a set of Cartesian (X, y, z) axes through the origin at the
nucleus of the atom and locating points on X, y and z coordinates. It is much
simpler, if we use an aternate way of specifying position, namely the polar
coordinate system. These are shown in the following figure.

Fig. 5.2.1 Transformation of Cartesian coordinates into Polar coordinates.

p=rsin®
X .
cosp =—, S X=rsin6.cosd
S
.y o .
sng== S y=rsinf.sing
S
z
cosf =— . Z=rcoso
r

X4y +22=r?

These transformations into spherical coordinatesin general iswritten as
X, — X =sin6.cos¢
Y, -y, =rsinf.sin¢

Z,— 2, = cosO
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By using the transformation equations, it is a straightforward procedure to
obtain the wave equation in terms of Cartesian coordinates of the centre of
mass of the system and the polar coordinatesr, 6 and ¢. The X, y, z coordinates
of the centre of mass of the atom obviously relate to the translational motion of
the atom as awholeand r, 6 and ¢ coordinates are seen to relate the coordinates
of the electron (x,,y,,z,) to the coordinates of the nucleus (x,,y,,z,).

As an example of the procedure, consider the z coordinate. Solving the
equation for z

Mz Mz,
m+m

z(m+my)=mz +myz,

. mﬁsz m,
=7l —= |-—17
’ ( mo ) m
If thevalue of z, issubstituted in the equation z, — z =r cos6

m+m )| m
rcosf=| ——=|-—z-2
R

zl(ﬂ+lj+rcose=z(—ml+mz]
m, m,

zl[mlerZ]:z(mlerZ]—rcose
m, m,

Dividing throughout by T2 =™
m,

Z=Z- dl r coso
m+m,
Z = Z—(Ljﬂr cos0O
m+m, jm
zizz—ircosewhereu:ﬂ
m, +m,

Using the procedure, a transformation equation can be found for each of the
coordinates, and when proper substitutions are made, the wave equation is
obtained in terms of the variables x, y, z, r, 6 and ¢. In terms of the new
variables, it isfound to be
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2 2 2
1 (aWT+6WT+aWTJ+
m +m

o oyt o7
ml"‘mz[ii(rza\h}r 1 oy, 1 a[gneawﬂ

mm, [r2or or ) r?sin?6 09> r’sin@ o0 09>
8n?
+F(E—Vr)\v-|— :0 (521)

The wave equation vy, isafunction of thevariablesx, y, z, r, 0, ¢ and the

energy, E contains the trandational energy as well as the energy of the electron
with respect to the proton.

The purpose of this transformation to new coordinates is to make a
separation of variables possible. The algebra is somewhat more complex. In the

usual manner, the total wave function, v, ., o ) IS @ssumed to be expressible

as the product of two wave functions such that
\V(x,y,z,r,e,¢) = F(x,y,z)\v(r,e,d))

When this expression is substituted into Eq. 5.2.1, it is found that the
following two equations are obtained.

2 2 2
0 I:(x,y,z) + 0 I:(x,y,z) + 0 F(X,y,Z) + 8TE2(IT11+ mz)

e oy? oz e e =0

oy %y oy
ZI.2 0 ;2 (r.0.) - -12 (r2,9,¢) N 2]-. 0 <ino (r.0.0) N
reor or resin“e oo r‘sino oo od

8n’n
h2
The first of these equations contains only the variable x, y and z with no
potential energy term. Thisis identical to the wave equation for a free particle
and therefore represents the trandational energy as a whole. The second
equation, which relates the electron to the proton, is the equation of particular
interest to us.

(E=VO )W =0

Separation of variables

Since it is the second part of the wave equation that is of interest, the
trandational part will be discarded. Thisis the desired equation for the electron
with respect to nucleus. This eguation contains three variablesr, 6 and ¢. This
will require that the variables be separated, such that, three independent
equations are obtained, each containing only one of the three variables.
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The procedure is as follows. The Schrodinger equation in polar coordinates
can be written as:

0 0? 0
190 [rz W(re¢)]+ 1 Y (rog) N 1 0 [Sil’]G ‘|’(r9¢)J+

r2or or r’sin’e  a¢>  r’sin oo a0
8n’n
2 (E=Vi )Wy =0 (5.2.2)

L€t W 0.4) = Rr)%0)P(6)

Making substitution in the above equation
li(rz R0 e) J 1 ORbote

I’2 or or rzs'nzg a¢2
1 0(. oRBods | 8w
r2sin 0 {Sne or — (E=V; )R, )0(6)9(4) =0 (5.2.3)

Dividing Eq.5.2.3 by R\ ds weobtain
R, % oy
! E(rz R)J+ 1 @, 1 0 (sine (Q)J+
0

r?R(r) or or r’sin®e 9> 6,r’sin6 oo a0
8rn’n
h2 (E_VI'):O

If we multiply by r?sin®6

(2 d ol ; 00
sin ea(rz R(r)}ri ¢(¢)+sne a{sine (e)}r

2

Ry orll o ) by o 6y 08 o
8rn’ur?sin®o
T(E—v,)zo
or

‘2 0 ; 00
sin ei[rz F%r)]_’_sme 0 [sine (9)J+

I%) or or O(6) 90 00

2.2 2 %

8r’ur 2sm 9(E—V,)=—i (Zd») (5.2.4)
T n by 00

The left side of the equation contains only the variables r and 6 where the
right side of the equation contains only the variable ¢. No matter what values r
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and 6 might independently take the sum of the terms on the |eft always equal to
the term on the right. This can be true only if each side of the equation is equal
to the same constant. If we let this constant be ‘m?, it is seen that the variable
can be immediately be separated from EQ.5.2.4 giving

62
L% _ e (5.2.5)

de) 00°

The problem now is to carry out the separation of the remaining two
variablesr and 6. By equating the LHS of Eq. 5.2.4 to m?, it is seen that

i 2 0 : 00 2.2 2
sin“6 0 ;2 R(r) +sm6 0 sno—0 |, 8rn ur<sin e(E—Vr)=m2
R(r) or or 6(9) 00 00 h?

On division by sin?0 , this becomes
bl 2 .2 2 00

BESNcH PE ) T PV L S P U]

&r) or or h sin“ o e(e)sme 00 09

Again since each side of the equation contains only one variable, they both
must be equal to the same constant. If the right side of the equation is set equal
to the constant B and this gives on multiplication 6l0) by

2 00
m 1 9gne B0y =0 (5.2.6)
sin“6 0, sin0 0 00

Thisisthe desired form of the 6 equation.
The remaining part of the original equation isthe R equation.

ig(rz%}M(E_w:ﬁ

R, or or h?

This equation on multiplication throughout with % and rearranging gives
190 2 al%r) I%r) 8n2ur2 _ _

r—za—r[r 7 —B rz + h2 (E—Vr)— Rr) =0 (527)

Thus, the three variables have been successfully separated, and the three
independent total differential equations that result are:

62
LL;) — P (5.2.5)
9o O
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2 00
m 1 9gne B0y =0 (5.2.6)
sin“6 0, sin0 o0 00
10 aRr) I%r) 81'[2Hr2
22T B ), - (527)

The ¢ equation

The first of these equations is the ¢ equation and it is seen to be of the same
form as the wave equation for the particle in a box.

In terms of the sine and cosine the solution is
¢m(¢) = Asnmj+ Bcosmj

In order for awave function to be acceptable, it must be of the well behaved
class. One of the requirements of such a function is that it must be single
valued. To meet this restriction, the function ¢n(¢) must have the same value

for ¢ =0asit doesfor ¢ =2r . For the case of ¢ =0 it can be seen that

Oryo) = ASiN0+ BcosO

Omo =B
When we have ¢ =2r,

Ori2n) = Asinm2r + Bcosm2n

¢IT(2T[) = B .

Since the value of ¢ must be the same under both the conditions, it is
necessary that

B = Asinm2r + Bcosm2r.

This identity can hold only if ‘m’ is zero or has a positive or negative
integral value. So the possible values of ‘m’ are O, 1, £2, £3, ...... and ‘'m’ is
known as the magnetic quantum number.

Very often, in the treatment of hydrogen atom, the exponential solution to
the ¢ equation

Gy = 0™
isused. Thisis shown asfollows:

Theequationis
%
Wgﬂ +mPg, =0 (5.2.5)
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The wave function ¢m(¢) isto be normalized.

2n
This requires that j ob dp=1
0
Which leads to Icze'm‘" e ™dp=1

2n
c? [ edp=1 x_1
J Sdo=10r[0];" =

1
N

Hence the normalized function is

CcC=

1 +i
¢IT(¢) =——Ce m .

2n

Thisis also a solution to the wave equation and is true only if ‘m’ can have
integral values starting from 0, 1, +2, +3, ......

The 6 equation

The eguationis
2 64
mo__ 1 Olgne POy, (5.2.6)
sin“0 05 sin6 o6 66

This equation can be put into a form that was known by the mathematicians
many years before the advent of quantum mechanics. This particular equation
is known as Legendre’'s equation and has the normalized solution

—(2| +Y) ( _M) P‘”"*(cose)

SR BT

where Ff‘m‘ is the associated L egendre function of degree ‘I’ and order |m| . The

form of the solution is quite complicated. In spite of the complicated nature of
the solution, several important features can be observed. Although the
mathematics is far too complex to be considered here, it can be shown that in

Eq. (3.25), p=I(1+1), where the allowed values of | are 0, 1, 2, 3..... Thisis
the source of the new parameter found in Eq.(3.2.7) and its properties appear to

be similar in many ways to those of the azimuthal quantum number. It can also
be seen that there is now a new restriction on the quantum number ‘m’. In the

0
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normalizing factor of the solution to the 6 equation, the term (I —|n1)! occurs.

If | is allowed to be greater than ‘I’, the factorial of a negative number
results. Since a negative factorial is undefined, the maximum value of ‘m’ must
be ‘I'. Thus the restrictions on the quantum number ‘m’ now become m = 0,
11,42, 43, ... 4.

Spherical Harmonics

Both the solution to the 6 equation and solution to the ¢ equation contain
trigonometric functions and therefore determine the angular character of the
electron wave function. Very often it is found that the total wave function can
most conveniently be used, if it is separated into a radial portion and an angular
portion such that

Vieop) = Rt Vimio) (5.2.8)
Thetermisreferred to as the spherical harmonics and is given by

This portion of the wave function isimportant in the treatment of directional
bonding.

The Radial Equation
The remaining equation to be solved is the radial equation.

o 2 .2
1 0[rzﬁ]_ﬁar)+8ﬂ B (E—v,))R(,)

2o or 2 h ( 0 (627

This like the 6 equation, can be put into aform that has long been known to
mathematicians. This particular equation is the Laguerre equation, and the
normalized solution is

8 P
R =J(£J D e (52.10)

%) 2n([n+11)’
2z
p=—"r,
na,
h2
h =
where a p.

and L2*(p) represents the associated Laguerre polynomial.
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The solution to the radial equation is also very complex. However, it is
possible to make pertinent observations from the solution. It is to be noted that
anew parameter, the quantum number ‘n’, has been added. The possibility here
isthat ‘n’ is restricted to take on only the integral values 1, 2, 3, .... Both the
relation of ‘n’ to the radial wave function, which is a measure of the position of
the electron with respect to the nucleus, and its similar restrictions, indicate that
‘n’ isthe quantum mechanical analog of the principal quantum number.

A new restriction can be seen for quantum number ‘I’. It is apparent that the
term (n-1-1)! requires that the maximum value of | be (n—1). If ‘I' isalowed a
value greater than this, the factorial of a negative number would result. Since a
negative factoria is undefined, the maximum value of ‘I’ be (n— 1). Thus the
guantum number isrestricted to thevalues| =0, 1, 2, 3, ....... ,(n=1).

Quantum States

From the solution of the total wave equation, we have arrived at three quantum
numbers. The quantum numbers with their allowed values may be summarized
asfollows:

Radial quantum number n=123,...
Azimutha quantumnumber 1=0,1,2,....,(n=-1)
Magnetic quantum number m=0,+1,£2, +3, .+

According to these restrictions, there are only certain values of the quantum
number, ‘I’ that are permissible, for a given value of ‘n’. The maximum value
of ‘I’ is seen always to be (n — 1). For example, when ‘'n’ = 4, ‘I’ can be any
integer up to and including 3, but not greater than that. This is illustrated as
follows:

Vaueof ‘n 1 2 3 4
Allowed value of ‘I’ 0 0,1 0,12 0,123
It should be noted that | = 0 occurs for every value of ‘n’; | = 1 occurs for

every value of ‘n’ greater thann= 1, and so on.

These values of quantum number |, play a rather important role in both the
geometry and energy states of the atom. Because of this importance, they are
given the following specia designations.

=0 sstate
=1 p state
=2 d state
=3 f state
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For the first radial shell, the value of the radial quantum number isn =1,
and | quantum number can only have the value | = 0. This state is usualy
represented by (1s) where ‘1’ represents the principal quantum number. For
n = 2, the azimutha quantum number can have the values| =0 and | = 1. This
gives the two states (2s) and (2p) respectively. These states determine the
energies of electrons, and if the | quantum number contributes to the energy as
doesthe ‘n’ quantum number, each state will represent a different energy.

Wave Functions of the Hydrogen Atom

It was postulated that the square of the wave function is a measure of the
probability distribution of the electron. This wave function is seen to be

composed of two parts, an angular portion represented by Y|,m(e,¢) and a radia
portion that is represented by R“(r). We will see that the radia portion of the

wave function gives the distribution of the electron with respect to the distance
from the nucleus, whereas the angular portion gives the geometry of the
various energy states.

The normalized solutions of the 6 equation, and also the radial equation are
in general, quite complex. However, they reduce to relatively simple form on
introduction of particular values of the parameters. For the ‘¢’ equation the
allowed values of ‘m’ are m = 0, £1, +2, +3, ..H. This led to the normalized
functions of shown below.

Normalized functions of ¢m( 0

_l im
Orto) = T ©
B 1 B 1
¢0(¢)_ \/Ee or ¢0(¢)_ \/ﬁ
1 .

+i 1

b = 75 O ey = s
1, 1

¢71(¢) _\/_?e or ¢71(¢) _\/—?smq)

Examples of the normalized 6, functions and the redial functions are
given below.

Normalized functions of 6, .

O o) =J—(2|;(:)_(;nt1|)ﬁ)! R™ (coso)
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2
=1 0100) :gcose
J3

el,il(e) = 79 n 6

Normalized functions of R]‘,(r)

_ Es (n-1-11 -5 2+
R \/[naoj 2n[(n+|)!]3 P

n=1, ‘K’ shel
3
2 P
1=0 Rlyo(r):[é] 2e 2
n=2, ‘L’ shdl
3
Z 2
g P
=0 Rz,o(r)=2—ﬁ-(2—9)e ?
3
7z )2
g P
I = 1 RZ,].(T) =T.pe 2

The normalized total wave function for the hydrogen atom is obtained from
relation

Wra0) = Ru(r) Yimon)

By using al possible arrangements of these functions within the limitations

of the quantum numbers, we obtain the normalized total wave functions listed
below.

K shell
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L shell
3
1 (z)2 -2
n=21=0m=0; y, = — 1 (2-¢)e?
Mf2r |
3
n=21=1,m=0; y, = 1 [Z ? 62 0080
=4, ’ 1 2pz_ﬁg
n=21=1,m=x%1;
3
1 (z)2 <.
=———| — | ee 2sn0cos
\VZpX 4\/%( J ¢

v —iiaae_gsinesinq)
AN S

Hydrogen like Wave Functions

The Radial Function

These functions are independent of 6 and ¢. They are spherically symmetrical,
so that we get the same value of F% at a given distance ‘r’ from the nucleus

no matter what values are given to 6 and ¢.

: : : ' 3d
N i
I

Ko T N
/\ P 3

LD N
A ERERE

Fig. 5.2.2 Plots of radial function R(r) againstr.
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It is seen that

(@

(b)

(©)

(d)

Th

The radia functions Qr) have no physica

All the ‘s’ functions have their maximum values at the nucleus (r = 0) and
that the value of F%r) initially drops very steeply as ‘r’ increases. Thisis
because the mathematical expression for each solution includes a negative
exponential expression of thetype e .

Functions of this type decrease rapidly from a maximum value at r = 0 to
zeroatr = oo.

Ry for the 2s orbital become zero at a particular value of ‘r' between

r=0andr = «. At this point, the so called nodal point, changes sign
from positive to negative. The 3s orbital has two nodal points between
zero and «o . In general, the number of such nodesina‘ns’ orbital isgiven
by (n—1).

The p and d radia functions are all zero at r = 0 and r = o« and the
number of nodes between these limitsis given by n—| — 1. Thus there are
no nodes in this region in the 2p and 3d radial functions, but there is no
node in the 3p function.

At distances close to the nucleusthe R function for s’ orbitalsis greater
than that for p and d orbitals of the same quantum number.

e Radial Distribution Functions

significance in themselves, but the square of the
functions, multiplied by a volume element dy,

R

wil

)dr , measures the probability that the electron

| be in this volume element dy, at a point that

is at a distance ‘r’ from the nucleus. A more dr
useful value is the probability of finding the

electron at adistance ‘r’ from the nucleus, irrespective of the values of 6 and ¢.
Instead of the volume element d, we now consider the value of a spherical shell
of thickness d, and radiusr.

The volume of that will be 4xr?dr , since the surface area of the sphere of

redius r is 4nr®. Hence, the radial distribution function 4zr“R7dr, thus
measures the probability of finding the electron in a spherical shell of thickness

‘dr

" at various distances ‘r’ from the nucleus.
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The following figure 5.2.3. shows plots of this function for the hydrogen 1s,
2s, and 3s orbitals. The functions differ from the simple radial function R, in

that they are aways zero a r = 0. The number of peaks the distribution
function hasfor ‘s orbitalsisequal to the‘n’ valuesi.e. 1 for 1s, 2 for 2s etc.

4nr2R2Adr
(r)

)

Fig. 5.2.3 Plot of radial distribution function 4nr2F§(2r)dr against ‘r’ for ‘s electrons.

Fig.5.2.4 Plot of radial distribution function 4nr °R? dr against ‘' for ‘p’ and ‘d

electrons.

Fig. 5.2.4 shows radial distribution function for 2p, 3p and 3d orbitals. Here
the number of peaksis (n-1) for p orbitals and (n-2) for d orbitals.

These functions are particularly useful when discussing the screening effect
of electrons in many electron atoms and the peaks of maximum probability
corresponds to concentric shells strongly resembling the Bohr theory.

If we go back to the Bohr picture of 1s orbit, we recall that the electron
moved in acircular path of fixed distance from the nucleus. If we plot y?r? for
such asituation, we will get adiagram as shown in Fig. 4a. The probability will
be zero at all except the single value when r = a,, where a, istheradius of the
first orbit (0.529 A). The corresponding probability function for a 1s electron in
the wave mechanical model will be as shown in Fig.4b.
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100%

<+3»

r—»p

Fig. 5.2.5a Probability function of Fig. 5.2.5b Probability function of
1sorbital in classica model 1s orbital in wave mechanical model

In both the models electron is found with the highest probability at 0.529 A
from the nucleus, but in Bohr model this probability comes out to be a certainty
(100 % probability). In both the models, the electron density is spherically
symmetrical. However, the Bohr model violates the uncertainty principle by
fixing the exact radius of the orbit. The wave mechanical model on the other
hand “spreads the electrons out” over all space, and so is in accord with
Heisenberg's principle.

Show that r =a, for the 1sorbital

To get the value of ‘r', we can take the relevant portion of the radial
distribution function. This is differentiated and equated to zero since at this

point there is a maximum (Fig 5.2.5b). For 1s orbital in hydrogen (z = 1) the
-2r

wave function is represented as r?e® .
o
Hence, radial distribution function = const. x r2e® .

dF?

According to the rule of maximization,

On differentiation

d -2r
R( =0= 2reao —rzieao
&
-2r -2r
w0 _ 22 a
or 2re® —r-—e
2
or r=ag.
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From the above calculations, we can see that the most probable position for
the electron is identical with the radius predicted by Bohr for the first electron
orbit.

The Angular Function Y, )

We have seen that wave functions for al ‘s orbitals are spherically

symmetrical i.e. they are independent of the angles 6 and ¢. There are three
angular functions for orbitals with n = 2 and | = 1. These are the 2p,, 2p,, and

2p, orbitals. Similarly there are five angular functions for 3d orbitals
corresponding to the five values for the ‘m’ quantum number where | = 2.

There are two methods.

1. A polar graph is drawn by plotting the 6 dependent function against
different values of 6 for given value of | and m (Fig.5.2.6q).

2. A polar graph is drawn by plotting the square of 6 dependent part of the
wave function against different values of 6 for given values of | and m. This
type of graph gives a map of the angular distribution of electron density
(Fig.5.2.6b).

V4

Z
A
/\I/{ (I — XY-Plane
W

Fig. 5.26a Fig.5.2.6b

Py

P,

Fig. 5.2.7 illustrates polar diagrams for the three *p’ orbitals.
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Fig. 5.2.8 illustrates polar diagramsfor ‘d’ orbitals.

Nomenclature of p Orbitals
The nomenclature of p and d orbitals arises from the following relations. If the

Cartesian coordinates are replaced by the polar coordinates
1. The functions for vy, , Y, and y, are

1 r 2a .
Yy =—F——=—¢ sinb.cosé

4 (2na3)a q

= constant x sin6.cosd

= P
similarly
W,1 1= constant x sin0.cos¢
= py
and W10 = COnstant x coso
=P
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Nomenclature of d Orbitals
The wave functions are

2ozt

Y31 = —F—=—€%5n0.c0s0.c0s¢
8 (nas) a
= constant x sin0.cos0.cos¢
=d,.

22 L

V3o 1= ———=—€%5in0.cos0.cos¢
8 (TCaS) a

= constant x sin.cos6.sin¢
=d,.

1 r2 =
— e%sin6.cos2$

V322~ m a

= constant x sin’0.cos20
= constant x (sin® .cos” ¢ —sin 0.sin” ¢
= dX27y2

= ;ﬁe%l (cos2 0 —1)
Vazo Ty (6ra) &
= constant x (cos2 0— 1)

1 r2 =
— e3%sin6.cos2¢

W 2, —_—
g (2na®) @
V32, = Constant x (sin®0sin” 29)

= Constant x (sinBsing.sinBcosg)

= d,.



CHAPTER 6

Approximation Methods

6.1 Perturbation Theory

Perturbation theory expresses the solution to one problem in terms of another
problem that has been solved previously.

Suppose we wish to solve the Schrodinger equation,
Hy =Ey
for a particular system, but it is not aways possible to get an exact solution
similar to those obtained for harmonic oscillator, rigid rotator and hydrogen

atom. It turns out that most systems cannot be solved exactly. Two specific
examples are the helium atom and the an-harmonic oscillator.

The Hamiltonian operator for the helium atomiis,

2 2 2
ol (vzevz)-2(l,1), e 1 (6.11)
2m dneg\I, 1, ) Angyrp,
Eqg. 6.1.1 can be written in the form,
2
A A A e 1
H=Hyq+Hup p— (6.1.2)
- o 28 (1),
where, H, .. =——(V%)- —|j=1or2 6.1.3
H() 2m( ) 4ngo(rJJ (613)

is the Hamiltonian operator for a single electron around a helium nucleus.
Thus, HH(l) and HH(Z) satisfy the equation,
HuWh (1287205 ) = Epwia (170,65 ) j=10r2 (6.1.4)

where, v, (rj 0 ,¢j) is a hydrogen like wave function with Z = 2 and where
E (j=1orj=2)aregivenhy,

101
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Z%uet
E =" (6.1.5)
J 212
8esh’n’
Noticethat if it were not for the inter electronic repulsion term,

eZ

Angyly,

in Eq. 6.1.2, the Hamiltonian operator for the helium atom would be separable
and the Helium atomic wave functions would be products of hydrogen like
atomic wave functions.

Another example of a problem that could be solved readily, if it were not for
additional terms in the Hamiltonian, is an-harmonic oscillator. Recall that the
harmonic oscillator potential arises naturally as the first term of the Taylor
expansion of a general potential about the equilibrium nuclear separation.
Consider an an-harmonic oscillator whose potential energy is given by

1 1 1
U, ==k x¥*+=y xX*+=b x* 6.1.6
The Hamiltonian operator is,
32 42
e X2+ly x¥*+—b x* (6.1.7)

If y=b=0, Eq. 6.1.7 is the Hamiltonian operator for a harmonic oscillator.

The two examples, with their Hamiltonian operators, introduce us to the
basic idea behind perturbation theory. In both these cases, the total Hamiltonian
consists of two parts, one for which the Schrodinger equation can be solved
exactly and an additional term, whaose presence prevents an exact solution. We
call the first term an unperturbed Hamiltonian and the additional term the

perturbation. We shall denote the unperturbed Hamiltonian by HO and the
perturbation by H® and write,

H=HO+H® (6.1.8)

Associated with H® is a Schrodi nger equation, we know how to solve and

so we have

H @y 4+ EO© (6.1.9)
where y© and E© are the known eigenfunctions and eigenvalues of H'.
Eq. 6.1.9 specifies the unperturbed system.
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In the case of the helium atom we have,
H = H,+Hyg
WO =y (1,00, 00) Wi (12.05.0,) (6.1.10)

£o - —4ue’  Aue’
8relh’n?  8rglh’ni

and,

2

Ho__©
Are,l,
In the case of an an-harmonic oscillator, we have,
B0 _ —h2 d> 1 ko2

+
2;,t x> 2

(0/) efazx H ( %X) (6.1.11)
(2”n!)y
£~ (n+ Yhv and A0 =T D

Intuitively, it can be expected that, if the perturbation terms are not large in
some sense, then the solution to the complete perturbed system should be close
to the solution to the unperturbed problem. A simple example of this is, when

e bx*

the an-harmonicity terms — and e are small, we expect the unperturbed

system to be perturbed but not altered drastically by the additional term.

Perturbation theory consists of a set of successive correctionsto an
unperturbed problem

Now we shall derive the equations to the perturbation theory in the lowest level
approximation, leaving the higher order terms.

The problem we wish to solveis,
Hy = Ey (6.1.12)
where

HoRoO, 50 (6.1.13)
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and where the problem
H Oy = g0 (6.1.14)
has been solved previously, so that \u(o) and E are known.
Assuming now that the effect of AW s small, we write,

v=v"+ay
and
E=E9 4 AE (6.1.15)
where we assume that Ay and AE are small. Substituting these equations in
Eq. 6.1.12 we Qet,
HO WO L HO WO L HO A, 4 HOAY -
EQy© 4 AEY© + EOAy + AEAY (6.1.16)
The first term on each side of Eq. 6.1.16 cancel because of Eq. 6.1.14. In

addition, we shall neglect the last terms on each side, because they represent
the product of two small terms. Eq, 6.1.16 becomes

HOAy+HOYO =EOAy+AEYO (6.1.17)
Redlizethat Ay and AE are the unknown quantities in this equation.
Note that al the termsin Eq. 6.1.17 are of the same order, in the sense that
each is the product of an unperturbed term and a small term. Therefore, we say
that the equation is first order in perturbation and we are doing here is the first

order perturbation theory. The above neglected second order terms lead to
second order corrections. Eg. 6.1.17 can be simplified considerably by

multiplying both sides from the left by w©" and integrating over all space. By
doing this and rearranging slightly, we find,

.[,/,(0)*[,_](0) _ E(O)]AWHIW(O)*,qu),/,m)d,:

6.1.18
AEJ‘ %, O g7 ( )

The integral in the last term in Eq. 6.1.18 is unity because w© is taken to
be normalized. More importantly, the first term on the left hand side of Eq.

6.1.18 is zero. To see this, remember that H(® — E© is Hermitian, and so we
have that,

I y/(O)*[ KO _ E(O)] Aydr= J' {[ HO _ E(O)],/)(O)}* Aydz (6.1.19)
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But according to Eq. 6.1.14, the integrand here vanishes. Thus, Eq. 6.1.18
becomes,

AE:WQ*H@./%T (6.1.20)

This equation is called thefirst order correction to energy E.
To thefirst order, the energy is,

E=e©+ JW(O)*H @y(©dt + Higher order terms (6.1.21)

6.2 TheVariational Method
The variational method provides an upper bound to the ground state energy of a
system.

The second approximation method that we shall discuss is more useful than
perturbation theory, because it does not require that there be a similar problem
that has been solved previously. This second approximation method is the
variational method.

Consider the ground state of some particular arbitrary system. The ground
state wave function, y, and energy Eq satisfy the Schrédinger equation.

l_’i W(o) = E(O)W(O) (6.2.1)

Multiply Eqg. 6.2.1 from the |eft by \,/;O) and integrate overall spaceto obtain

_JwigHv g

_JTo o (6.2.2)
JWiovdt

o)

where, dt represents approximate volume element. We have not set the
denominator to unity in Eqg. 6.2.2, in order to allow the possibility that w(o) is
not normalized beforehand. There is a beautiful theorem that says that if we
substitute any other function for \y(o) in Eg. 6.2. 2 and calculate,

Id)*l:ld)dr
EBy="5+—
[¢"¢de
the E, caculated through Eq. 6.2.3 will be greater than the ground state
energy, Eq. In an equation, we have the variational principle

E, >E, (6.2.4)

(6.2.3)



106 Quantum Chemistry

The variational principle says that we can calculate an upper bound on E, by
using any trial function we wish. The closure ¢ is to V(o) in some sense; the

closure E, will be to Eo. We can choose such that it depends on some arbitrary

parameters o, B, v, called variational parameters. The energy also will depend
on these variational parameters and Eq. 6.2.4 will read,

E, (0B, 7..) 2 Eg (6.2.5)

Now we can minimize E,with respect to each of the variational parameters
and thus approach the exact ground state energy Eo.

As a specific example, consider the ground state of the hydrogen atom.
Although we can solve this problem exactly, let us assume that we cannot and
use the variational method. We shall compare the variational result with the
exact result.

Because | = 0 in the ground state, the Hamiltonian operator is,

32 2
G hzi(ﬂij_ e (6.2.6)
2uredr\ dr) A4meyr

As atria function, we shall try a Gaussian function of the form #(r) = g’
where, o isavariational parameter. It can be shown that,

4ﬂfdrr¢(7)H¢(r)—(j/}l z) 4205

and that
T, T 7%
472'_([dl’r ¢ (r)¢(r):(zaj

Therefore, from Eq. 6.2.3,
3na 3 ezoc}/2
2u Z%SOE%

(6.2.7)

Now differentiate E(o) with respect to o and set the result equal to zero to
find,

/1264
- 187°%2n* (6.2.8)

as the value of ‘o’ that minimizes E(a). Substituting Eq. 6.2.8 back into
Eqg. 6.2.7 we find that,
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4 4
Ein S =044 ST
37\ 167 elh 167°ih (6.2.9)
compared to the exact value,
E —_i /1—64 =-0 ’u—e4
° 2liex2ein? ) T\ 1612620’ (6.2.10)

Note that E.,, > Ey and the variational theorem assures us. Thus, we see that
the variational method gives a rather good result. We can obtain a better result
by using amore flexible trial function.

Pr oof

Now that we have illustrated the utility of the variationa theorem by example,
we shall proveit. Let,

Ay Ey. (6.2.11)

be the problem of interest. Even though we do not know explicitly, we do know
that we can expand any suitable arbitrary function ¢ in terms of the v, and

write,
¢= chnl//n (6.2.12)
If we substitute this into Eq. 6.2.3 and use the fact that v, are orthonormal,
then we obtain,
Y cGE,
n

DI (6.2.13)

Subtract E, from the left-hand side and from the right hand side to find,
ZC;Cn(En - EO)
E,—E=- ZC*C (6.2.14)

E

Now by definition, Ey is the ground-state energy. Consequently, E, — Eo> 0
for al values of n, and because all the ¢,c, >0, Eq-6.2.14 shows that,

E,—Eo>0 (6.2.15)
which is the variational theorem.
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6.3 TheHartree Theory

Compared to the simplified one-dimensional systems or even to the one
electron atom, multi-electron atoms are quite complicated. But, it is possible to
treat them in a reasonable way using a succession of approximations. Only the
most important interactions experienced by the atomic electrons are treated in
the first approximation, and then the treatment is made more exact in
succeeding approximations that take into account the less important
interactions. In this way, the treatment is broken into a series of steps, none of
which is too difficult. The results obtained will certainly justify the effort
expended, because we shall have a detailed understanding of the atoms that are
the constituents of everything in this universe.

In the first approximation used in treating a multi-electron atom of atomic
number z, we must consider the coulomb interaction between each of its ‘Z’
electrons of charge ‘€ and its nucleus of charge ‘ze'. Due to the magnitude of
the nuclear charge, this is the strongest single interaction felt by each electron.
But, even in the first approximation we must also consider the coulomb
interactions between each electron and all the other electrons in the atom.
These interactions are individually weaker than the interaction between each
electron and the nucleus, but they are certainly not negligible. Furthermore, in a
typical multi-electron atom, there are so many interactions between an electron
and al other electrons that their net effect is very strong, except if the electron
is quite near the nucleus.

Surface of the Atom

=
A MN

Fig. 6.3.1(L eft) The strong attractive force (big arrow) exerted by the nucleus on an
electron near the surface of the atom and the weak repulsive forces (small arrows)
exerted by the other electrons. The net effective repulsive force isimportant which is
the reinforced one of all the forces.

Fig. 6.3.1(Right) The very strong attractive force (arrow pointing towards the nucleus)
exerted by the nucleus on an electron near the centre of the atom and the weak
repulsive forces (arrows pointing towards the el ectron) exerted by the other electrons.
Here the repulsive forces tend to cancel each other.
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On the other hand, the first approximation must not be so complicated that
the Schrédinger equation to which it leads is unsolvable. In practice, this
requirement means that in the first approximation the atomic electrons must be
treated as moving independently, so that the motion of one electron does not
depend on the motion of the others. Then the time independent Schrodinger
equation for the system can be separated into a set of equations, one for each
electron, which can be solved without too much difficulty, since each involves
the coordinates of a single electron only.

The requirement of the last two paragraphs are in conflict - the coulomb
interactions between the electrons must be considered, but the electrons must
be treated as moving independently. A compromise between the requirements
is obtained by assuming each electron to move independently in a spherically
symmetrical net potential V(r), where ‘r’ isthe radial coordinate of the electron
with respect to the nucleus. The net potential is the sum of the spherically
symmetrical attractive coulomb potential due to the nucleus and a sphericaly
symmetrical repulsive potential, which represents the average effect of the
repulsive coulomb interactions between a typical electron and its Z-1
colleagues. It can be seen from the figure that very near the centre of the atom
the behavior of the net potential acting on an electron should be essentialy like
that of the coulomb potential due to the nuclear charge + ze. The reason is that
in this region, the interactions of the electron with the other electrons tend to
cancel. It can aso be seen from the figure that very far from the centre, the
behavior of the net potential should be essentiadly like that of the coulomb
potential due to net charge + e, which represents the nuclear charge + ze
shielded by the charge -(Z-1)e of other electrons.

It might be seen that there is no way to find the net potential of an atom at
intermediate distances from its centre. The problem isthat it obviously depends
on the details of the charge distribution of the atomic electrons, and this is not
known until solutions have been obtained to the Schrodinger equation that
contains the net potential. However, it can be taken care of by demanding that
the net potential be self-consistent. That is, we calculate the electron charge
distribution from the correct net potential, and then evaluate the net potentia
from the charge distribution. We demand that the potential with which we end
up must be the same as the potentia with which we started. As we shall see,
this condition of self-consistency is enough to determine the correct net
potential.

Most of the work in this field, has been started by Douglas Hartree and
Collaborators in 1928. It involves solving the time-independent Schrodinger
equation for a system of ‘z’ electrons moving independently in the atom. The
total potential of the atom can be written as a sum of a set of Z identical net
potentials V(r), each depending on the radial coordinate ‘r' of one electron
only. Consequently, the equation can be separated into a set of z time
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independent Schrodinger equations, all of which are of the same form, and each
of which describes one electron moving independently in its net potential. A
typical time independent Schrédinger equation for one electron is,

L % Y, =E

om Viro.0) TV V00 = V(00

Here, r,0,¢ arethe spherical polar coordinates of the typical electron, V? is

the Laplacian operator in these coordinates, E is the total energy of the
electron; V(r) is its net potential; and V(r0.0) is the eigenfunction of the

electron. The total energy of the atom is the sum of Z of these total energies.
The total eigenfunction for the atom is composed of the product of Z of these
eigenfunctions that describe the independently moving electrons.

Initially the exact form of the net potential V(r) experienced by the typical
electron is not known, but it can be found by going through a self-consistent
treatment comprised of the following steps.

1. A first guess at the form of V(r) is obtained by taking,

2
Aref

= Ir— o
() Age,r

and by taking any reasonable interpolation of intermediate values of ‘r’.
This guess is based on the idea, mentioned previoudly, that an electron very
near the nucleus feels the full coulomb attraction of its charge +ze, while an
electron very far from the nucleus feels a net charge of +e because the
nuclear charge is shielded by the charge -(Z-1)e of the other electrons
surrounding the nucleus.

2. The time independent Schrédinger equation for a typical electron is solved
for the net potential V(r) obtained in the previous step. Thisis not easy to do
because the radia part of the equation must be solved by numerica
integration, since V() is a complicated function. The eigenfunctions for a
typical electron found in this step are Va(r.0.6) V(o) Va(r o.6)

They are listed in order of increasing energy of the corresponding
eigenvaues: E B E,, ... Each of these symbols o,f,v,.. stands for a

complete set of three space and one spin quantum numbers for the electron.

3. To obtain the ground state of the atom, the quantum states of its electrons
are filled in such a way as to minimize the total energy and yet satisfy the
weaker condition of the exclusion principle. That is, the states are filled in
order of increasing energy, with one electron in each state as illustrated in
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Fig. 6.3.2. Then the eigenfunction for the first electron will be y, (r,,6;,¢,)

, the eigenfunction for the second will be wy, (r,.6,,¢,), and so forth

through the z eigenfunctions corresponding to the z lowest eigenvalues,
obtained in the previous step.

+
4
*
Y
Y
+
A
+

Fig: 6.3.2 Schematic energy level diagram illustrating the effect of the exclusion
principle in limiting the population of each quantum state of an atom.

. The electron charge distributions of the atom are then evaluated from the
eigenfunctions specified in the previous step. This is done by taking the
charge distribution for each electron as the product of its charge ‘€’ timesits
probability density function " . The justification is that w y determines
the probability that the charge distributions of ‘Z-1" representative electrons
are added to the nuclear charge distribution, a point charge +ze at the origin
to determine the total charge distribution of the atom as seen by a typical
electron.

. Gauss's law of electrostatics is used to calculate the electric field produced
by the total charge distribution obtained in the previous step. The integral of
this electric field is then evaluated to obtain a more accurate estimate of the
net potential, V(r) experienced by atypical eectron. The V(r) that is found,
generaly differs from the estimate made in step 1.

. If it is apparently different, the entire procedure is repeated, starting at step
2 and using the new V(r). After severad cycles(2—>3 —>4—>5—>2
—>3—> 4 —> —5), the V(r) obtained at the end of a cycle is essentially
the same as that used in the beginning. Then this V(r) is the self-consistent
net potential, and the eigenfunctions calculated from this potential describe
the electrons in the ground state of the multi-electron atom.

In the Hartree procedure, the weaker condition of the exclusion principle is
satisfied by the requirement of the step 3 that only one electron populates
each quantum state. But, the stronger condition is not satisfied since
antisymmetric total eigenfunctions are not used. The reason is that an
antisymmetric eigenfunction would involve a linear combination of Z! =
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Z(Z-1)(Z-2) ....1 terms, which is an extremely large number for al atoms
except for those of very small Z. The procedure is difficult and the use of
antisymmetric eigenfunctions would make it even more difficult. Anyway,
the main effect of using antisymmetric total eigenfunctions would be to
decrease the separation between certain parts of electrons, and increase it
between others. This leaves the average electron charge distribution of the
atom essentially unchanged. Since the average electron charge distribution
is the important quantity in the approximation treated by Hartree, the use of
eigenfunctions which are not of a definite symmetry does not introduce a
significant error. This has been verified by Fock. He made calculations
using antisymmetric total eigenfunctions for a restricted selection of atoms,
and he compared his results with those obtained by Hartree. When the
excited states of the atoms are discussed, it will be necessary to take into
account the fact that antisymmetric total eigenfunctions must be used to
give a completely accurate description of a system of electrons. Fock’'s
calculations are feasible because, it is only necessary to anti-symmetrize the
part of the total eigenfunction describing the behavior of a limited number
of electronsin a“partialy filled sub-shell”.

6.4 EXxercises

Q1: Calculate the ground state energy of a harmonic oscillator (One
dimensional)

Let the tria function = we’°xz bewhere‘c’ isan arbitrary constant.
I v H wax
E="——
J.l// ydx

But for harmonic oscillator is

Before doing the evaluation of the integrals first normalize the trial wave
function.
(A = Normalization constant)

+o0 ®©
* -
Jl// wdx = 2A2J.e_2°x dx =1
—o0 0

fif
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o0 i , , - 2
=- _[63‘CX (— 208 +4c*x%e ™™ )dx + A%k I x2e 2 gx
0 0

=- _T— 2ce 2 dx + T4c2 2g2¢ dx} + Asz x2e 2 dx

el

hz( c) K 72 K
=—|C——|+—=—C+—

m 2) 8 2m 8c
0E, 1k _
oc 2m 8c
n”_k
2m 8c
c="Jmk
h
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— _2ce™ +4cix2%e ™

But
A= X
T
Itk
2m  8c?
I1
c= F\/ mk
_n*  k_ h% L h?c® + 7°mk
™ 2m 8 8r°m 8¢ 87°mc
_Jmk(2z*h) h \/E
87°m 4z \m
but
1 |k
—_— - :VO
2z \m
5 Epn =301,
(Ground state energy of the harmonic oscillator which is also the zero
point energy)
Special integrals *Calculation
Te kxlcbc=%\/%
; d—ze‘CXZ = i[ 2cxe‘°x2]
J e = L dx? dx
. 2k
0

XN
m\
7,
&
1]
IS
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CHAPTER 7

Bonding in Molecules

7.1 Molecular Orbital Theory
LCAO Method — H; - ion

Atom is a centrosymmetric system. However, in molecules it will be disturbed.
We shall make a reasonable approximation that a molecular orbital (MO) is a
Linear Combination of Atomic Orbitals (LCAO).

As individual hydrogen atoms at quite large distance from each other,
(theoretically) are brought closer and closer, the nucleus of each atom will start
to attract the electrons originally associated with the other atom. The change in
energy of the system, as a function of
distance, is usually shown in the form of a
curve called aMorse curve.

When the distance separating the nuclel T \

is a or near the bonding distance, the \f
electron in the system is associated with the

two nuclel instead of the original atomic o
orbitals on each atom. The electron is now

associated with a molecular orbital(MO)  Fig. 7.1.1 Change of energy asa
that is the combination of the two atomic function of distance.
orbitals.

r >

When the electron is near one nucleus, the MO may be assumed to resemble
the atomic orbital of the atom. L et the wave function be ¢, . Similarly when the

electron is in the neighborhood of the other nucleus the MO resembles the
atomic orbital of the other atom. The wave function for this is given by ¢,.

Since the complete MO has the characteristics separately possessed by ¢, and
¢,, the total wave function for the MO is formed by the linear combination of

atomic orbitals. Linear combinations are made by simple addition or
subtraction of the functionsto be combined. In this caseitis

Vol =1+ ¢,

115
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This terminology, called the Liner Combination of Atomic Orbitals or
LCAO method, was first suggested by R. S. Mulliken.

The Schrodinger equation can be written as

8n°m
h2

Vi + (E-V)y=0

This can be rearranged as follows:
2

- anmvz\y +Vy =Ey
or
h (o> o° 07

The left side of the equation can be considered as the action of an operator
called the Hamiltonian operator on v, where y is now a molecular orbital. We
can abbreviate the expression as

Hy =Ey (7.1.2)

where H is the Hamiltonian operator. Just as in the case of atomic wave
functions, the MO wave function y can be either positive or negative and y? is
a quantity proportional to electron density. If we multiply both sides of
equation Eq. 7.1.2 by y and integrate over all space, we obtain

I\VH ydt= E'[wzdr (7.1.3)

In Eq.7.1.3, we have adlowed a single integral sign to stand for a triple
integral sign and have made substitutiondt =d.d d, . By rearrangement, we

xHyHz

obtain the following expression for energy.

Hwydz
E= JW zllf (7.1.9)
_[‘V dt
The wave function is represented by the following linear function
Vi =Gy + G0, (7.1.5)

where ¢, and ¢, arethe atomic orbital wave functions of atoms 1 and 2, and c,
and c, are coefficients to be determined. Substituting the value of the wave
functionin Eq. 7.1.4.
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o J (et oy ) H (G + o0, ) e
[(ciy + Co, ) (s + o, ) dt
3 IQL¢1HQ.¢1dT + I(:.I.(I)lHCZ(I)ZdT + IC2¢2HC1¢1dT + _[Cz(|)2|'|cz¢2dT
) [cto2de+ 2[ cicpup,d+ [ cipddt
& [oHodt+cC, [ 0HO,dT+c, [0, Hyd e+ [ 9,H,d
) c? [ 9Zdt+ 26, [ guppd+ 2 [ oZdt
But we know that Hc,d, =cH¢,
and I¢1H¢2dr :I¢2H¢1dr
Therefore we may write
£ G [0uHodT+ 206, [Hd7+ [o,Hoqde
¢ [rde+2cc, [ i dr+C [ 93de
For simplification, we make the following substitutions
Hy, = [¢:Hyde
Ha, = [9,Hp,d
Hy, =_[¢1H ¢,dt
Sy = [¢7dt
Sy = j‘l’gdf
Sy = J¢1¢2df

Hence,
2 2
E- CJ_|2_|11+2C.LCZH12+022H22 (716)
€S +206,S, +6S,

Since we desire the minimum value of E, it is necessary to minimize E with

oE 8E:0

respect to both ¢; and c,. Therefore, it is necessary that, — = —
oc, ac,

Differentiating Eq. 7.1.6 with respect to ¢;

OE _ (68, +20,0,8), + 38 N0 H,, + 20,H )~ (G Hy, + 20,0,Hyy +03Hn Y26,5, +26,8,) _

ac, (28, +2¢,¢,8,, +¢2S,, )




118 Quantum Chemistry

Thisisrearranged as
(78, +2¢¢,8, +€3S, 26 Hyy + 2, Hy,)
2
(5, +206,8, +¢iS,)
(C].2H11 + 2Cl(':ZHlZ + CgH 22 chlsll + 2C2$2)
2
(5, +206,8, +¢S,)
(C12H11 +20,CHy, + C§H22)
(C_Lzsll +26C,S, + C22522)
So the above equation becomes

(2C1H11 + 2C2H12) — E(ZQS1 + 2C2812)
C'LI.ZS,LI + 201C2812 + CZZSZZ Clzsll + ZClCZSZ + C22822

But E=

that is

GHy +CH, =E(6S; + 02312)
or

¢ (Hy -ESy)+c,(H,-ES,) =0 (7.1.7)
Similarly differentiating Eq. 7.1.6 with respect to ¢, we obtain the following
equation
Cl(le—Eslz)Jsz(sz—ESzz):O (7.1.8)
Egs.7.1.7 and 7.1.8 are called the secular equations.
It isto be noted that the secular equations are of the form
ax+by=0
cx+dy=0
and if we solve this set of linear homogeneous equations, we see that
(ad—bc)y=0
In order this equation to be valid, it is apparent that either 'y’ is zero or else
the coefficient of 'y’ is zero. If 'y’ is zero, no problem really exists. Therefore,
a nontrivial solution requires that the coefficient of 'y’ be zero. This can be
expressed as (ad —bc)=0.
The same condition applied to the secular Egs. 7.1.7 and 7.1.8, where ¢, and
c, are not equal to zero. If they are zero then, w =cg, +C,¢4,=0 whichis
meaningless. Hence, the coefficients of ¢, and ¢, must be zero in order to have a
nontrivial solution.
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The secular equations are
Cl(Hll - E811)+ Cz(le - ES12): 0
Cl(H12 - E512)+ Cz(sz - ESzz): 0

A nontrivia solution to these equations can be expressed in terms of the
secular determinant.

2
(Hll_Eal)(sz_E%Z)_(le_ESZ) =0 (7.1.9)
The terms H;; and H,, are called “coulomb integrals’. Coulomb integral
is apparently the energy of an electron in the valence atomic orbital, .

At least this approximation is reasonable for a neutral molecule, in which
electron - electron and nucleus — nucleus repulsions somewhat compensate.
Hence, we may write H;; =a, and H,,=a,. The term Hy, is called the

resonance integral,  and is essentially the interaction energy of the two atomic

orbitals which is aso called the covalent integral. Both o and B have negative
values.

If the atomic orbital wave functionsin Eq.7.1.5 are normalized, then
Sy = [#idt=S, = [¢dr (7.1.10)

Eq.7.1.10 simply states that the probability of finding an electron in the
orbital is exactly unity. The term Sy, is called the “overlap integral” because it
is a measure of the extent to which orbitals 1 and 2 overlap. For simplification
we shall omit the subscripts and write S for the overlap integral. Then the
secular determinant will be reduced to

= B—ES‘_

B-ES a,-E
For a homo-nuclear species such as H; , we may substitute o, =a, =a.
The detrimental equation the correspondsto

a-E PB-EY
B—ES o-E|
thatis  (a—E)’—(B-ES)’ =0 (7.1.12)
Solution:
Eq.7.1.11 can be written as

(a—E)*-(B-ES)*=0
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(a—E)=+(B-ES) (7.1.12)
If (¢~ E)=—(B-ES)
then E=27P ang (7.1.13)
1+S
if (a—E)=+(B-ES)
then E=2ZP (7.1.14)
1-S

Egs. 7.1.13 and 7.1.14 denote symmetric and antisymmetric energy states.
By taking the secular Eq.7.1.7
¢ (Hy —ESy)+¢,(H,~ES,)=0
and by appropriate substitution, we obtain
¢ (a—E)=-c,(B-ES)
Therefore,

_ B-ES
G = = G

From thisrelation it can be seen that, when

o+p
1+S

g-2-P
1-S
Thus, the molecular orbital wave function can be written as
Y =C0; £Ch,.
To evaluate c; we must normalize the wave function.
[wPdr=[(co, +g9,) dr=1
G J#rdr+ 26 [ggydr+ G} [ ffdr =1
C125‘11 T 2(;128+ 012522 =1lbut S, =S,=1.
Hence, the above equation becomes
2 +2¢’S+ct =1
2¢7 +2¢7S=1
1
=+
@ J2+2S

E= , then ¢; = ¢, and when

, thenc; = —c,.

(7.1.15)
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Arbitrarily taking the positive sign of the normalization constant, the
positive sign under the radical sign corresponds to c¢; = ¢, and the negative sign
under the radical sign corresponds to ¢; = —,. Obviously, the following wave
functions are normalized.

Yg = m(¢1+¢2) (7.1.16)

w=ﬁ(¢l—¢z) (7.1.17)
The valence electron density is obtained by squaring these functions

Ve =57 28(¢1 + 03+ 20,0, )

Va6 + 63 - 204

w3 shows an increase in electron density in the region of overlap between the
atoms over that of the individual atoms. Such an electron distribution stabilizes
the system, and we refer to y, as the “bonding” MO. The energy level of is
: o+p
iven by E=

g Y 1+S

region, and the system is unstable relative to the separate atoms.

.y shows a decrease in electron density in the overlap

Werefer to ya asthe “anti-bonding” MO for which E = a_—[g .

Infigureit show aplot of ¢, ¢5, yi and 3 aong theinter nuclear line.

Position on inter nuclear axis

Fig.7.1.2 Plot of electron densities for the orbitals ¢4, ¢, wg and y, aong the inter-
nuclear axisof H .
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The dashed lines indicate ¢? and ¢35, that is the electron density of the
individual atomic orbitals. The lower solid line indicates 4, the electron

density of the anti-bonding MO, and the upper solid line(dark) indicates \VZB ,
the electron density of the bonding MO.

Fig.7.1.3 is an energy level diagram graphically indicating the energies of
the two MO's that arise from the interactions of two atomic orbitals. Overlap
integrals are generally small and are often in the range of 0.2 to 0.3. Hence, the
anti-bonding MO is destabilized approximately the same amount that the
bonding MO is stabilized.

Yy

Fig.7.1.3 Energy level diagram for the molecular orbitals formed from similar atomic
orbitalsin ahomo nuclear molecule.

In fact, in simple LCAO theory, it is often assumed that S =0. This
assumption simplifies the calculations. With this assumption, the energy levels
ya and yg areequal to o — B and o + B, respectively.

In the case of a hetero-nuclear bond such asin the LiH*, if we neglect S, the
secular determinant yields,

a,—-E B-ES|
B-ES a,-F|

Solving (o, — E)(a, — E)=B? for E gives

E:a1+a2il
2 2

% J_r% (A + 457

\/af +al +2a,a, - daa, + 4B
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The corresponding energy level diagram is given below.

Fig.7.1.4 Energy level diagram for the molecular orbitals formed from dissimilar
atomic orbitalsin a hetero nuclear molecule.

In the above energy level diagram for the molecular orbitals formed from
dissimilar atomic orbitals in a hetero-nuclear molecule the overlap integral has
been neglected.

Notice that, according to the approximate LCAO method that we are now
employing, the energy of the bonding MO is depressed from that of the more
stable atomic orbital by the same amount that the energy of the anti-bonding

MO israised from that of the less stable atomic orbita. If |B| isvery small, the
energy spread between the bonding and anti-bonding levels is just more than
the separation between oy and a,, and then the MO’'s are essentially dightly
perturbed atomic orbitals.

Hamiltonian operator for H,* and H,

H,*ion - It is represented as:

The Hamiltonian operator can be written as

—h? )

8n2mv +V

e L
8n°m r, f,o Ty
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H, Molecule : The coordinates for the hydrogen molecule can be represented as

The Stability of Hydrogen Molecule lon

If the hydrogen molecule ion actually does form a stable species, we should
expect a potential energy diagram as a function of the distance of separation of
the two nuclei, to show a minimum at some equilibrium separation of the two
atoms, ‘a and ‘b’. It should be possible to plot such a curve, if we can evaluate
the expression for the energy of the molecule as a function of the inter-nuclear
separation. Immediately we should recognize that two potential energy
diagrams will be obtained; one for the bonding orbital and one for the anti-
bonding orbital. In both E; and E, the same integral will appear, but the

energies will be different.
We know that

Hy :J'(I)ﬂ'l(l)ldT
Hy =J.¢2|'|(|>2dT
Sz = [ 910,07

The Hamiltonian operator for hydrogen molecule ion can be written as

—h? V2 e e €

87°m n o,

r'12
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Then
-h* _, & €& ¢
Hy= Vee———+—|p,dt
u I ¢1[8n2m noro T b
Thisintegral can be simplified by rearranging that
2 2
_I'z] vz_g
87°m r

is the Hamiltonian operator for the hydrogen atom with electron around atom-1
and since in general

Ho = Ed
the Hamiltonian operator for hydrogen molecule ion can be expressed as

2 e2

H= Eo_ei_i_i

r2 I’12

where E, is the ground state energy of the hydrogen atom. This then gives

2 2
Hy =I¢1{Eo _er_+(:_}¢1d'c
1 2

Now E; and r,, are both constants and for this reason, it is possible to
remove them from under the integral sign giving

e’ e’
HH=EJ%%dHEj@%dHE{%%m

Since 1S wave functions are normalized, it follows that

2
Hy = E0+e__~]

12

where J denoted the integral
2
e
J=—[¢up,dr.
Mo
The evauation of Jis not a ssimple matter and for that reason, it is not

considered here. However, this will help to discuss the shape of the potential
energy diagram in terms of its contribution to the total energy of the system.
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After introducing the Hamiltonian operator, the integral becomes

2

e ¢
Hp = I¢1|:E0 __+_}|)2 dt
f, Iy
on expanding
e? e’
Hiz = Bo [ 016y dv+— [, do——[ gy v
12 2

Since j¢1¢1dr is defined as S, then Hy, can be expressed as

e2
Hp=ES,+—S,-K
lab
where K denotes the integral

e
K=— dt.
I, I¢1¢1 T

Just as with the integral J, the integral K is rather difficult to evaluate, but it
can be helpful to see how it will affect the energy of the molecule.

When we substitute the various integrals in the equation for energy states
_a+p_Hu+Hy,
* 1+S  1+S,

we obtain for the symmetric state

2 2
E+S —J+ES,+oS,-K
E — r12 r12
=
1+S,
2
e J+K
Es—Eo=— -
n, 1+S,
and for the antisymmetric state
2
e J-K
En-Eo=— -
r‘12 1- 812

Although the arithmetic is rather complex, it is possible to evaluate the
integrals J and K as a function of inter-nuclear separation of the hydrogen
nuclei. This result can be shown as potential energy diagram such as the one
shown in the following figure.
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+50
2 Ey
£
=
S
M 0
3 \/
5} Eg
(=]
[8a}

=50 | | | |

I, (angstroms)

Fig. 7.1.5 Potentia energy diagram showing the symmetrical and anti-symmetrical
energy states.

Here the antisymmetric state is seen to correspond to an unstable energy
state, and if the electron were in the anti-symmetrical orbital, we conclude that
the hydrogen molecule ion would be an unstable species. On the other hand, a
symmetric energy state leads to a potential minimum and therefore, a stable
molecular species.

7.2 ValenceBond Theory

The problem of homo-polar bond can be seen from the point of view of
Vaence Bond theory. In this theory, it is assumed that atoms, complete with
electrons, come together to form the molecule. The theory uses the following
two principles:

(i) If waand yp are wave functions for two independent systems A and B,

then we can write the total wave function y for the separated systems as a
simple product

Y =Ya s (7.2.1)
and thetotal energy E = Eo + Ep
(i) If yw,, vy, s, €tc. are the acceptable wave functions for the same system,
then the true wave function w can be obtained by taking a linear
combination of all these wave functions, i.e.
W =Cyr T CQurt+CGyst ... (722)

where ¢, ¢, Cs etc. are coefficients which are adjusted to give a state of
lowest energy. We can interpret the squares of the coefficients as a
gualitative measure of the relative contribution of each wave function to
the true wave function.
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This theory was first applied by Heitler and London in 1927 to the hydrogen
molecule. We shall begin with two hydrogen atoms far enough apart so that no
appreciable interaction can occur. Although the two hydrogen atoms are
identical, for convenience of treatment we may label the electrons as 1 and 2
and the nuclel as A and B; the orbital wave functions for the separate atoms
Ha(e1) and Hg(e;) would then be given by wa(1) and ys(2), respectively. By
using Eq. 7.2.1 the total orbital wave function for the separated atoms can be
written as

ynv=ya(1) va(2) (7.2.3)

Using the wave function wy the energy of the system comprising two
identical hydrogen atoms can be calculated as a function of the inter nuclear
distance rag. Thisis shown graphically in Fig.7.2.1. It may be noted that in the
Fig.7.2.1 the total energy of the two isolated hydrogen atoms at infinite
separation has been taken as zero, so that the energy curve on this plot shows

A

Vo= Wa(D) wa(2) —wa(2) wi(l)

Energy

Wn= Wa(D) wa(2)

W= WA(l) WAR) +ya(2) wi(1)

»
>

Inter nuclear distance

Fig.7.2.1 Variation of energy with inter-nuclear distance for different wave functions.

how much the energy of the system of two hydrogen atoms is above or below
that of the two isolated atoms. Consequently, the energy value at the point of
minimum on an energy curve represents the bonding energy at the equilibrium
inter-nuclear distance for the molecule described by the corresponding wave
function. It is seen that the energy curve N exhibits a minimum, thus indicating
that a molecule is formed. However, the bonding energy is far too small, that is
about 6 kcal/mole, which is only a small fraction of the observed value, namely
109 kcal/mole.

Evidently, the wave function of Eqg.7.2.3 can not be correct. To revea this
error, we must recal that in forming the wave function of Eq. 7.2.3 we
supposed that the two electrons were distinguishable, so that the electrons,
labelled 1 and 2, could be associated with the nuclei A and B, respectively. We
know, however, that when the two atoms are very close together, so that the
atomic orbitals overlap, we can no longer be sure that the electron 1 will
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always be near the nucleus A and the electron 2 near the nucleus B. We can, in
fact, no longer distinguish one electron from the other and hence the system of
two H atoms may be represented by the different states| and Il as

Ha(€1) Ha(€;) Ha(ez) Ha(er)
| I

Let w;and yy; be the wave functions for the states | and 11, respectively.
Following Eq. 7.2.1 they can be written as

vi = wal) ws(2)
yr = vwa@)  we(1) (7.24)

The true wave function y is likely to be some combination of these two
wave functions. Following Eq. 7.2.2 we can write

v = Gy + Gy

= Cuya + wa(2) + Copu(2) wi(1) (7.2.5)

In the case of hydrogen molecule, because of symmetry, the two component
wave functions y; and w; must contribute with equal weight. As the weight is

proportional to the square of the coefficients we can write ¢ = ¢; or ¢; = +

C,. Moreover, since the coefficients are relative quantities we can put ¢; = 1
and hence ¢, = + 1 There are thus two possible wave functions.

ws = wa(1) we(2) + wa(2) we(1) (7.2.6)
Ya = wa(1) wa(2) — wa(2) ye(1) (7.2.7)

Eq. 7.2.6 represents symmetric combination since s remains unchanged by
exchange of electrons 1 and 2, where Eq.7.2.7 represents the antisymmetric
combination since y;, changes sign with exchange of electrons. The energy of
the system (as a function of inter-nuclear distance) calculated by using the
wave function s is shown as curve A. It is thus evident from these energy
curves that y; represents a repulsive or nonbonding state, but s represents a
bonding state. We thus find that the anti-contiguous H atoms will always lead
to repulsion between the two atoms, so that the stable H, molecule can not be
formed. While the symmetric combination will lead to attraction of the two
hydrogen atoms with the formation of a stable H, molecule, the equilibrium
value for the inter-nuclear distance is given by ro, a which the energy is
minimum. The value of 1, found to be 0.80 A isin rough agreement with the
experimental value of 0.72 A. The bonding energy corresponding to this
separation is found to about 72 kcal/mole, which isin better agreement with the
experimental value (109 kcal/mole) than the energy calculated from Eq. 7.2.3.
Evidently, thisimprovement in result has stemmed from the introduction of the
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concept of electron exchange between the two congtituent atoms. The
additional bonding energy, which has resulted from this, Viz. (72-6) or 66
kcal/mole, is consequently known as the exchange energy.

It turns out from the above discussion that ysand wa are the orbital wave
functions of the normal hydrogen molecule. It is also referred to as covalent
wave functions because one €electron is considered to be on one nucleus and
another on the other.

It may be recalled that the calculated bonding energy (=72 Kcal/mole),

obtained by using the orbital wave function ysis considerable in magnitude, it
is dtill far short of the experimental value of about 109 Kcal/mole. The orbital
wave function for the hydrogen molecule may, however, be further improved
by modifying the wave functions of atomic orbitals of the electrons. The
modification can be done dlightly by allowing for the screening of nucleus A
from nucleus B by increased probability of the electrons being found directly
between the nuclei, and also to allow for the fact that the atomic orbitals will no
longer be spherically symmetrical when the atoms are close together.

An additional improvement is also obtained by allowing for the possibility
that both electrons may be simultaneously near one of the nuclel giving rise to
the following two equally likely ionic configurations:

(e2) (&)
Ha(e)Hes and  HaHs(er)
1 v

The wave function for the ionic form of hydrogen molecule may therefore
be represented equally well by wa()wa2)or we()wp2). Inclusion of all
these modifications leads to a bonding energy of about 95 kcal/mole. Further
refinements can be effected by taking into account explicitly the inter-electron
distance, and these lead to a bonding energy, which is only 0.5 kcal/mole less
than the experimental value. This demonstrates strikingly the validity of the VB
approach.

Taking into consideration the possibility of ionic configurations, the
combined wave function for the H, molecule can be written as

W(s) = [WA(D) vs2)+ya(2) wa(D)] HWAL) va)+ye(Dwe)]  (7.2.8)
or more conveniently as

W = Weov t Wion

when atoms are brought together, so that atomic orbitals each containing one
electron overlap, a combined wave function of the form of Eq.7.2.8 is obtained.
This, indeed, is the essentia principle of Vaence Bond Theory and the result is
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the pairing of electrons, which is equivaent to the formation of a single bond.
It might be mentioned that in molecules that are more complicated multiple
bonds may arise from the pairing of four or six electrons; in such cases the
principle of maximum overlapping is used to decide the way in which electrons
are paired.

The coefficient A4 in Eq.7.2.8 is a measure of the degree to which the ionic
forms contribute to the bonding. Since A can be adjusted to give the best value
of the bonding energy, it affords a means of judging the extent of ionic
character of the bond. For instance, for H,, 4is0.17 and the ionic contribution
to the total bonding energy amounts to only 5.5 kcal/mole.

The physical interpretation of Eqg. 7.2.8 is that the molecule is represented
adequately neither by the pure covaent structure H-H nor by the ionic
structures Ha — Hg", but that the true state of affairs lies somewhere between
these two extremes. In such a case, it is said that there is a resonance between
the two structures. Because of resonance, the total energy of the system will
seek a minimum value lying below that for any of the resonating structures.
This gives rise to extra stahility of the actual molecule, measured in terms of
the so-called resonance energy, which is taken to be equal to the difference in
energy between that of the actual molecule and the most stable of the
resonating structures. This concept of resonance is of fundamental importance
in Valence Bond treatment.

7.3 Hybridization

In order to explain the directional characteristics of covalent bonds in
polyatomic molecules, Pauling and Slater suggested that the formation of
covalent bond takes place in the direction in which there is maximum overlap.
It was considered that in case of water and ammonia molecules the hydrogen
atom orbitals overlap with the ‘p’ orbitals and hence should be at an angle of
90°. The greater bond angle in H,0 [105°] or NH, [108°] is supposed to be due

to repulsion between partialy positive hydrogen atoms. However, the
calculation of columbic repulsion shows that the angle cannot deviate from 90°
to 105° in water and 108° in case of NH,.

Further, in case of BeH,, BF, and CH, molecules the number of unpaired

electrons present on the central atom is less than the number of covalent bonds
formed. In order to explain this, it was presumed that the electrons are excited
to the higher orbitals during the formation of covaent bonds. For example,
beryllium has the excited state configuration 1%, 2s', 2p . This should result in

two nonequivalent bonds due to the overlap of the hydrogen atoms with 2s and
2p, orbitals. However, in BeH, both the bonds are equivalent and are at an
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angle of 180°. In order to explain such cases the concept of hybridization was
introduced.

According to the concept of hybridization, in cases where pure orbitals
cannot affect good overlap in the formation of covalent bonds, combination of
pure orbitals having same or similar energy takes place, resulting in the
formation of equivalent hybrid orbitals. The number of hybrid orbitals formed
is equal to the number of combining pure orbitals. If suppose ¢, and ¢, are

the two combining atomic orbitals the resulting hybridized orbitals Wp, and
\th are
Vi, =Gy + G0,

Wh, = Cay +Csf; -

The values of the coefficients should be such that each of the hybridized
orbital is normalized and the two hybrid orbitals should be orthogonal to each
other.

i.e I\uﬁldrzj\uﬁzdtzl
and I\VM‘thdT =0.
Hence, G +C =1land G +C =1.

Further,  [(Cdy +Co, ) (Cody +Ca, ) dT=0
or CC;+CyC, =0.

Thus, the hybrid orbitals are orthogonal to each other. They provide better
overlap with the incoming atomic orbitals and result in the formation of more
stable bonds and a state of lower energy. The energy liberated is called
hybridization energy. This energy is partly used for the excitation of electrons
from lower to higher orbitalsin the atom.

Let us now consider the compositions of different hybrid orbitals.
Linear Structure—BeCl,
Here the chlorine atom p, orbitals interact with the two hybrid orbitals directed

at an angle of 180°, say along z — axis.

The 2s orbital of Be atom is spherically symmetrical and hence contributes
to the formation of both the hybrid orbitals. p, orbital is also directed in the

direction in which the hybrid orbitals are formed and hence can contribute to
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their formation. However, p, and p, have nodes along z — axis and hence

cannot contribute to the formation of the hybrid orbitals along that direction.
Thus, the two hybrid orbitals have contributions only from s and p, orbitals,

hence they are sp hybrid orbitals. The compositions of the two hybrid orbitals
can be shown as follows.

Y, =W +hyy,
\th =&Y+ b2sz

Since the s orbital is spherically symmetrical, it contributes equally to the
making of the two hybrid orbitals. In terms of probability contribution it is %2
and hence the coefficient of the s — orbital wave function in making the hybrid

orbitalsin each case shall be, /% .

1
Hence, v, = ﬁ\us + by,

1
Yh, = E\Vs +By,,
Since each hybrid orbital is normalized,

a2 +b? =1 and af+% then

1
tf:E and b1=\/%-
Hence, \Vhl:%(\us+\ypz).

The two hybrid orbitals are orthogonal to each other.
Hence, aa,+bb,=0

Yo+ Fob»=0
b,=-%,.

Hence vy, = %(\vs -V, )

The two sp hybrid orbitals are thus equivalent, one having contribution from
positive phase of p, orbital and another from the negative phase of p, orbital.

The values of s and p, orbitals can be put in terms of wave function and it can
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be shown that the two hybrid orbitals formed will have maximum probability
directed at an angle of 180° only and thus form more stable bonds.

Trigonal Planar Structure
The hybrid orbitals are directed to the corners of a trigonal plane. Wy, is

directed along x — axis while \llhzand Yhy are in between x and y axes. All
the hybrid orbitals are at an angle of 120°.
The composition of the hybrid orbitals can be shown as follows:

\Vhl = al\Vs + bl\VpX + q\llpy
Wh, = Vs +bw, + Gy
Why = 8Ws +Bow, + Gy

Since s orbita is spherically symmetrical, it contributes equally to the
making of the three hybrid orbitals.

1
Therefore, oy =a,=a, =—~.
Q= =8 Ne
W, isformed along x — axis and hence cannot have any contribution from p,
thet is ¢, = 0.

W, = (%jws +hy,

W, isnormalized and hence,
a b =1
1 2 . 2 2 \/E
—+bf =1 . b=—andp=,[|=.
ST =L E=sandp -

1 , 2
Whl:ﬁ\vs'i' ﬁ‘ljpx-

Now considering that y,, and vy, are orthogonal to each other,

aa, +bb, =0 (cc,=0)
1 2
§+\/gb2—0

-1
b, =—.
2 \/6
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The normalization condition requires
a;+bl+cl=1

11 , 1
SL—+—=+G =1, C,=—
376 )
1
Soc, =—
2 \/é
1 1 1
Hence, thzﬁWs_%pr +E\pr

Considering the orthogonality of W, and W, it can be shown that

a3, +bb, =0, hence Q:-%.

The orthogonality condition of Wy, and W, requires

a,a; +b,b; +c,c;=0

§+€+$C3:0
11 1
BT T
1 1 1
Hence, Vhs= Z Ve T g e T Yy

From physical considerations, the meaning of signs of coefficients can be
understood. W, isformed by contribution from s orbital and positive phase of

p, orbital. Wy, has contribution from s orbital and positive phase of p, orbital

and negative phase of p,, Wh, has contribution from s orbital, negative phase
of p,, and negative phase of p, orbital.

It can be seen that al the three hybrid orbitas are orthogona. By
substituting the wave functions of v, Wi, and \pr, it can be shown that the
hybrid orbitals are at an angle of 120° and will have greater overlap with the
incoming orbitals than the corresponding pure atomic orbitals.

Tetrahedral Structure

For example in the case of methane molecule 2s, and 2p orbitals are close in
energy and hence sp® hybridization takes place. In cases where s and d orbitals
are close in energy, sd® hybridization is possible.
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The four hybrid orbitals can be shown as follows:
Wiy = 8 + B, +Cwp +diy,
Wh, = 8Vs + 0w, + Gy + oy,
Why = 8Ws +hawp +Cw, + 3y,
W, =V +hy, + CaWp, CATAS
The coefficients can be worked out by performing the projection operations

E’Ai and E’Tz on the pendent sigma orbitals and then finding the inverse of the
matrix. It isfound to be asfollows:

1101 1]
2 2 2 2
WS i __l __l E \Vhl
Yox2 2 2 2| Yn
Yoy E __1 E __1 Whs
2 2 2 2
v v
"1 ap
12 2 2 2]
1
Whl_E(W5+WPX+WPy+WPz)
1
WhZZE(WS_WpX_Wpy+WpZ)
1
wh3:_(Ws_pr+Wpy_WpZ)

=N

Vhy =§(\IIS+WPX_\|!py_\ijZ)

The physical meaning of the coefficients can be appreciated if we consider
the four hybrid orbitals to be directed to the opposite corners of the two
opposite faces of the cube. s orbita is spherically symmetrical and hence
contributes equally to the making of al the four hybrid orbitals. The hybrid
orbitals are uniformly disposed with respect to p,, Py and p, orbitals and hence

they also contribute equally to the making of the hybrid orbitals. Thus the
contribution is % by each of the component orbitals and hence coefficient

is L -1

Nz



Chapter 7 | Bonding in Molecules 137

W, is formed from the positive phase of al the three p orbitals. Wy, from

-vep,, -vep, and +ve p, Whyfrom-vep,, +ve Py and -vep, and W, +vep,, -
vep, and -ve p,. Accordingly, the signs of coefficients are obtained.

All the four hybrid orbitals are orthogonal. By substituting the wave
functions of the s and p orbitals and maximizing the probability, it can be seen
that the hybrid orbitals have maximum probability of occurring at tetrahedral
angles.

Octahedral Complexes
In octahedral case the six hybrid orbitals are formed by the combination of

d2 dxz, 2 S, p, b, and p, orbitals i.e. d’sp® hybridization. The orbitals

involved are normally 3dx2_y2, 3d.% 4s, 4p, 4py and 4p, in cases of the

complexes of the first transition series metal ions. This is called inner orbita
hybridization. In some cases sp3d? takes place and is called the outer orbital
hybridization.

The coefficients of the s, p and d orbitals contributing to the six hybrid
orbitals can be worked out by performing the projection operation PA,

I?’Eg and |5T1u on the six pendent sigma ligand orbitals and then finding the
inverse of the matrix.

Vi =TVt 5Wo, t3Va, , ~ TV,

Vi, = JeWs W + 5 Wa,

—_L _ 1 1 R
Wi =5V GV T2 l//dxziyz N AL

Vi, =JeWs =7 Wn * 5V,
Vi =W v 5o, ~2Va, , TV,
l//hé = % Wx - ﬁWpy - % de:,?yz - ﬁ(}udz2

The physica significance of the coefficients can also be understood. The s
orbital is spherically symmetrical and hence contributes equally to al the six
orbitals(1/6); p,, p, and p, contribute equally(1/2) only to the two hybrid

orbitals along that axis in positive or negative phase. dx2_y2 orbital contributes

equally only to the four hybrid orbitalsin the XY plang(1/4), +ve to the hybrid
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orbitals along the X axis and —ve to the orbitals dong Y axis. d22 has greater

+ve contribution(1/3) to each of the hybrid orbitals along Z axis and lesser —ve
contribution(1/12) each to the four hybrid orbitals along XY plane. All the six
hybrid orbitals are orthogonal.

The resulting hybrid orbital wave functions are called Symmetry Adapted
Linear Combinations(SALC's). By applying the reduction formula to the total
character of the hybrid orbitals, we know that the SALC's will be
corresponding to the particular irreducible representations. For example4:’
and E1" in case of sp? hybridization. The composition of the SALC's can be
worked out by the method of projection operators.

The projection operators of 41" irreducible representation and Ei
irreducible representation can be performed to get the proper SALC's which
form the basis for 4" and E,’ representations. The method is applied in the
following way.

The equation correlating the pure atomic orbitals, the coefficients and the
hybrid orbitals can be shown in the form of matrix.

Y, a b ¢y,
Wi, |=|3 b Gy,
V| L& B Gy,

It is difficult to work out a, b, ¢ directly because projection operator can be
applied only on equivalent wave functions (atomic wave functions are not
equivalent). The inverse transformation of the above matrix is therefore carried
out.

Vs X Y 4 |\Wn
Yo || % Y2 Z||V¥hy,
Yo, X Y 4| ¥

Thex, y, zmatrix is the inverse of a, b, ¢ matrix. Hence x, y, z matrix can be
obtained and from this a, b, ¢ matrix can be worked out and thus, the
coefficients of the pure atomic orbitals can be obtained.

The X, y, z matrix describes the transformation of a set of three equivalent
basic functions(hybrid orbitals) into a set of linear combinations having the
symmetry of the atomic orbitals, which in turn have symmetry corresponding to
one irreducible representation of the molecular point group.

B o o e



CHAPTER 8

Appendix

8.1 Sl Units(Systéme Internationale d’unités)

When making measurements of a physical quantity, the result is expressed as a
number followed by the unit. The number expresses the ratio of the measured
guantity to some fixed standard and the unit is the name or the symbol for the
standard.

Over the years, alarge number of standards have been defined for physical
measurements and many systems of units have evolved. Ex. 1. CGS, 2. FPS
and 3. MKS (Metric system). Recently, there has been an attempt to simplify
the language of science by the adoption of a system of units “Systéme
Internationale d' unites’, called the S units.

S| contains three classes of units 1. Base units, 2. Derived units and 3.
Supplementary units.

Base units:
Quantity Name Symbol
length , meter: m
mass kilogram: kg
time" second: s
electric current ampere: A
temperature kelvin: K
amount of substance mole: mol
luminous intensity candela: cd

8.2 Derived Units

Frequency hertz: Hz=1s

Force newton: N = mkg/s?
Pressure, stress pascal: Pa=N/m?=kg/m &
Energy, work, joule: J=N m=m?kg/s

guantity of heat
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Power, radiant flux
Quantity of electricity,

Electric charge
Electric potential
Capacitance
Electric resistance

Conductance
Magnetic flux

Magnetic flux density,
Magnetic induction

Inductance
Luminous flux

Illuminance
Activity

(ionizing radiations)
Surface tension

Heat flux density,

Heat capacity,
entropy

Specific heat capacity,
specific entropy
Specific energy

Thermal
conductivity

Electric field
strength

Permittivity
Permeability
Molar energy
Molar entropy,

watt:

coulomb:
volt:
farad:
ohm:

siemens:
weber:

tesla
henry:
lumen:
lux:

becquerel:

newton per
meter:

watt per
square meter:

joule per kelvin:
joule per
kilogram kelvin:

joule per
kilogram:

watt per meter
kelvin:

volt per meter:
farad per meter:
henry per meter:
joule per mole;

W =Js=m?kg/s®

C=sA
V =W/A =m?kg/s® A
F=C/V =s* A?2’m? kg

Omega=V/A =
m? kg/s® A?

S=A/N =s* A%n? kg
Wb=V s=m?2kg/g A

T =Whb/m? = kg/s A

H =Wb/A = m? kg/s> A?
Im=cdsr

IX = Im/m? = cd sr/m?

Bg=1ls
N/m = kg/s?
W/m? = kg/s®

JK = m? kg/s K

JkgK =m?s? K
Jkg = m?<g
W/mK =mkg/s* K

V/m=mkg/s® A
F/m=s'A?/mé kg
H/m =mkg/s? A2
Jmol = m? kg/s* mol

joule per mole kelvin:  Jmol K = m? kg/s> K mol
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8.3 Supplementary Units
The Radian(rad): Radian is the plane angle between two radii of acircle which
cut off on the circumference an arc equa in length to the radius.

The Sterdian(sr): The Sterdian is the solid angle which, having its vertex at the
center of the sphere, cuts off an area of the surface of the sphere equal to that of
asquare with sides of length equal to the radius of the sphere.

8.4 CGSUnits

erg lerg=107"J

dyne 1dyn=10°N

poise 1P=1dynscm?=0.1Pas
stokes 1St=1cm?¥s=10*m?s
gauss 1G=10*T

oersted 1 Oe = (1000/(4 pi)) A/m
maxwell 1Mx=10°%Wb

stilb 1sb=1cd/cm?=10* cd/m?
phot 1ph=10%Ix

8.5 Prefix Dictionary

Exponent (base 10) of decima numbers: E n = 10"

Factor Prefix  Symbol
10?4 E 24 yotta Y
10 E21 Zetta Z
108 E 18 exa E
10%° E15 peta P
10%? E12 tera T
10° EQ giga G
108 E6 mega M
103 E3 kilo k
10? E2 hecto h
10t E1l deca da
107 E-1 deci d
1072 E-2 centi c
1078 E-3 milli m
106 E-6 micro  p
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Factor Prefix  Symbol
10°° E-9 nano  n
10712 E-12 pico p
101 E-15 femto f
10718 E-18 atto a
102 E-21 zepto  z
1024 E-24 yocto vy

8.6 Experimental Foundation

Energy units: The international system of units (S.I) expresses fundamental
physical quantities such as mass, time, length, thermodynamic temperature and
amount of substance in terms of the units kilogram (Kg), second (S), meter
(M), Kelvin (K) and mole (mol) respectively.

Energy is expressed in Joules (J). Many chemists have been brought up in
C.G.S. system and have been accustomed to expressing (thermochemical)
energy in calories or kilocalories, which are not S.I. units. The appropriate
conversion factor is,

1 Calorie=4.184J.

The energies of electrons in atoms can very conveniently be expressed in
electron-volts (eV), where 1 eV isthe energy acquired by an electron when it is
accelerated by a potential difference of one vaolt.

1eV =1.6021 x 107'° Jatom.

In radiation theory, wavelength A and frequency v (are related by v=%

(where ¢ = velocity of electromagnetic radiation in vacuum (2.9979 x 10% m/s).
The frequency unit, ‘v’ is called the Hertz (Hz ). The wavenumber,v is often

used in spectroscopy, Vz% and the wavenumber unit is thus the reciproca

meter, nrt. In practice, chemists normally find it more convenient to use the
reciprocal centimeter, cm=,

The wavenumber is related to a frequency by v=— or v =% . Substituting

¢
A
thevalueof A; v=cv i.e, v (Hz) = (ms?) x(m?).
We can now use the Planck’ s expression for the quantum of energy, E = hv
=hcv.
E =6.6256 x 1034JS x 2.9979 x 108 ms* x (m™,
=19.863 x 102 Jatom.
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These values relate to single atoms and chemists usually refer to energy
changes per mole of substance, where one mole is the amount of substance that
contains as many elementary particles (electrons, atoms, molecules etc.) as
there are atoms in 0.012 Kg of carbon-12. This number is the Avogadro
number, N where, N = 6.0225 x 102 atoms mole™.

Then the relationship between energy and wave number becomes,
E(Jmole?) = 19.863 x 1076 x 6.0225 x 10® v
E=hvc=JSxms!xn?

E=1.986 x 10 v Jatom x 6.022 x 10* atom/mol
=0.1196v Jmolel

and E(eV) = 1.6021 x 10%Yatom x 6.0225 x 10?* atom/mol

=9.649 x 10* Imol .

8.7 Calculation of Effective Nuclear Charge

In the case of an atom (atomic number Z) consisting of a positive nucleus
(charge Ze) surrounded by ‘Z’ electrons, a given electron ‘i’ will be subjected
not only to the attractive potential field of the nucleus as in the case of asingle
electron of the hydrogen atom, but also to the repulsive potential due to all
other electrons.

So, there are two opposing factors which have to be accounted for.

1. Attraction between the positive nucleus and the electron under
consideration.

2. Repulsion due to the negatively charged electrons with the electron under
consideration.

Therefore, the net result will be the electron under consideration
experiences less nuclear attraction because of the presence of other electrons.
In other words, the el ectron under consideration is said to be screened from the
nucleus.

2 2
ze Ze— where ‘r; is the distance of the ‘i*™
r f
electron from the nucleus of charge +Ze and r;; is the distance between the

and the j™ electrons.

However, it is reasonable to replace the above potential by an effective
potential V(ri) for the ‘i"™ electron, which involves only ‘ri; and is termed a
central potential.

This central potential is used for solving the Schrodinger equation for
complex atom. This method is called self-consistent field method (Hartee-Fock
method).

Hence, the potential ;) = —

iith!
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The wave function can be expressed algebraically as a sum of simple
hydrogenic radial functions of the form,

i=p )
_ (1) axp (@) y (09)
Valrog) = z Cn,r exp Ylim
i=1

where Cn is the numerical coefficient and the integer ‘p’ depends on the extent
of the matching of the numerical functions. Slater (1930) proposed a single
parameter functions to represent the above sum and proposed a set of rules to
determine ‘n’ and the orbital exponent o, .
n+ is calculated for the corresponding real quantum number ‘n’ as:
n = 10, 20, 3.0, 40, 50 6.0
1.0, 20, 3.0, 37, 40, 42

The carbon electronic configuration is 1s” 25” 2p®. Hence, the various Slater
radial functions are,

n*

Ex: R. =N, exp{aalzr}

ol
R,s=N sexp|:A:|
’ 3

oI
I:"ZpZNZpeXp|: ;’;:|

. . n? Z-S
where N isnormalizing constantand 8, =—, oo =——,
me

Z = atomic number; S = screening constant,
6-0.30

1 =
(carbonZ =6 and S=0.3).
Thisvaueis used to calculate Rys.

The effective nuclear charge Z+ acting on the electron is given by Z» = Z -
S, where Z is the atomic number and S is a screening constant.

Ex. For o5 = 5.7

To determine S, divide the electronsinto the respective orbital groups.
1s,
2s,2p,
3s, 3p,
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3d,
4s, 4p,
ad,
af |
5s,5p,
The'S' isthe sum of the contributions of:
(@) Zerofrom any orbital group outside the one considered.

(b) 0.35in general, but 0.30 in the case of 1s, from every other electron in
the orbital group considered.

(c) 0.85from every electron in the quantum level immediately below (near
to the nucleus) than the electron considered, and 1.00 from every
electron in levels dtill nearer the nucleus, provided that the electron
considered isinan ‘s ora‘p’ orbital.

(d) If the electron considered is in a ‘d’ or ‘f' orbital, every electron in
lower orbital groups contributed 1 towards the value of ‘'S'.

Thus for an electron in the 3s or 3p shell in silicon 1, 2, 2p°, 3%, 3p°

(2=19
S=(3x0.35 +(8x0.85) +(2x1)=9.85
7+ =14-9.85=4.15.
1. Calculatethe effective nuclear charge for thefollowing:,

1. He l9:2=72-S=2-(030x1)=17.

2. O: 1 2= 2pa4,

Z+=8—[(0.35% 5) +(0.85) x 2]
=8-1.75-1.70=455

3. Cl= 12 232 2ps 32 3ps,

Z+=17-(0.35%x7)—-(0.85x8)—(2x 1) =5.75
4, K+ 12 232 2ps 32 3ps,

Z+=19-(0.35x7)—(0.85%x 8) — (2 x 1) = 7.75.
5. Ga 12 252 2ps 3s2 3ps 3d10 4s2 4p1,

Z+=31-(0.35x2)—-(0.85% 18) — (10 x 1) =5.

6. Mn2+ 122 2pe 3s2 3ps 3ds,

Z+=25-(0.35%x4)—(18x 1) =5.6.

2. Calculatetheradii of K+ and Cl ionsin KCl given that the bond length

of KClis3.14 A.

It is known that the radius of an ion of an atom is inversely proportional to
its effective nuclear charge operative on its outermost €lectrons.



146  Quantum Chemistry

From the previous problems,
z;, =5.75and z;+ =7.75,

r z
K %—% wedsohaver , +r__ - 314A

A A
cl K+

[o]

r, =1803A andr , =1337A

8.8 Approximate Orbitals

If an atom has more than one electron, we are forced to develop ways of
finding approximate solutions of the Schrodinger equation. The simplest
approximation is to ignore the influence one has on the other. However, this
type of neglect is not justified. There are a number of facets to electron
correlation.

1. The first, and the most obvious is that owing to their similar charges
electrons will avoid being in the same region of space. That is, they will
tend to avoid being at the same distance along a radius. This is “radial
correlation” .

2. They will also avoid being at the same angle to the nucleus. Indeed, all
other things being equal, they will tend to be found on opposite sides of the
nucleus. Thisis* angular correlation” .

3. Of greater subtlety is the “ spin correlation”, which has its explanation in
the Pauli’ s exclusion principle. For reasons nothing to do with their charge,
electrons with the same spin are unlikely to be found in the same region of
space.

A responsible appropriate wave function for an atom should take account of
the three types of correlations. However, to do so requires a great deal of
integrity and effort. Fortunately, for many purposes, we can derive much
valuable information from the use of wave functions, which at first sight appear
to be quite crude.

Slater orbitals

In 1930 J.C. Slater proposed a set of rules for taking into account the influence
of shielding. The angular wave functions derived from the exact solution of the
Schrédinger equation were preserved, but the radial wave functions were
replaced by anew set.

We shall write the Slater radial wave functions as
-6
Rs(r)=N,r"e®
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*

o z -
N. = normalization constant and ¢=—- (original hydrogen atom wave
n

. V4
functions used are —.
n

n 1, 2 3 4 5 6
n 1, 2, 3, 37, 40, 4.2

Here Z' is the effective nuclear charge (See appendix 8.7) and ‘n” is the
corresponding value of ‘n’ in hydrogen wave functions.
Differences between Hydrogen like and Slater orbitals

1. The Slater type orhitals(STO) ignore all but the higher power of ‘r'. This
means that STO’s are not very good approximations close to the nucleus,
but they improve as‘r’ increases.

Therefore, they give better predictions of ionization energies compared to x-
ray spectra.

-z
2. The second difference is the replacement of the exponential factor ™ by
—or
the Slater factor e® (where ¢ = ﬁ).
n

8.9 Angular Momentum

Angular momentum is an important dynamical variable. For a single particle
moving around a fixed point, the angular momentum L is given by the product
of ‘r and ‘p’ can be written in terms of their components as

r=ix+ jy+kz
p=ip, + ip, +kp,

wherei, j and k are unit vectors along X, y and z axis. Therefore, in terms of
the componentsof ‘r' and ‘p’, the angular momentum, L is

L=rxp=(ix+ jy+ka)(ip, + jp, +kp,)
= I(ypz - Zpy)+ J(pr - sz) + k(xpy - ypx)

Replacing p's by the corresponding quantum mechanical operators, the
operators for the components for the angular momentum are as follows:

2

~  ih, @
L=—Tl(yZ-z
=V oy
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- ——( 2 xD)
I:z = _m(xi - Zi)
2n oy  OX
The total angular momentum is obviously given by
L=iL,+ L, + Kk,

However, more important in quantum mechanics is the scalar product of ‘L’
with itself.

LL=15+12+12.
The angular momentum operators are usually expressed in spherical polar
coordinates.

X=rsinfcosd Z=rcoso
y=rsin@sing  and X2 +y?+ 22 =r?
z=rcos0

cose—/m
y=1(r.6,9)

aw:a—‘“aua—‘“am@—"’aq)

or 00 0

izaar+aae+aa¢

OX oOrox 00ox o ox

0 66r+686+86¢

oy aroy o0dy ooy

0 66r+669+68¢

oz oroz 900z 00 0z

By differentiating x, y, z with respect tor, 6 and ¢, we get

o o na or
&=smecos¢ ay_smesncb 5:0056
06 _ cosfcoso 06 _ cosfsing 00 sino
X o oy  r az
op__sing op  cosf P _y

ox  rsin® dy rsin® oy
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Therefore,

~ ih, 0o 0
L=y = 72)
T 0Z oYy

L, =

C,-

rsinesinq)(cosei—g—nei) —-r cose(sinesinq)i
or r oo or

+cosesinq> 1%} N cos¢ O
r 00 rsind od

rsinesinq)coseﬁ—sinzesin(bﬁ—rcosesinesind)i
or 00 or

ih
2 —c052esinq>i——COS'_eCOSd)i
| 00 sne 0
_ih —sin<|)i—cotecosq>i
2n| 00 0
_m(zi_xi)
2r oX oz

_ih

2r

ih

T —rsinesin¢(sinecos¢a£+
r

cosbcosp & sing 0
r 00 rsind o

-rsind cos¢(cosei - s_nei)
or r oo

r cose(sinecosq>ai +
r

0 _cosbsing &

r cosesinecosd)ﬁ + cos? 0cosd —_—
or a0 sne oo

-r sinecos¢cosei +sin? ecosq)i
or 00

_ih (:os<|>i—cotesin<1)i
2n| 00 0
_m(xi_zi)
2t oy OX

cosesjnd)iJr cos¢ O
r 00 rsind o
cosfcoshp 6 sSing O
r 00 rsindad

rsinecos¢(sinesin¢§+
r
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rsin ecosq)smd)i+S|necosecos¢sm¢—+cos q)—

__ih woe
2m —rsin Bcosq)smq)——snecosecosq)an)—e—sm ¢—¢
_ih o
21 0
~ h>| 1 0 1
e bl Cl —)
sinB 00 sin? eaq)

8.10 Laplacian Operator
(Conversion from Cartesian to Polar coor dinates)

%y azw+az
ox* oy oz
oy _dyor v ov o
OX Or OX 00 0x 0¢ OX

o _+ od
Yrax OX Weax W"’ax

Vz\y

az\v_(aw}a_r+6\v} o0 , oy, 0 or
X S or ox 90 ox 0 ox ox
(8\|/e or +6\|19 66+6\V9@ @Jr
o ox 00 ox 0p OX OX
o, or 6\v¢ o0 a\pe a¢) o
or ax 00 6x op 0Ox" ox

oy aw( ) 82w666r+62\y8¢6r
r

ox* or? 000r OX OX  Opor Ox OX
Oy or a0 , 0%y 0 (_) Oy 0920
oro0 ox ox | 007 0 Opd0 OX O

(azw or o9 , %y 00, o? \y( ¢)
ardg ox x| d00¢p Ox ox o9> " ox

2 2
Similarly 6_\4/ and —- Oy

5 pe ——- can be written by symmetry.
y?
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Then the corresponding values in Polar coordinate format be substituted for
those in the Cartesian format as was done in the case of calculation of angular
momentum earlier.

8.11 Supplement to Rigid Rotor

2
z=cos0, E:—sine, [EJ =sin%0
do do

2
d—fz—cose, i:—sinei
do do dz

d_z_gtgj_g(zgj
do®> de\de) de\dedz

_dd’z dz(d dj_ddzz dz(dz djd

= t ol ge s T manz T anl de g | oo
dzdo- do\ldddz) dzde- do\dodz)dz
2 2
OI—Z:—coseiﬂsinzed—2
do dz dz
2 2
.'.d—);:—coseﬂ+sin26d—z
do dz dz
ﬂ:—sineﬂ
do dz

Associated L egendre function

(1_22)d2|:?m2(2)_szplm(z)+|:|(|+1)_ m? :|F'|'m(2)=0

dz dz 1- 72

Associated L egendre polynomial

le(z):(_l)mg: ;zg:ﬁm(z) where 1 =0, 1, 2, 3...

where  m>0 and [m<|

8.12 Supplement to One-dimensional Har monic Oscillator

_ dy_ g d_dpg d _d
y=xB. d.x_\/ﬁ’ dx_dy\/E’ il

2 2
. B((jjy\il-i—(a—Bzij\v:O
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