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Preface  

Chemistry is an experimental science. Nevertheless, quantum chemistry is 
quite different and remained an enigma to most of the chemists and students of 
chemistry.  This is mainly because its foundation lies in ‘quantum mechanics’, 
a collection of abstract laws and equations.  Therefore, there is a need to bring 
the students out of this frame of mind and make them look beyond and enjoy 
the beauty of quantum mechanics.  At the very fundamental level, the reader 
has to realize quantum mechanics as a model of reality. 

 The French philosopher - mathematician Henri Poincare said, “it is hardly 
necessary to point out how much quantum theory deviates from everything that 
one has imagined until now; it is, without doubt, the greatest and the deepest 
revolution to which natural philosophy has been subjected to since Newton”. 
Truly, it is very difficult to accept such a revolution, which is quite contrary to 
everyday experience. The main trouble in learning quantum mechanics is that 
the mind will not be ready to accept the facts connected with situations 
unfamiliar to us. This can be achieved by gaining “QUANTUM INSIGHT” 
into the nature of reality and such an insight will allow us to think about the 
universe in a different perspective. 

 Unfortunately, most of the students and even the teachers are reluctant to 
look into the text books of quantum mechanics, simply because of the 
discomfort resulting out of the diffidence developed over the years.  In view 
of this fact, an attempt made to bring out a book on Quantum Chemistry, to 
provide the reader with necessary background to venture into the realms of 
higher quantum mechanics. To make the book more appealing and interesting 
little chunks of history, philosophy and biographies are included at appropriate 
places in the text.  I consider my effort be rewarded if it can make the average 
student realize and extract the beauty of quantum mechanics from its abstract 
laws and equations, applicable not just to the atomic domain, but to the real 
world as well.  

- Author
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CHAPTER 1 

Historical Background 

1.1  Newtonian Mechanics 

Newtonian mechanics or classical mechanics in its simplest form, known as the 
laws of mechanics is written in terms of particle trajectories. In fact, the 
trajectory underlies the structure of classical physics and the particle underlies 
the model of physical reality. The underlying assumptions and philosophical 
implications of classical physics are so familiar that we have never given them 
a second thought. Classical physics ascribes to the universe an Objective 
Reality, an existence external to and independent of human observers.  

 Our central assumption about the nature of classical universe is that, it is 
predictable. Knowing the initial conditions of a system, however complicated it 
might be, we can use Newton's laws to predict its future. This notion is the 
essence of determinism that supported Newtonian mechanics for more than 
three centuries. 

 Newtonian mechanics has taken such strong roots and everybody believed 
that everything in this universe can be explained on the basis of these laws. 
Many scientists have predicted the end of science as they thought that there is 
nothing new to know and nothing more to investigate. In fact, Prof. John 
Trowbridge at Harvard University, the then Head of the Department, felt 
compelled to warn bright students away from physics. He told them that the 
essential business of Science is over. All that remains is to dot a few 'i's and 
cross a few 't's, a task best left to second rate. 

 In 1994, Albert Michelson, the future recipient of the Noble Prize told the 
audience in one of the conferences that "it seems probable that most of the 
underlying principles have been firmly established and that further advances 
are to be sought chiefly in the rigorous application of these principles to all 
phenomena which come under our notice. The future truths of physics are only 
to be looked for, in the sixth place of decimals”.  

 However, these ideas did not long  and with the discovery of x-rays, 
radioactivity and electron in the last decade of the 19th century, the scientists 
had to think afresh about the universe. 
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 Röentgen discovered x-rays in his laboratory at Wurtzburg in 1895. For this 
discovery, he received Rumford medal of the Royal Society in 1896 and the 
first Nobel Prize in physics in 1901. Henry Bacquerel in 1896 trying to 
reproduce Röentgen's x-rays, accidentally discovered radioactivity in potassium 
uranyl sulphate, a phosphorescent rock available in his laboratory. For this 
discovery, he shared the 1903 Noble prize in physics with the Curies.  

 In 1897, the British Physicist J. J. Thompson demonstrated that the beam 
that leaves the cathode, the so-called cathode rays, consists of a beam of 
negatively charged discrete particles. By balancing this beam between an 
electric and magnetic field, Thompson was able to measure the charge to mass 
ratio of these particles, the currently accepted value being 1.7588 × 1011 
Coulombs/Kilogram (C.Kg–1). Thompson also estimated the charge on the 
electron by utilizing the observation by C. T. R. Wilson (of the Wilson cloud 
chamber) that a charged particle acts as nucleus around which water vapour 
condenses. Thus by performing an early version of the famous oil drop 
experiment of Millikan, Thompson calculated the charge on the electron to be 
about 1 × 10–19C and its mass to be about 6 × 10–31 Kg. Although Thompson’s 
charge to mass measurement was quite accurate, his determination of charge 
itself was in error by 50%. Consequently, his calculation of the electronic mass 
was in error by 50%. Nevertheless, he did show that an electron was much 
lighter than the lightest atom and so it should be a subatomic particle. A little 
over 10 years later, Millikan refined the electron charge as 1.60 × 10–19 C 
almost getting the modern value of 1.6022 × 10–19 C.  

 Although these experiments did not lead immediately to the realization of 
the inadequacy of the classical physics, they showed that the atom was far more 
complex than had previously been thought. It was a major challenge to 
classical physics to provide a structure for the atom, but this was a challenge to 
which classical physics never rose.   

        J. J. Thompson  
 (1856-1940) 

Thompson Studied Engineering at Owens College 
where he developed interest in Science. In 1876, 
he went to Cambridge University on a scholarship 
and remained there for the rest of his life. In 
1884, he succeeded Lord Rayleigh as the 
Cavendish Professor of Physics and Director of 
the Cavendish laboratory. Thompson was an 
excellent teacher and administrator. Seven Nobel 
Prize Winners were trained under Thompson at 
the Cavendish. In 1919, he resigned his 
Directorship in favour of Ernest Rutherford, in 
part because of his lack of sympathy for the new 
Physics of Niels Bohr. Thompson was awarded 
the Nobel Prize in Physics in 1906 and was 
knighted in 1908.
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1.2 Black Body Radiation 
When a body is heated it emits thermal radiation, and the nature of this 
radiation depends on the temperature of the emitting body. When the heating 
element of an electric stove is turned on, it emits radiation. This radiation can 
be detected by placing one’s hand at some distance above the heating element. 
If the stove is on low heat, the radiation can be detected by feeling only and not 
by sight. If the heat is turned up, the stove element will begin to glow first red, 
then white and if the temperature could be raised high enough, even blue. This 
change in colour is evidence that the frequency distribution of the radiation 
emitted by the hot body is changing with temperature. 

 In order to study such radiation, it was found that a particularly desirable 
system was one known as a “black body”. When radiation falls on a surface, 
some of the radiation is reflected and some is absorbed. The absorptivity of a 
surface is defined as the fraction of the light incident on the surface that is 
absorbed, and a black body is defined as one that has an absorptivity of unity. 
That is, it absorbs all the radiation that is incident upon it. In addition, it has 
been shown (Kirchhoff’s law) that the ratio of emissive power, 'E', to the 
absorptivity, 'A' i.e. 

 0

0

E E

A A
 

is a constant for a given temperature.  

Now, since the absorptivity of a black body has been defined as unity        
(A

0
 = 1), we see that the total emissive power of any surface must be given by, 

E = AE0 where E0 = total emissive power of a black body. Since ‘A’ is 
necessarily less than unity for any surface other than a black body, it is obvious 
that no surface can emit more strongly than a black body. Therefore, it is seen 
that a black body is both the most efficient absorber and also the most efficient 
emitter of radiant energy. 

Many experiments were carried out on the black body radiation. The 
apparatus used for the study of black body radiation consists of a well insulated 
cavity with a small opening in one of the walls, and this type of furnace is kept 
at constant temperature. This furnace is called an isothermal enclosure and the 
radiation is observed as it passes through the small hole or opening. In 1858, 
Kirchhoff was able to show that if the walls and contents of the cavity are kept 
at a constant temperature at equilibrium, the stream of radiation in one 
direction must be the same as that in any other direction. It must be the same at 
any point in the enclosure and makes no difference of what material the walls 
are composed. 

In 1879, Stefan had given an empirical relation for the rate of emission of 
radiant energy per unit area of a surface. (The law was experimentally 
discovered by Stefan in 1879 and derived by Boltzman in 1884 based on the 
principles of thermodynamics) 
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4E e T  

where E = Rate of emission of radiant energy per unit area, (or the total 
emissive power), T = Absolute temperature, e = emissivity of the surface,  = 
Stefan-Boltzman constant. (Emissivity is defined as E/E

o
 and for a black body 

emissivity, E
o
= 1).  

 A problem that was of considerable interest at that time was the distribution 
of energy in the spectrum as a function of wavelength and temperature. In 
1894, Willy Wien has provided another useful piece of information in the form 
of displacement law.  It says that the wavelength that corresponded to the 
maximum of the energy distribution of the black-body radiation, obeys the 
relation,    

max
T = Constant. 

 This is a consequence of the theoretical attempts made to calculate the 
shapes of the energy spectra as a function of wavelength. 

 In an attempt to find an expression for the monochromatic emissive power, 
Wien utilised the classical methods of thermodynamics to obtain the equation 

5

a
E f T  

where ‘a’ is constant and f( T) is a function of & T. 

 In order to determine the function f(( T), it was necessary to consider the 
mechanism by which the radiation is emitted. Since, Kirchhoff had shown that 
the nature of the walls, and therefore the nature of the radiator, is not important 
in an isothermal enclosure, any reasonable model can be chosen. Wien chose 
oscillators of molecular size and applied the laws of classical electromagnetic 
theory. He obtained the equation,  

T
b

e
a

E
5

where ‘a’ and ‘b’ are constants. 

 Another theoretical attempt to determine a distribution law was made in 
1900 by Rayleigh, by applying the equipartition principle to electromagnetic 
field. This calculation consists of two parts. In the first, one calculates the 
number of oscillators in an enclosure that correspond to a wavelength, . The 
second part, in accord with the classical equipartition principle, involves 
associating an energy, KT with each oscillator. Jean commented on some of the 
mistakes in the calculation and their combined effort, resulted in the form of a 
modified equation, known as Rayleigh-Jeans equation, 

4

2

c

kT
E
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 Almost simultaneously in 1899, Lummer and Pringsheim made the 
experimental determination of the energy distribution from a black body at 
various values of the temperature. The results are shown in Fig. 1.2.1. 

 

 

Fig. 1.2.1 Comparison of the three radiation laws with the experimental data.                     
(a) Wien (b) Planck and (c) Rayleigh-Jeans with (d) the dotted experimental curve. 

 Wien equation gives excellent agreement with experiment in the region of 
short wavelengths and the Rayleigh-Jeans equation appears to be 
asymptotically correct at long wavelengths. This equation is clearly not correct, 
since, it predicts an impossible situation, namely, at shorter and shorter 
wavelengths the radiation intensity should increase without bound. This 
paradox known as the “ultraviolet catastrophe”, dealt a terrible blow to the 19th 
century classical physics. Hence, neither of the equations is consistent with the 
experimental curves over the complete spectral range. 

 Many attempts were made to propose equations to fit into the total 
experimental spectrum. Such an attempt by Max Planck has brought out the 
most revolutionary hypothesis of the era. 

 For the same reason, Wien was able to choose any type of energy radiator 
that he wished, Planck too made such a choice. It had to be a system capable of 
emitting and absorbing radiation, and among those the simplest type for the 
purpose of calculation is a set of simple harmonic oscillators. Now, according 
to classical ideas, an oscillator must take up energy continuously and emit 
energy continuously. However, in order to find a formula that would fit the 
experimentally determined spectrum of a black body radiator, Planck found it 
necessary to postulate that such an oscillator cannot take up energy 
continuously  as demanded by classical theory, but rather it must take energy in 
discrete amounts. 



6 Quantum Chemistry 

These amounts are integral multiples of a fundamental energy unit o  that 
is, 0, o , 2 o , ...... n o . 

Using this idea, Planck was able to derive the equation, 

1

2
04

kT

o

e

c
E

for the monochromatic emissive power of a black body. Here, ‘c’ is the 
velocity of light and ‘k’ is the Boltzman constant. Since the Wien equation is of 
thermodynamic origin, and therefore correct, it is necessary for the distribution 
law of Planck to contain the temperature in the combination, T or (T/ ) or 
( /T).

Consequently, it can be seen that the quantum of energy, o must be

proportional to 1/  or . We find that o = h  where h = Planck’s constant. By 

making the substitution for o . 

1

12
5

2

kT
ch

e

c
E

 Whereas the energy distribution laws for black body radiation deduced from 
classical concepts had consistently failed to explain the experimental data, the 
quantum hypothesis of Planck succeeded. The hypothesis involves no 
extension of classical ideas, but it is a radical change from the prevalent line of 
thought of that time. Quite in contrast to the classical idea that an oscillator can 
absorb and emit energy continuously from wavelengths of zero to infinity, 
Planck proposed that the energy must be emitted or absorbed, only in discrete 
amounts. This implies that any system capable of emitting radiation must have 
a set of energy states, and emission can take place only when the system 
changes from one of these energy states to another. Intermediate energy states 
do not occur. Thus, we may find an oscillator emitting an energy of 2h , but 
not 0.5 h . 

Physical Basis for the Success 

The physical basis for the success of the quantum hypothesis may be, due to 
the fact that, at a particular temperature there may not be sufficient energy 
available to excite the higher frequency oscillators. It is because, based on the 
quantum hypothesis, they can be excited only by absorbing not less than one 
quantum of energy, h .  On the classical theory, the oscillators could be excited 
in a continuous manner. Therefore, at the temperature T,  when the mean 
thermal energy available is kT, even the highest frequency oscillators could be 
excited with a frequency ‘ ’ (and by equipartition, an energy kT) and so 
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contribute to the radiation from the emitter. Planck’s quantum hypothesis 
therefore has the effect of damping out the high-frequency oscillators, just as 
we realised was necessary. 

 Black body radiation is a fundamental problem, and we have arrived at a 
solution by making a radical alteration to classical theory. Therefore, we should 
expect to discover ramifications of hypothesis in other parts of physics and 
chemistry.  

 It was not long before Planck’s hypothesis had another application. In 1905, 
in order to explain photoelectric effect, Albert Einstein postulated that light 
energy had to be quantized.  

1.3 The Photoelectric Effect  

In 1887, Hertz observed photoelectric effect 
and the first outstanding application of 
quantum theory was in its explanation by 
Albert Einstein in 1905. It should be noted 
that though Planck introduced the idea that 
radiation must be emitted in quanta or 
bundles of energy, he however believed 
that, after being so emitted, the radiation 
spread in waves. Einstein extended Planck’s 
idea further and introduced the important 
concept that the radiation energy is not only 
emitted in quanta but the quanta also 
preserved their identity until they were 
finally absorbed. 

 Photoelectric effect is the ejection of 
electrons from various materials when 
irradiated by visible or ultraviolet light. This effect is the basis of photoelectric 
cell, an extremely sensitive instrument used for detection and measurement of 
radiation. An arrangement that can be used for this study is shown in Fig.1.3.1. 

Laws of photoelectricity, established from experimental facts are as follows:  

(a)  The total photoelectric current is proportional to the intensity of the 
light striking the surface.  

(b)  For each particular metal used to form the surface, there exists a 
threshold frequency or (wavelength) such that, at frequencies below the 
threshold, no electrons are emitted, no matter how great the intensity 
might be. 

Fig. 1.3.1 Schematic diagram of 
apparatus for investigating the 

photoelectric effect. 
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(c) The maximum energy of the emitted electrons is independent of the
light intensity.

(d) The maximum energy of the emitted
electrons is linearly dependent on the
frequency of the incident light.
Fig.1.3.2.

 Item (a) is quite expected, item (b) involving 
discontinuity is surprising, item (c) is totally 
unexpected and item (d) is an unexplained 
phenomenon. 

 Clearly, the photoelectric effect must 
require an explanation radically different from 
classical electromagnetic theory. Einstein’s 
celebrated note of 1905 provided the correct explanation. Going even further 
than Planck, who limited himself to the introduction of discontinuity in the 
mechanism of absorption and emission, Einstein postulated that light radiation 
itself was discontinuous, consisting of beam of corpuscles, named as photons. 
A photon is thus a single quantum of electromagnetic radiation and has the 
energy, h   

 According to the Einstein’s explanation, when a photon strikes a metal 
surface, a given electron on the surface would receive either all of its energy 
'h ' or no energy at all. Again as the electron escapes from the metal, it uses up 
certain energy, W, in overcoming the surface forces, called the work function. 
Moreover, if the electron originates below the surface, additional amount of 
energy may be used up in reaching the surface. So, for an electron originating 
at the surface or one which loses no energy in reaching the surface, the Kinetic 
Energy (K.E.) after leaving the surface will be the maximum.  

Obviously, this K.E. is the difference between h  and W.  

So (½) mv2 = h  – w 

       = h  h
0
  

So (½) mv2
max

 = stopping potential = h  – w or h  h
0
.  

Thus, we can see that if the energy of the incident photon is less than the 
energy needed by the electron to escape from the surface, no emission can take 
place, regardless of the intensity of the incident light, i.e., the number of 
photons, which strike the surface per second.  

According to classical physics, electromagnetic radiation is an electric field 
oscillating perpendicular to its direction of propagation, and the intensity of 
the radiation is proportional to the square of the amplitude of the electric field. 
As the intensity increases, so does the amplitude of the oscillating electric field. 

Fig. 1.3.2 Variation of the 
maximum energy of the 

photoelectrons with 
frequency of the incident 

radiation. 
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The electrons at the surface of the metal oscillate along with the field. As the 
intensity (amplitude)of the field increases, the electrons oscillate more violently 
and eventually break away from the surface with a kinetic energy that depends 
on the amplitude (intensity) of the field. This nice classical picture is at 
complete variance with the experimental observations. Further, this classical 
picture predicts that the photoelectric effect should occur for any frequency of 
the light as long as the intensity is sufficiently intense.  

1.4 The Compton Effect 
The Compton effect provided further evidence for the quantum nature of 
radiation. If photons are really particles, they should possess a momentum, 'p', 
equivalent to h c. This momentum should be observable by allowing a beam 
of light to fall on a beam of electrons, when a transfer of momentum should be 
observed as a scattering of the electrons by the light beam, or as a scattering of 
the photons by the electrons. Compton performed this experiment using x-rays 
as the light beam in 1922, and the results he obtained were in complete 
agreement with the predictions. 

 It has been observed that when monochromatic X-rays impinge on elements 
of low atomic weight, the scattered X-rays were found to be of longer 
wavelength than those of the impinging beam. This phenomenon cannot be 
explained based on the classical theory, because as per this theory 
monochromatic light falling upon matter should be scattered without change in 
frequency. 

 However, the effect could be satisfactorily explained as resulting from an 
impact between the X-ray photon and the electron. Because of this collision, 
the electron recoils and the photon is scattered. In the process the electron gains 
momentum and the photon loses momentum. The decrease in momentum of the 
photon is manifested in the form of lowering of its frequency or increase in its 
wavelength.  

 It has also been shown that only one value of the wavelength shift is 
observed at a given scattering angle: this implies that the momentum transfer 
takes place only in a discrete manner and not continuously. 

 The photoelectric effect is stronger than Compton effect when X-rays of 
energy less than 0.1 MeV are used. In the process of the photoelectric effect, 
the energy of an X-ray photon is completely given up to an electron of the 
atomic system. Since it is impossible for a photon to give up all its energy to a 
free electron, the photoelectric effect can take place only when photons strike 
bound electrons. At higher X-ray energies (about 0.1 MeV) the Compton 
Scattering becomes more important. In this case, an X-ray photon is scattered 
and not really absorbed, since it does not lose a very large fraction of its 
energy. At still higher energies, above 1 MeV (wavelengths less than 
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0.0120
o
A ), the process of pair formation plays a part in the absorption of 

X-rays. As the photon energy increases this process becomes more important
than either photoelectric absorption or Compton Scattering.

Gamma rays are very short electromagnetic waves whose energy range 
overlaps that of X-rays and extends to several MeV. Under suitable conditions, 
a gamma-ray-photon converts itself into a pair of material particles, a positive 
electron and a negative electron. The former is called the positron, while the 
word electron is used only for negative electrons. In this process of pair 
formation discovered by Anderson in 1932, two particles each of mass m

0
 are 

created out of the energy of the gamma-ray, if the initial energy is at least equal 
to 2m

0
c2. According to Einstein’s mass-energy relation E = mc2, the energy 

required to create an electron is 0.511 MeV. Thus, pair formation cannot take 
place until the energy of the photon is at least 1.022 MeV the threshold energy 
for pair formation. Experimentally also this is found to be true. If the initial 
photon energy is greater than this threshold value, the excess appears as kinetic 
energy shared equally by the positron and the electron. 

1.5 Atomic Spectra 

At a time when people were engaged with the problems of black body 
radiation, a similar development was taking place in the field of atomic spectra.   

1. It was observed that when an electric discharge is passed through an
element in the gaseous state, light will be emitted

2. Analysis of this light by a prism or grating spectrometer gives a series of
sharp lines of a definite wavelength, which prove to be characteristic of the
particular element.

In the case of light element such as hydrogen, this line spectrum turns out to
be simple, but for heavier elements, it is more likely to be extremely complex. 
As the experimental data accumulated, people observed some sort of 
orderliness, and so, tried to obtain empirical relations to predict the sequence of 
lines.  

1. In 1883, Liveing and Dewar realised that several possible series exist in the
spectra of alkali and alkaline earth metals but could not discover an
empirical relation to present the order.

2. In 1885, Balmer discovered the equation.
2

2 4

bn

n

 where ‘b’ is a numerical constant and ‘n’ is an integer, e.g. 3, 4, 5......etc. 
The agreement between the observed values, of the lines in the hydrogen 
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spectrum and their values calculated by the Balmer formula, turns out to be 
extremely good.  

2

2 2 2
4 1 1

2

c( n )
v Rc

bn n
The above equation can be expressed as 

 
2 2

1 1

2
v R

n
 where R = Rydberg constant.   

 The Rydberg constant has been found to be specific for a given element and 
very nearly constant for all elements. The difference in its value is due to the 
atomic weight of the element, and it has been found to have a value of 
109,677.58 cm–1 for hydrogen.  

At the time when the Balmer series was discovered, the known portion of 

the electromagnetic spectrum was the visible region (4000 to 8000 ) alone. 
After this discovery, the same general type of other series were discovered. 
The Lymann series was found in the ultraviolet region and the Paschen, 
Brackett and Pfund series were found in the infrared.        

The general equation can be written as: 

2 2
1 2

1 1
v R

n n
 

where  n
1 
= 1  Lyman series   u.v.

n
1
 = 2  Balmer series   Visible

n
1
 = 3    Paschen series     Near IR

n
1
 = 4    Brackett series     Far IR 

n
1
 = 5    Pfund  series    Far IR 

and  n
2
 > n

1
 

 Although the early developments in atomic spectra were significant, they 
were nevertheless empirical. For the most part, they were restricted to 
classifying and correlating the observed data by means of empirical relations, 
and there was no clue how these spectral lines arouse. 

1.6 Atomic Models 

The origin for the spectral lines could be the atoms, is a reasonable assumption. 
But, how the atoms are able to emit such characteristic lines has remained a 
matter of speculation because of the absence of any satisfactory concept of the 
structure of the atom. Subsequently things became clear. 
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With the discovery of radioactivity and the emission of positive, negative
and a number of combinations of these particles, it became clear that atom is
composed of these newly found particles. So immediately the next question
will be, how many of each category are there and how they are arranged in
an atom.

Basing on the available data at that time, J. J. Thompson proposed a model
of the atom with the positive charge distributed uniformly throughout a
sphere of diameter 10-8 cm. The electrons are embedded in the sphere in
equilibrium positions and when disturbed, they oscillate about these
equilibrium positions.
Though it is a crude model, it could account for the occurrence of spectral
lines, but it could not explain the scattering of ' ' particles
One of the ways by means of which these ‘ ’ particles can be observed is
by the scintillations they cause on a fluorescent screen coated with zinc
sulphide. When a thin gold foil is placed in the path of the ‘ ’ particles,
naturally a change in pattern on the screen is expected, compared to the one
obtained without the gold foil in the path. However, the immediate question
will be “How it will change?” Therefore, Thompson calculated theoretically
and concluded that the average deflection of the ‘ ’ particles should be
small and the probability of the large scale scattering is essentially zero.
But, Geiger and Marsden noted experimentally that about 1 in 8000 ‘ ’
particles, incident on a gold foil, is deflected through an angle greater than

This is in complete disagreement with Thompson’s model and his
predictions.

To resolve this, Rutherford proposed a new model of an atom in which the
positive charge is concentrated in a small volume at the centre of the atom.
The electrons are then assumed to move around this centre of positive
charge in various orbits, as the planets in the solar system. This is an
improvement over the Thompson’s model as it accounts for the wide angle
scattering of the ‘ ’ particles in the gold leaf experiment. However, it also
met with some difficulties.

The electrons could not be considered to be stationary because the
unlike charges of the electron and the nucleus cause them to come
together.

If the electrons are assumed to be moving around the nucleus, another
problem arises. When an electric charge is accelerated, it emits or
absorbs radiation. If the electrons are pictured as moving around the
nucleus, they are subject to centripetal acceleration.  According to the
principles of electromagnetic theory, the electrons therefore must
radiate energy. The only place for this continuous supply of energy is



 Chapter 1 | Historical Background 13 

the atom itself, and eventually the electron should spiral into the 
nucleus and in essence run down. Hence, Rutherford’s model is not the 
final answer. 

1.7 The Bohr Atom 

Through many models were proposed, the model proposed by Niels Bohr 
(1913) for the hydrogen like atom, is unique in gaining universal recognition. 
Using the structural ideas of the Rutherford atom, Bohr was successful in 
quantitatively applying the concepts of quantum theory to explain the origin of 
line spectra as well as the stability of the atom. 

 Bohr was able to overcome the difficulties encountered in the earlier model, 
by applying the quantum concept of discrete energy states. 

Assumptions  
1. The electron in an atom is restricted to move in a particular stable orbit, and 

as long as it remains in this orbit, it will not radiate energy. 

2. Using the quantum principle, that an oscillator will not emit energy except 
when it jumps from one energy state to another, Bohr postulated that when 
the electron jumps from a stable energy state of energy E

1
 to another state of 

lower energy E
2
, a quantum of radiation is emitted, with an energy equal to 

the difference between the two states. 

  h = E
1
 – E

2
  

3. In the final form of the theory, Bohr assumed the orbits to be circular with a 
size such as to satisfy the quantum condition that the angular momentum, p, 
of the electron is an integral multiple of the quantity h/2 . Thus   

   
2

nh
p mvr. 

 
2

nh
v

mr
          

 where m and v are the mass and velocity of the electron. ‘h’ is the Planck’s 
constant and ‘n’ is a positive integer known as a quantum number. 

 For a quantitative treatment of a one electron system, the force of attraction 
between the electron and the nucleus is considered to arise from the 
electrostatic attraction between the positive charge of the nucleus and the 
negative charge of the electron, thus F = Z e 2 /r 2, where Z is the atomic 
number of the element and 'r' is the distance between the nucleus and the 
electron. 

 This electrostatic attraction should be equal to the centripetal force resulting 
from the motion of the electron about the nucleus  
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But according to the quantum condition 

2

h
p n. mvr

Hence, substituting the value of 'v' in the above equation 
2 2

2 24

n h
r

mze

for the hydrogen atom, Z = 1 and if the electron is considered to be in the 
ground state (n = 1) the radius of the atom can readily be calculated to be r = 
0.529 A0. 

Energy of the Electron in the Atom 

The total energy of the electron of the atom is made up of its kinetic and 
potential energies. If zero of potential energy is defined as the energy of the 
electron when it is at rest at an infinite distance from the nucleus, its potential 
energy with respect to the nucleus at any distance ‘r’ is found to be 

      
2 2

2

r r
Ze Ze

v F.dr dr
rr

The kinetic energy, 
2
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2 2
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T mu

r

 Total energy of the electron = T + V 
2 2 2

2 2

Ze Ze Ze

r r r

 The energy of the electron in the nth quantum state 

  
2 2 2 2

2 2

4
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Thus the transition between two energy states of energy E
1
 and E

2
 an be 

written as  
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 If n

2
 = 2, it is exactly same as the Balmer equation. The constant term  in the 

above equation has given a reasonable agreement with the Rydberg constant. 
This gave overwhelming support to Bohr’s theory.   

 Now that it has been shown that the equation for the wave number 
developed by Bohr is same as that found by Balmer, it is now possible to 
explain the origin of spectral series. 

 In the equation  

 
2 2
1 2

1 1
v R

n n
 

n
1
 = 2 arises from the fact that the electron transitions are to the second shell. In 

a similar manner, an analogous relation exists between n
1
 = 1 and the Lymann 

series and n
1
 = 3, 4 and 5 for the Paschen, Brackett and Pfund series, 

respectively. 

Extensions of the Bohr’s Theory 

Even though Bohr’s theory could predict the energies of the spectral lines of 
the hydrogen like atoms, it met with some difficulties also. 

1. It could not explain the fine structure in the line spectrum of the hydrogen-
like atom. When Bohr proposed the theory, only single lines were observed 
and the theory successfully predicted them. But as better instruments and 
techniques are developed, it was realised that what were thought to be single 
lines, were actually a collection of several lines close together. This implies 
that there are several energy  levels close together rather than a single level 
for each quantum number 'n'. This would require new quantum numbers and 
there is no way to obtain them directly from Bohr model. 

 This problem was solved by Sommerfeld when he considered in detail the 
effect of elliptical orbits for the electron. For an elliptical orbit, both the 
angle ' ' and the radius vector ‘r’ can vary.  

 Summerfeld found that the degeneracy in this atomic model can be removed 
by considering the relativistic change in the mass of the electron during its 
motion around the nucleus. As the electron revolves around the nucleus, its 
velocity changes continuously, depending on its proximity to the nucleus. 
From the special theory of relativity it is known that the mass of a particle 
increases as its velocity increases. If this effect is taken into consideration, a 
small difference in energy is found to exist between a circular orbit and an 
elliptical orbit. This difference is a function of 'n ', and can be related to the 
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physical picture of energy level in the Bohr atom by considering each major 
energy level to be composed of several sub-levels lying very close together. 

The change in mass of the electron produces slight changes in the effective 
columbic forces operating between the electron and the nucleus. If this 
effect is taken into consideration, a small difference in energy is found to 
exist between orbits of different eccentricities, which will be reflected as 
fine structure in the spectrum. 

The explanation of the fine structure of the spectrum of hydrogen is a 
notable achievement of the Sommerfeld’s modification. But, the greatest 
single contribution of the Sommerfeld’s concept, however, lies in the 
subdivision of the original Bohr stationary states into several sub-states of 
slightly differing energies as characterized by orbits of different 
eccentricities. Inherent also in the concept of elliptical orbits is the concept 
of penetrating orbits. We shall see later that these features form the basis to 
the modern concepts of electronic configuration. 

Zeeman Effect 

When the source emitting the spectral lines 
was placed in a strong magnetic field, a 
further splitting of lines was noticed. In 
order to account for this phenomenon 
called the Zeeman effect, a third quantum 
number known as the magnetic quantum 
number was postulated.  

 An electron in space requires three 
coordinates to describe its position. This 
has three degrees of freedom and should 
require three quantum numbers to describe its energy. Without a spatial 
reference, the arrangement of the orbital plane of the electron is completely 
arbitrary, and this third degree of freedom is degenerate. 

 However, in the presence of an external field, the orbital plane of the 
electron will precess about the direction of the field, and thereby remove the 
degeneracy. The possible positions the orbital plane (Vector representing the 
orbital angular momentum) can assume in space are limited (Space 
quantisation) and the magnitude of its component in the direction of the 
magnetic field is given in terms of the magnetic quantum number ‘m’.  

 The third quantum condition, similar to that of the angular momentum is 

2z
h

P m

Fig. 1.7.1 Space quantization 
in a magnetic field. 



 Chapter 1 | Historical Background 17 

 The magnetic quantum number may have any integral value including zero 
from –l to + l giving a total of 2l + 1 values. 

 The possible values of m when l = 3 are shown in Fig.1.7.1. Positive values 
of ‘m’ describe the components of orbital angular momentum oriented in the 
direction of the applied magnetic field, and the negative values represent 
those oriented in the opposite direction. 

Spin 

The presence of ‘double lines’ in the spectra of alkali metals was attributed 
to the axial spin of the electron by Goudsmit and Uhlenbeck (1925). 

 A simplified account of the way in which this 
property leads to new energy levels can be 
understood, if we remember that a spinning 
electron behaves as a small magnet. Now,  the 
electron moving around in its orbit produces a 
magnetic field just as an electric current in a 
coil of wire produces a field. The arrow 
marked 'H' represents this field. Since the 
electron, because of the axial spin behaves as 
a small magnet, there will be an interaction 
between the two magnetic fields. The field produced by the axial spin either 
reinforces or opposes the field ‘H’ depending on the direction of the spin 
whether it is clockwise or anticlockwise.   

 This interaction will produce energy changes, wherein, a single energy level 
representing a non-spinning electron moving in an orbit, becomes two 
energy levels close together.  Additional electron transitions are therefore 
possible, and new lines appear in the spectrum. Goudsmit and Uhlenbeck 
showed that the spectroscopic observations required that the angular 
momentum associated with the spin of the electron is given by ms.h/2 , 
where ms  is called the ' Spin quantum number’ and can have the value  +1/2  
or  –1/2.    

1.8 Failure of the Old Quantum Theory 

The success achieved by the Bohr-Sommerfeld theory in explaining the atomic 
spectrum of hydrogen prompted its extension to other systems. Although it 
achieved some success in accounting for the spectra of such hydrogen like 
species as singly ionized helium (He+), doubly ionized lithium (Li2+) and triply 
ionized beryllium (Be3+), it failed to predict the spectral lines and spectral 
intensities in the case of many electron atoms. Apart from this, there are certain 
other unsatisfactory features in the theory. For instance, there is no justification 
for the assumption that an electron can move in only those orbits wherein the 
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angular momentum of the electron is an integral multiple of h/2 Further 
whenever it has become necessary to explain an experimental observation a 
new quantum number has been introduced; thus, the introduction of the various 
quantum numbers is arbitrary.  

 Finally, the theory contributed virtually nothing to an understanding of the 
geometry of the molecules.  

 The unsatisfactory features in the old quantum theory led scientists to search 
for new mechanics for the treatment of atomic systems that would relieve the 
wave particle conflict and introduce quantized energy. As a consequence of 
some more efforts in this direction culminated in the formulation of ‘matrix 
mechanics’ by Heisenberg and ‘Wave mechanics’ by Schrödinger.  Afterwards, 
Schrödinger and Eckart have shown that both matrix mechanics and wave 
mechanics lead to the same conclusions. Now these two forms of mechanics 
are covered by the term ‘quantum mechanics’: that means matrix mechanics 
and wave mechanics are merely two different mathematical treatments of 
quantum mechanics. Of these two forms, since wave mechanics are easy to 
understand and can explain all the phenomena in chemistry, this method is 
widely used in quantum chemistry. 

 Quantum mechanics, not only could explain the phenomena associated with 
chemistry, it helped to amalgamate physics, chemistry and material science. 
Earlier also the attempts of Newton were successful in applying common laws 
to the celestial and terrestrial objects alike. Similarly, Mayer and others have 
unified the laws of heat and mechanics, while Faraday and Maxwell have 
shown that electricity, magnetism and optics are closely related. Einstein was 
responsible for bringing together space, time, matter and gravity. The scientific 
community is eagerly awaiting for a theory which can explain everything in the 
atomic, nuclear and sub nuclear levels and beyond that includes the bigger than 
the biggest and the smaller than the smallest, known to us at this point of time. 
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CHAPTER 2 

The Wave Equation 

2.1 de Broglie’s Concept of Matter Waves 

It has already been pointed out that electromagnetic radiation exhibits a 
dualistic character. Under certain experimental conditions, it is found to behave 
as wave, and at other times, it appears to be corpuscular in character.  For 
example, in the explanation of the phenomena like the photoelectric effect and 
the Compton effect, we have to assume that radiation is corpuscular in 
character, whereas in the explanation of some of the optical phenomena like 
interference and diffraction it is necessary to assume that it is wave like in 
nature. Thus, depending on the need of the situation, we have to invoke the 
corpuscular or wavelike nature and even though a behaviour such as this is in 
complete contradiction to all physical experience, today scientists are 
reconciled to this Jekyl and Hyde nature of radiation. 

 

     Confusion  

  

 To add to this dilemma, Louis de Broglie proposed in 1924 that this duality 
should apply to matter also, thus leading to the concept of ‘matter waves’.  We 
know that nature manifests itself in two fundamental forms, namely, matter and 
radiation.  de Broglie reasoned that, since nature loves symmetry, if one form 
of nature is exhibiting duality in properties, the other form also must be equally 
capable of exhibiting dualistic behaviour.  Alternatively, in other words, every 
material particle must also have a wave associated with it. This brilliant 

 J.J. Thompson wrote that the struggle between 
the two models was like “a struggle between a tiger 
and a shark: each is supreme in his own element, but 
helpless in that of the other” 

     Banesh Hoffmann has written on the impact of 
this puzzle on Physicists of the time in his delightful 
and hilarious book “The strange story of quantum”. 
He wrote they could but make the best of it, and went 
around with woebegone faces, sadly complaining 
that on Mondays, Wednesdays and Fridays they must 
look light as wave, on Tuesdays, Thursdays and 
Saturdays as a particle.  On Sundays, they simply 
prayed.  
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prediction was equally brilliantly verified by Davisson and Germer of the Bell 
Telephone Industries, USA in 1927.  Using a nickel crystal as a diffraction 
grating, they were able to obtain diffraction patterns with a beam of electrons, 
thereby proving that electrons also have wave nature. At the same time, similar 
diffraction effects were also observed by Thompson by using extremely thin 
films of metal as diffraction gratings.  Further confirmation of the idea of the 
association of waves and matter was provided by the diffraction phenomenon 
observed with the particles of hydrogen and helium.  Theoretically, such effects 
should exist for all particles, but when the masses are relatively high, the 
equivalent wavelengths are too small to be measured. 

 We have already seen that  E = h  and the frequency is a variable that is 
associated with wave motion, whereas the energy of the system can be 
expressed in terms of particle concepts such as mass and velocity. 

 According to the theory of relativity the energy of a particle of mass ‘m’ and 
velocity ‘c’ is given by E = mc2.  

By equating the above two h  = mc2 

or    h /c  = mc = p    

 where ‘p’ is the momentum of the  particle  

or    h/   = mc =  p 

 If we now consider a material particle of mass ‘m’ and velocity ‘v’ the 
wavelength is given by  =  h/mv  =  h/p, such a wavelength is often referred to 
as de Broglie’s wavelength. 

   de Broglie’s  
   hypothesis 

Wave length and momentum of a particle 

The photon is a relativistic particle of rest mass mo = 0. 

Therefore, P = E/C   (mo = 0 and E = Total energy) 

But E = h   
h h

P
c

There is associated with the motion of each 
material particle a “fictitious wave” that 
somehow guides the motion of its quantum 
of energy.  Using the methods of classical 
optics to describe the propagation of 
quanta, de Broglie was able to explain how 
photon (for that matter electron) diffract 
and interfere. It is not the particles 
themselves, but rather their “guide waves” 
that diffract and interfere.  
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 In contrast to a photon, a material particle such as an electron has a non-zero 
rest mass, mo.  Therefore, the relationship between the energy and momentum 
of a particle moving at relativistic velocities (in a region of zero potential 
energy) is  

2 2 2 2 4
0E P C m C

Therefore Kinetic Energy, 2
0T E m C  or if  << C, 

2

02

P
T

m
.  In either 

case the derivation of 
h

P  cannot be applied to material particle.   

However, de Broglie proposed that 
h

P  and E h  can be used for 

material particles and photons.  Notice that the de Broglie equation 
h

P
implies an inverse relationship between the total energy E of a particle

and its ; namely 

22
01

hc
E

m c
E

 for photon 
hc

E
 as m0 = 0.

de Broglie based his arguments on special theory of relativity. First he 
equated the rest energy, m0c

2 of a material quantum to the energy, hv0  to its 
‘periodic internal motion’ where ‘v0’ is the intrinsic frequency of the particle. 
Next he considered a quantum moving at a velocity ‘v’ with momentum, 

and used relativistic kinematics to show that the frequency and wavelength of 
such a particle are given by the above equations.    

  Strange coincidence 

It has been pointed out by M. Jammer 
that J. J. Thompson in 1906 (discharges 
through gases) was awarded the Nobel 
Prize for showing that the electron is a 
particle, and his son, G. P. Thompson in 
1937 (electron diffraction of crystals) 
was awarded the Nobel Prize for 
showing that the electron is a wave. 
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2.2 Heisenberg’s Uncertainty Principle 

In the wave nature of the electron, we find the first of the two underlying 
precepts of quantum mechanics.  The second of these is the Heisenberg’s 
uncertainty principle, which states that it is impossible to determine the 
position and momentum of any particle precisely and simultaneously.  The 
statement, which was first enunciated by Heisenberg in 1927, can be illustrated 
by the following discussion. 

 Suppose we device a hypothetical experiment to measure the position and 
velocity of an electron.  We would set up two ‘ ’ ray microscopes that could 
see electrons, and measure the time taken for the electron to pass from one to 
the other. 

 P in the Fig.2.2.1 represents the electron. It can only be observed, if a 
photon incident upon it is scattered into the aperture of the microscope, i.e. 
within the cone of the angle 2 . Now a photon of frequency ‘ ’ will have an 
associated wavelength  and hence  = h/p = c/ .       

Therefore,  p = h /c.  

hv      P   x 

Fig. 2.2.1 The ‘ ’ ray microscope. 

 If the photon is scattered in a direction making an angle ‘ ’ with the ‘x’ 
axis, the electron will receive a component of momentum 

1
h

cos
c

along the ‘x’-axis and since the electron will be detected for any value of the 

angle ‘ ’ between 90o ± , the momentum may have any value between  

1 90
h

cos
c

 and 1 90
h

cos
c
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i.e. between 1
h

sin
c

 and  1
h

sin
c

. 

 If we define this spread of values, as the ‘uncertainty’ in the value of ‘p’ and 
denote it as ‘ p’, then   

 
2h

p sin
c

 

we would try to reduce this uncertainty by making ‘ ’ small, i.e. by using a 
microscope of smaller aperture; but the accuracy with which an object can be 
located by a microscope is defined by the Rayleigh equation for the resolving 
power, 

c
x

v sin

where  x  is the uncertainty in ‘x’, the coordinate denoting the position of the 
electron.   

 Thus a smaller aperture, while decreasing the uncertainty in momentum, 
would increase the uncertainty in position. 

 In this experiment 

  
2

2
2

h c
x. p sin . h

c sin
. 

 In general, the product, x. p is of the order of the Planck’s constant, ‘h’.  
This is one way of expressing Heisenberg’s uncertainty principle (1927).  

 We can illustrate its importance by an example.  Suppose that we can locate 

the position of an electron with an uncertainty of 0.001Å, i.e. x = 10
–11

 cm.  
We know that x. p h   

 Substituting in equation 

  
27 2 2

16 1
11 1

10 . .sec
6.6 13.2 10 . .sec

10 .sec

g cm
p g cm

cm
 

 This uncertainty in momentum, which is the result of uncertainty in 
velocity, is quite negligible in macroscopic systems, but it is far from negligible 
in systems containing electrons, since, there we are dealing with masses of the 
order of 10–27 grams.  So precise statements of the position and momentum of 
the electrons have to be replaced by statements of probability that the electron 
has a given position and momentum.   

The introduction of probabilities into description of electronic behaviour is a 
direct consequence of the uncertainty principle; a small uncertainty in position 
implies a high probability that the electron is at a given point.  
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This probability concept can be further illustrated, if we consider the 
electron diffraction experiments of Thompson in which the diffraction rings 
obtained correspond to regions of high electron density. If a single electron is 
sent through the diffraction apparatus, it obviously cannot interfere with itself 
to give a diffraction pattern, and the Heisenberg’s uncertainty principle tells us 
that we cannot follow its course precisely.  We can say, however, that there is a 
certain probability that it will take a particular path, and that the electron is 
most likely to be found in those regions where we get the greatest electron 
density in experiments using beams of electrons. Thus, a high intensity in a 
diffraction experiment, measured by the square of an amplitude factor in a 
wave equation, can be related to a high probability, that an electron is in a unit 
volume around a given point. 

We will make use of both the concepts, electron density and electron 
probability. 

It is not difficult to see why the uncertainty relation should exist. Any 
measurement must, by necessity, result in some disturbance on the system. 
Thus, when we determine the position of a quantum mechanical object, say, an 
electron, we have also supplied some energy to it (for example by shining light 
on it) so that its velocity or momentum becomes less well defined.  However, 
in dealing with macroscopic bodies, the amount of perturbation is so negligibly 
small that its momentum can be accurately measured at the same time. 

The Heisenberg’s uncertainty principle can also be expressed in terms of 
energy and time as follows.   

Since,  momentum/time = force and energy = force × distance, we write 

h/2   = (momentum). (distance) 

= (force x time). (distance) 

= (force x distance). (time) 

= (energy). (time) = E. t 

Thus, we cannot measure the kinetic energy of a particle with absolute 
precision (that is, to have E = 0) in a finite span of time. This equation is 
particularly useful for estimating spectral line widths. 

The uncertainty principle comes into force because of the wave like 
properties of “particles” like electrons and protons. The waves tell the 
dynamics of the particle – its momentum, its energy and even its angular 
momentum. 

The wave runs through time and space.  The wavelength of the wave 
running through space gives the particle’s momentum.  The frequency of the 
wave running through time gives the particle’s energy.  However, a wave 
cannot really represent a particle. A particle is located in, at only one place in 
space.  A wave is not located in only one place. 
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The conflict between a wave and a particle can never be resolved. It can 
only be compromised, and can only be compromised by the ‘uncertainty 
principle’.  The compromise goes like this: If you get a wave that will not run 
forever, but will just wave, in one location, and then kill itself, it will be like a 
particle.  This kind of wave is called a ‘wave packet’. 

   Fig. 2.2.2 A wave packet made of simple harmonic waves (1,2,3 ..n). 

 Wave packets are made by adding together many simple (harmonic) waves 
that run forever.  They do this because the waves have different wavelengths 
and frequencies, so some are in phase while others are not.  However, they do 
not cancel each other completely.  At one special place, the location where you 
want the particle to be, all the waves should be in phase.  That way the added 
effect of the waves is constructive in that one special location and destructive 
everywhere else. 

 Therefore, it takes a mixture of different waves to make a wave packet, 
which we call a particle as shown in Fig.2.2.2.  Now comes the catch. The 
wavelength or frequency represents the momentum or energy of a particle.  If a 
mixture of different waves makes a particle, the particle automatically has a 
mixture of momenta and energies.  That mixture is the uncertainty.  Of course, 
you can make the particle out of only one wave, so that there is no uncertainty 
in momentum and energy.  But, one wave will not make a wave packet and it 
runs forever.  So, if you make a particle from one wave, you cannot tell, at 
what location or what time it exists.  Uncertainty again.  However, you do not 
have to have uncertainty in momentum or energy - if you are willing to accept 
uncertainty in location or time – if you accept uncertainty in momentum or 
energy you can avoid uncertainty in location or time.  You can get some 
uncertainty in anything, but you cannot rid of all the uncertainty in everything. 

 The number ‘h’ known as Planck’s constant tells us how much uncertainty 
there must always be.  The quantity ‘h’ is a basic constant of universe.  The 
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product of the two uncertainties together has a minimum value of ‘h’.  It does 
not become obvious until you enter into the world of photons and electrons. 

Energy & Time and Position & Momentum are conjugate variables. 

   x or t 

x × p = h 

t × E = h  

x or t   

2.3 Wave Equation 

If electrons have the wave properties then there must be a wave equation and a 
wave function to describe the electron waves just as the waves of light, sound 
and strings are described.  Let us consider the motion of a string which is held 
fixed at two ends, x = 0 and x = a.  It is possible to excite with care certain 
kinds of vibrations, in which all points of the string move, so that their 
displacements vary with time in the same way and all points are at their 
maximum displacements at the same time and have their maximum velocity at 
the same time.  If the displacements occur in the y-direction, mathematically 
these motions can be described by functions of the form 

y x,t f x t       .....(2.3.1)

where f(x) is independent of  t and (t) is independent of  x.  Such motions are 
called normal modes of vibration.  The wave equation has the general form  

2 2

2 2 2

1d y d y

dx c dt
 .....(2.3.2) 

where ‘c’ is called the wave velocity.  Substituting for ‘y’ from the Eq. 2.3.1  in 
Eq.2.3.2 one obtains 

p 
×

 
E
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2 22
2

2 2

1d f x d tc

f x tdx dt
 .....(2.3.3)

 In Eq. 2.3.3 the variables are separated and they may be equated to the same 
constant, say – 2.  This gives us two ordinary differential equations 

2
2

2
0

d t
t

dt
.....(2.3.4) 

2
2

2 2
0

d f x f x

dx c
        .....(2.3.5) 

Eq.2.3.4 has the solution 

t Asin t Bcos t .....(2.3.6)

where the two constants A and B are determined from the laboratory 
conditions, and  is called the circular frequency which is related to the 
ordinary frequency ‘ ’ as 

2 v         .....(2.3.7) 

Eq. 2.3.5 may therefore be written as 
2 2 2

2 2

4
0

d f x
f x

dx c
.....(2.3.8)

 Setting  = c/  the general solution of  Eq. 2.3.8 may be written as 
2 2

2 2

4
0

d f x
f x

dx

1 2
2 2i x i x

f x A exp A exp .....(2.3.9)

or   
2 2

sin cosf x c x D x  .....(2.3.10) 

where A1, A2, C and D are constants.  Let us consider Eq. (2.3.10) and impose 

the boundary conditions 

(i) f(x) = 0   at x = 0;  and

(ii) f(x) = 0   at x = a

where ‘a’ is the length of the string.  From the boundary condition (i), D = 0 

and from the condition (ii), 
2

sin 0c a  or 
2

sin 0a  or 
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2
a n , where n = 1,2,3,…….      .....(2.3.11) 

where n is a positive integer.  Thus 

2
a n .....(2.3.12) 

The normal modes are thus the stationary sine waves given by 

sin
n

f x c x
a

.....(2.3.13)  

and the wavelengths  are such that the length of the string is an integral 
number of half waves.  The complete solution for a normal mode in a stretched 
string therefore follows from Eqs. 2.3.6, 2.3.7, 2.3.11 and 2.3.13 and is given 
by 

, sin . sin 2 cos 2
n

y x t C x A t B t
a

  .....(2.3.14) 

 Eq. 2.3.14 is an expression for the amplitude of waves generated during the 
normal modes of vibration in a stretched string.  The same equation should 
represent the amplitude of a de Broglie wave associated with a moving particle. 
We are primarily concerned here, with the time independent or stationary 
waves.  Therefore, the equation for a standing sine wave of wavelength  is 
given by  

2
sin sin

n
C x C x

a
.....(2.3.15) 

where ‘ ’ is called the wave function with the amplitude of the wave varying 
sinusoidally along x and C is the maximum amplitude.  Double differentiation 
of Eq. 2.3.15 with respect to x gives  

2 2

2 2 2

4 2 4
sin

d
C x

dx
  .....(2.3.16) 

 The kinetic energy T of a moving particle of mass m and velocity ‘v’ is 
given by  

2 2
21

2 2

m
T m

m
.....(2.3.17) 

Following the de Broglie relation, T becomes 
2

22

h
T

m
.....(2.3.18)

By using Eq. 2.3.16 to eliminate  2 from Eq. 2.3.18 we get  
2 2

2 2

1
.

8

h d
T

m dx
.....(2.3.19)
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If the particle moves in a field, whose potential energy is V, then 
2 2

2 2

1
.

8

h d
T E V

m dx
.....(2.3.20)

where E is the total energy.  This is Schrödinger‘s equation for a particle in one 
dimension.  It is usually written as  

2 2

2 2

8
0

d m
E V

dx h
.....(2.3.21) 

In three dimensions this equation becomes: 

2 2 2 2

2 2 2 2

8
0

d d d m
E V

dx dy dz h
.....(2.3.22)

2.4 Interpretation of Wave Function 

The success of wave mechanics was well demonstrated by Erwin Schrödinger 
before an acceptable interpretation of the wave function was known.  Max 
Born utilized the probability concepts of the uncertainty principle to give us the 
presently accepted ideas of the wave function.  According to Born, the wave 
function of a particle is not an amplitude function in the common sense used 
for the ordinary waves, but rather, it is a measure of the probability of a 
mechanical event.  

 It might then be expected that a quantum interpretation that seems quite 
reasonable for photon should also hold for an electron.  This leads to the 
postulate that the square of the wave function of an electron is proportional to 
the probability of finding the electron in a given volume element dx.dy.dz. 
Such an interpretation is just a postulate and may or may not be legitimate. 
One of the most significant indications of its validity lies in the treatment of 
directional bonding in molecules.  The positions, at which the density of the 
bonding electrons is calculated to be the greatest, are where the bonded atoms 
are found to be located.  For example, in the molecule H2S, the hydrogen atoms 
lie at an angle of about 920 with respect to each other, and according to simple 
theoretical calculations the electron density is a maximum at an angle of 900. 

 The symbol  is usually used to denote the wave function of an electron, 
and very often contains, ‘i’ the square root of ‘–1’.  Since the probability that 
an electron is in a given volume element must be a real quantity, the product 

*  will always be real, where  can possibly be imaginary.  As an example 
a + ib can be considered to be the complex quantity.   Its complex conjugate 
can be obtained by changing ‘i’ to ‘-i’ giving a - ib.  The product will then be 

2 2a b , which is always a real quantity. 
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Ex. If   a ib

* a ib   

The product * 2 2a ib a ib a b

 If  turns out to be a real quantity initially, then  and its complex conjugate are 

the same. 

2.5 Normalized and Orthogonal Wave Functions 

The square of the wave function is said to be proportional rather than equal to 
the probability that the electron is in a given volume element dxdydz.  This 
arises from the fact that if the wave function,  is a solution to the wave 
equation, multiplication by any constant such as A will give a new wave 
function, A , which is also a solution to the wave equation.  This means that 

it is not possible to say that 2  is equal to the probability, but it is only 
proportional to the probability that the electron is in the given volume element. 
However, since multiplication by a constant is possible, it is usually convenient 
to multiply the wave function by a constant that will make the square of the 
resultant wave function equal to probability. 

 The probability of a certainty is defined as unity.  Thus, if it is a known fact 
that the electron is in a given volume element, dxdydz, then we can say that the 
probability that it is in this volume element is unity.  This leads to the relation 

1*dxdydz

 If a wave function satisfies this relation, it is said to be normalized.  If the 

electron is in the volume element, dxdydz then * ,dxdydz will be equal to

the probability that the electron is in this volume element. 

 Very often  is not a normalized wave function.  However, we know that 
it is possible to multiply  by a constant, A, to give a new wave function 
A , which is also a solution to the wave equation.  The problem is to choose 
the proper value of A to make the new wave function A  normalized 
function.  In order for the new wave function, A , to be a normalized 
function, it must meet the requirement 

1*dxdydzAA

Since A is a constant, it can be removed from under the integral sign giving 

1*2 dxdydzA
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A is known as a normalizing constant and can be determined from the above 
equation.   

 If 1  and 2  are two wave functions then these two wave functions are 
orthogonal to each other in case  

1 2 0dxdydz

 If 1  and 2  are also normalized wave functions then they are called 
orthonormal wave functions. 

2.6 Exercises 

Q.1:  Determine the value of A to make the wave function,

a

xn
AN sin

   a normalized wave function within the limits x = 0 to a. 

Solution: 

Let A is the normalization constant and N  the normalized wave function. 

Then 

a

xn
AN sin

within the limits 0 a  

The normalizing condition is  
a

NN dx
0

* 1

 Substituting the value of N  in the above equation 

a

dx
a

xn
A

a

xn
A

0

1sinsin

a

dx
a

xn
A

0

2

1sin

2

cos1
sin

1
sin

2
2

0
2

2 but
A

dx
a

xn
A

a
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 Substituting 

2
0

1

2

2cos1

A
dxa

xna

2
0 0

1

2

cos

2

1 2

A
dxdx

a a
a

xn

2

0

0

1

2

sin

2

1

2

1 2

Aan
x

a

a a
xn

The normalized wave function is 

aa

xn
N sin

2
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CHAPTER 3 

The Postulates 

3.1  The Formulation of Quantum Mechanics  

In its beginning, quantum mechanics was approached in two completely 
different ways. Schrödinger, reasoning that electronic motions could be treated 
as waves, developed wave mechanics. In this treatment, he took over the great 
body of information from classical physics about wave motion and applied it to 
electronic and molecular motions. The stationary states that an electron or 
molecule might have were analogues to standing waves set up by applying 
appropriate boundary conditions. Later on, a mathematical formalism becomes 
associated with the Schrödinger method that related observable quantities to 
certain mathematical operators. Werner Heisenberg, independently and slightly 
earlier, had used the properties of matrices to get the same results as 
Schrödinger. This approach to quantum mechanics looked very different, but a 
little later Born and Jordan showed that they are equivalent. Later still, in the 
more general treatments of quantum mechanics by P. A. M. Dirac and J. Von 
Neumann, the Schrödinger and Heisenberg approaches were shown to be 
specific cases of a more general theory. 

Schrödinger Wave Equation 

Bohr’s theory could not explain the Stark and Zeeman effect, and the spectra of 
atoms more complex than alkali metals. With the formulation of wave particle 
duality of matter by de Broglie in 1924, it was possible to treat particles such as 
electrons as waves and a wave equation for such a purpose was sought. de 
Broglie related the wavelength of a wave associated with the linear momentum, 

P = mv, of a particle by the celebrated equation =
h

p
or with the energy

In 1927, Heisenberg added one more dimension to the problem through the 
uncertainty principle. The uncertainty principle states that “it is impossible to 
determine precisely and simultaneously both the position and momentum of an 



34 Quantum Chemistry 

electron”. So the product of the uncertainties in linear momentum and in 
position is at least of the order of Planck’s constant, i.e.., .x p h , 

Both these important relations are incorporated in the wave equation 
constructed by Schrödinger and known after his name. It is written as, 

2
2

2

8
0

m
E V

h
 

where, 
2 2 2

2
2 2 2x y x

E = Total Energy, V = Potential Energy, 

E-V = T = Kinetic Energy,

m = mass,

 = the wave function which takes care of the wave nature, of the particle
having mass ‘m’. 

Such a wave equation can easily be derived based on postulates of quantum 
mechanics. 

3.2 The Postulates of Quantum Mechanics 

The postulates of any theory are a set of fundamental statements that are asked 
to be believed and draw conclusions from them. These conclusions are then 
tested by experiment and if they are confirmed, the belief in postulate is 
justified. Before going into the postulates themselves, it is necessary to 
understand the meaning of the terms “dynamical variables” and “observables”.  

Any property of a system of interest is called a dynamical variable. Thus 
the position ‘r’, the energy ‘E’, the ‘x’ component of the linear momentum ,  
and so on, are dynamical variables even though in a given system some of 
them may be constant. In general, any quantity of interest in classical 
mechanics is a dynamical variable. An observable is any dynamical 
variable that can be measured. In classical mechanics, all dynamical 
variables are observables, but there are certain fundamental restrictions 
placed upon simultaneously measurable quantities in quantum mechanics. 
To measure the components of the momentum vector, which the particle has 
at some point P, it is necessary to make a simultaneous measurement of the 
position and momentum of the particle. However, there exists an 
uncertainty relation for such a simultaneous measurement of dynamical 
variables on microscopic particles. With this background in mind, we 
introduce the basic postulates of quantum theory.  
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3.2.1 Postulate I  
(a) Any state of dynamical system of ‘N’ particles is described as fully as

possible by a function, 1 2 3 3, , ,......... ,nq q q q t  such that

(b) the quantity *d  is proportional to the probability of finding 1q

between 1q  and 1 1qq d ; 2q  between 2q  and 2 2qq d ;……………, 3nq

between 3nq  and nqn dq 33 at a specific time ‘t’. 

What this postulate says is that all the information about the properties of a 
system is contained in a ‘ ’ function which is a function only of the 

coordinates of the ‘N’ particles and the time ‘t’. If the wave function includes 
the time explicitly, it is called the time dependent wave function. If the 
observable properties of a system do not change with time, the system is said to 
be in a stationary state. A ‘ ’ function describing such a state is called a 

stationary state wave function, and the time dependence of such a wave 
function can be separated out.  

The second part of the postulate gives a physical interpretation of the ‘ ’ 

function. This interpretation is the easiest to visualize for a system containing a 
single particle constrained to move in one dimension. The quantity  is then 
the probability of finding the particle between x and x +  at a given time ‘t’. 
A ‘ ’ function may be complex; hence the probability density is a product of 

with its complex conjugate.

In order for these functions to be in accord with physical reality, they are
subject to certain restrictions. These restrictions are the following: 

3.2.2 Well Behaved Wave Function 

Even in the weird world of quantum mechanics, the condition that a particle 
must exist somewhere, restricts the class of physically admissible functions to 
those that are normalizable. But, normalizability is the only mathematical 
condition a function should satisfy, if it is to represent a quantum state.  

1. The first of these restrictions follows from the Born interpretation of the
state function, as a position probability amplitude. At any time the value of

the probability of finding the particle in an infinitesimal region of space
must be unique. This implies that the state function must assume only one
value at each time i.e., it must be ‘Single Valued’.

(a) Single valued
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(b) Continuous

(c) Smoothly varying

Additional restrictions follow from the equation of motion of quantum 
mechanics. 

Consider the first term, the second derivative with respect to x. We cannot 
even define this derivative unless the first derivative of the function in question 
is continuous. Mathematicians call a function, whose first derivative is 
everywhere continuous, a smoothly varying function. Therefore, the wave 
function should be continuously varying and should not have any kinks.   

Another condition also follows from the presence of second derivative in 
the Schrödinger equation. We define the second derivative in terms of the first 
derivative, and we can define the first derivative, only if, the function being 
differentiated, is itself continuous. Incidentally, the Born interpretation 
provides another incentive to require that ‘ ’ be continuous: if it weren’t, then 

at a point of discontinuity, the value of its modulus squared would not be 
unique, in which case we cannot meaningfully interpret this value as the 
position probability density. 

The fitness of the wave function 

State functions are usually finite at all points. However, do not misconstrue this 
observation as a requirement. A state function can be finite at a point only if the 
mathematical nature of this singularity is such that the normalization integral 
formed from the function is finite.  

 The function should be continuous and smooth. This implies that its first 
derivative will be continuous as well. If the first derivative is not 
continuous, the second derivative cannot be defined. 

 The function should be single valued. 
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 The function should have an integrable square.  This requirement can be 
interpreted, to mean that the function is everywhere finite. It also means that 
‘ ’ will go to zero at  .  

These restrictions all arise from the postulate that *d  represents a 
probability. The restriction of integrable squares is simply the requirement that 
the probability of finding the system in all space must be finite. A special case 
of this requirement is when the integral 

* 1d

  When this is true, the function is said to be normalized. The physical 
meaning of this, for a single particle system is that, the probability of finding 
the particle in some region in space must be ‘1’ i.e., the probability of a 
certainty is defined as unity. 

3.2.3 Postulate II  

For every observable property of a system, there exists a linear Hermitian 
Operator. 

Let us first define the four new terms found here.  

Observables: These are properties of a system that can be
experimentally determined. Thus position, x; velocity, v; linear
momentum, p; angular momentum, L; potential energy, V; kinetic
energy, T; total energy, E are some observables.

Operator: An operator is a mathematical symbol, which tells us to carry
out an operation. It is represented by a tent or circumflex on its sign
Eg. . Thus in the expression 2 , the  is an operator telling one to
take the square root of what follows, in this case 2.

Linear operator: In quantum mechanics, luckily the operators used are
of limited type. They are linear only. A linear operator obeys the
following rule.

2 2ˆ ˆ ˆ ˆ( )O ax bx c O ax O bx O c

 Thus, a linear operator operates on each quantity within the bracket 
separately. E.g. Operator of integration, differentiation etc. 

Here is an operator telling one to take the derivative with respect to ‘x’ 

of what follows, that is d

dx
. The algebra of operators follows definite 

mathematical procedures. 
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Thus if, 
yz

P
x

and 
xz

Q
y

2

xz yz

PQ
x y x y

The operator given above, it turns out that P  and Q  do commute.

That is, P Q = Q P

Since 
2 2

x y y x

but, this in general will not be the case. 

The quantity P Q  – Q P is the commutator of P  and Q . It is often 

symbolized as ,P Q . If P  and Q  commute, then the value of the 

commutator is zero. Conversely, if the value of the commutator is zero, the 

operators P  and Q  commute.

If an operator P  is complex, the complex conjugate, *P is formed by 
replacing ‘i’ by ‘-i’, wherever it occurs. 

Thus, if id
P

dx
and * id

P
dx

In quantum mechanics, only linear operators are used. An operator is linear 
if it is true that, 

P f g P f P g

and P af a P f

where ‘a’ is a constant. One may easily verify that d

dx
 is a linear operator, 

whereas  is not. 

Hermitian operator 

A Hermitian operator makes the calculation of an observable real. A Hermitian 
operator is defined by the relation  
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*

*
i j j id d

where *
i  and j  are any two wave functions which satisfy the conditions for 

acceptability stated above and  is an operator of interest.  

At this point, it is convenient to introduce a new notation for integrals of the 
type used above. This notation represents the integration over all space by 
parentheses or angular bracket.  

Thus,  

* ˆ ˆi j i jd

*
i j i jd

*

*

ˆ
ˆ

ˆ
s s

s s

s s
s s

d

d

and  *
i j i jd

The condition for Hermitian operator in this notation becomes 
*

ˆ ˆi j j i

Coming back to postulate II, we find that every observable has its linear 
Hermitian operator. Since we are interested in observables, which are real, the 

operator, O  has to be Hermitian. The question naturally arises, as to how; one
gets the operators for a given observable. First, the classical expression for the 
observable of interest is written down in terms of coordinates, momenta and 
time. Then classical expression for the operator is changed into the quantum 
mechanical form of the operator. This can be done as per the following.  

These operators have been derived for many observables. 

1. The quantum mechanical form of the operator for Cartesian
Coordinates x, y and z are the same as those for the classical
representation.
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2. The potential energy ‘V’ and time ‘t’ are unchanged in both the
systems. The linear momentum, x xP mv  in classical mechanics, is
replaced by the quantum mechanical operator,

2x

ih
P

x
 

for a single particle moving along x-axis. 

Similarly for y and z  

2y
ih

P and 
2z

ih
P

z
. 

Similarly for angular momentum, the classical form is replaced by the 
quantum mechanical operator. 

2x z y

ih
L yP zP y z

z y

 and  
2y x z

ih
L zP xP z x

x z
 

 
2z y x

ih
L xP yP x x

y x
 

The operator for kinetic energy, T can be constructed from the relations 
from the classical mechanics namely, 

2
21

2 2
x

x x

p
T mv

m

The classical expression for the kinetic energy of a particle in Cartesian 
coordinates is, 

2 2 21

2 x y zT p p p
m

Let us now construct the quantum mechanical operator for kinetic 

Energy, T  .

The momentum operator 
2x

ih
P

x
 

 Substituting this, 

22 2
1

2 2 2 2

ih ih ih
T

m x y z
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2

2

2

2

2

2

2

2

8
ˆ

zyxm

h
T

 
 Hence, the kinetic energy operator is, 

  

2
2

2

8
ˆ

m

h
T

 
 Perhaps the most important operator that will concern us is the operator 

connected with the total energy, E  of a system. The classical 
expression for the total energy is Hamiltonian function, and the 
corresponding operator is called the Hamiltonian. The expression for 
the Hamiltonian for a single particle system is, 

  H T V  

 T  has already been derived and V  is only a function of coordinates, q, 
that according to our prescription, remain the same.  

 Therefore, 

  
2

2
28

h
H V q

m
 

3.2.4 Postulate III  

Eigenfunctions and Eigenvalues: When an operator  operates on a wave 
function, , such that the resultant is a constant times, . That is,   

  = Constant x  

   = m x  

where ‘m’ is a number. 

Such a wave function is called the eigenfunction of the operator and the 
constant ‘m’ is called the eigenvalue of the same operator. 

This is one of the postulates that bridges the gap between the mathematical 
formalism of quantum mechanics, and the experimental measurements in the 
laboratory. 

Experiments are the only means of knowledge at our disposal. 
The rest is poetry and imagination.      Max Planck 

The above equation is basic to a large number of calculations in quantum 
mechanics as this gives us a method of obtaining the observables. This, if we 
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operate upon a wave function with the operator for linear momentum, xP ; if the 
result is the number times the same wave function, then this number (constant) 
is the linear momentum Px, 

x xP P   

Suppose one is interested in calculating the allowed energies in a molecular 

or atomic system, one has to use the Hamiltonian operator, H  the total energy 
operator. Let the state of the system is described by a function, , which is an 
eigenfunction of the operator corresponding to the total energy, the 
Hamiltonian.  

Then the eigenvalue equation for this is, 

H E

But  
2

2
28

h
H V q

m
 

Substituting this, 

2
2

28

h
V E

m
 

Rearranging this, 

2
2

28

h
E V

m

or 
VE

h

m
2

2
2 8

i.e.
2

2
2

8
0

m
E V

h
 

This is the Schrödinger wave equation for a single particle in a stationary 
state. 

If one is interested in calculating other properties of the system, such as the 
value of the angular momentum about the ‘Z’ axis, the procedure is the same, 
but the appropriate operator must be used in deriving the eigenvalue equation. 

3.2.5 Postulate IV 

Given an operator and a set of identical systems characterized by a function,
 that is not an eigenfunction of a series of measurements of the property 
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corresponding to on different members of the set will not give the same 
result. Rather, a distribution of results will be obtained, the average of which 
will be,  

*

*

ˆ
ˆ

ˆ
s s

s s

s s
s s

d

d

This is called the “mean value” theorem that tells what the experimental 
result will be when a system is not described by an eigenfunction of the 
operator involved. The symbol ˆ  is the average or expectation value of the 

quantity associated with ˆ . The average value in quantum mechanics should 
not be confused with a time average in classical mechanics. Rather, it is the 
number average of a large number of measurements of the property 
corresponding to ˆ . Obviously, if s  is an eigenfunction of ˆ , the average 
value will be the same as the eigenvalue.  

Much modern research in quantum chemistry and spectroscopy is concerned 
with time dependent phenomena. In this case, the problem is to know how the 
state function ,q t  develops in time. We therefore introduce postulate V.  

3.2.6 Postulate V  

The evaluation of a state vector, ,q t  in time, is given by the relation, 

ˆ
2

ih
H

t

where Ĥ  is the Hamiltonian operator for the system. The above equation is 
called the time dependent Schrödinger equation. 

3.3 Exercises 

1. Show that the eigenvalues of a Hermitian operator are real

Let be a Hermitian operator with eigenvalue ‘r’.

Then     R̂ r   (3.3.1)

Taking the complex conjugate of both sides, we have 
* * * *R̂ r       (3.3.2) 

Multiplying Eq.3.3.1 by * and Eq.3.3.2 by  and integrating, yields 

* * *R̂ d r d r d

ˆ
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and  * * * * * *R̂ d r d r d

Since R̂  is Hermitian 

* * *r d r d

Therefore, *r r , i.e. eigenvalues of Hermitian operator are real. 

2. Show that the eigenfunctions of any Hermitian operator are orthogonal

If R̂  is a Hermitian operator then the corresponding eigenvalues for 1 and

2  may be determined as

1 1 1R̂ r (3.3.3)

 and 2 2 2R̂ r (3.3.4)

Multiplying (3.3.3) by *
2  and integrating 

* *
2 1 1 2 1R̂ d r d

Then applying the definition of a Hermitian operator and the fact that the 
eigenvalues be real we have  

* * * * *
2 1 1 2 1 2 2

ˆ ˆR d R d r d

* * *
2 1 2 2 1 2r d r d

That is  
* *

1 2 1 2 1 2r d r d  or *
1 2 2 1( ) 0r r d

If  1 2r r  then *
2 1 0d .

Hence, the eigenfunctions of the Hermitian operator are real. 

3. Calculate the linear momentum in ‘X’ direction for xAe

Find out whether ‘ ’ is an eigenfunction for the momentum operator, xP  or
square of the momentum operator, 2ˆ

xP .

If the operator operates on ‘ ’ and we get the constant times the same wave
function, then the wave function is the eigenfunction of the operator.

  ˆ
2x

ih d
P

dx
 and xAe
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  ˆ
2 2 2 2

x x
x

ih d ih d ih ih
P Ae Ae

dx dx
 

Hence, ‘ ’ is an eigenfunction of the operator, xP . The eigenvalue is 

2

ih which is the linear momentum. 

Let us try for 2ˆ
xP  

  ˆ
2x

ih d
P

dx
 and hence 

2 2 2
2

2 2
ˆ

4
x

i h d
P

dx
 

  
2 2 2

2
2 2

ˆ
4

x
x

i h d
P Ae

dx
 

  
2 2

2ˆ
4 4

x
x

h h
P Ae  

So  2 2ˆ
x xP P  

Hence,   is an eigenfunction of the operator 2ˆ
xP . The eigenvalue is 

2

4

h
. 

4.  Show that the linear momentum operator is Hermitian  

 An operator is defined to be Hermitian, if it satisfies the equation 

  * * *ˆ ˆ
n m m nR d R d    

 Show that ˆ
2x

ih
P

x
 is Hermitian. 

  * * *( ) ( )
2 2n m m n
ih ih

dx dx
x x

   

 To show this, integrate the LHS of the equation by parts that results in RHS. 

  * * *( ) ( )( ) ( )
2 2 2n m n m m n
ih ih ih

dx dx
x x

 

   = *( )
2m n
ih

dx
x

 = * *( )
2m n
ih

dx
x

 

 This proof of course follows for functions which vanish at the limits. 
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5. Define the Unitary Operator

A unitary operator is also a linear operator and defined as
* 1 * *
1 2 2 1

ˆ ˆU d U d   (4.5.1)

where the operator 1Û  is the inverse of Û , such that 1 1ˆ ˆ ˆ ˆU U UU  where

1 and 2  are any two eigenfunctions of Û . The asterisk stands for the
complex conjugate quantity.  

Consider the equation  

Û    (4.5.2) 

where  is the eigenvalue. Then 

UU ˆˆ 1

  (4.5.3) 

 or 1 1ˆ ˆ ˆU U U   (4.5.4)

Inverse operator 1Û  has the same eigenfunction as Û but with reciprocal
eigenvalue.  

 Multiplying Eq.4.5.4 with * and integrating over all space one gets 

* 1 1 *Û d d    (4.5.5) 

Taking the complex conjugate of Eq.4.5.2 
* * * *Û

Then * * * *Û d d (4.5.6)

Following the definition of unitary operator, the RHS of Eqs. 4.5.5 and 4.5.6 
are equal so that 

1 *  or * 1
Thus eigenvalues of an unitary operator have modulus one. 

6. Find out whether the following functions are well behaved or not.

1. , 0x x

 is not a well behaved function.

 does not remain constant as x .
2. 2x

 is not a well behaved function.

 does not remain constant as x .
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 3.  cos x  

     is a well behaved function 

 4.  xe  

   is not a well behaved function 

   The first derivative is not continuous at x = 0. 

 5.  
2xe  

    is a well behaved function 

6.  sin x  

   is not a well-behaved function 

The first derivative is not continuous at x = 0. 

 



 

CHAPTER 4 

Applications of Schrödinger Equation-1 
(Simple systems with constant potential energy) 

4.1  Particle in a One-dimensional Box  

As an application of the postulates of quantum mechanics, we now discuss a 
simple problem that of a particle constrained to move in a one dimensional box. 
This problem is an excellent one because it illustrates a number of quantum 
mechanical principles, and at the same time shows how discrete energy levels 
inevitably arise, whenever a small particle is confined to a region in space. 

 For the sake of simplicity, a one-dimensional box will be considered. In 
three-dimensional box, the wave function is represented by xyzψ and in one-

dimensional box by xψ . Since the particle is to be some sort of a realistic 
particle, such as an electron, our wave function must be a function that does 
things a real particle will do. Such a function is known as a well behaved 
function. This requires that it is everywhere continuous, smooth, finite, and 
single valued.  

Let a particle be placed in a one-dimensional box shown below. 

Particle in a one-dimensional box 

To solve a problem in wave mechanics, it is necessary to solve the wave 
equation for the particular problem at hand. 

( )
2

2
2

8
0xyz xyz

m
E V

h

π∇ ψ + − ψ =  

For the case of one-dimensional system, the wave equation reduces to 

( )
2 2

2 2

8
0x

x

d m
E V

dx h

ψ π+ − ψ =  
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 For the case of one-dimensional system, the wave equation reduces to  

 
2 2

2 2

8
0x

x

d m
E V

dx h
 

It was assumed that while the particle remained in the box, it had zero 
potential energy. Thus, as long as the particle remains in the box, its potential 
energy will be zero and the wave equation will reduce further to, 

 
2 2

2 2

8
0x

x

d m
E

dx h
 

This can be simplified to,  

 
2

2
2

0x
x

d

dx
 

by letting  

 
2

2
2

8 m
E

h
 

  
2

2
2

x
x

d

dx
 

 This is a second order differential equation whose solutions are, functions, 
that when differentiated twice, will give the same functions back, multiplied by 
a constant. The solution to the above equation was shown to be,  

 sin cosx A x B x  

 The above function is a solution to the wave equation for the particle in a 
one-dimensional box. (A second order differential equation will in general 
contain two arbitrary constants).  

 As such, the general solution to the differential equation gives very little 
information. However, we know certain restrictions that apply to this particular 
system. These are known as boundary conditions. For instance, since the 
particle must not exist outside the box, it is necessary for the wave function, 

x to go to zero at the walls of the box. This means that for our one-

dimensional box shown in the above figure, x = 0 at the point x = 0. Thus we 
find out at the point x = 0,  

  cos 0 0B  

 In order for the equality to hold good, it is obvious that the constant, B, must 
equal to zero.  

 As a result of this boundary condition, the wave function reduces to,  

 sinx A x  
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 At the other wall it is seen that the wave function must again go to zero, and 
therefore at the point x = a, it is again necessary that x = 0. This condition 
offers two possible solutions. For the point x = a, the wave function becomes,  

sin 0A x  

 The left side of the equation may be forced to equal to zero by letting A 
equal to zero. This would maintain the identity, but it would accomplish 
nothing towards a useful solution. Such a solution is a trivial solution. 
However, there is another way in which the identity may be maintained. The 

sine of an angle is zero at any integral multiple of . Thus if 
n

a
, where ‘n’ 

is an integer, the identity can still be satisfied. As a result of applying these 
boundary conditions, the wave equation for the particle now becomes, 

sinx

n
A x

a

 The only term yet to be determined is the coefficient, A. This can be 
determined by normalizing the wave function. Since it is known that the 
particle must be in the box, the probability that it is in the box is unity. 
Knowing that this probability is represented by the square of the wave function, 
we can say that, 

*

0
1

a

x xdx  

 But  sinx

n
A x

a
 and 

n

a
. 

 2 2

0
sin . 1

a
A x dx  

 
2

A
a

 Therefore, the normalized wave function for the particle in a one-dimensional 
box is,  

2
sinx

n
x

a a

It is apparent that the wave function does not have to be determined in order 
to find the energy of the particle, 

2
2

2

8 m
E

h



 Chapter 4 | Applications of Schrödinger Equation-1 51 

But  
n

a
 or 

2 2
2

2

n

a
   

   
2 2 2

2 2

8 m n
E

h a
. 

 This can be solved for energy, giving, 

  
2 2

28
n

n h
E

ma
 

 These results are represented diagrammatically Fig.4.1.1 

Fig. 4.1.1 Schematic drawing of En, n  and 2
n  for the case of a particle moving in a 

one-dimensional box. Note that n changes sign at each node while 2
n  always 

remains positive. 

4.1.1 Salient Instructive Features of the Problem 

1. For the same value of the quantum number ‘n’, the energy is inversely 
proportional to the mass of the particle and square of the length of the box. 
Thus, as the particle becomes heavier and the box larger, the energy levels 
become more closely spaced. It is only when the quantity, ma2 is of the 
same order as h2, that quantized energy levels become important in 
experimental measurements. When dealing with dimensions of 1 g and 1 
cm, the energy levels become so closely spaced that they seem to us, to be 
continuous. The quantum mechanical formula, therefore, gives the classical 
result for systems with dimensions such that, ma2 >> h2. This is an 
illustration of the “correspondence principle” that states that the quantum 
mechanical result must become identical with the classical one in the limit 
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where the quantum numbers describing the system become very large, 
where, n2h2 is comparable to ‘ma2’, then even the macro particles need 
quantum mechanical treatment. 

2. The second feature of the solutions to the particle in a box problem that
should be pointed out is the relationship between the energy of a state and
the number of nodes in the wave function. A node is a point where the wave
function becomes zero. Neglecting the nodes at the end of the box, in the
state n = 2 there is one node, in n = 3, two nodes and in state n, n-1 nodes. It
is a general property of the wave functions that the greater the number of
nodes in a wave function, the higher the energy of the corresponding state.
This is shown in the above figure and is reasonable when considered along
with the de Broglie relationship. The greater the number of nodes along the
length of the box, the shorter the wavelength must be. According to the de

Broglie relation 
h

p
, if the wavelength  becomes shorter, the

momentum and hence the kinetic energy of the particle, must be greater.

3. One of the conditions of Bohr’s postulates in deciding the size of an orbit is
that the angular momentum of an electron circulating in that orbit should be
an integral multiple of . This can be explained on the basis of associating
wave and particle properties to the electron. As per the postulate the angular
momentum of the electron, mvr = n . Because the electron exhibits dual

properties, the linear momentum, ‘mv’ can be equated to 
h

.

 
2

h
mvr n  where, n is an integer 

2

h h
r n  and hence 2 r n

This clearly shows that unless the circumference of the orbit is an integral 
multiple of the wavelength of the wave associated with the electron, the 
wave destroys itself, and the electron cannot have existence. When this 
condition is satisfied, it results in a stationary wave confining the electron to 
a fixed orbit, until it gains or loses energy to go to a higher or lower orbit. 

4. Another feature is the explanation for the stability of the atom and the
energy of confinement, which can be done more elegantly based on the
above observations.

The stability of an atom can be explained based on energy of confinement.
As it is seen above, as the wavelength decreases with decrease in the size of
the orbit, the energy of the electron increases. Thus, it opposes the attractive
force due to the opposite charges of the nucleus and the electron. Therefore,
an optimum condition is reached, at which, the attractive forces just
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balances the opposing forces, due to confinement energy and that state of 
the electron corresponds to its presence in an orbit.  

 This gives a better explanation for the observation why an accelerating 
charge like an electron while moving round the nucleus does not radiate 
energy and fall into the nucleus, rather than simply saying that as long as the 
electron is in an orbit it neither gains or loses energy.   

5. An important feature of the solutions to the particle is a box problem is 
illustrated by integral,  

1 2 0

2 2
sin sin

a x x
dx

a a a

 To evaluate the integral we make the substitution,  

  
x

y
a

 

  then  1 2
0

2
sin sin 2y ydy   

                 = 0 

 Whenever an integral of the type i j  equals to zero, then i  and j  

are said to be orthogonal. Thus, the wave functions 1  and 2  are 

orthogonal. In fact, it can be shown that the integrals of the type i j , 

where i  j, are equal to zero for the particle in a box. 

 The general theorem is that “the eigenfunctions of a Hermitian operator 
belonging to different eigenvalues of a Hermitian operator are orthogonal”. 

 So we write, i j  = ij   ij = 1   for i = j  

   ij = 0 for i  0 

 Where ij  is called the Kronecker delta. 

6. We next inquire about some other properties of the particle in a box. 
Suppose we are interested in measuring the component of momentum in the 
‘x’ direction for a set of identical systems in which the particle is known to 
be in the lowest energy state.  

 The operator for the momentum is, ˆ
2x

ih d
P

dx
 

   1
ˆ sin

2x

ih d x
P A

dx a
 

       cos
2

ih x
A

a a
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It is clear that 1  is not an eigenfunction of x̂P . Therefore, according to

postulate IV, a series of measurements of ˆ
xP  will not yield the same result.

We must use the average value theorem to calculate the expectation value 
of x̂P . This gives,

 
1 10

1 10

ˆ .
ˆ

.

a

x

x a

P dx
P

dx
  (4.1) 

0

2

0

2 2
sin sin

2ˆ

2
sin

a

x
a

a ih d x
dx

a a dx a a
P

x
dx

a a

0

2 2
sin cos

2ˆ
1

a

x

a ih x
dx

a a a a a
P

ˆ 0xP  

Accordingly, the average of a large number of measurements of x̂P  on the 

set of identical systems is zero.  

Suppose one now considers the square of the momentum in the ‘x’ 
direction. The appropriate operator is,    

2
2ˆ

2x

ih d
P

dx
.

Applying the operator we obtain, 

 
2

1
ˆ sin

2x

ih d x
P A

dx a
        

2 2
2

1 12 2
ˆ sin

4 4x

h x h
P A

aa a
  (4.2) 

A constant times the wave function is generated and hence the constant is 

the eigenvalue for the operator 2ˆ
x

P . Hence the square of the momentum is,  
2

2
2

2
4

x
h

P mE
a

 2xP mE . 
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The results calculated in equations (4.1) and (4.2) present interesting 
dilemma. The result of equation (4.1) indicates that the average value of xP  

is zero. The result of equation (4.2) indicates that the value of xP  must be 

either 2mE . 

The apparent contradiction is resolved by considering the meaning of 

postulates III and IV. Since a measurement of 2
xP  always gives the result 

or 2mE . A 2mE, the momentum Px must always be either   

single measurement of Px will give one of these values. What the mean 
value postulate states is that, if one makes a large number of measurements 

of Px, we end up with 2xP mE  as often as 2xP mE and the 

average value of Px is zero. The important point is that we never know in 

advance whether an experimental result will give plus or minus 2mE . It 

can therefore be said that an uncertainty exists in our knowledge of the 

momentum, and the magnitude of this uncertainty is equal to 2 2mE . 

 In a similar manner, we can argue that if we know that the particle is in state 

n , the only thing that can be said about the position of the particle is that it 

is somewhere in the box. That is, our uncertainty in the ‘x’ coordinate of the 
particle in the length of the box, a. It is of interest to calculate the product of 
our uncertainties in the position and momentum of a particle in a box. This 
is,  

. 2 2x p a mE

2

2
. 2

4

h
x p a

a

.x p h  or in general n × h. 

This will have its smallest value when n = 1, and thus we obtain the result 
that .x p h . This is a form of the Heisenberg’s uncertainty principle, 
which states  that  the  simultaneous measurement of both the position and 
momentum of a particle cannot be made to an accuracy greater than 
Planck’s constant ‘h’. 

4.1.2 Zero Point Energy 

The above conclusion is a result of the zero point energy. 

 Consider sinx

n x
A

a
. 

 In this equation although the value zero for ‘n’ is permitted, it is not 
acceptable because  becomes zero, as it contradicts the assumption that an 

mE2
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electron is assumed to be always present inside the box. Therefore, the lowest 
kinetic energy, called the zero point energy, 0E  of an electron in a box is given 
by [Substitute n = 1],  

2

0 28

h
E

ma

 This shows that the electron inside the box is not at rest even at 0 K. 
Therefore, the position of the electron cannot be precisely known. Since only 
the mean value of the electron is known to be zero and the exact energy is not 
precisely known, the occurrence of zero point energy is therefore in accordance 
with the Heisenberg’s uncertainty principle. 

4.1.3  Free Particle 

If the walls of the box are removed and the electron is free to move without any 
restriction in a field whose potential energy may be assumed to be zero then the 
Schrödinger’s wave equation and its solutions are given by, 

2 2

2 2

8
0x

x

d m
E

dx h
 

and sin cos ,x A x B x where 
2

2
2

8 m
E

h
. 

 The arbitrary constants A, B and 2  can now have any value. Then the 
energy,  

2

0 28

h
E

ma
 is not quantized.  

 Thus, when an electron is bound in a system, it has quantized energy levels, 
and it leads to discrete spectrum. On the other hand, a free particle (electron) 
moving without any restriction has the continuous energy spectrum. This 
qualitatively explains the occurrence of continuum in the atomic or molecular 
spectra. But, on ionization, an electron lost by an atom or molecule is free to 
move without any restriction. 

4.2 The Particle in a Three Dimensional Box 

For the particle in a three dimensional box, the wave function will be a function 
of all three space coordinates. The wave equation for such a particle moving in 
a region of zero potential energy is, 

2
2

2

8
0xyz xyz

m
E

h
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 This is a partial differential equation containing three variables, and the 
standard approach to the solution of such an equation, is about the same, as that 
used to separate the time and space parts of the time dependent wave equation. 

First, it is assumed that the total wave function can be represented as a 
product of wave functions. For a particle in three-dimensional box, it is then 
assumed that,  

  . .xyz x y zx y z   

where xx  represents a wave function that depends on the variable ‘x’ only, yy 
represents a wave function that depends on the variable on ‘y’ only and so on. 

 Therefore, we obtain 

  
0

8
2

2

2

2

2

2

2

2

zyxzyx zyEx
h

m
zyx

zyx
 

Since the operator 
2

2x
 has no effect on ‘y’ and ‘z’ and the operator 

2

2y
 has 

no effect on ‘x’ and ‘z’ etc., the wave equation after division by x y zx y z  may be 

rearranged to give, 
22 2 2

2 2 2 2

1 1 1 8yx z

x y z

yx z m
E

x y zx y z h

 It is to be noted that each term on the left side is a function of one variable 

and the sum of these terms is the constant,
2

2

8 m
E

h
. If we keep the variables 

‘y’ and ‘z’ constant and allow ‘x’ to vary, it is seen that the sum of the three 
terms is still the same constant. Such a situation, can only exist, if the term,  

  
2

2

1 x

x

x

x x
 

is independent of ‘x’, and therefore itself is a constant. The same argument will 
apply equally well to the ‘y’ and ‘z’ terms. Thus, each variable is seen to be 
independent of the other variables, and we have succeeded in separating the 
variables. 

 Now, if the constants are represented by 2
x  for ‘x’ term, 2

y  for the ‘y’ 

term and 2
z  for the ‘z’ term, the following three differential equations are 

obtained. 

  
2

2
2

1 x
x

x

d x

x dx
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2
2

2

1 y
y

y

d y

y dy

2
2

2

1 z
z

z

d z

z dz

 
2

2 2 2
2

8
x y z

m
E

h

Thus, each degree of freedom can make its own contribution, such that, 

2
2

2

8
x x

m
E

h

2
2

2

8
y y

m
E

h

 
2

2
2

8
z z

m
E

h

 Now that the variables have been separated, it is necessary to solve each of 
the equations. In this particular problem, all three of the resulting equations are 
of the same form. Thus, the solution of one is sufficient to demonstrate the 
method. If the equation in ‘x’ is used as an example, it is seen that on 
rearrangement, it is of the exact form as the wave equation we have just solved 
for the one-dimensional box. 

2
2

2
0x

x x

d x
x

dx
 

Then the normalized solution for the above equation is, 

2
sin x

x

n
x x

a a
and an analogous solution would be obtained for the ‘y’ and ‘z’ equations. 

 Since, 
8

sin .sin .sinyx z
xyz

nn n
x y z

abc a b c

it is significant to note that there is a quantum number for each degree of 
freedom. This same idea was emphasized in the Sommerfeld’s quantization of 
hydrogen atom, but here the quantization is a natural consequence of the 
mathematics. 

As in the previous case 
n

x
, and here 
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  x
x

n

a

b

ny

y
      and 

c

nz
z

Hence,   
22

28
x

x

nh
E

m a
 

  
22

28
y

y

nh
E

m b

  
22

28
z

z

nh
E

m c

But 
22 22

2 2 28
yx z

x y z

nn nh
E E E E

m a b c

Here, again, it is seen that the energy of the particle is quantized. 

 (This might lead one to wonder at the success of the classical approach to 
the mechanics of atoms and molecules as found in the kinetic theory of gases. 
Actually, no conflict exists between the two approaches. If quantum numbers 
and containers of reasonable size are chosen, it is found that the separation of 
energy levels is so small that the energy distribution will essentially be 
continuous.) 

Degeneracy 

For a complete description of the energy states of a particle in a three 
dimensional box, we see that it is necessary to consider three quantum 
numbers. This, of course, is what one should expect. The idea of quantum 
numbers in atomic spectra, for instance, came from an attempt to understand 
the positions of the spectral lines and the energies they represent. The 
observation of new lines necessarily led to a new quantum number, which 
could be associated with the corresponding new energy levels. Thus, we are 
prone to conclude that each quantum number represents a contribution to the 
energy of the system. However, it is frequently found that for various reasons, a 
particular set of quantum numbers may not be unique in defining the energy of 
a particle. 

To consider again, if a = b = c,  
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2 2 2

2
28

x y z

x y z

n n n
E E E E h

ma

where, xn  or yn  or zn = 1, 2, 3, 4,....... The occurrence of three quantum 

numbers nx, ny and nz is characteristic of a three-dimensional problem in wave 
mechanics. The zero point energy is three times that observed in the one-
dimensional box, there being a part associated with each of the three 
coordinates. 

 Since each state is characterized by three quantum numbers, it is possible to 
construct several excited states of the same energy. For example, there are three 
independent states having the quantum numbers (2, 1, 1), (1, 2, 1) and (1, 1, 2) 

for the same energy. All these three states have the same energy 
2

2

6

8

h

ma
. Such a 

state is threefold degenerate or triply degenerate. In the Fig. 4.2.1 below, is 
shown a few energy levels illustrating the degeneracy and the zero point 
energy. 

Fig. 4.2.1 Degeneracy of various states. 
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Note. 

Although the value of zero for ‘n’ is permitted for a wave function, 

sinn

n x
D

a
 in the case of a particle in a one dimensional box, it is not 

acceptable because then n  becomes zero. However, the electron is assumed 
always present in the box. Therefore, the lowest K.E. called the zero point 
energy, of an electron in a one dimensional box is given by,   

  
2

28
ZPE

h
E

ma
 

 This shows that the electron inside the box is not at rest at 0 K. Therefore, 
the position of the electron is not precisely known. 

 In the case of a three dimensional box the zero point energy is three times to 

that of 
2

28

h

ma
 as there being, a part associated with each of the three 

coordinates. 

 The wave functions of the three members of the above triply degenerate 
levels are different. 

 Consider a slight distortion of the cube by ‘da’ along the ‘x’ axis. For the 
state (2, 1, 1) the energy of the electron in the undistorted cube may be given 
as, 

  x y zE E E E  

      
2 2 2 2

2 2 2 2

4 6

8 8 8 8

h h h h

ma ma ma ma
 

 The new energy on distortion along the ‘x’ axis is, 

  E x x y zE d E dE E E  

  
2 2 2 2 2 2

2 3 2 2 2 3

4 6

8 8 8 8

h h h h h h
da da

ma ma ma ma ma ma
 

whereas the new energy for the other two states, i.e.(1,2,1) and (1,1,2) is ,  

  
2 2

2 3

6

8 4
E

h h
E d da

ma ma
 

 Thus, the initial threefold degenerate levels are split on distortion of the 
cube into a non-degenerate level and doubly degenerate levels. 

 It is a common phenomenon in chemistry that the electronic degeneracy is 
removed on a slight distortion of a system. This is analogous to the “Jahn-
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Teller effect” which states that, “in a nonlinear molecule, where electronic 
degeneracy occurs, there always exists a vibrational mode, which can remove 
the degeneracy”. The molecule can, therefore, spontaneously distort from its 
most symmetric configuration, until it assumes a configuration of lower 
symmetry and lower energy. 

4.3 The Structure of Matter 

The structure of matter can be analyzed according to increasingly more 
fundamental levels of organization. Table 4.3.1 shows this in an elementary 
way. A piece of metal, for example, is made of atoms, which are kept together 
by a chemical force that does not contain very high energies. Using electron 
volts as a measure of energy, we would need only a few eV to separate an atom 
from the piece of metal. If we look at one of the atoms, we see that it consists 
of a nucleus surrounded by the electric force, which is somewhat stronger than 
the chemical forces. From ten to few hundred electron volts are needed to tear a 
few electrons from an atom. The size of an atom is about an angstrom. 

Table 4.3.1: Fundamental Structural Levels of Matter 

Constituent 
particles 

Bonding 
force 

Relevant 
energies, eV 

Matter 
Atoms Chemical 

forces 
1 

Atom
Electrons, 
Nucleus 

Electric force 10-1000

Nucleus
Protons, 
Neutrons 

Nuclear force 106 

Nucleon Quarks Strong force 109 

 Now let us look at the nucleus, which is considerably smaller, of the order 
of a pico-meter. The nucleus consists of protons and neutrons kept together by 
the nuclear force; a force that is much larger than the chemical and electric 
forces. Energies in the range of about 10 MeV are required to tear a proton or a 
neutron from a nucleus. 

 We know today that protons and neutrons, the so-called nucleons, are 
themselves not elementary but probably consist of three elementary particles 
that carry the unhappy name ‘quark’. One wishes, a better sounding name had 
been chosen, such as ‘parton’ for example, but ‘quark’ has been taken. The 
forces that keep the quarks within the nucleon are again much stronger. The 
size of the nucleon is about 10-13 cm, and the effects of the forces involve 
energies of the order of one billion eV(GeV). The nuclear force that binds 
protons and neutrons in the nucleus is understood today because of the ‘strong 
force’, which keeps quarks together.  
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 This analysis brings us to the two related concepts that play an important 
role in many theories of the history of the universe: the ‘quantum ladder’ and 
the ‘conditional elementarity’ of particles. We may distinguish three different 
realms in nature, three levels on the quantum ladder as shown in Table 4.3.2. 

Table 4.3.2: The quantum ladder 

Subject Energy range, eV Main location 
Atomic and molecular realm      
Chemistry, optics, materials, 
biology, complexity,  
organization, order-disorder    

up to 1000 
Earth and 

planets of other 
stars 

Nuclear realm 
Radio activity,  
Nuclear reactions,  
fission, fusion

105 – 107 Interior of stars 

Sub nuclear realm 
Antimatter, mesons,  
heavy electrons, short       
lived entities, quarks   

108 -  ? 
Big-bang, 

neutron stars,
unknown

 The first is the atomic realm, which includes the world of atoms, their 
interactions, and the structures that are formed by them, such as molecules, 
liquids and solids, gases and plasmas. This realm includes all phenomena of 
atomic physics, chemistry, and in a certain sense, biology. The energy changes 
taking place in this realm are a few eV. If these exchanges are below 1 eV, 
such as in the collisions between air molecules in the room, then even atoms 
and molecules can be regarded as elementary particles, That is they retain the  
‘conditional elementarity’ depicted in Table 4.3.3, as they keep their identity 
during any collisions or in other processes at these low energy exchanges. If 
one goes to higher energy exchanges, say 10,000 eV, atoms and molecules will 
decompose into nuclei and electrons. At this level, the nuclei and electrons 
must be considered as elementary. The structures and processes of the first 
rung of the quantum ladder are found on earth, on planets and on the surface of 
stars.  

Table 4.3.3: Conditional Elementarity of Particles 

Particles Energy limit 

Molecules,  Photons < 0.1 eV 
Atoms,  Photons         < 1.0 eV 
Nuclei,  Electrons < 104 eV 
Protons, Neutrons, Electrons, 
Nutrinos, Photons 

<109 eV 

Quarks, Electrons, Muons, Tauons, 
W, Z, Gluons, Photons 

> 109 eV 



64 Quantum Chemistry 

 The next rung is the nuclear realm. Here the energy changes are much 
higher, of the order of mega(million) electron volts(MeV). As long as we are 
dealing with phenomena in the atomic realm, such amounts of energy are 
unavailable, and the nuclei remain inert and do not change. However, if one 
applies energies of millions of eV, nuclear reactions like fission and fusion, and 
the processes of radio activity occur, Our elementary particles then will be 
protons and neutrons, together with electrons. 

 In addition, radioactive processes produce neutrinos, particles that have no 
detectable mass or charge. In the universe, energies at this level are available in 
the centers of stars and in star explosions. Indeed, the energy radiated by the 
stars is produced by the nuclear reactions. The natural radioactivity we find on 
earth is the long-lived remnant of the time when earthly matter was expelled 
into space by a supernova explosion. 

 The third rung of quantum ladder is the sub-nuclear realm. Here we are 
dealing with energy exchanges of many giga electron volts(GeV), or billions of 
electron volts. We encounter excited nucleons, new types of particles such as 
mesons, heavy electrons, quarks, gluons, and antimatter in large quantities. 
Gluons are the quanta of the strong force that keeps quarks together. As long as 
we are dealing with the atomic or nuclear realm, these new types of particles do 
not occur and the nucleon remains inert. But at sub-nuclear energy levels, 
nucleons and mesons appear to be composed of quarks, so that quarks and 
gluons figure as elementary particles. 

 It is an interesting question whether the elementary particles established so 
far are indeed truly elementary. It may well be that they are also conditional 
and that the list has to be extended further and further. 

4.4 Factors Influencing Color 

The wave mechanical treatment of an electron in a box gives rise to large 
number of discrete energy levels. On suitable excitation, the electron may 
undergo transition from one level to another. The transition energy for the 

transition n n is given by, 

2

2

22'

8
h

ma

nn
E

  . 

Therefore, the frequency of transition obtained through Bohr’s relation, 

E

h
 is given by 
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or the wavelength of the transition is, 

2

'2 2

8c mca

n n h

 This relation shows that the longer the length of the box ‘a’, the longer the 
wavelength at which the optical transition in such a system occurs. Thus, by 
suitably adjusting the length of the box, the wavelength of an electronic 
transition can be made to appear in the visible range of the spectrum (roughly 

from 4000 - 8000
0

A ). This system then becomes colored. However, it should
be emphasized that transition between any two levels is not always permissible, 
because the transition probability for an electric dipole transition (which is the 
most important cause of light absorption) depends on the magnitude of 
transition dipole moment integrals defined as, 

' ˆn ne x dx

 Here it will be shown, under what condition the transition dipole moment 
integral is different from zero for an electron in a box.  

Consider the integral 

Letting 
x

a
, 

a
x and 

a
dx d

 we may write 
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2 2' '

2 2
0

n n n n
,  if  '( )n n  is an odd number  

= 0      if '( )n n  is an even number 

and 

'
1 0

cos . .I n n d

2 2' '

2 2
0

n n n n
,  if 'n n  is an odd number

     = 0   if 'n n  is an even number

This simple argument shows that the transition dipole integral ˆ.n nx dx

does not vanish if 'n n  is an odd number. Then the selection rule for the 
electron dipole transition in this system may be stated as follows: 

 A transition between a pair of states is possible if the sum or difference in 
quantum numbers is an odd number. If the sum or difference is an even 
number, the transition is said to be strictly forbidden. 

Note:  

Let 1  and 2  be two orbitals of an atom, with corresponding energies E1 and 

E2. If an incoming electromagnetic wave is to excite an electron from 1  to 

2 , the electric field must bring about a displacement of charge. The 
displacement must give rise to a dipole moment, however transitory; otherwise, 
it will have no effect. We can put this idea in another way owing to its 
occurrence during the transition of an electron between two different orbitals, a 
transition dipole moment must occur. The recipe for calculating the value of 
the transition dipole moment, ‘d’ is  

 2 1ˆd d

ˆ  is the dipole moment operator. Fortunately, this operator does not directly 
involve partial differentials. In fact it is precisely the same as we defined 
earlier, i.e., ˆ = e×r. We can make some useful deductions about d without a 
great deal of effort.  

 The atomic orbitals are of odd or even parity. Especially ‘s’ and ‘d’ orbitals 
are even, and ‘p’ orbitals are odd. Now suppose 1  is a 1s, 2 is a 2s orbital, 
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and the electric field of the wave oscillate in the ‘x’ direction only. This field 
can only interact with the ‘x’ component of the dipole moment, thus we have, 

  2 1ˆs sdx d  

        2 1ˆs se d   

 In terms parity the integral has the form, 

  2 1. .s sx even odd even odd . 

 If we integrate an odd function over all space, for every region where the 
function is positive, there will be an analogous region where it is negative. 
Therefore, the overall contribution of the positive and negative regions will 
cancel and the integral will be zero. This can be summarized as follows: 

  0odd function d   and 

  0even function d . 

 Because the dipole moment is of odd parity we must have either 1  as odd 

and 2  as even or vice versa. This follows from the fact that 

  Even × odd × odd = even 

  Odd × odd × even = even 

 Therefore, the Laporte selection rule can be summarized as  

  ;g u   ;g g   ;u u . 

4.5 Tunneling in Quantum Mechanics 

Tunneling is the quantum-mechanical effect of transitioning through a 
classically-forbidden energy state. It can be generalized to other types of 
classically-forbidden transitions as well. 

 Consider rolling a ball up a hill. If the ball is not given enough velocity, 
then it will not roll over the hill. This scenario makes sense from the standpoint 
of classical mechanics, but is an inapplicable restriction in quantum mechanics, 
simply because, quantum mechanical objects do not behave like classical 
objects such as balls. On a quantum scale, objects exhibit wavelike behavior. 
For a quantum particle moving against a potential energy “hill”, the wave 
function describing the particle can extend to the other side of the hill. This 
wave represents the probability of finding the particle in a certain location, 
meaning that the particle has the possibility of being detected on the other side 
of the hill. This behavior called ‘tunneling’ is, as if the particle has ‘dug’ 
through the potential hill. As this is a quantum and non-classical effect, it can 
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generally only be seen in nanoscopic phenomena, where the wave behavior of 
particles is more pronounced. 

 Availability of states is necessary for tunneling to occur. In the above 
example, the quantum mechanical ball will not appear inside the hill because 
there is no available “space” for it to exist, but it can tunnel to the other side of 
the hill, where there is free space. Analogously, a particle can tunnel through 
the barrier, when there are states available within the barrier. The wave 
function describing a particle, only expresses the probability of finding the 
particle at a location assuming a free state exists. 

 One example may clarify how the “new” and “old” mechanics differ, 
namely the way George Gamow in 1928 explained alpha-radioactivity. The 
atomic nucleus experiences opposing forces: the strong nuclear force holding 
its particles together must overcome the electric repulsion between positive 
protons sharing the nucleus, which tries to break it up. The nuclear force wins 
out at short distances, that is why nuclei exist at all. But it falls off rapidly with 
distance and at far away the electric repulsion dominates. Consider a proton 
inside the nucleus. If something moves it a short distance away, the nuclear 
force pulls it right back, but if it somehow got far enough, the electric repulsion 
would push it away, never to return. An example is nuclear fission, possible in 
heavy nuclei of plutonium or uranium-235. Here, the nucleus contains, so many 
protons trying to push it apart with their electric repulsion. When an extra 
neutron is allowed to be pulled into the nucleus, it releases and adds a modest 
amount of energy that makes the entire nucleus break up into two positively 
charged chunks. These are separated far enough that they never come back 
again. Instead, electric repulsion pushes them apart even more and releases a 
great amount of energy.  

 Such nuclei, and heavy nuclei close to them in mass, are all on the brink of 
instability.  Even without externally added energy, they find a way to get rid of 
some of their disruptive positive charge. The forces on protons inside these 
nuclei resemble those on a bunch of marbles inside the “crater” of a volcano-
shaped surface with smooth sloping sides outside, but a moderately deep crater 
on top. The outline of the “mountain” can be viewed as representing the total 
force on protons in a nucleus. Inside the crater the attraction predominates, 
holding the protons together, while outside it the repulsion predominates, 
pushing them away. In the analogy of marbles inside a crater, if a marble could 
somehow get to the outside, say by carving a tunnel through the wall of the 
crater, this repulsion would make it roll away and it would release energy. 
Newtonian mechanics provides no such tunnels and the proton is imprisoned 
inside the crater for eternity. According to quantum mechanics, however, the 
proton’s location is determined by a spread-out wave function. That wave is 
highest inside the “crater” of the nucleus, and if the proton materializes there, it 
stays trapped. The “if” clause here just helps one to imagine the process 
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differently in quantum mechanics. If materialization of a process like this is not 
observable it amounts to saying it does not exist. However, the fringes of the 
wave extend further out, and it always has a finite, though very small, presence 
beyond the crater, giving a finite chance for the proton to materialize on the 
outside and escape. It is as if quantum laws gave it a tiny chance to “tunnel” 
through the barrier to the slope outside.  

Systems with discontinuity in the Potential Field 

Consider an electron of mass me moving in one dimension in the direction of 
positive x-axis in potential field defined by the Fig.4.5.1. 

Fig. 4.5.1 A simple potential barrier. 

V = 0  for   

V = V0 for   

The Schrödinger equations for regions I and II are respectively 
22

1
12 2

8
0em

E
x h

        (4.5.1) 

22
2

0 22 2

8
0em

E V
x h

   (4.5.2) 

 Where 1  and 2  are the wave functions of the particle in regions I and II 
respectively. 

Suppose, the energy is such that 0 < E < V0 and let  
2

2
2

8 em
k E

h
 and 

2
2

1 02

8 em
k V E

h
. 

 The appropriate wave functions for the two regions will clearly follow from 
the above two equations with the following solutions, respectively. 

1 exp( ) exp( )A ikx B ikx (4.5.3) 

where A and B are arbitrary constants and  

2 1 1exp( ) exp( )C k x D k x   (4.5.4)

0x

0x
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Where C and D are also arbitrary constants. 

The constant D has to be set to zero because, 2  must vanish at infinity. 

 Thus   2 1exp( )C k x .  

In Eq.4.5.3 the first term exp ikx  is an eigenfunction of the linear 

momentum operator 
2

ih

x
with the eigenvalue, 

2

kh
, while the second term, 

exp( )ikx  has the eigenvalue 
2

kh
. This suggests that the first term represents 

a wave travelling in the positive x-direction, i.e. the incident beam, and the 
second term represents a wave travelling in the negative x-direction, i.e. the 

reflected beam. Both the functions  and 
x

are continuous and the boundary 

conditions at x = 0 are therefore 1 2  and 1 2

x x

which give the following equations 
A B C  (4.5.5) 

1Ck
A B

ik
  (4.5.6)

or  

11

2

kC ik
A  and

11

2

kC ik
B  (4.5.7) 

 Therefore,  
2

11
2 2

1 1

k ikk ikB

A k ik k k
(4.5.8)

 The intensities of the reflected and incident beams are in the ratio 
2 2

:B A , 

but from Eq.4.5.8, 
2 * 1. 

 Hence, the intensity of the reflected beam equals that of the incident beam. 
That the wave function in Eq. 4.5.2 in the region II decays exponentially is 
indicative of the particles suffering almost total reflection in the region I. 

 However, there is a small but finite probability of particles being transmitted 
in the region II, which is not predictable from classical mechanics. We define 

the transmission coefficients by 
2

C
A  and it follows from Eq. 4.5.7 that  

2 2

2 2
1 1 1

2 2 4C ik ik k

A ik k ik k k k
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 Substituting for 1k  and k  

  
2

0

4
0

C E

A V
 

 This transmission coefficient is not zero unless the potential energy of the 
barrier is infinite. This is the basis for the ‘tunneling effect’ observed in 
quantum mechanics. 

Hydrogen transfer reaction 

As an example, take the hydrogen transfer reactions, especially in low 
temperatures. Tunneling effect is very important in these reactions. Consider a 
reaction 

  AH B A BH . 

 Since A and B are heavier than H-atoms, we may assume that hydrogen 
moves between two centers which remain at a fixed distance. We represent the 
proton wave by the Schrödinger’s equation and the proton transfer by the 
incidence of such a wave on the energy barrier as depicted in the following 
figure, which shows the variation of ‘ ’ with distance superimposed on 
particular barrier. The wave equation is  

  
22

2 2

8
0H

x

m
E V

x h
 

where mH is the mass of the hydrogen atom, V(x) is the potential energy of the 
barrier as a function of ‘x’. On substituting for V(x), the resulting equation can 

be solved in simple cases for . 

 

Fig. 4.5.2 Incidence of a portion wave on a barrier V(x) with energy E(E < V). 
Variation of  (Psi) with ‘x’ is shown. 
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 For proton energies lower than the barrier height, the solutions show that 
besides the reflected wave, there is also a transmitted proton wave. It means, 
there is also a finite probability that proton will tunnel through the barrier.  

Fig. 4.5.3 (a) The tunneling probability against energy E of proton expressed as E/V for 
a parabolic barrier (b) The classical probability of crossing the barrier as a function of 

E/V. 

 This probability rises with the energy of the tunneling particle. Whereas the 
classical theory predicts that, a particle can cross a potential energy barrier only 
if its energy is equal to or greater than the barrier height.  

 It should be noted, in quantum mechanics, that all protons with energy 
greater than the barrier height (i.e. (E/V)>1) will not cross the barrier. The 
curve in the figure shows that the tunneling probability is less than unity even 
for them, indicating that partial reflection occurs. 

4.6 The Rigid Rotor 

Consider a system of two spherical masses m1 
and m2 at fixed distances r1 and r2, respectively, 
from the centre of the mass of the system. The 
distance between the centers of the particles is 
assumed to have a constant value r0, where r0 = 
r1+ r2. 

 We refer to the above system as rigid rotor because the distance between the 
two particles is fixed and the system could rotate only about a fixed axis. In a 
way, the rigid rotor is an idealized case of a diatomic molecule except that in 
the latter the masses m1 and m2  (the atoms) can of course vibrate, so r0 
varies slightly but can be taken as equal to the equilibrium distance (re) in 
a real diatomic molecule. We shall consider this example in some detail 
since it serves as an introduction to the way in which certain important 
functions arise. 
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The theory of such, rigid rotor in space is useful in dealing with rotational 
spectra of diatomic molecule. 

 Let the distance of m1 from the centre of gravity be r1 and distance of m2 be 
r2, then 

m1r1 = m2 r2  and r1 + r2 = r0 (4.6.1) 

 where, 

0

1 2

rm r
r

m m
, 1 0

2
1 2

m r
r

m m
  (4.6.2)

The kinetic energy of rotation of the atoms joined together by a link is given 
by  

K.E. = 
1

2
m1 v1

2 + 
1

2
m2 v2

2  (4.6.3)

 where v1 and v2 are linear velocities of masses m1 and m2 respectively. 
Since, r1 and r2 are assumed to remain unchanged during rotation about the 
centre of gravity, one can write 

K.E. = 2 2 2 2 2
1 1 2 2

1 1 1

2 2 2
m w r m w r w I

where I denotes the moment of inertia of the system. The equation shows that 
the K. E. of the system is the same as that of a single particle of mass ‘I’ 
moving on the surface of a sphere of unit radius. 

The Schrödinger equation takes the general form 

H   = E   or  (T+V)   = E       (4.6.4) 

and since no forces are assumed to act on the rigid rotor 

v = 0.  Therefore T   = E   

In spherical polar coordinates, T takes the form  

22

2 2 2 2 2 2

1 1 1
sin

8 sin sin

rh

r rm r r r
 (4.6.5) 

 However, for the rigid rotator we can replace ‘m’ by the moment of inertia 
‘I’ and ‘r’ by unity and so the Schrödinger equation becomes 

2

2 2 2

1 1 8
sin 0

sin sin

IE

h
   (4.6.6) 

   This is a differential equation with two independent variables (  and ) and 
we shall make a very common assumption at this stage, namely, that the 
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function ‘ ’ involving both  and  can be written as a product of two 
functions each involving one variable only,  

 ( , Y ( ) Z ( )        (4.6.7) 

substitution in previous equation gives 

2 2
sin 0

sin sin

Z Y Y Z
YZ    (4.6.8) 

where  
2

2

8 IE

h

Multiplying Eq.4.6.6 by Sin2 /YZ  gives 

2
2

2

sin 1
sin sin

Y Z

Y Z
    (4.6.9) 

 The above equation must be valid for all values of  and This can only 
occur if both sides are separately equal to the same constant, say m2, for 
convenience. That is  

2 2sin
sin sin

d dY
m

Y d d

       and     

2
2

2

1 d Z
m

Z d
  (4.6.10)   

Solutions: 

Consider the equation 

2
2

2
0

d Z
m Z

d

Which has solutions   

exp( )Z C im  

where C is some constant to be determined. Since the rigid rotor takes up an 
identical configuration every time increases by 2 , 

Z( ) =  Z(  + 2  ) and  Z(0)  = Z(0 + 2 ) 

But  Z(0) = C  exp (0) 

 So Z (2 ) = C exp. (  2  im)    
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 Since Z (2 ) = C, it follows that  

  exp ( 2  im) = 1    

which is only true, if ‘m’ is zero or an integer. 

 The constant C is easily determined by normalization of Z i. e.   

  
2

2 *

0

1N ZZ d         (4.6.11)  
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2

0

cos sin cos sin 1N m i m m i m d  

  
2

2

0
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1/2
1

2
N  

 Hence the normalized functions are  

 where m = 0,  1,  2, ......        (4.6.12) 

 Now consider the equation for Y( ), which after multiplying through by 
Y/sin2  and rearranging becomes 

  
2

2

1
sin 0

sin sin

d dY m
Y

d d
 

  (4.6.13) 

  
2 2

2 2

1
sin cos 0

sin sin

d Y dY m
Y

dd
 

       (For details refer appendix 8.11) 

  
2 2

2 2

cos
0

sin sin

d Y dY m
Y

dd
  

 Put cos  = Z then the above equation can be written as  

  
2 2

2
2 2

cos
cos sin sin 0

sin sin

dY d Y dY m
Y

dZ dZdZ
 

 The equation can be simplified as  

  
2 2
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Substituting Z for cos  

0
1

21
2

2

2

2
2 Y

Z

m

d

dY
Z

dZ

Yd
Z

Which is identical with the differential equation shown in the appendix 8.11 
defining the associated Legendre function.  Thus we may 
immediately identify Y(Z) with this function provided that 

1l l  

 where  l = 0, 1, 2, 3,  ..... ...... 

Since   

2

2
1

8

h
E l l

I
 

 where  l = 0, 1, 2, 3,......  ...... 

 This means that only certain values of E, depending on the value of ‘l’, are 
permitted; in other words, the energies of the rigid rotor are quantized. 

)(ZPm
l
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CHAPTER 5 

Applications of Schrödinger Equation-2 
(Simple Systems with Variable Potential Energy) 

5.1  One-dimensional Harmonic Oscillator  

When two atoms, held together firmly in a stable molecule are caused to 
vibrate, the vibrations may be treated approximately as motions of particles in a 
harmonic field. It had long been realized that the vibrational spectra of both 
polyatomic and diatomic molecules should be treated by the theory of a system 
of particles all moving in a harmonic field. One of the problems of the old 
quantum theory was to explain the residual energy at 0 K within any system of 
oscillating particles, the so-called ZERO POINT ENERGY. It was one of the 
triumphs of the new wave mechanics (and also incidentally of Heisenberg’s 
matrix mechanics) that this residual energy came naturally from the application 
of the basic postulates of quantum mechanics, in particular that  be a well 
behaved function.  

 Consider the case of a particle of mass, ‘m’ moving in one dimension (the 
‘x’ coordinate) in a potential,  

 21

2
V Kx    (5.1.1) 

and subject to a force –Kx. The constant K is called the force constant of the 
system. 

Case 1: In classical mechanics 

Classically the equation of motion is 

 
2

2

d x
m Kx

dt
   (5.1.2) 

with the general solution 

 0 cos 2x x 0 0v t t  (5.1.3) 

    where and       are constants and  
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The total energy 
 H = T + V 

     2 21 1

2 2xP Kx
m

     2 2 2
0 02m v x   (5.1.5) 

and so all positive values of the energy, including zero, are allowed on the 
classical picture. 

Case 2: In quantum mechanics  

In the quantum mechanical case we must again solve the wave equation H  = 
E , subject to the condition that  is a well behaved function, where we obtain 
the Hamiltonian operator, H from the classical expression by replacing Px by 
+(h/2  i) (d/dx) (the momentum operator) 

The Hamiltonian operator is thus 
2 2 2

2 2 28

h d Kx
H

m dx
  (5.1.6)

and so the wave equation becomes 
2 2 2

2 2

8
0

2

d m Kx
E

dx h
  (5.1.7)

 We must solve this equation subject to the conditions that  be well 
behaved. The above equation can be written in the more convenient form 

2
2 2

2
0

d
x

dx
  (5.1.8)

 Where,  
2

2

8 m
E

h
 and 

1 2
2 mh

h
we require that  be well behaved in the complete range of the coordinate x, 
that is from –  to +  . Let us first consider the asymptotic solution of this 
equation, that is, the solution for large values of x. In this case ‘ ’ can be 
neglected when compared with  x2 and Eq.5.1.8 becomes 

  
2

2 2
2

d
x

dx
(5.1.9) 

which is satisfied by the exponential functions 

21
.exp

2
N  x   (5.1.10)

where N is a constant. 

[Note in checking this, that the second term in the expression for d2 /dx2 is 
neglected with respect to the first]. 
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 However, the solution  

 21
exp

2
N x  (5.1.11) 

is clearly not a well behaved function, since, as x tends to infinity,  also tends 
to infinity and does not remain finite, so only the other solution is acceptable. 

 It is now convenient to change the variable such that 

 
1 2

y x   (5.1.12) 

 Where  

 21
exp

2
y N y  (5.1.13) 

 Returning to the general equation, the above asymptotic solution suggests as 
a possible general solution 

 21
exp

2
y f y y  (5.1.14) 

where f(y) is a polynomial in y, 

 Substituting in equation (5.1.8) we find 

 
2

2
2 1 0

d f df
y f

dydy
  (5.1.15) 

(For details refer Appendix 8.12) 

 This equation is identical with the Hermite’s equation (see appendix 8.11) in 
which  

     1 2n  (5.1.16) 

 In other words, the polynomials Nf (y) are the Hermite polynomials Hn(y).  

 The wave function  

 y N      21
exp

2nH y y  (5.1.17) 

is thus a well behaved function for all positive integral values of ‘n’ including 
zero, since it is only for this range that the Hermite polynomials are defined. 
Eq.5.1.16 which arises in order to terminate the polynomials, so that the 
product Hn (y) exp(-1/2y2) tends to zero as y tends to , thus leads to a 
quantum condition. 
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2 1n    

and on substituting for  and  we find 
1 2

0
1 1 1

2 2 2

h
E n n hv

m
       (5.1.18) 

 In contrast to the classical result of a continuous spectrum of positive 
energies, wave mechanics predicts a set of quantized levels whose energies are 
1/2, 3/2, 5/2, ... ... multiplied by the energy of the classical frequency. 
Moreover wave mechanics shows that the harmonic oscillator cannot have zero 
energy but always possesses a residual or ‘Zero point energy’ (1/2) hv0. This 
result was a triumph for the new wave mechanics since the older quantum 
mechanics had not been able to account for this residual energy. 

 In fact the prediction of zero-point energy by wave mechanics could be 
linked to the results of matrix mechanics by means of Heisenberg’s uncertainty 
principle, namely that is only possible to specify simultaneously the 
momentum ‘p’ and the position ‘q’ of a particle with uncertainties,  p and  q 
respectively, where  p .  q h. 

Wave functions of the harmonic oscillator 

The wave functions for the harmonic oscillator were shown to be 

 y N 21
exp

2nH y y

 where Hn (y) are Hermite polynomials and 

The normalization constant N is obtained from the usual condition 

* 1n n  d

from which it can be shown that 

1 21 2
1

2n
N

N

and so the normalized wave functions for the one-dimensional harmonic 
oscillator are  

 

1 21 2
21 1

exp
22

n nn
y H y y

N
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where 
1

2y x . It is instructive to list a few of the earlier members of the 

Hermite polynomials

H0 (y) = 1   H3 (y) = 8y3 - 12y 

H1 (y) = 2y      H4 (y) = 16y4 - 48y2 + 12 

H2 (y) = 4y2 – 2     H5 (y) = 32y5 - 160y3 + 120y.  

 It is also interesting to examine the form of the above wave functions for 
increasing values of ‘n’, the vibrational quantum number. The case of n = 0 is 

the most interesting, since, in this case both 0 y  and 2
0 y  (where

2
0 y dy  measures the probability of finding the system in this state between

y and y + dy) possesses maxima at the origin, or zero probability at the extreme 
of the vibrational mode. This is the exact opposite of classical mechanics, 
where one would expect the particle to be most probably at the ends of its 
motion. As discussed above, this contrast is due to the quantum mechanical 
result of the particle possessing zero point energy, which in turn can be 
correlated with the Heisenberg’s uncertainty principle. As ‘n’ increases we note 
that the wave functions are alternatively symmetric and antisymmetric and 
finally as ‘n’ becomes very large (see Fig. 5.1.1b) the probability function 

2
0 y  approximates to the classical probability curve (dotted line).

 Fig. 5.1.1a Wave functions of harmonic   Fig. 5.1.1b The square of the wave 
  n(y) plotted against y.    functions of a harmonic oscillator  

n
2(y) plotted against y. 
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 According to correspondence principle, at high quantum numbers, the 
oscillator should approach a macroscopic classical oscillator in behavior, e.g., a 
pendulum. The figure shows that the probability distribution is concentrated 
near the “turning points” where the system’s energy is purely potential. This 
indeed describes a pendulum, which spends more time slowing down, reversing 
direction, and accelerating near the extremes of displacement than in the centre 
of the movement where it has its maximum speed. 

5.2 The Hydrogen Atom 

Transformation of coordinates: A new problem arises when we note that the 
total energy, E in the wave function is made up of two parts as in the case of 
hydrogen atom. 

1. The translational motion of the atom as a whole.

2. The energy of the electron with respect to the proton.

It is this latter portion of the energy, in which we are interested. This leads
us again to the problem of separation of variables. In order to obtain the desired 
equation, it will be necessary to separate and discard the translational portion of 
the total wave equation. To carry out this particular separation, it is necessary 
to introduce a new set of variables x, y and z, which are Cartesian coordinates 
of the centre of mass of the hydrogen atom and the variables r,  and  which 
are Poplar coordinates of the electron with respect to the nucleus.  

A coordinate of the centre of mass of a system in general, given by 

i i
i

i
i

m q

q
m

where, im  is the centre of mass of the ‘i’th particle. For hydrogen atom, the 
Cartesian coordinates of the centre of mass will be given by    

1 1 2 2

1 2

m x m x
x

m m

1 1 2 2

1 2

m y m y
y

m m

1 1 2 2

1 2

m z m z
z

m m

 But for our purpose the transformation into spherical coordinates is 
important. 
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Polar coordinates 

The problem we are concerned with is that of calculating the “amplitude of the 
electron waves” at various points in a hydrogen atom. These points can be 
defined by drawing a set of Cartesian (x, y, z) axes through the origin at the 
nucleus of the atom and locating points on x, y and z coordinates. It is much 
simpler, if we use an alternate way of specifying position, namely the polar 
coordinate system. These are shown in the following figure. 

Fig. 5.2.1 Transformation of Cartesian coordinates into Polar coordinates. 

sinp r

cos
x

s
,  sin .cosx r  

sin
y

s
 sin .siny r  

cos
z

r
cosz r  

2 2 2 2x y z r  

These transformations into spherical coordinates in general is written as 

2 1 sin .cosx x r

2 1 sin .siny y r

2 1 cosz z r  
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 By using the transformation equations, it is a straightforward procedure to 
obtain the wave equation in terms of Cartesian coordinates of the centre of 
mass of the system and the polar coordinates r,  and . The x, y, z coordinates 
of the centre of mass of the atom obviously relate to the translational motion of 
the atom as a whole and r,  and  coordinates are seen to relate the coordinates 
of the electron (x1,y1,z1) to the coordinates of the nucleus (x2,y2,z2).  

 As an example of the procedure, consider the z coordinate. Solving the 
equation for z 

1 1 2 2

1 2

m z m z
z

m m

1 2 1 1 2 2z m m m z m z

1 2 1
2 1

2 2

m m m
z z z

m m
  

If the value of 2z  is substituted in the equation 2 1 cosz z r  

1 2 1
1 1

2 2

cos
m m m

r z z
m m

1 1 2
1

2 2

1 cos
m m m

z r z
m m

1 2 1 2
1

2 2

cos
m m m m

z z r
m m

Dividing throughout by 1 2

2

m m

m

2
1

1 2

cos
m

z z r
m m

2 1
1

1 2 1

cos
m m

z z r
m m m

 

1
1

cosz z r
m

where 1 2

1 2

m m

m m

 Using the procedure, a transformation equation can be found for each of the 
coordinates, and when proper substitutions are made, the wave equation is 
obtained in terms of the variables x, y, z, r,  and . In terms of the new 
variables, it is found to be  
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2 2 2

2 2 2
1 2

1 T T T

m m x y z
 

 21 2
2 2 2 2 2 2

1 2

1 1 1
sin

sin sin
T T Tm m

r
m m r rr r r

 

 
2

2

8
0r TE V

h
       (5.2.1) 

 The wave equation Total  is a function of the variables x, y, z, r, ,  and the 
energy, E contains the translational energy as well as the energy of the electron 
with respect to the proton. 

 The purpose of this transformation to new coordinates is to make a 
separation of variables possible. The algebra is somewhat more complex. In the 
usual manner, the total wave function, , , , , ,x y z r  is assumed to be expressible 

as the product of two wave functions such that 

 , , , , , , , , ,x y z r x y z rF  

 When this expression is substituted into Eq. 5.2.1, it is found that the 
following two equations are obtained. 

 
2 2 2 2

, , , , , , 1 2
, ,2 2 2 2

8
0

x y z x y z x y z
trans x y z

F F F m m
E F

x y z h
 

 
2

, , , , , ,2
2 2 2 2 2

1 1 1
sin

sin sin

r r r
r

r rr r r
   

 
2

, ,2

8
0r rE V

h
 

 The first of these equations contains only the variable x, y and z with no 
potential energy term. This is identical to the wave equation for a free particle 
and therefore represents the translational energy as a whole. The second 
equation, which relates the electron to the proton, is the equation of particular 
interest to us. 

Separation of variables 

Since it is the second part of the wave equation that is of interest, the 
translational part will be discarded. This is the desired equation for the electron 
with respect to nucleus. This equation contains three variables r,  and . This 
will require that the variables be separated, such that, three independent 
equations are obtained, each containing only one of the three variables. 
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 The procedure is as follows. The Schrödinger equation in polar coordinates 
can be written as: 

2

2
2 2 2 2 2

1 1 1
sin

sin sin

r r r
r

r rr r r

2

2

8
0r rE V

h
(5.2.2) 

Let , ,r rR

Making substitution in the above equation 

2

2

22

2

2 sin

11 rr R

rr

R
r

rr

2

2 2

1 8
sin 0

sin

r
r r

R
E V R

rr h
    (5.2.3) 

Dividing Eq.5.2.3 by      we obtain 
2

2
2 2 2 2 2

1 1 1
sin

sin sin

rR
r

r rr R r r r

2

2

8
0rE V

h

If we multiply by 2 2sinr  

22
2

2

sin 1 sin
sin

r

r

R
r

R r r

2 2 2

2

8 sin
0r

r
E V

h
 

 or 

2
2sin sin

sin
r

r

R
r

R r r

22 2 2

2 2

8 sin 1
r

r
E V

h
  (5.2.4) 

 The left side of the equation contains only the variables r and  where the 
right side of the equation contains only the variable . No matter what values r 

rR
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and  might independently take the sum of the terms on the left always equal to 
the term on the right. This can be true only if each side of the equation is equal 
to the same constant. If we let this constant be ‘m2‘, it is seen that the variable 
can be immediately be separated from Eq.5.2.4 giving 

  
2

2
2

1
m   (5.2.5) 

 The problem now is to carry out the separation of the remaining two 
variables r and . By equating the LHS of Eq. 5.2.4 to m2, it is seen that 

 
2

2sin sin
sin

r

r

R
r

R r r

2 2 2
2

2

8 sin
r

r
E V m

h
 

 On division by 2sin , this becomes 

 
2 2 2

2
2 2

1 8 1
sin

sinsin

r
r

r

R r m
r E V

R r r h
 

 Again since each side of the equation contains only one variable, they both 
must be equal to the same constant. If the right side of the equation is set equal 
to the constant  and this gives on multiplication by   

 
2

2

1
sin 0

sinsin

m
   (5.2.6) 

 This is the desired form of the  equation. 

 The remaining part of the original equation is the R equation. 

 
2 2

2
2

1 8r
r

r

R r
r E V

R r r h
 

This equation on multiplication throughout with 2

rR

r
 and rearranging gives 

2 2
2

2 2 2

1 8
0

r r
r r

R R r
r E V R

r rr r h
       (5.2.7) 

 Thus, the three variables have been successfully separated, and the three 
independent total differential equations that result are:   

 
2

2
2

1
m       (5.2.5)  
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2

2

1
sin 0

sinsin

m
  (5.2.6)

2 2
2

2 2 2

1 8
0

r r
r r

R R r
r E V R

r rr r h
   (5.2.7) 

The  equation 

The first of these equations is the  equation and it is seen to be of the same 
form as the wave equation for the particle in a box. 

In terms of the sine and cosine the solution is 

sin cosm A m B m  

 In order for a wave function to be acceptable, it must be of the well behaved 
class. One of the requirements of such a function is that it must be single 
valued. To meet this restriction, the function m  must have the same value 

for  = 0 as it does for 2 . For the case of  = 0 it can be seen that 

0 sin0 cos0m A B   

0m B  

When we have 2 , 

2 sin 2 cos 2m A m B m

 2m B . 

 Since the value of  must be the same under both the conditions, it is 
necessary that  

sin 2 cos 2B A m B m . 

This identity can hold only if ‘m’ is zero or has a positive or negative 
integral value. So the possible values of ‘m’ are 0, ±1, ±2, ±3, …… and ‘m’ is 
known as the magnetic quantum number. 

 Very often, in the treatment of hydrogen atom, the exponential solution to 
the  equation  

im
m ce  

is used. This is shown as follows: 

The equation is  
2

2
2

0m  (5.2.5) 
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The wave function m  is to be normalized. 

This requires that 
2

*

0

1d  

Which leads to 
2

2

0

1im imc e e d  

2
2 0

0

1c e d  or 
2

20

1

c

 
1

2
c . 

Hence the normalized function is 

1

2
im

m ce .

This is also a solution to the wave equation and is true only if ‘m’ can have 
integral values starting from 0, ±1, ±2, ±3, …… 

The  equation 

The equation is 

2

2

1
sin 0

sinsin

m
(5.2.6) 

 This equation can be put into a form that was known by the mathematicians 
many years before the advent of quantum mechanics. This particular equation 
is known as Legendre’s equation and has the normalized solution 

,

2 1 !
cos

2 !
m

ll m

l l m
P

l m
 

where m
lP  is the associated Legendre function of degree ‘l’ and order m . The 

form of the solution is quite complicated. In spite of the complicated nature of 
the solution, several important features can be observed. Although the 
mathematics is far too complex to be considered here, it can be shown that in 
Eq. (3.2.5), 1 1l , where the allowed values of l are 0, 1, 2, 3….. This is 

the source of the new parameter found in Eq.(3.2.7) and its properties appear to 
be similar in many ways to those of the azimuthal quantum number. It can also 
be seen that there is now a new restriction on the quantum number ‘m’. In the 
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normalizing factor of the solution to the  equation, the term !l m  occurs.

If m  is allowed to be greater than ‘l’, the factorial of a negative number 

results. Since a negative factorial is undefined, the maximum value of ‘m’ must 
be ‘l’. Thus the restrictions on the quantum number ‘m’ now become m = 0, 
±1, ±2, ±3, ……±l. 

Spherical Harmonics 

Both the solution to the  equation and solution to the  equation contain 
trigonometric functions and therefore determine the angular character of the 
electron wave function. Very often it is found that the total wave function can 
most conveniently be used, if it is separated into a radial portion and an angular 
portion such that 

lmrlnr YR ,     (5.2.8) 

The term is referred to as the spherical harmonics and is given by 

,lm l m mY   (5.2.9) 

 This portion of the wave function is important in the treatment of directional 
bonding. 

The Radial Equation 

The remaining equation to be solved is the radial equation. 

2 2
2

2 2 2

1 8
0

r r

r r

R R r
r E V R

r rr r h
    (5.2.7) 

 This like the  equation, can be put into a form that has long been known to 
mathematicians. This particular equation is the Laguerre equation, and the 
normalized solution is 

3

2 12
1, 3

0

1 !2

2 1 !

l l
nn l r

n lz
R  e L

na n n
(5.2.10) 

0

2
,

z
r

na

where 
2

0 2 24

h
a

e

and 2 1l
n lL  represents the associated Laguerre polynomial. 
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 The solution to the radial equation is also very complex. However, it is 
possible to make pertinent observations from the solution. It is to be noted that 
a new parameter, the quantum number ‘n’, has been added. The possibility here 
is that ‘n’ is restricted to take on only the integral values 1, 2, 3, …. Both the 
relation of ‘n’ to the radial wave function, which is a measure of the position of 
the electron with respect to the nucleus, and its similar restrictions, indicate that 
‘n’ is the quantum mechanical analog of the principal quantum number. 

 A new restriction can be seen for quantum number ‘l’. It is apparent that the 
term (n-l-1)  requires that the maximum value of l be (n – 1). If ‘l’ is allowed a 
value greater than this, the factorial of a negative number would result. Since a 
negative factorial is undefined, the maximum value of ‘l’ be  (n – 1). Thus the 
quantum number is restricted to the values l = 0, 1, 2, 3, ……., (n – 1). 

Quantum States 

From the solution of the total wave equation, we have arrived at three quantum 
numbers. The quantum numbers with their allowed values may be summarized 
as follows: 

Radial quantum number n = 1, 2, 3, … 

Azimuthal quantum number   l = 0, 1, 2, …., (n – 1)  

Magnetic quantum number  m = 0, ±1, ±2, ±3, ..±  

 According to these restrictions, there are only certain values of the quantum 
number, ‘l’ that are permissible, for a given value of ‘n’. The maximum value 
of ‘l’ is seen always to be (n – 1). For example, when ‘n’ = 4, ‘l’ can be any 
integer up to and including 3, but not greater than that. This is illustrated as 
follows: 

Value of ‘n’ 1 2 3 4 

Allowed value of ‘l’ 0 0,1 0, 1, 2 0, 1, 2, 3 

 It should be noted that l = 0 occurs for every value of ‘n’; l = 1 occurs for 
every value of ‘n’ greater than n = 1, and so on.  

 These values of quantum number l, play a rather important role in both the 
geometry and energy states of the atom. Because of this importance, they are 
given the following special designations. 

l = 0  s state 

l = 1  p state 

l = 2  d state 

l = 3  f state 
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 For the first radial shell, the value of the radial quantum number is n = 1, 
and l quantum number can only have the value l = 0. This state is usually 
represented by (1s) where ‘1’ represents the principal quantum number. For 
n = 2, the azimuthal quantum number can have the values l = 0 and l = 1. This 
gives the two states (2s) and (2p) respectively. These states determine the 
energies of electrons, and if the l quantum number contributes to the energy as 
does the ‘n’ quantum number, each state will represent a different energy. 

Wave Functions of the Hydrogen Atom 

It was postulated that the square of the wave function is a measure of the 
probability distribution of the electron. This wave function is seen to be 
composed of two parts, an angular portion represented by , ,l mY and a radial 

portion that is represented by ,n l rR . We will see that the radial portion of the 

wave function gives the distribution of the electron with respect to the distance 
from the nucleus, whereas the angular portion gives the geometry of the 
various energy states. 

 The normalized solutions of the  equation, and also the radial equation are 
in general, quite complex. However, they reduce to relatively simple form on 
introduction of particular values of the parameters. For the ‘ ’ equation the 
allowed values of ‘m’ are m = 0, ±1, ±2, ±3, ..±l. This led to the normalized 
functions of shown below. 

Normalized functions of m  

1

2
im

m e  

0
0

1

2
e  or 0

1

2

1

1

2
ie  or 1

1
cos

1

1

2
ie  or 1

1
sin

 Examples of the normalized  functions and the radial functions are 

given below. 

Normalized functions of ,l m . 
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l = 0   0,0

2

2

l = 1 1,0

6
cos

2

1, 1

3
sin

2
 

Normalized functions of ,n l rR

3

2 12
1, 3
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1 1 !2

2 !
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nn l r

nz
R  e L

na n n l

n = 1, ‘K’ shell 

l = 0   

3

2
2

1,0
0

2
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a

n = 2, ‘L’ shell 

l = 0   

3

2

0 2
2,0 . 2

2 2r

z

a
R e

l = 1 

3

2

0 2
2,1 .

2 6r

z
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R e

 The normalized total wave function for the hydrogen atom is obtained from 
relation 

,r n l r lmR Y . 

 By using all possible arrangements of these functions within the limitations 
of the quantum numbers, we obtain the normalized total wave functions listed 
below. 

 K shell 

n = 1, l = 0, m = 0;  

3

2

1
0

1
s

z
e

a
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L  shell 

n = 2, l = 0, m = 0;  

3

2
2

2
0

1
2

4 2
s

z
e

a

n = 2, l = 1, m = 0;  

3

2
2

2
0

1
cos

4 2
pz

z
e
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n = 2, l = 1, m = ±1; 
3

2
2

2
0

1
sin cos

4 2
px

z
e

a
3

2
2

2
0

1
sin sin

4 2
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z
e

a

Hydrogen like Wave Functions 

The Radial Function  

These functions are independent of  and . They are spherically symmetrical, 
so that we get the same value of rR  at a given distance ‘r’ from the nucleus 

no matter what values are given to  and . 

Fig. 5.2.2 Plots of radial function rR  against r. 
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It is seen that  

(a) All the ‘s’ functions have their maximum values at the nucleus (r = 0) and 
that the value of rR  initially drops very steeply as ‘r’ increases. This is 

because the mathematical expression for each solution includes a negative 
exponential expression of the type re . 

 Functions of this type decrease rapidly from a maximum value at r = 0 to 
zero at r = . 

(b)  rR  for the 2s orbital become zero at a particular value of ‘r’ between              

r = 0 and r = . At this point, the so called nodal point, changes sign 
from positive to negative. The 3s orbital has two nodal points between 
zero and . In general, the number of such nodes in a ‘ns’ orbital is given 
by (n – 1). 

(c)  The p and d radial functions are all zero at r = 0 and r =  and the 
number of nodes between these limits is given by n – l – 1. Thus there are 
no nodes in this region in the 2p and 3d radial functions, but there is no 
node in the 3p function. 

(d)  At distances close to the nucleus the rR  function for ‘s’ orbitals is greater 

than that for p and d orbitals of the same quantum number. 

The Radial Distribution Functions  

The radial functions rR  have no physical 

significance in themselves, but the square of the 
functions, multiplied by a volume element dv, 

2
rrR d , measures the probability that the electron 

will be in this volume element dv, at a point that 
is at a distance ‘r’ from the nucleus. A more 
useful value is the probability of finding the 
electron at a distance ‘r’ from the nucleus, irrespective of the values of  and . 
Instead of the volume element dv we now consider the value of a spherical shell 
of thickness rd  and radius r. 

 The volume of that will be 24 r dr , since the surface area of the sphere of 

radius r is 24 r . Hence, the radial distribution function 2 24 rr R dr , thus 

measures the probability of finding the electron in a spherical shell of thickness 
‘dr’ at various distances ‘r’ from the nucleus.  
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 The following figure 5.2.3. shows plots of this function for the hydrogen 1s, 
2s, and 3s orbitals. The functions differ from the simple radial function rR  in 

that they are always zero at r = 0. The number of peaks the distribution 
function has for ‘s’ orbitals is equal to the ‘n’ values i.e. 1 for 1s, 2 for 2s etc.  

Fig. 5.2.3 Plot of radial distribution function 2 24 rr R dr  against ‘r’ for ‘s’ electrons.

Fig.5.2.4 Plot of radial distribution function 2 24 rr R dr  against ‘r’ for ‘p’ and ‘d’

electrons. 

 Fig. 5.2.4 shows radial distribution function for 2p, 3p and 3d orbitals. Here 
the number of peaks is (n-1) for p orbitals and (n-2) for d orbitals. 

 These functions are particularly useful when discussing the screening effect 
of electrons in many electron atoms and the peaks of maximum probability 
corresponds to concentric shells strongly resembling the Bohr theory. 

 If we go back to the Bohr picture of 1s orbit, we recall that the electron 

moved in a circular path of fixed distance from the nucleus. If we plot 2 2r  for 

such a situation, we will get a diagram as shown in Fig. 4a. The probability will 
be zero at all except the single value when 0r a , where 0a  is the radius of the 

first orbit (0.529 Å). The corresponding probability function for a 1s electron in 
the wave mechanical model will be as shown in Fig.4b. 



Chapter 5 | Applications of Schrödinger Equation-2 97 

Fig. 5.2.5a Probability function of      Fig. 5.2.5b Probability function of  
   1s orbital in classical model   1s orbital in wave mechanical model 

 In both the models electron is found with the highest probability at 0.529
o

A  
from the nucleus, but in Bohr model this probability comes out to be a certainty 
(100 % probability). In both the models, the electron density is spherically 
symmetrical. However, the Bohr model violates the uncertainty principle by 
fixing the exact radius of the orbit. The wave mechanical model on the other 
hand “spreads the electrons out” over all space, and so is in accord with 
Heisenberg’s principle. 

Show that 0r a  for the 1s orbital 

To get the value of ‘r’, we can take the relevant portion of the radial 
distribution function. This is differentiated and equated to zero since at this 
point there is a maximum (Fig 5.2.5b). For 1s orbital in hydrogen (z = 1) the 

wave function is represented as 
2

2 0

r

ar e .  

Hence, radial distribution function = const. × 
2

2 0

r

ar e . 

According to the rule of maximization, 0
rdR

dr
. 

 On differentiation 
2 2

20 0

0

2
0 2 .

r r
r a a

dR
r e r e

dr a

 or 
2 2

20 0

0

2
2 .

r r

a ar e r e
a

 or 0r a . 
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 From the above calculations, we can see that the most probable position for 
the electron is identical with the radius predicted by Bohr for the first electron 
orbit. 

The Angular Function ,Y  

We have seen that wave functions for all ‘s’ orbitals are spherically 
symmetrical i.e. they are independent of the angles  and . There are three 
angular functions for orbitals with n = 2 and l = 1. These are the 2p0, 2p+1 and 
2p-1 orbitals. Similarly there are five angular functions for 3d orbitals 

corresponding to the five values for the ‘m’ quantum number where l = 2. 

There are two methods. 

1. A polar graph is drawn by plotting the  dependent function against
different values of  for given value of l and m (Fig.5.2.6a).

2. A polar graph is drawn by plotting the square of  dependent part of the
wave function against different values of  for given values of l and m. This
type of graph gives a map of the angular distribution of electron density
(Fig.5.2.6b).

   Fig. 5.2.6 a   Fig.5.2.6b 

Fig. 5.2.7 illustrates polar diagrams for the three ‘p’ orbitals. 
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Fig. 5.2.8 illustrates polar diagrams for ‘d’ orbitals. 

Nomenclature of p Orbitals 
The nomenclature of p and d orbitals arises from the following relations. If the 
Cartesian coordinates are replaced by the polar coordinates 

1. The functions for px
, py

 and pz
are

        = constant × sin .cos

   = xp  

 similarly 

2,1, 1 = constant × sin .cos

 = yp  

and   2,1,0 = constant × cos  

    = zp . 
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Nomenclature f d Orbitals 

The wave functions are  

2
3

3,2,1 23

2
sin .cos .cos

81

r

ar
e

aa

= constant × sin .cos .cos  

= xzd . 

2
3

3,2, 1 23

2
sin .cos .cos

81

r

ar
e

aa

= constant × sin .cos .sin  

= yzd . 

2
3

3,2,2 23

1
sin .cos 2

81 2

r

ar
e

aa

 = constant × 2sin .cos 2  

= constant x 2 2 2 2sin .cos sin .sin

= 2 2x y
d

2
23

3,2,0 23

1
cos 1

81 6

r

ar
e

aa

= constant × 2cos 1

2
3

3,2,2 23

1
sin .cos 2

81 2

r

ar
e

aa

 3,2,2  Constant × 2 2sin sin 2

  = Constant × sin sin .sin cos  

     = xyd . 
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CHAPTER 6 

Approximation Methods 

6.1  Perturbation Theory 

Perturbation theory expresses the solution to one problem in terms of another 
problem that has been solved previously.  

Suppose we wish to solve the Schrödinger equation, 

H E  

for a particular system, but it is not always possible to get an exact solution 
similar to those obtained for harmonic oscillator, rigid rotator and hydrogen 
atom. It turns out that most systems cannot be solved exactly. Two specific 
examples are the helium atom and the an-harmonic oscillator.  

The Hamiltonian operator for the helium atom is,  

2 2 2
2 2
1 2

0 1 2 0 12

2 1 1 1ˆ
2 4 4

e e
H

m r r r
 (6.1.1)

Eq. 6.1.1  can be written in the form, 

2

1 2
0 12

1ˆ ˆ ˆ
4H H

e
H H H

r
(6.1.2)

 where,  
2 2

2

0

2 1ˆ
2 4jH j

j

e
H

m r
 j = 1 or 2        (6.1.3) 

is the Hamiltonian operator for a single electron around a helium nucleus.  

Thus, 1HH and 2HH  satisfy the equation, 

, , , ,H j j j j H j j jH jH r E r   j =1 or 2  (6.1.4)  

where, , ,H j j jr  is a hydrogen like wave function with Z = 2 and where

Ej (j = 1 or j = 2) are given by, 
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2 4

2 2 2
08

j
j

Z  e
E

h n
  (6.1.5)

Notice that if it were not for the inter electronic repulsion term, 

2

0 124

e

r

in Eq. 6.1.2, the Hamiltonian operator for the helium atom would be separable 
and the Helium atomic wave functions would be products of hydrogen like 
atomic wave functions.  

 Another example of a problem that could be solved readily, if it were not for 
additional terms in the Hamiltonian, is an-harmonic oscillator. Recall that the 
harmonic oscillator potential arises naturally as the first term of the Taylor 
expansion of a general potential about the equilibrium nuclear separation. 
Consider an an-harmonic oscillator whose potential energy is given by 

2 3 41 1 1

2 6 24xU k     x     x b   x  (6.1.6)   

The Hamiltonian operator is, 

2 2
2 3 4

2

1 1 1ˆ
2 2 6 24

d
H k    x     x b   x

dx
    (6.1.7) 

 If 0b , Eq. 6.1.7 is the Hamiltonian operator for a harmonic oscillator. 

 The two examples, with their Hamiltonian operators, introduce us to the 
basic idea behind perturbation theory. In both these cases, the total Hamiltonian 
consists of two parts, one for which the Schrödinger equation can be solved 
exactly and an additional term, whose presence prevents an exact solution. We 
call the first term an unperturbed Hamiltonian and the additional term the 

perturbation. We shall denote the unperturbed Hamiltonian by 0Ĥ  and the 

perturbation by 1Ĥ  and write,  

0 1ˆ ˆ ˆH H H   (6.1.8)

 Associated with 0Ĥ  is a Schrödinger equation, we know how to solve and 
so we have  

0 0 0 0Ĥ E   (6.1.9)    

where 0  and 0E  are the known eigenfunctions and eigenvalues of 0Ĥ . 
Eq. 6.1.9 specifies the unperturbed system.  
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In the case of the helium atom we have,  

21
0 ˆˆˆ

HH HHH

0
1 1 1 2 2 2, , , ,H Hr r        (6.1.10) 

2
2

22
0

4

2
1

22
0

4
0

8

4

8

4

n

e

n

e
E

and, 

120

2
1

4
ˆ

r

e
H

In the case of an an-harmonic oscillator, we have,  

2 2
0 2

2

1ˆ
2 2

d
H kx

dx

1
4 2

10 2 2
1

22 !

x

n
n

e H x
n

(6.1.11)

0 1
2E n h   and  1 3 4ˆ

6 24

b
H x x

 Intuitively, it can be expected that, if the perturbation terms are not large in 
some sense, then the solution to the complete perturbed system should be close 
to the solution to the unperturbed problem. A simple example of this is, when 

the an-harmonicity terms 
3

6

x
 and

4

24

bx
 are small, we expect the unperturbed

system to be perturbed but not altered drastically by the additional term. 

Perturbation theory consists of a set of successive corrections to an 
unperturbed problem     

Now we shall derive the equations to the perturbation theory in the lowest level 
approximation, leaving the higher order terms.  

The problem we wish to solve is,  

Ĥ E (6.1.12)

where  

0 1ˆ ˆ ˆH H H (6.1.13) 
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and where the problem 

0 0 0 0Ĥ E   (6.1.14)

has been solved previously, so that 0  and 0E  are known.  

      Assuming now that the effect of 1Ĥ  is small, we write,  

0

and 

0E E E  (6.1.15)

where we assume that  and E  are small. Substituting these equations in 
Eq. 6.1.12 we get,  

H H H H

E E E E

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 1 0 0 1

0 0 0 0    (6.1.16)

 The first term on each side of Eq. 6.1.16 cancel because of Eq. 6.1.14. In 
addition, we shall neglect the last terms on each side, because they represent 
the product of two small terms. Eq, 6.1.16 becomes  

H H E E( ) ( ) ( ) ( ) ( )0 1 0 0 0
  (6.1.17) 

 Realize that  and E  are the unknown quantities in this equation. 

 Note that all the terms in Eq. 6.1.17 are of the same order, in the sense that 
each is the product of an unperturbed term and a small term. Therefore, we say 
that the equation is first order in perturbation and we are doing here is the first 
order perturbation theory. The above neglected second order terms lead to 
second order corrections. Eq. 6.1.17 can be simplified considerably by 

multiplying both sides from the left by (0)*  and integrating over all space. By 
doing this and rearranging slightly, we find, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0 0 1 0

0 0

H E d H d

E d
(6.1.18) 

 The integral in the last term in Eq. 6.1.18 is unity because (0)  is taken to 
be normalized. More importantly, the first term on the left hand side of Eq. 

6.1.18 is zero. To see this, remember that 0 0Ĥ E  is Hermitian, and so we 
have that,  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0H E d H E d   (6.1.19)
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 But according to Eq. 6.1.14, the integrand here vanishes. Thus, Eq. 6.1.18 
becomes,  

E H d( ) ( ) ( )0 1 0      (6.1.20) 

This equation is called the first order correction to energy E(0). 

To the first order, the energy is,  

0 0 * 1 0E E H d  + Higher order terms (6.1.21) 

6.2 The Variational Method 

The variational method provides an upper bound to the ground state energy of a 
system.  

   The second approximation method that we shall discuss is more useful than 
perturbation theory, because it does not require that there be a similar problem 
that has been solved previously. This second approximation method is the 
variational method.  

  Consider the ground state of some particular arbitrary system. The ground 
state wave function, 0  and energy E(0) satisfy the Schrödinger equation. 

0 0 0Ĥ E   (6.2.1) 

Multiply Eq. 6.2.1 from the left by *
(0)  and integrate overall space to obtain     

*
0 0

0 *
0 0

Ĥ d
E

d
  (6.2.2) 

where, d  represents approximate volume element. We have not set the 

denominator to unity in Eq. 6.2.2, in order to allow the possibility that 0  is 
not normalized beforehand. There is a beautiful theorem that says that if we 

substitute any other function for 0  in Eq. 6.2. 2 and calculate,  

*

*

Ĥ d
E

d
  (6.2.3) 

the E  calculated through Eq. 6.2.3 will be greater than the ground state 

energy, E(0). In an equation, we have the variational principle  

0E E    (6.2.4) 
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 The variational principle says that we can calculate an upper bound on E0 by 
using any trial function we wish. The closure  is to 0  in some sense; the 

closure E will be to E0. We can choose such that it depends on some arbitrary 

parameters , called variational parameters. The energy also will depend 
on these variational parameters and Eq. 6.2.4 will read, 

0, , .....E E   (6.2.5) 

 Now we can minimize E  with respect to each of the variational parameters 
and thus approach the exact ground state energy E0.  

 As a specific example, consider the ground state of the hydrogen atom. 
Although we can solve this problem exactly, let us assume that we cannot and 
use the variational method. We shall compare the variational result with the 
exact result.  

 Because l = 0 in the ground state, the Hamiltonian operator is,  

  
2 2

2
2

0

ˆ
42

d d e
H r

dr dr rr
(6.2.6) 

 As a trial function, we shall try a Gaussian function of the form 
2

)( rer

where,  is a variational parameter. It can be shown that,  

and that 

2
3

2
)()(4

0

*2 rrdrr

Therefore, from Eq. 6.2.3,  
12 2 2

31
2 2

0

3

2 2

e
E (6.2.7) 

 Now differentiate E( ) with respect to  and set the result equal to zero to 
find ,  

42
0

3

42

18

e
 (6.2.8) 

as the value of ‘ ’ that minimizes E( ). Substituting Eq. 6.2.8 back into      
Eq. 6.2.7 we find that,  
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 22
0

2

4

22
0

2

4

min 16
424.0

163

4 ee
E

 (6.2.9) 

compared to the exact value,  

22
0

2

4

22
0

2

4

0 16
5.0

162

1 ee
E (6.2.10) 

 Note that Emin > E0 and the variational theorem assures us. Thus, we see that 
the variational method gives a rather good result. We can obtain a better result 
by using a more flexible trial function. 

Proof 

Now that we have illustrated the utility of the variational theorem by example, 
we shall prove it. Let,  

H En n n
  (6.2.11) 

be the problem of interest. Even though we do not know explicitly, we do know 
that we can expand any suitable arbitrary function  in terms of the n  and 
write,     

cnn n
  (6.2.12)

 If we substitute this into Eq. 6.2.3 and use the fact that n  are orthonormal, 
then we obtain,  

E
c c E

c c

n n n
n

n n
n

*

*
  (6.2.13)

 Subtract E0 from the left-hand side and from the right hand side to find, 

E E
c c E E

c c

n n n
n

n n
n

0

0
*

*

( )

  (6.2.14)

 Now by definition, E0 is the ground-state energy. Consequently, En – E0  0 

for all values of  n, and because all the * 0n nc c , Eq-6.2.14 shows that,  

E  – E0 > 0        (6.2.15) 

which is the variational theorem.  
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6.3 The Hartree Theory 

Compared to the simplified one-dimensional systems or even to the one 
electron atom, multi-electron atoms are quite complicated. But, it is possible to 
treat them in a reasonable way using a succession of approximations. Only the 
most important interactions experienced by the atomic electrons are treated in 
the first approximation, and then the treatment is made more exact in 
succeeding approximations that take into account the less important 
interactions. In this way, the treatment is broken into a series of steps, none of 
which is too difficult. The results obtained will certainly justify the effort 
expended, because we shall have a detailed understanding of the atoms that are 
the constituents of everything in this universe. 

 In the first approximation used in treating a multi-electron atom of atomic 
number z, we must consider the coulomb interaction between each of its ‘z’ 
electrons of charge ‘e’ and its nucleus of charge ‘ze’. Due to the magnitude of 
the nuclear charge, this is the strongest single interaction felt by each electron. 
But, even in the first approximation we must also consider the coulomb 
interactions between each electron and all the other electrons in the atom. 
These interactions are individually weaker than the interaction between each 
electron and the nucleus, but they are certainly not negligible. Furthermore, in a 
typical multi-electron atom, there are so many interactions between an electron 
and all other electrons that their net effect is very strong, except if the electron 
is quite near the nucleus. 

Surface of the Atom 

Fig. 6.3.1(Left) The strong attractive force (big arrow) exerted by the nucleus on an 
electron near the surface of the atom and the weak repulsive forces (small arrows) 

exerted by the other electrons. The net effective repulsive force is important which is 
the reinforced one of all the forces.  

Fig. 6.3.1(Right) The very strong attractive force (arrow pointing towards the nucleus) 
exerted by the nucleus on an electron near the centre of the atom and the weak 

repulsive forces (arrows pointing towards the electron) exerted by the other electrons. 
Here the repulsive forces tend to cancel each other. 
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  On the other hand, the first approximation must not be so complicated that 
the Schrödinger equation to which it leads is unsolvable. In practice, this 
requirement means that in the first approximation the atomic electrons must be 
treated as moving independently, so that the motion of one electron does not 
depend on the motion of the others. Then the time independent Schrödinger 
equation for the system can be separated into a set of equations, one for each 
electron, which can be solved without too much difficulty, since each involves 
the coordinates of a single electron only. 

 The requirement of the last two paragraphs are in conflict - the coulomb 
interactions between the electrons must be considered, but the electrons must 
be treated as moving independently. A compromise between the requirements 
is obtained by assuming each electron to move independently in a spherically 
symmetrical net potential V(r), where ‘r’ is the radial coordinate of the electron 
with respect to the nucleus. The net potential is the sum of the spherically 
symmetrical attractive coulomb potential due to the nucleus and a spherically 
symmetrical repulsive potential, which represents the average effect of the 
repulsive coulomb interactions between a typical electron and its Z-1 
colleagues. It can be seen from the figure that very near the centre of the atom 
the behavior of the net potential acting on an electron should be essentially like 
that of the coulomb potential due to the nuclear charge + ze. The reason is that 
in this region, the interactions of the electron with the other electrons tend to 
cancel. It can also be seen from the figure that very far from the centre, the 
behavior of the net potential should be essentially like that of the coulomb 
potential due to net charge + e, which represents the nuclear charge + ze 
shielded by the charge -(Z-1)e of other electrons. 

 It might be seen that there is no way to find the net potential of an atom at 
intermediate distances from its centre. The problem is that it obviously depends 
on the details of the charge distribution of the atomic electrons, and this is not 
known until solutions have been obtained to the Schrödinger equation that 
contains the net potential. However, it can be taken care of by demanding that 
the net potential be self-consistent. That is, we calculate the electron charge 
distribution from the correct net potential, and then evaluate the net potential 
from the charge distribution. We demand that the potential with which we end 
up must be the same as the potential with which we started. As we shall see, 
this condition of self-consistency is enough to determine the correct net 
potential. 

 Most of the work in this field, has been started by Douglas Hartree and 
Collaborators in 1928. It involves solving the time-independent Schrödinger 
equation for a system of ‘z’ electrons moving independently in the atom. The 
total potential of the atom can be written as a sum of a set of Z identical net 
potentials V(r), each depending on the radial coordinate ‘r’ of one electron 
only. Consequently, the equation can be separated into a set of z time 
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independent Schrödinger equations, all of which are of the same form, and each 
of which describes one electron moving independently in its net potential. A 
typical time independent Schrödinger equation for one electron is, 

2
, , , , , ,

2

r r rV E
2m

 Here, , ,r  are the spherical polar coordinates of the typical electron, 2  is 
the Laplacian operator in these coordinates; E is the total energy of the 
electron; V(r) is its net potential; and , ,r  is the eigenfunction of the 

electron. The total energy of the atom is the sum of Z of these total energies. 
The total eigenfunction for the atom is composed of the product of Z of these 
eigenfunctions that describe the independently moving electrons. 

 Initially the exact form of the net potential V(r) experienced by the typical 
electron is not known, but it can be found by going through a self-consistent 
treatment comprised of the following steps. 

1. A first guess at the form of V(r) is obtained by taking,
2

0

0
4r

Ze
V r

r
2

04r

e
V r

r

and by taking any reasonable interpolation of intermediate values of ‘r’. 
This guess is based on the idea, mentioned previously, that an electron very 
near the nucleus feels the full coulomb attraction of its charge +ze, while an 
electron very far from the nucleus feels a net charge of +e because the 
nuclear charge is shielded by the charge -(Z-1)e of the other electrons 
surrounding the nucleus. 

2. The time independent Schrödinger equation for a typical electron is solved
for the net potential V(r) obtained in the previous step. This is not easy to do
because the radial part of the equation must be solved by numerical
integration, since V(r) is a complicated function. The eigenfunctions for a
typical electron found in this step are: , , , , , ,, , ,r r r ..... 

They are listed in order of increasing energy of the corresponding 
eigenvalues: , , ,E E E  ........ Each of these symbols , , , .. stands for a 

complete set of three space and one spin quantum numbers for the electron. 

3. To obtain the ground state of the atom, the quantum states of its electrons
are filled in such a way as to minimize the total energy and yet satisfy the
weaker condition of the exclusion principle. That is, the states are filled in
order of increasing energy, with one electron in each state as illustrated in
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Fig. 6.3.2. Then the eigenfunction for the first electron will be 1 1 1, ,r  

, the eigenfunction for the second will be 2 2 2, ,r , and so forth 

through the z eigenfunctions corresponding to the z lowest eigenvalues, 
obtained in the previous step. 

Fig: 6.3.2 Schematic energy level diagram illustrating the effect of the exclusion 
principle in limiting the population of each quantum state of an atom. 

4. The electron charge distributions of the atom are then evaluated from the 
eigenfunctions specified in the previous step. This is done by taking the 
charge distribution for each electron as the product of its charge ‘e’ times its 

probability density function * . The justification is that *  determines 
the probability that the charge distributions of ‘Z-1’ representative electrons 
are added to the nuclear charge distribution, a point charge +ze at the origin 
to determine the total charge distribution of the atom as seen by a typical 
electron. 

5. Gauss’s law of electrostatics is used to calculate the electric field produced 
by the total charge distribution obtained in the previous step. The integral of 
this electric field is then evaluated to obtain a more accurate estimate of the 
net potential, V(r) experienced by a typical electron. The V(r) that is found, 
generally differs from the estimate made in step 1. 

6. If it is apparently different, the entire procedure is repeated, starting at step 
2 and using the new V(r). After several cycles (2 —> 3 —> 4 —> 5 —> 2 
—> 3 —> 4 —> —5), the V(r) obtained at the end of a cycle is essentially 
the same as that used in the beginning. Then this V(r) is the self-consistent 
net potential, and the eigenfunctions calculated from this potential describe 
the electrons in the ground state of the multi-electron atom. 

In the Hartree procedure, the weaker condition of the exclusion principle is 
satisfied by the requirement of the step 3 that only one electron populates 
each quantum state. But, the stronger condition is not satisfied since 
antisymmetric total eigenfunctions are not used. The reason is that an 
antisymmetric eigenfunction would involve a linear combination of Z! = 
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Z(Z-1)(Z-2) ....1 terms, which is an extremely large number for all atoms 
except for those of very small Z. The procedure is difficult and the use of 
antisymmetric eigenfunctions would make it even more difficult. Anyway, 
the main effect of using antisymmetric total eigenfunctions would be to 
decrease the separation between certain parts of electrons, and increase it 
between others. This leaves the average electron charge distribution of the 
atom essentially unchanged. Since the average electron charge distribution 
is the important quantity in the approximation treated by Hartree, the use of 
eigenfunctions which are not of a definite symmetry does not introduce a 
significant error. This has been verified by Fock. He made calculations 
using antisymmetric total eigenfunctions for a restricted selection of atoms, 
and he compared his results with those obtained by Hartree. When the 
excited states of the atoms are discussed, it will be necessary to take into 
account the fact that antisymmetric total eigenfunctions must be used to 
give a completely accurate description of a system of electrons. Fock’s 
calculations are feasible because, it is only necessary to anti-symmetrize the 
part of the total eigenfunction describing the behavior of a limited number 
of electrons in a “partially filled sub-shell”. 

6.4 Exercises 

Q1: Calculate the ground state energy of a harmonic oscillator (One 
dimensional) 

Let the trial function be where ‘c’ is an arbitrary constant. 

E
H dx

dx

*

*

 But for harmonic oscillator is    
2 2

2
2

2

1

2m

d

dx
kx

Before doing the evaluation of the integrals first normalize the trial wave 
function.  
(A = Normalization constant) 

c
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1
2 2

1

22 2c
A

e cx2
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 But 
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A
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22 8m
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k

E hmin
1
2 0

(Ground state energy of the harmonic oscillator which is also the zero 
point energy) 

Special integrals    *Calculation
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CHAPTER 7 

Bonding in Molecules 

7.1  Molecular Orbital Theory 

LCAO Method – 2H - ion  

Atom is a centrosymmetric system. However, in molecules it will be disturbed. 
We shall make a reasonable approximation that a molecular orbital (MO) is a 
Linear Combination of Atomic Orbitals (LCAO). 

 As individual hydrogen atoms at quite large distance from each other, 
(theoretically) are brought closer and closer, the nucleus of each atom will start 
to attract the electrons originally associated with the other atom. The change in 
energy of the system, as a function of 
distance, is usually shown in the form of a 
curve called a Morse curve. 

 When the distance separating the nuclei 
is at or near the bonding distance, the 
electron in the system is associated with the 
two nuclei instead of the original atomic 
orbitals on each atom. The electron is now 
associated with a molecular orbital(MO) 
that is the combination of the two atomic 
orbitals. 

 When the electron is near one nucleus, the MO may be assumed to resemble 
the atomic orbital of the atom. Let the wave function be 1 . Similarly when the 

electron is in the neighborhood of the other nucleus the MO resembles the 
atomic orbital of the other atom. The wave function for this is given by 2 . 

Since the complete MO has the characteristics separately possessed by 1  and 

2 , the total wave function for the MO is formed by the linear combination of 

atomic orbitals. Linear combinations are made by simple addition or 
subtraction of the functions to be combined. In this case it is 

   1 2mol    

Fig. 7.1.1 Change of energy as a 
function of distance. 



116 Quantum Chemistry 

 This terminology, called the Liner Combination of Atomic Orbitals or 
LCAO method, was first suggested by R. S. Mulliken. 

The Schrödinger equation can be written as  

2
2

2

8
0

m
E V

h

This can be rearranged as follows: 

2
2

28

h
V E

m

 or 

 
)1.1.7(

8 2

2

2

2

2

22

E
zyxm

h
V

 The left side of the equation can be considered as the action of an operator 
called the Hamiltonian operator on , where  is now a molecular orbital. We 
can abbreviate the expression as  

H E   (7.1.2)

where H is the Hamiltonian operator. Just as in the case of atomic wave 
functions, the MO wave function  can be either positive or negative and 2 is 
a quantity proportional to electron density. If we multiply both sides of 
equation Eq. 7.1.2 by  and integrate over all space, we obtain 

2H d E d   (7.1.3)

 In Eq.7.1.3, we have allowed a single integral sign to stand for a triple 
integral sign and have made substitution x y zd d d d . By rearrangement, we 

obtain the following expression for energy. 

2

H d
E

d
  (7.1.4)

The wave function is represented by the following linear function 

1 1 2 2mol c c   (7.1.5)

where 1  and 2  are the atomic orbital wave functions of atoms 1 and 2, and c1 
and c2 are coefficients to be determined. Substituting the value of the wave 
function in Eq. 7.1.4.  
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1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

c c H c c d
E

c c c c d

 
1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2

2 2 2 2
1 1 1 2 1 2 2 22

c Hc d c Hc d c Hc d c Hc d

c d c c d c d

   
2 2
1 1 1 1 2 1 2 1 2 2 1 2 2 2

2 2 2 2
1 1 1 2 1 2 2 22

c H d c c H d c c H d c H d

c d c c d c d

But we know that 1 1 1 1Hc c H  

 and 1 2 2 1H d H d

Therefore we may write 

E
2 2
1 1 1 1 2 1 2 2 2 2

2 2 2 2
1 1 1 2 1 2 2 2

2

2

c H d c c H d c H d

c d c c d c d

For simplification, we make the following substitutions 

11 1 1H H d

22 2 2H H d

12 1 2H H d

2
11 1

2
22 2

11 1 2

S d

S d

S d

 Hence, 
2 2
1 11 1 2 12 2 22

2 2
1 11 1 2 12 2 22

2

2

c H c c H c H
E

c S c c S c S
(7.1.6)

Since we desire the minimum value of E, it is necessary to minimize E with 

respect to both c1 and c2. Therefore, it is necessary that, 
1 2

0
E E

c c
. 

Differentiating Eq. 7.1.6 with respect to c1 
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This is rearranged as  

2

22
2
2122111

2
1

12211122
2
2122111

2
1

2

222

ScSccSc

HcHcScSccSc

2

22
2
2122111

2
1

12211122
2
2122111

2
1

2

222

ScSccSc

ScScHcHccHc

But  
2 2
1 11 1 2 12 2 22

2 2
1 11 1 2 12 2 22

2

2

c H c c H c H
E

c S c c S c S

So the above equation becomes 

22
2
2122111

2
1

122111

22
2
2122111

2
1

122111

2

22

2

22

ScSccSc

ScScE

ScSccSc

HcHc

that is  

1 11 2 12 1 11 2 12c H c H E c S c S

or 

1 11 11 2 12 12c H ES c H ES  = 0 (7.1.7) 

 Similarly differentiating Eq. 7.1.6 with respect to c2 we obtain the following 
equation 

1 12 12 2 22 22 0c H ES c H ES (7.1.8)

Eqs.7.1.7 and 7.1.8 are called the secular equations. 

It is to be noted that the secular equations are of the form 

0

0

dycx

byax

 
and if we solve this set of linear homogeneous equations, we see that  

0ybcad

 In order this equation to be valid, it is apparent that either ‘y’ is zero or else 
the coefficient of ‘y’ is zero. If ‘y’ is zero, no problem really exists. Therefore, 
a nontrivial solution requires that the coefficient of ‘y’ be zero. This can be 
expressed as 0bcad . 

The same condition applied to the secular Eqs. 7.1.7 and 7.1.8, where c1 and 

which is c2 are not equal to zero. If they are zero then, 
meaningless. Hence, the coefficients of c1 and c2 must be zero in order to have a 

nontrivial solution. 

02211 cc
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 The secular equations are  

  01212211111 ESHcESHc   

  02222212121 ESHcESHc  

 A nontrivial solution to these equations can be expressed in terms of the 
secular determinant. 

  
2

11 11 22 22 12 12 0H ES H ES H ES  (7.1.9) 

 The terms 11H  and 22H  are called “coulomb integrals”. Coulomb integral 

is apparently the energy of an electron in the valence atomic orbital, .  

 At least this approximation is reasonable for a neutral molecule, in which 
electron - electron and nucleus – nucleus repulsions somewhat compensate. 
Hence, we may write 11 1H  and 22 2H . The term H12 is called the 

resonance integral,  and is essentially the interaction energy of the two atomic 
orbitals which is also called the covalent integral. Both  and  have negative 
values. 

 If the atomic orbital wave functions in Eq.7.1.5 are normalized, then 

2 2
11 1 22 2S d S d  (7.1.10) 

 Eq.7.1.10 simply states that the probability of finding an electron in the 
orbital is exactly unity. The term S12 is called the “overlap integral” because it 
is a measure of the extent to which orbitals 1 and 2 overlap. For simplification 
we shall omit the subscripts and write S for the overlap integral. Then the 
secular determinant will be reduced to  

  1

2

0
E ES

ES E
 

 For a homo-nuclear species such as 2H , we may substitute 1 2 . 
The detrimental equation the corresponds to  

  0
E ES

ES E
 

that is          
2 2

0E ES                     (7.1.11) 

Solution: 

Eq.7.1.11 can be written as  

  
2 2

0E ES  
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E ES (7.1.12)

 If E ES

 then 
1

E
S

 and   (7.1.13) 

 if E ES

 then 
1

E
S

  (7.1.14)

Eqs. 7.1.13 and 7.1.14 denote symmetric and antisymmetric energy states. 

By taking the secular Eq.7.1.7  

1 11 11 2 2 12 0c H ES c H ES

and by appropriate substitution, we obtain 

1 2c E c ES

 Therefore, 

1 2
ES

c c
E

From this relation it can be seen that, when  

1
E

S
, then c1 = c2 and when 

  
1

E
S

, then c1 = –c2. 

Thus, the molecular orbital wave function can be written as 

1 1 1 2c c . 

To evaluate c1 we must normalize the wave function. 
22

1 1 1 2 1d c c d

12 2
2

2
121

2
1

2
1

2
1 dcdcdc

2 2 2
1 11 1 1 222 1c S c S c S  but 11 22 1S S . 

Hence, the above equation becomes 
2 2 2
1 1 12 1c c S c  

2 2
1 12 2 1c c S  

 1
1

2 2
c

S
(7.1.15)
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  Arbitrarily taking the positive sign of the normalization constant, the 
positive sign under the radical sign corresponds to c1 = c2 and the negative sign 
under the radical sign corresponds to c1 = –c2. Obviously, the following wave 
functions are normalized. 

1 2
1

2 2
B

S
(7.1.16) 

1 2
1

2 2
A

S
(7.1.17)

The valence electron density is obtained by squaring these functions 

  2 2 2
1 2 1 2

1
2

2 2B S

  2 2 2
1 2 1 2

1
2

2 2A S
2
B  shows an increase in electron density in the region of overlap between the 

atoms over that of the individual atoms. Such an electron distribution stabilizes 
the system, and we refer to  as the “bonding” MO. The energy level of is 

given by 
1

E
S

. 2
A  shows a decrease in electron density in the overlap 

region, and the system is unstable relative to the separate atoms. 

We refer to A as the “anti-bonding” MO for which 
1

E
S

. 

In figure it show a plot of 2
1 , 2

2 , 2
b  and 2

a  along the inter nuclear line. 

Position on inter nuclear axis 

Fig.7.1.2 Plot of electron densities for the orbitals 1, 2, B and A along the inter-

nuclear axis of 2H . 
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 The dashed lines indicate 2
1  and 2

2 , that is the electron density of the 

individual atomic orbitals. The lower solid line indicates 2
A , the electron 

density of the anti-bonding MO, and the upper solid line(dark) indicates 2
B , 

the electron density of the bonding MO. 

 Fig.7.1.3 is an energy level diagram graphically indicating the energies of 
the two MO’s that arise from the interactions of two atomic orbitals. Overlap 
integrals are generally small and are often in the range of 0.2 to 0.3. Hence, the 
anti-bonding MO is destabilized approximately the same amount that the 
bonding MO is stabilized. 

Fig.7.1.3 Energy level diagram for the molecular orbitals formed from similar atomic 
orbitals in a homo nuclear molecule. 

 In fact, in simple LCAO theory, it is often assumed that S =0. This 
assumption simplifies the calculations. With this assumption, the energy levels 

A and B are equal to  –  and  + , respectively. 

 In the case of a hetero-nuclear bond such as in the LiH+, if we neglect S, the 
secular determinant yields,  

1

2

0
E ES

ES E

1

2

0
E

E
 

 Solving 2
1 2E E  for E gives 

2
2121

2
2

2
1

21 442
2

1

2
E

2221 4
2

1

2
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The corresponding energy level diagram is given below. 

Fig.7.1.4 Energy level diagram for the molecular orbitals formed from dissimilar 
atomic orbitals in a hetero nuclear molecule. 

 In the above energy level diagram for the molecular orbitals formed from 
dissimilar atomic orbitals in a hetero-nuclear molecule the overlap integral has 
been neglected. 

 Notice that, according to the approximate LCAO method that we are now 
employing, the energy of the bonding MO is depressed from that of the more 
stable atomic orbital by the same amount that the energy of the anti-bonding 

MO is raised from that of the less stable atomic orbital. If  is very small, the 
energy spread between the bonding and anti-bonding levels is just more than 
the separation between 1 and 2, and then the MO’s are essentially slightly 
perturbed atomic orbitals.  

Hamiltonian operator for H2
+ and H2 

 H2
+ ion - It is represented as:  

The Hamiltonian operator can be written as 

2
2

28

h
V

m

2 2 2 2
2

28 a b ab

h e e e
H

r r rm
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H2 Molecule : The coordinates for the hydrogen molecule can be represented as 

2 2 2 2 2 2 2
2 2
1 22

1 1 2 2 128

h e e e e e e
H

ra rb ra rb r rabm

The Stability of Hydrogen Molecule Ion 

If the hydrogen molecule ion actually does form a stable species, we should 
expect a potential energy diagram as a function of the distance of separation of 
the two nuclei, to show a minimum at some equilibrium separation of the two 
atoms, ‘a’ and ‘b’. It should be possible to plot such a curve, if we can evaluate 
the expression for the energy of the molecule as a function of the inter-nuclear 
separation. Immediately we should recognize that two potential energy 
diagrams will be obtained; one for the bonding orbital and one for the anti-
bonding orbital. In both ES and EA the same integral will appear, but the 
energies will be different. 

We know that  

11 1 1H H d

22 2 2H H d

12 1 2S d

The Hamiltonian operator for hydrogen molecule ion can be written as 

12

2

2

2

1

2
2

2

2

8 r

e

r

e

r

e

m

h
H
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 Then 

  
2 2 2 2

2
11 1 12

1 2 128

h e e e
H d

r r rm
 

 This integral can be simplified by rearranging that 

  1

2
2

2

2

8 r

e

m

h

 
is the Hamiltonian operator for the hydrogen atom with electron around atom-1 
and since in general  

   H  = E  

the Hamiltonian operator for hydrogen molecule ion can be expressed as  

   12

2

2

2

0 r

e

r

e
EH

 
where E0 is the ground state energy of the hydrogen atom. This then gives 

  
2 2

11 1 0 1
1 2

e e
H E d

r r
 

 Now E0 and r12 are both constants and for this reason, it is possible to 
remove them from under the integral sign giving 

  
2 2

11 0 1 2 1 2 1 1
12 2

e e
H E d d d

r r
 

 Since 1S wave functions are normalized, it follows that 

  
2

11 0
12

e
H E J

r
 

where J denoted the integral 

  
2

1 2
12

e
J d

r
. 

 The evaluation of J is not a simple matter and for that reason, it is not 
considered here. However, this will help to discuss the shape of the potential 
energy diagram in terms of its contribution to the total energy of the system. 
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After introducing the Hamiltonian operator, the integral becomes 

2 2

12 1 0 2
2 12

e e
H E d

r r

on expanding  

2 2

12 0 1 1 1 2 1 1
12 2

e e
H E d d d

r r
.

Since 1 1 d  is defined as S12, then H12 can be expressed as

2

12 0 12 12
ab

e
H E S S K

r

where K denotes the integral 

2

2

e
K

r 1 1 d .

 Just as with the integral J, the integral K is rather difficult to evaluate, but it 
can be helpful to see how it will affect the energy of the molecule. 

When we substitute the various integrals in the equation for energy states 

11 12

121 1S

H H
E

S S

we obtain for the symmetric state 

12

12

12

2

120

12

2

0

1 S

KS
r

e
SEJ

r

e
E

ES

2

0
12 121S

e J K
E E

r S

and for the antisymmetric state 

2

0
12 121A

e J K
E E

r S

 Although the arithmetic is rather complex, it is possible to evaluate the 
integrals J and K as a function of inter-nuclear separation of the hydrogen 
nuclei. This result can be shown as potential energy diagram such as the one 
shown in the following figure. 
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Fig. 7.1.5 Potential energy diagram showing the symmetrical and anti-symmetrical 
energy states. 

 Here the antisymmetric state is seen to correspond to an unstable energy 
state, and if the electron were in the anti-symmetrical orbital, we conclude that 
the hydrogen molecule ion would be an unstable species. On the other hand, a 
symmetric energy state leads to a potential minimum and therefore, a stable 
molecular species. 

7.2  Valence Bond Theory 

The problem of homo-polar bond can be seen from the point of view of 
Valence Bond theory. In this theory, it is assumed that atoms, complete with 
electrons, come together to form the molecule. The theory uses the following 
two principles: 

(i)  If and are wave functions for two independent systems A and B, 
then we can write the total wave function  for the separated systems as a 
simple product 

      (7.2.1) 

 and the total energy E = EA + EB 

(ii)  If etc. are the acceptable wave functions for the same system, 
then the true wave function can be obtained by taking a linear 
combination of all these wave functions, i.e. 

c1 1 + c2 2 + c3 3 + .........

 where c1, c2,  c3 etc. are coefficients which are adjusted to give a state of 
lowest energy. We can interpret the squares of the coefficients as a 
qualitative measure of the relative contribution of each wave function to 
the true wave function. 
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 This theory was first applied by Heitler and London in 1927 to the hydrogen 
molecule. We shall begin with two hydrogen atoms far enough apart so that no 
appreciable interaction can occur. Although the two hydrogen atoms are 
identical, for convenience of treatment we may label the electrons as 1 and 2 
and the nuclei as A and B; the orbital wave functions for the separate atoms 
HA(e1) and HB(e2) would then be given by A(1) and B(2), respectively. By 
using Eq. 7.2.1 the total orbital wave function for the separated atoms can be 
written as  

 = A(1) B(2)  (7.2.3) 

 Using the wave function  the energy of the system comprising two 
identical hydrogen atoms can be calculated as a function of the inter nuclear 
distance rAB. This is shown graphically in Fig.7.2.1. It may be noted that in the 
Fig.7.2.1 the total energy of the two isolated hydrogen atoms at infinite 
separation has been taken as zero, so that the energy curve on this plot shows  

 Fig.7.2.1 Variation of energy with inter-nuclear distance for different wave functions. 

how much the energy of the system of two hydrogen atoms is above or below 
that of the two isolated atoms. Consequently, the energy value at the point of 
minimum on an energy curve represents the bonding energy at the equilibrium 
inter-nuclear distance for the molecule described by the corresponding wave 
function. It is seen that the energy curve N exhibits a minimum, thus indicating 
that a molecule is formed. However, the bonding energy is far too small, that is 
about 6 kcal/mole, which is only a small fraction of the observed value, namely 
109 kcal/mole. 

 Evidently, the wave function of Eq.7.2.3 can not be correct. To reveal this 
error, we must recall that in forming the wave function of Eq. 7.2.3 we 
supposed that the two electrons were distinguishable, so that the electrons, 
labelled 1 and 2, could be associated with the nuclei A and B, respectively. We 
know, however, that when the two atoms are very close together, so that the 
atomic orbitals overlap, we can no longer be sure that the electron 1 will 
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always be near the nucleus A and the electron 2 near the nucleus B. We can, in 
fact, no longer distinguish one electron from the other and hence the system of 
two H atoms may be represented by the different states I and II as  

  HA(e1) HB(e2) HA(e2) HB(e1) 

            I          II 

 Let and  be the wave functions for the states I and II, respectively. 
Following Eq. 7.2.1 they can be written as  

   (1) B(2)

(2) B(1)  (7.2.4) 

 The true wave function is likely to be some combination of these two 
wave functions. Following Eq. 7.2.2 we can write 

  c1  c2

       = c1 (2) + c2 (2) (1)

In the case of hydrogen molecule, because of symmetry, the two component 
wave functions and must contribute with equal weight. As the weight is 

proportional to the square of the coefficients we can write 2
1c  = 2

2c  or c1 = ± 

c2. Moreover, since the coefficients are relative quantities we can put c1 = 1 
and hence c2 = ± 1. There are thus two possible wave functions. 

s A(1) B(2)  A(2) B(1)

a (1) B(2) – (2) B(1)

q. 7.2.6 represents symmetric combination since s remains unchanged by 
exchange of electrons 1 and 2, where Eq.7.2.7 represents the antisymmetric 
combination since a changes sign with exchange of electrons. The energy of 
the system (as a function of inter-nuclear distance) calculated by using the 
wave function s is shown as curve A. It is thus evident from these energy 
curves that a represents a repulsive or nonbonding state, but s represents a 
bonding state. We thus find that the anti-contiguous H atoms will always lead 
to repulsion between the two atoms, so that the stable H2 molecule can not be 
formed. While the symmetric combination will lead to attraction of the two 
hydrogen atoms with the formation of a stable H2 molecule, the equilibrium 
value for the inter-nuclear distance is given by r0, at which the energy is 
minimum. The value of r0 found to be 0.80 Å is in rough agreement with the 
experimental value of 0.72 Å. The bonding energy corresponding to this 
separation is found to about 72 kcal/mole, which is in better agreement with the 
experimental value (109 kcal/mole) than the energy calculated from Eq. 7.2.3. 
Evidently, this improvement in result has stemmed from the introduction of the 
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concept of electron exchange between the two constituent atoms. The 
additional bonding energy, which has resulted from this, Viz. (72-6) or 66 
kcal/mole, is consequently known as the exchange energy. 

 It turns out from the above discussion that s and a are the orbital wave 
functions of the normal hydrogen molecule. It is also referred to as covalent 
wave functions because one electron is considered to be on one nucleus and 
another on the other. 

 It may be recalled that the calculated bonding energy ( 72 Kcal/mole), 
obtained by using the orbital wave function s is considerable in magnitude, it 
is still far short of the experimental value of about 109 Kcal/mole. The orbital 
wave function for the hydrogen molecule may, however, be further improved 
by modifying the wave functions of atomic orbitals of the electrons. The 
modification can be done slightly by allowing for the screening of nucleus A 
from nucleus B by increased probability of the electrons being found directly 
between the nuclei, and also to allow for the fact that the atomic orbitals will no 
longer be spherically symmetrical when the atoms are close together. 

 An additional improvement is also obtained by allowing for the possibility 
that both electrons may be simultaneously near one of the nuclei giving rise to 
the following two equally likely ionic configurations: 

    (e2)       (e2)  

HA(e1)HB    and  HAHB(e1) 

    III       IV 

 The wave function for the ionic form of hydrogen molecule may therefore 
be represented equally well by or  Inclusion of all 
these modifications leads to a bonding energy of about 95 kcal/mole. Further 
refinements can be effected by taking into account explicitly the inter-electron 
distance, and these lead to a bonding energy, which is only 0.5 kcal/mole less 
than the experimental value. This demonstrates strikingly the validity of the VB 
approach. 

 Taking into consideration the possibility of ionic configurations, the 
combined wave function for the H2 molecule can be written as  

(s) = [ A(1) A(2) [ A(1) B(1)

or more conveniently as 

(s) = Cov + Ion 

when atoms are brought together, so that atomic orbitals each containing one 
electron overlap, a combined wave function of the form of Eq.7.2.8 is obtained. 
This, indeed, is the essential principle of Valence Bond Theory and the result is 
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the pairing of electrons, which is equivalent to the formation of a single bond. 
It might be mentioned that in molecules that are more complicated multiple 
bonds may arise from the pairing of four or six electrons; in such cases the 
principle of maximum overlapping is used to decide the way in which electrons 
are paired. 

 The coefficient  in Eq.7.2.8 is a measure of the degree to which the ionic 
forms contribute to the bonding. Since  can be adjusted to give the best value 
of the bonding energy, it affords a means of judging the extent of ionic 
character of the bond. For instance, for H2,   is 0.17 and the ionic contribution 
to the total bonding energy amounts to only 5.5 kcal/mole. 

 The physical interpretation of Eq. 7.2.8 is that the molecule is represented 
adequately neither by the pure covalent structure H-H nor by the ionic 
structures HA – HB

+, but that the true state of affairs lies somewhere between 
these two extremes. In such a case, it is said that there is a resonance between 
the two structures. Because of resonance, the total energy of the system will 
seek a minimum value lying below that for any of the resonating structures. 
This gives rise to extra stability of the actual molecule, measured in terms of 
the so-called resonance energy, which is taken to be equal to the difference in 
energy between that of the actual molecule and the most stable of the 
resonating structures. This concept of resonance is of fundamental importance 
in Valence Bond treatment. 

7.3 Hybridization 

In order to explain the directional characteristics of covalent bonds in 
polyatomic molecules, Pauling and Slater suggested that the formation of 
covalent bond takes place in the direction in which there is maximum overlap. 
It was considered that in case of water and ammonia molecules the hydrogen 
atom orbitals overlap with the ‘p’ orbitals and hence should be at an angle of 
90o. The greater bond angle in H2O [105o] or NH3 [108o] is supposed to be due 
to repulsion between partially positive hydrogen atoms. However, the 
calculation of columbic repulsion shows that the angle cannot deviate from 90o 
to 105o in water and 108o in case of NH3.  

 Further, in case of BeH2, BF3 and CH4 molecules the number of unpaired 
electrons present on the central atom is less than the number of covalent bonds 
formed. In order to explain this, it was presumed that the electrons are excited 
to the higher orbitals during the formation of covalent bonds. For example, 
beryllium has the excited state configuration 1s2, 2s1, 2px

1. This should result in 
two nonequivalent bonds due to the overlap of the hydrogen atoms with 2s and 
2px orbitals. However, in BeH2 both the bonds are equivalent and are at an 
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angle of 180o. In order to explain such cases the concept of hybridization was 
introduced. 

 According to the concept of hybridization, in cases where pure orbitals 
cannot affect good overlap in the formation of covalent bonds, combination of 
pure orbitals having same or similar energy takes place, resulting in the 
formation of equivalent hybrid orbitals. The number of hybrid orbitals formed 
is equal to the number of combining pure orbitals. If suppose 1  and 2  are 

the two combining atomic orbitals the resulting hybridized orbitals 1h  and

2h  are

1 1 2 21h c c  

3 1 4 22h c c  . 

  The values of the coefficients should be such that each of the hybridized 
orbital is normalized and the two hybrid orbitals should be orthogonal to each 
other. 

i.e. 2 2
1 2

1h hd d

 and 
1 2

0h h d .

 Hence, 
2 2
1 2 1c c  and 

2 2
3 4 1c c .

 Further,  1 1 2 2 3 1 4 2 0c c c c d  

 or 1 3 2 4 0c c c c . 

 Thus, the hybrid orbitals are orthogonal to each other. They provide better 
overlap with the incoming atomic orbitals and result in the formation of more 
stable bonds and a state of lower energy. The energy liberated is called 
hybridization energy. This energy is partly used for the excitation of electrons 
from lower to higher orbitals in the atom. 

Let us now consider the compositions of different hybrid orbitals. 

Linear Structure – BeCl2 

Here the chlorine atom px orbitals interact with the two hybrid orbitals directed 

at an angle of 180o, say along z – axis. 

 The 2s orbital of Be atom is spherically symmetrical and hence contributes 
to the formation of both the hybrid orbitals. pz orbital is also directed in the 

direction in which the hybrid orbitals are formed and hence can contribute to 
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their formation. However, px and py have nodes along z – axis and hence 

cannot contribute to the formation of the hybrid orbitals along that direction. 
Thus, the two hybrid orbitals have contributions only from s and pz orbitals, 

hence they are sp hybrid orbitals. The compositions of the two hybrid orbitals 
can be shown as follows. 

1 11h s pz
a b

2 22h s pz
a b

 Since the s orbital is spherically symmetrical, it contributes equally to the 
making of the two hybrid orbitals. In terms of probability contribution it is ½ 
and hence the coefficient of the s – orbital wave function in making the hybrid 

orbitals in each case shall be, 1
2 . 

 Hence, 11

1

2
h s pz

b

22

1

2
h s pz

b

Since each hybrid orbital is normalized,  

2 2
1 1 1a b  and 2

1
1

,
2

a  then  

2
1

1

2
b  and 

1
1

2b . 

Hence, 
1

1

2
h s pz

. 

The two hybrid orbitals are orthogonal to each other. 

 Hence,  1 2 1 2 0a a b b  

2
1 1 02 2b  

2
1

2b .

 Hence  
2

1

2
h s pz

. 

 The two sp hybrid orbitals are thus equivalent, one having contribution from 
positive phase of pz orbital and another from the negative phase of pz orbital. 
The values of s and pz orbitals can be put in terms of wave function and it can 
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be shown that the two hybrid orbitals formed will have maximum probability 
directed at an angle of 180o only and thus form more stable bonds. 

Trigonal Planar Structure 

The hybrid orbitals are directed to the corners of a trigonal plane. 1h  is

directed along x – axis while 2h and 3h  are in between x and y axes. All

the hybrid orbitals are at an angle of 120o.  

The composition of the hybrid orbitals can be shown as follows: 

1 1 11

2 2 22

3 3 33

h s p px y

h s p px y

h s p px y

a b c

a b c

a b c

 Since s orbital is spherically symmetrical, it contributes equally to the 
making of the three hybrid orbitals. 

 Therefore, 1 2 3
1

3
a a a . 

1h  is formed along x – axis and hence cannot have any contribution from py 

that is 1c = 0. 

11

1

3
h s px

b

1h  is normalized and hence,

2 2
1 1 1a b  

2
1

1
1;

3
b   2

1
2

3
b  and 

1
2

3
b . 

1

1 2

3 3
h s px . 

Now considering that 
1h  and 

2h  are orthogonal to each other, 

1 2 1 2 0a a b b   1 2 0c c

2
1 2

0
3 3

b  

2
1

6
b . 
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The normalization condition requires  

 2 2 2
2 2 2 1a b c  

2
2

1 1
1

3 6
c ,  2

2
1

2
c

 So 2
1

2
c

 Hence, 
2

1 1 1

3 6 2
h s p px y

Considering the orthogonality of 1h  and 3h  it can be shown that

1 3 1 3 0a a b b , hence 3
1

6
b . 

The orthogonality condition of 2h  and 3h  requires

2 3 2 3 2 3 0a a b b c c

3
1 1 1

0
3 6 2

c

 3
1 1

22
c , 3

1

2
c  . 

 Hence, 
3

1 1 1

3 6 2
h s p px y

. 

 From physical considerations, the meaning of signs of coefficients can be 

understood. 1h  is formed by contribution from s orbital and positive phase of

px orbital. 2h  has contribution from s orbital and positive phase of py orbital

and negative phase of px, 3h  has contribution from s orbital, negative phase

of px, and negative phase of py orbital. 

It can be seen that all the three hybrid orbitals are orthogonal. By 

substituting the wave functions of s , px and p y , it can be shown that the 

hybrid orbitals are at an angle of 120o and will have greater overlap with the 
incoming orbitals than the corresponding pure atomic orbitals.  

Tetrahedral Structure 

For example in the case of methane molecule 2s, and 2p orbitals are close in 
energy and hence sp3 hybridization takes place. In cases where s and d orbitals 
are close in energy, sd3 hybridization is possible. 
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The four hybrid orbitals can be shown as follows: 

1 1 1 11

2 2 2 22

3 3 3 33

4 4 4 44

h s p p px y z

h s p p px y z

h s p p px y z

h s p p px y z

a b c d

a b c d

a b c d

a b c d

The coefficients can be worked out by performing the projection operations

1PA  and 2PT  on the pendent sigma orbitals and then finding the inverse of the
matrix. It is found to be as follows: 

1

2

3

4

1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2

hs

p hx

p hy

p hz

1

2

3

4

1

2
1

2
1

2
1

2

h s p p px y z

h s p p px y z

h s p p px y z

h s p p px y z

 The physical meaning of the coefficients can be appreciated if we consider 
the four hybrid orbitals to be directed to the opposite corners of the two 
opposite faces of the cube. s orbital is spherically symmetrical and hence 
contributes equally to the making of all the four hybrid orbitals. The hybrid 
orbitals are uniformly disposed with respect to px, py and pz orbitals and hence 

they also contribute equally to the making of the hybrid orbitals. Thus the 

contribution is 
1

4
 by each of the component orbitals and hence coefficient 

is 1 1

24
. 
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1h is formed from the positive phase of all the three p orbitals. 
2h  from

-ve px, -ve py and +ve pz; 3h from -ve px, +ve py and -ve pz; and 4h +ve px, -

ve py and -ve pz. Accordingly, the signs of coefficients are obtained.

All the four hybrid orbitals are orthogonal. By substituting the wave 
functions of the s and p orbitals and maximizing the probability, it can be seen 
that the hybrid orbitals have maximum probability of occurring at tetrahedral 
angles. 

Octahedral Complexes 

In octahedral case the six hybrid orbitals are formed by the combination of 

2 2x y
d , s, px, py and pz orbitals i.e. d2sp3 hybridization. The orbitals

involved are normally 2 23
x y

d ,  4s, 4px, 4py and 4pz in cases of the

complexes of the first transition series metal ions. This is called inner orbital 
hybridization. In some cases sp3d2 takes place and is called the outer orbital 
hybridization. 

The coefficients of the s, p and d orbitals contributing to the six hybrid 

orbitals can be worked out by performing the projection operation 1gPA , 

gPE and 1uPT  on the six pendent sigma ligand orbitals and then finding the

inverse of the matrix. 

 The physical significance of the coefficients can also be understood. The s 
orbital is spherically symmetrical and hence contributes equally to all the six 
orbitals(1/6); px, py and pz contribute equally(1/2) only to the two hybrid 

orbitals along that axis in positive or negative phase. 2 2x y
d  orbital contributes

equally only to the four hybrid orbitals in the XY plane(1/4), +ve to the hybrid 
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orbitals along the X axis and –ve to the orbitals along Y axis. 2z
d has greater

+ve contribution(1/3) to each of the hybrid orbitals along Z axis and lesser –ve
contribution(1/12) each to the four hybrid orbitals along XY plane. All the six
hybrid orbitals are orthogonal.

The resulting hybrid orbital wave functions are called Symmetry Adapted 
Linear Combinations(SALC’s). By applying the reduction formula to the total 
character of the hybrid orbitals, we know that the SALC’s will be 
corresponding to the particular irreducible representations. For example   
and  in case of sp2 hybridization. The composition of the SALC’s can be 
worked out by the method of projection operators. 

The projection operators of  irreducible representation and 
irreducible representation can be performed to get the proper SALC’s which 
form the basis for  and  representations. The method is applied in the 
following way. 

The equation correlating the pure atomic orbitals, the coefficients and the 
hybrid orbitals can be shown in the form of matrix. 

y

x

p

p

s

h

h

h

cba

cba

cba

333

222

111

3

2

1

 
 It is difficult to work out a, b, c directly because projection operator can be 
applied only on equivalent wave functions (atomic wave functions are not 
equivalent). The inverse transformation of the above matrix is therefore carried 
out. 

3

2

1

333

222

111

h

h

h

p

p

s

zyx

zyx

zyx

y

x

 The x, y, z matrix is the inverse of a, b, c matrix. Hence x, y, z matrix can be 
obtained and from this a, b, c matrix can be worked out and thus, the 
coefficients of the pure atomic orbitals can be obtained.  

 The x, y, z matrix describes the transformation of a set of three equivalent 
basic functions(hybrid orbitals) into a set of linear combinations having the 
symmetry of the atomic orbitals, which in turn have symmetry corresponding to 
one irreducible representation of the molecular point group. 
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CHAPTER 8 

Appendix 

8.1  SI Units (Système Internationale d’unités) 

When making measurements of a physical quantity, the result is expressed as a 
number followed by the unit. The number expresses the ratio of the measured 
quantity to some fixed standard and the unit is the name or the symbol for the 
standard.  

 Over the years, a large number of standards have been defined for physical 
measurements and many systems of units have evolved. Ex. 1. CGS, 2. FPS 
and 3. MKS (Metric system). Recently, there has been an attempt to simplify 
the language of science by the adoption of a system of units “Système 
Internationale d’unites”, called the SI units. 

  SI contains three classes of units 1. Base units, 2. Derived units and 3. 
Supplementary units. 

 Base units:  

 Quantity  Name  Symbol 

 length ,   meter:  m 

 mass  kilogram:  kg 

time `  second:  s  

electric current  ampere:  A 

 temperature  kelvin:  K 

amount of substance mole:  mol 

 luminous intensity  candela:  cd 

8.2 Derived Units 

Frequency  hertz:  Hz = 1/s  

Force  newton: N = m kg/s2  

Pressure, stress pascal: Pa = N/m2 = kg/m s2  

Energy, work,  joule: J = N m = m2 kg/s2 
quantity of heat  
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Power, radiant flux  watt:  W = J/s = m2 kg/s3  
Quantity of electricity, 

Electric charge  coulomb:  C = s A  

Electric potential  volt: V = W/A = m2 kg/s3 A  

Capacitance  farad:  F = C/V = s4 A2/m2 kg  

Electric resistance ohm: Omega = V/A =  
m2 kg/s3 A2  

Conductance  siemens:  S = A/V = s3 A2/m2 kg  

Magnetic flux weber: Wb = V s = m2 kg/s2 A  

Magnetic flux density, 
Magnetic induction  tesla: T = Wb/m2 = kg/s2 A  

Inductance  henry: H = Wb/A = m2 kg/s2 A2  

Luminous flux lumen: lm = cd sr  

Illuminance  lux: lx = lm/m2 = cd sr/m2  
 Activity  

(ionizing radiations)  becquerel:  Bq = 1/s  

Surface tension newton per 
meter: N/m = kg/s2  

Heat flux density, watt per  
square meter: W/m2 = kg/s3  

Heat capacity,  
entropy  joule per kelvin: J/K = m2 kg/s2 K  

Specific heat capacity, joule per 

specific entropy  kilogram kelvin: J/kg K = m2/s2 K  

Specific energy  joule per 
kilogram: J/kg = m2/s2  

Thermal  watt per meter 
conductivity kelvin:  W/m K = m kg/s3 K  

 Electric field 
strength volt per meter:  V/m = m kg/s3 A  

Permittivity  farad per meter:  F/m = s4 A2/m3 kg  

Permeability  henry per meter:  H/m = m kg/s2 A2  

Molar energy  joule per mole:  J/mol = m2 kg/s2 mol 

Molar entropy, joule per mole kelvin: J/mol K = m2 kg/s2  K mol 
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8.3 Supplementary Units  

The Radian(rad): Radian is the plane angle between two radii of a circle which 
cut off on the circumference an arc equal in length to the radius. 

The Sterdian(sr): The Sterdian is the solid angle which, having its vertex at the 
center of the sphere, cuts off an area of the surface of the sphere equal to that of 
a square with sides of length equal to the radius of the sphere. 

8.4 CGS Units  

 erg   1 erg = 10–7 J  

 dyne   1 dyn = 10–5 N  

 poise   1 P = 1 dyn s/cm2 = 0.1 Pa s  

 stokes   1 St = 1 cm2/s = 10–4 m2/s  

 gauss   1 G = 10–4 T  

 oersted   1 Oe = (1000/(4 pi)) A/m  

 maxwell   1 Mx = 10–8 Wb  

 stilb   1 sb = 1 cd/cm2 = 104 cd/m2  

 phot   1 ph = 104 lx  

8.5 Prefix Dictionary  

 Exponent (base 10) of decimal numbers: E n = 10n  

 Factor     Prefix  Symbol 
 1024   E 24   yotta  Y 

 1021  E 21   zetta  Z 

 1018   E 18   exa  E 

 1015  E 15   peta   P 

 1012   E 12   tera   T 

 109  E 9   giga   G 

 106  E 6   mega   M 

 103  E 3   kilo   k 

 102  E 2   hecto  h 

 101  E 1   deca   da 

 10–1   E –1   deci   d 

 10–2   E -2   centi  c 

 10–3   E –3   milli  m 

 10–6   E –6   micro  μ 
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Factor    Prefix  Symbol 
 10–9  E –9  nano  n 

 10–12  E–12  pico p 

 10–15  E–15 femto f 

 10–18 E–18  atto   a 

 10–21  E–21 zepto z 

 10–24  E–24 yocto  y 

8.6 Experimental Foundation  

Energy units: The international system of units (S.I) expresses fundamental 
physical quantities such as mass, time, length, thermodynamic temperature and 
amount of substance in terms of the units kilogram (Kg), second (S), meter 
(M), Kelvin (K) and mole (mol) respectively. 

 Energy is expressed in Joules (J). Many chemists have been brought up in 
C.G.S. system and have been accustomed to expressing (thermochemical)
energy in calories or kilocalories, which are not S.I. units. The appropriate
conversion factor is,

1 Calorie = 4.184 J. 

  The energies of electrons in atoms can very conveniently be expressed in 
electron-volts (eV), where 1 eV is the energy acquired by an electron when it is 
accelerated by a potential difference of one volt. 

1 eV = 1.6021 × 10–19 J/atom. 

In radiation theory, wavelength  and frequency  (are related by 
c

(where c = velocity of electromagnetic radiation in vacuum (2.9979 × 108 m/s). 
The frequency unit, ‘ ’ is called the Hertz (Hz ). The wavenumber,  is often 

used in spectroscopy, 
1

 and the wavenumber unit is thus the reciprocal 

meter, m–1. In practice, chemists normally find it more convenient to use the 
reciprocal centimeter, cm–1.  

The wavenumber is related to a frequency by 
c

or 
1

. Substituting 

the value of ; = c  i.e.,  (Hz) = (ms–1) ×(m–1). 

  We can now use the Planck’s expression for the quantum of energy, E = h  
= hc .  

E = 6.6256 × 10–34JS × 2.9979 × 108 ms–1 × (m–1), 

   = 19.863 × 10–26 J/atom. 
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 These values relate to single atoms and chemists usually refer to energy 
changes per mole of substance, where one mole is the amount of substance that 
contains as many elementary particles (electrons, atoms, molecules etc.) as 
there are atoms in 0.012 Kg of carbon-12. This number is the Avogadro 
number, N where, N = 6.0225 × 1023 atoms mole–1. 

  Then the relationship between energy and wave number becomes,  

  E(J mole–1) = 19.863 × 10–26 × 6.0225 × 1023  

  E = h c = JS × ms–1 × m–1 

  E = 1.986 × 10–25  J/atom × 6.022 × 1023 atom/mol  

     = 0.1196  J mole–1. 

 and  E(eV) = 1.6021 × 10–19J/atom × 6.0225 × 1023 atom/mol 

             = 9.649 × 104 J mol–1. 

8.7 Calculation of Effective Nuclear Charge 

In the case of an atom (atomic number Z) consisting of a positive nucleus 
(charge Ze) surrounded by ‘Z’ electrons, a given electron ‘i’ will be subjected 
not only to the attractive potential field of the nucleus as in the case of a single 
electron of the hydrogen atom, but also to the repulsive potential due to all 
other electrons. 

 So, there are two opposing factors which have to be accounted for. 
1. Attraction between the positive nucleus and the electron under 

consideration. 
2. Repulsion due to the negatively charged electrons with the electron under 

consideration. 

 Therefore, the net result will be the electron under consideration 
experiences less nuclear attraction because of the presence of other electrons. 
In other words, the electron under consideration is said to be screened from the 
nucleus. 

 Hence, the potential 
2 2

i
i ij

Ze e
V

r r
 where ‘ri’ is the distance of the ‘ith’ 

electron from the nucleus of charge +Ze and rij is the distance between the ‘ith’ 
and the ‘jth’electrons. 

 However, it is reasonable to replace the above potential by an effective 
potential V(ri) for the ‘ith’ electron, which involves only ‘ri; and is termed a 
central potential. 

 This central potential is used for solving the Schrodinger equation for 
complex atom. This method is called self-consistent field method (Hartee-Fock 
method). 
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 The wave function can be expressed algebraically as a sum of simple 
hydrogenic radial functions of the form, 

where Cn is the numerical coefficient and the integer ‘p’ depends on the extent 
of the matching of the numerical functions. Slater (1930) proposed a single 
parameter functions to represent the above sum and proposed a set of rules to 
determine ‘n’ and the orbital exponent i . 

n* is calculated for the corresponding real quantum number ‘n’ as: 

n  =  1.0,   2.0,   3.0,   4.0,   5.0,   6.0 

n*  =  1.0,   2.0,   3.0,   3.7,   4.0,   4.2  

 The carbon electronic configuration is 1s2 2s2 2p2. Hence, the various Slater 
radial functions are, 

 Ex: 1
1 1

0

exp s
s s

r
R N

a

2
2 2

0

exp s
s s

r
R N

a

2
2 2

0

exp p
p p

r
R N

a

where N is normalizing constant and 
2

0 2
a

me
, 

*

Z S

n
,  

Z = atomic number; S = screening constant, 

 Ex. For 1
6 0.30

5.7
1s

        (carbon Z = 6 and S = 0.3). 

This value is used to calculate R1s. 

 The effective nuclear charge Z* acting on the electron is given by Z* = Z - 
S, where Z is the atomic number and S is a screening constant. 

To determine S, divide the electrons into the respective orbital groups. 

  1s , 

  2s, 2p , 

  3s, 3p , 
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  3d , 

  4s, 4p , 

  4d , 

  4f , 

  5s, 5p , 

The ‘S’ is the sum of the contributions of: 
(a) Zero from any orbital group outside the one considered.
(b) 0.35 in general, but 0.30 in the case of 1s, from every other electron in

the orbital group considered.
(c) 0.85 from every electron in the quantum level immediately below (near

to the nucleus) than the electron considered, and 1.00 from every
electron in levels still nearer the nucleus, provided that the electron
considered is in an ‘s’ or a ‘p’ orbital.

(d) If the electron considered is in a ‘d’ or ‘f’ orbital, every electron in
lower orbital groups contributed 1 towards the value of ‘S’.

 Thus for an electron in the 3s or 3p shell in silicon 1s2, 2s2, 2p6, 3s2, 3p2 
(Z = 14)  

S = (3 × 0.35) + (8 × 0.85) + (2 × 1) = 9.85 

Z* = l4 – 9.85 = 4.15. 

1. Calculate the effective nuclear charge for the following:,

1. He:  1s2 : Z = Z – S = 2 – (0.30 × 1) = 1.7.

2. O : 1s2 2s2 2p4, 

Z* = 8 – [(0.35 × 5) + (0.85) × 2] 

     = 8 –1.75 – 1.70 = 4.55 

3. Cl–:  1s2 2s2 2p6 3s2 3p6,

Z* = 17 – (0.35 × 7) – (0.85 × 8) – (2 × 1) = 5.75 

4. K+:  1s2 2s2 2p6 3s2 3p6,

Z* = 19 – (0.35 × 7) – (0.85 × 8) – (2 × 1) = 7.75. 

5. Ga:  1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p1,

Z* = 31 – (0.35 × 2) – (0.85 × 18) – (10 × 1) = 5. 

6. Mn2+:  1s2 2s2 2p6 3s2 3p6 3d5,

Z* = 25 – (0.35 × 4) – (18 × 1) = 5.6. 

2. Calculate the radii of K
+

 and Cl
-
 ions in KCl given that the bond length 

of KCl is 3.14 Å. 

It is known that the radius of an ion of an atom is inversely proportional to 
its effective nuclear charge operative on its outermost electrons. 



146 Quantum Chemistry 

From the previous problems, 
*

Cl
Z  = 5.75 and *

K
Z = 7.75, 

*

*

5.75

7.75
ClK

Cl K

Zr

r Z
 we also have 

K
r  + 

Cl
r  = 3.14

o
A

  
Cl

r  = 1.803
o
A  and 

K
r = 1.337

o
A

8.8 Approximate Orbitals 

If an atom has more than one electron, we are forced to develop ways of 
finding approximate solutions of the Schrödinger equation. The simplest 
approximation is to ignore the influence one has on the other. However, this 
type of neglect is not justified. There are a number of facets to electron 
correlation.  

1. The first, and the most obvious is that owing to their similar charges
electrons will avoid being in the same region of space. That is, they will
tend to avoid being at the same distance along a radius. This is “radial
correlation”.

2. They will also avoid being at the same angle to the nucleus. Indeed, all
other things being equal, they will tend to be found on opposite sides of the
nucleus. This is “angular correlation”.

3. Of greater subtlety is the “spin correlation”, which has its explanation in
the Pauli’s exclusion principle. For reasons nothing to do with their charge,
electrons with the same spin are unlikely to be found in the same region of
space.

A responsible appropriate wave function for an atom should take account of
the three types of correlations. However, to do so requires a great deal of 
integrity and effort. Fortunately, for many purposes, we can derive much 
valuable information from the use of wave functions, which at first sight appear 
to be quite crude.  

Slater orbitals 

In 1930 J.C. Slater proposed a set of rules for taking into account the influence 
of shielding. The angular wave functions derived from the exact solution of the 
Schrödinger equation were preserved, but the radial wave functions were 
replaced by a new set. 

We shall write the Slater radial wave functions as  

1 0( )
r

an
S nR r N r e
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 Nn = normalization constant and 
*

*

Z

n
 (original hydrogen atom wave 

functions used are 
Z

n
. 

   n     1,    2,   3,   4,   5,   6 

  n*    1,   2,   3,   3.7,  4.0,   4.2. 

 Here Z* is the effective nuclear charge (See appendix 8.7) and ‘n*’ is the 
corresponding value of ‘n’ in hydrogen wave functions. 

Differences between Hydrogen like and Slater orbitals 

1. The Slater type orbitals(STO) ignore all but the higher power of ‘r’. This 
means that STO’s are not very good approximations close to the nucleus, 
but they improve as ‘r’ increases. 

 Therefore, they give better predictions of ionization energies compared to x-
ray spectra. 

2.  The second difference is the replacement of the exponential factor 0

zr

nae  by 

the Slater factor 0

r

ae  (where effz

n
). 

8.9 Angular Momentum 

Angular momentum is an important dynamical variable. For a single particle 
moving around a fixed point, the angular momentum L is given by the product 
of ‘r’ and ‘p’ can be written in terms of their components as  

  
x y z

r ix jy kz

p ip jp kp
 

 where i, j and k are unit vectors along x, y and z axis. Therefore, in terms of 
the components of ‘r’ and ‘p’, the angular momentum, L is  

  
( )( )

( ) ( ) ( )

x y z

z y x z y x

L r p ix jy kz ip jp kp

i yp zp j zp xp k xp yp
 

 Replacing p’s by the corresponding quantum mechanical operators, the 
operators for the components for the angular momentum are as follows: 

  ˆ ( )
2x
ih

L y z
z y
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ˆ ( )
2y

ih
L z x

x z

ˆ ( )
2z
ih

L x z
y x

The total angular momentum is obviously given by 

x y zL iL jL kL

 However, more important in quantum mechanics is the scalar product of ‘L’ 
with itself. 

2 2 2. x y zL L L L L .

 The angular momentum operators are usually expressed in spherical polar 
coordinates. 

sin cos

sin sin

cos

x r

y r

z r

 and     2 2 2 2

2 2 2

cos

cos
( )

z r

x y z r

z
x y z

( , , )f r  

r
r

r

x r x x x

r

y r y y y

r

z r z z z

By differentiating x, y, z with respect to r,  and , we get 

sin cos

cos cos

sin

sin

r

x

x r

x r

sin sin

cos sin

cos

sin

r

y

y r

y r

cos

sin

0

r

z

z r

y
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 Therefore, 

ˆ ( )
2x
ih

L y z
z y

 

  

sin
sin sin (cos ) cos (sin sin

cos sin cos2
sin

r r
ih r r r

r r

  

2

2

sin sin cos sin sin cos sin sin

cos cos2 cos sin
sin

r r
ih r r

  sin cot cos
2

ih

ˆ ( )
2y

ih
L z x

x z

  

cos cos sin
cos (sin cos )

sin
2 sin

sin cos (cos )

r
ih r r r

r
r r

  

2

2

cos sin
cos sin cos cos cos

sin
2

sin cos cos sin cos

r
ih r

r
r

  cos cot sin
2

ih

ˆ ( )
2z
ih

L x z
y x

  

cos sin cos
sin cos (sin sin )

sin

cos cos sin2
sin sin (sin cos

sin

r
r r rih

r
r r r
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2 2

2 2

sin cos sin sin cos cos sin cos

2
sin cos sin sin cos cos sin sin

r
rih

r
r

2

ih

2 2
2

2 2 2

1 1ˆ (sin )
sin4 sin

h
L

8.10 Laplacian Operator 
(Conversion from Cartesian to Polar coordinates) 
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 Similarly 
2

2y
 and 

2

2z
 can be written by symmetry. 



Chapter 8 | Appendix 151 

 Then the corresponding values in Polar coordinate format be substituted for 
those in the Cartesian format as was done in the case of calculation of angular 
momentum earlier. 

8.11 Supplement to Rigid Rotor  
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Associated Legendre function 
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dzdz z

Associated Legendre polynomial 
!

1
!

mm m
l l

l m
P z P z

l m
  where  l = 0, 1, 2, 3… 

where    m  0  and m  l

8.12 Supplement to One-dimensional Harmonic Oscillator  
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 Hermite’s equation 

2

2
2 2 0n n n

d d
H y y H y H y

dydy


	Cover
	Half Title
	Quantum Chemistry
	Copyright
	Dedication
	Preface
	Contents
	1. Historical Background
	1.1 Newtonian Mechanics
	1.2 Black Body Radiation
	Physical Basis for the Success

	1.3 The Photoelectric Effect
	1.4 The Compton Effect
	1.5 Atomic Spectra
	1.6 Atomic Models
	1.7 The Bohr Atom
	Assumptions
	Energy of the Electron in the Atom
	Extensions of the Bohr’s Theory
	Zeeman Effect
	Spin

	1.8 Failure of the Old Quantum Theory

	2. The Wave Equation
	2.1 de Broglie’s Concept of Matter Waves
	Wave length and momentum of a particle

	2.2 Heisenberg’s Uncertainty Principle
	2.3 Wave Equation
	2.4 Interpretation of Wave Function
	2.5 Normalized and Orthogonal Wave Functions
	2.6 Exercises

	3. The Postulates
	3.1 The Formulation of Quantum Mechanics
	Schrödinger Wave Equation

	3.2 The Postulates of Quantum Mechanics
	3.2.1 Postulate I
	3.2.2 Well Behaved Wave Function
	The Fitness of the Wave Function

	3.2.3 Postulate II
	Hermitian Operator

	3.2.4 Postulate III
	3.2.5 Postulate IV
	3.2.6 Postulate V

	3.3 Exercises

	4. Applications of Schrödinger Equation-1 (Simple systems with constant potential energy)
	4.1 Particle in a One-dimensional Box
	4.1.1 Salient Instructive Features of the Problem
	4.1.2 Zero Point Energy
	4.1.3 Free Particle

	4.2 The Particle in a Three Dimensional Box
	Degeneracy

	4.3 The Structure of Matter
	4.4 Factors Influencing Color
	4.5 Tunneling in Quantum Mechanics
	Systems with Discontinuity in the Potential Field
	Hydrogen Transfer Reaction

	4.6 The Rigid Rotor

	5. Applications of Schrödinger Equation-2 (Simple Systems with Variable Potential Energy)
	5.1 One-dimensional Harmonic Oscillator
	Wave functions of the harmonic oscillator

	5.2 The Hydrogen Atom
	Polar coordinates
	Separation of variables
	The Φ equation
	The θ equation
	Spherical Harmonics
	The Radial Equation
	Quantum States
	Wave Functions of the Hydrogen Atom
	Hydrogen like Wave Functions
	The Radial Function
	The Radial Distribution Functions
	Show that r = a0 for the 1s orbital
	The Angular Function Y(θ,Φ)
	Nomenclature of p Orbitals
	Nomenclature of d Orbitals


	6. Approximation Methods
	6.1 Perturbation Theory
	Perturbation theory consists of a set of successive corrections to an unperturbed problem

	6.2 The Variational Method
	Proof

	6.3 The Hartree Theory
	Surface of the Atom

	6.4 Exercises

	7. Bonding in Molecules
	7.1 Molecular Orbital Theory
	Hamiltonian operator for H2+ and H2
	The Stability of Hydrogen Molecule Ion

	7.2 Valence Bond Theory
	7.3 Hybridization
	Linear Structure – BeCl2
	Trigonal Planar Structure
	Tetrahedral Structure
	Octahedral Complexes


	8. Appendix
	8.1 SI Units (Système International d’unités)
	8.2 Derived Units
	8.3 Supplementary Units
	8.4 CGS Units
	8.5 Prefix Dictionary
	8.6 Experimental Foundation
	8.7 Calculation of Effective Nuclear Charge
	8.8 Approximate Orbitals
	Slater orbitals

	8.9 Angular Momentum
	8.10 Laplacian Operator (Conversion from Cartesian to Polar coordinates)
	8.11 Supplement to Rigid Rotor
	Associated Legendre function
	Associated Legendre polynomial

	8.12 Supplement to One-dimensional Harmonic Oscillator


