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Foreword

Superconductivity occupies a special, unique place in the 20th century physics. Just
think of it: its microscopic mechanism was understood only in 1957—46 years after
the discovery of superconductivity in 1911. In contrast, the theory of normal metals
behavior (or, to be more precise, the theory of metals in normal state) was formed
as early as the twenties, immediately following the creation of quantum mechanics.
Moreover, when I took up the theory of superconductivity in 1943, not only
microscopic theory was non-existent, but even macroscopic superconductivity
theory was quite incomplete. The problem is that the Londons equations, introduced
in 1935, allow only a quantitative description of superconductors in magnetic fields
weak in comparison with the critical field. Also, even in weak fields, the Londons
theory is strictly applicable only to Type-II superconductors—although the division
of superconductors into Type-I and Type-II materials was not suggested until much
later, in early 1950’s. As far as nonequilibrium phenomena are concerned, then until
1943 the most remarkable, yet proved to be fault afterwards, implication was that
of a complete absence of all thermoelectric effects in superconducting state.

Look how radically the picture has changed in only 55 years! Perhaps for
younger generation this would seem a whole lot of time. Is it? Indeed, it is just an
average human life-span. And if the same pace is maintained then what will we
have 55 years later, in 2053? I am not capable of an extrapolation of this magnitude,
without risking being caught in the act of daydreaming. I could only assume that
the development would take two major directions.

The first direction—exploration of high temperature superconductors. Clearly,
their application in technology, the possibilities of which were vastly overestimated
when they were initially discovered 10 years ago, will sharply increase in this
period. There can hardly be any doubt that a microtheory of superconducting
cuprates, still lacking, will be fully understood by then. The most interesting yet,
are trials aimed at raising critical temperature to create room-temperature super-
conductors. There is no recipe for success here. However, the existing theoretical
grounds, do not contradict this possibility in any way. The situation here reminds
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vi FOREWORD

the one with the high-temperature superconductivity between 1964, when this
problem had received exposure, and 1986–1987, when it got its well-known
solution. I remember very well the grinning faces of those skeptics who would ask
me sarcastically, “Whatever happened to your heat-resistant superconductivity?” It
is quite possible that as far as the room-temperature superconductivity goes, the
skeptics would this time prove to be right. Still, it is imperative to keep searching
for that kind of superconductivity, and I for one, believe in it.

The second avenue of development that I mentioned above, is nonequilibrium
superconductivity. Even for “usual” or, more specifically, isotropic and weakly
anisotropic superconductors, much less has been done in this area than for super-
conductors in equilibrium. It is especially vivid in the case of thermoelectric effects.
Despite the faultiness of the statement of complete absence of all thermoelectric
effects in superconducting state was clarified as early as in 1944, it was ignored for
many years, and even today the picture is still not very clear. The reader will learn
about it in Chapters 13–14 of this book. We have many questions here, both in
theory and experiment. I am inclined to think that they will find the answers in near
future. This is only right in case of “ordinary” superconductors. As far as strongly
anisotropic high temperature superconductors and “unconventional” ones in gen-
eral are concerned, the satisfying theory of nonequilibrium phenomena for them
has not been developed. The authors of this book point out that only isotropic
superconductors are discussed. It is obviously a forced limitation. Besides, even in
case of nonequilibrium processes in isotropic superconductors there is plenty of
material, which is presented in the book. Other contemporary monographs, to the
best of my knowledge, do not exist.

In the light of the aforementioned there is little doubt that the monograph by
A. M. Gulian and G. F. Zharkov is actual and desired. I have to admit that I would
like to have seen the book more physics-minded, less formal, more transparent and
more accessible to a wider physicist audience. Though, and it is a common
knowledge, “better is the enemy of good.” The authors have done an enormous
amount of work to the benefit of the physical community at large, and I believe the
book will provide a stimulus for further experimental and theoretical investigations.

V. L. Ginzburg
Moscow, 1998



Preface

“ I wanted most to give you some appreciation of the wonderful world and the
physicist’s way of looking at it, which, I believe, is a major part of  the true cul-
ture of modern times.”

Feynman’s Epilogue
(Courtesy of Addison-Wesley)

The appearance of any new book raises several questions. What contents are
included under the title? What benefit can I get out of here? What motivated the
authors to write this book?

It is about nonequilibrium superconductivity. Typically, articles are written for
the professionals in a field, while books serve a wider audience. In part they seek
to share the excitement of the work, to attract more individuals to the field, and
thereby create more professionals.

So how do we explain the essence of “nonequilibrium superconductivity” to
the potential readers of this book? The following discussion has always been helpful
even for the people far from superconductivity. Human beings themselves are a
system containing large number of atoms in a nonequilibrium state. The equilibrium
state of such a system is a plain mixture of atoms. It is the nonequilibrium state that
reveals all the wonders of  life! The same large qualitative difference exists between
superconductivity in thermodynamic equilibrium and in its nonequilibrium state.

What ideas unify the content of this book? Superconductors are inherently
quantum mechanical object despite their macroscopic physical scale. The micro-
scopic theory of superconductivity generated by Bardeen, Cooper, and Schrieffer
provided a firm basis for the -theory of superconductivity, earlier postulated by
Ginzburg and Landau. Further generalization of the theory provide a method of
dealing the time-dependent problem, the TDGL-equations. Chapter 2 reviews the
development of the arguments that TDGL-equations strictly apply only in the case
of gapless superconductors—an old statement, which is wrong nowadays: after
passing through Chapters 3-6 the readers will recognize in Chapter 7 that there is
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viii PREFACE

a modified TDGL scheme which is unequivocally valid for the much more general
case of finite-gap materials! This derivation combines the very general equations
applicable to equilibrium (Chapter 1) and nonequilibrium (Chapter 3) supercon-
ductivity. Both the Keldysh and Eliashberg-Gor’kov analytical continuations tech-
nique are exploited to prove the same results are achieved.

It is really amazing how nicely these two mathematically very different tools
yield precisely the same results! Given this equivalence of the results, the reader
might wonder which is preferable from a practical point of view. We conclude that
for the phenomena which have already been treated in equilibrium in the Matsubara
technique it is faster to apply the analytical continuation method. In general,
Keldysh’s method is more straightforward.

Since nonequilibrium superconductivity exploits some concepts which do not
occur in equilibrium case, such as the longitudinal electric field penetration depth
and branch imbalance potential, we devoted a special discussion (Chapter 8) to
collective oscillations. These are formally out of the range of applicability of  TDGL.
The kinetic equations, which follow from the general nonequilibrium equations
(Chapter 4), provided the mathematical basis to discuss various nonequilibrium
effects in superconductors. We tried everywhere to treat nonequilibrium electrons
and phonons on an equal footing. Thus in parallel to enhancement of the order
parameter (Chapter 5), we considered the accompanying phonon deficit effect
(Chapter 6). In this two chapters the collision integrals, which traditionally serve
to describe the relaxation processes, were used also to describe the sources of
nonequilibrium deviation of both electrons and phonons.

The behavior of nonequilibrium Josephson junctions and the more novel but
closely related phase-slip centers are treated in detail in Chapters 10 and 9
respectively. Attention is paid to both the phonon and electron components.

Irradiation by lasers is a traditional method for creating a nonequilibrium
superconducting state (see Chapter 11). In Chapter 12 we considered the inverse
problem: the ability of a superconductor in a nonequilibrium state to act as a
coherent phonon or photon generator. This laser-like source behaviors have not yet
been experimentally confirmed. However, we hoped our discussion will encourage
their demonstration.

The final chapters of the book, 13 and 14, discuss thermoelectricity. This topic
is one of the most complex, subtle featured and thus intellectually captivating in
solid state physics. The addition of superconductivity to the discussion creates even
more opportunity to be excited by thermoelectricity.

The book's initial chapter includes an introduction to the theory of supercon-
ductivity for those readers not already acquainted with it. The treatment is very
concise but covers the most important physical concepts which will later be
assumed to be familiar to the reader. The mathematical constructs of quantum field
theory are assumed to need no explanation.



PREFACE ix

We should apologize for all the possible drawbacks the book may have and
encourage any reader's response. We have restricted ourselves to discussions of the
phenomena mainly in conventional, low temperature superconductors. This is less
a disadvantage than one might assume since our book is focused exclusively on the
theory. Experimental facts referred to only for some illustrative purposes. Hope-
fully, in the third millennium the mechanism of equilibrium phenomenon in
high-temperature superconductors will be completely understood, and many new
nonequilibrium phenomena and their theoretical explanations will enlarge super-
conductivity. To assist this process we have written this book. Actually, while an
apology may be due for the purely theoretical focus, we note the ancients’ belief
that “nothing is more practical than a good theory.”

In general, studying nonequilibrium phenomena, we feel ourselves to be
climbing onto the “shoulders of giants.” We now invite the readers to come enjoy
with us what we have seen of nonequilibrium superconductivity from this elevated
perch. If the readers can see more than we did, we will consider our tasks fulfilled.

Finally, we would like to use this opportunity to acknowledge numerous
fruitful discussions with our teachers, students, colleagues, and friends—these
discussions assisted greatly to the appearance of this book in its present form.

Armen M. Gulian
Gely F. Zharkov

Washington, D. C., USA - Moscow, Russia
1998
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1

Basic Equilibrium Properties

1.1. INTRODUCTORY CONCEPTS

The first main property of superconductors—the flow of electric current without
resistance—was discovered by Kamerlingh-Onnes1 in 1911. For more than 20
years this phenomenon was interpreted as superfluidity, or lossless motion of the
electron liquid in metals. The second main property—the total expulsion of the
magnetic field out of the bulk superconductor's interior—was discovered by
Meissner and Ochsenfeld in 1933. Their half-page report2 immediately led to very
deep insights into the nature of the phenomenon, which eventually allowed the
equilibrium properties of superconductors to be fairly well understood. We start
with a brief discussion of these main superconducting properties. In this section,
we sacrifice the historical chronology of superconductivity in favor of introducing
some major concepts which will be used in later parts of the book without special
explanation.

1.1.1.                  Infinite  Conductivity

In an attempt to understand ideal (infinite) conductivity, one can first refer to
Ohm’s law and try to handle the infinitely large values of To reach this
goal, it is necessary to go back to Ohm’s law and eliminate the dissipative term at
the initial stage of its derivation. Then one would get Newton’s law describing the
lossless motion of the charge carrier: Combining it with the relation

and performing the integration, we find:

(here the constant of  integration is chosen to be zero owing to the appropriate initial
condition). To avoid for the moment the difficulties related to the arbitrariness of
the gauge for A in Eq. (1.1), one should make a rotation, bearing in mind the
relations curl _ where n is the carrier density. From this follows the
gauge-invariant relation

1
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first introduced by F. and H. which should replace Ohm’s law for
superconductors.

1.1.2. Ideal  Diamagnetism

Let us now move to the second main property of the superconducting state,
namely, to ideal diamagnetism, which is frequently called the Meissner effect. At
first glance there is nothing especially surprising in this phenomenon: we know that
the applied magnetic field causes the screening currents, which shunt the interior
of the conductor and can persist indefinitely if the conductivity is ideal. However,
the experiment with magnetic field repulsion may be performed in a different way:
the magnetic field is applied initially at sufficiently high temperatures (in the normal
state) and after the screening currents have died out, the temperature is lowered
below the superconducting transition point Such experiments have shown
that in superconductors the screening currents arise again after cooling down
through and this distinguishes superconductors from ideal conductors. Thus
these currents cannot be explained on the basis of classical concepts because the
static magnetic field of classical electrodynamics cannot perform work, and conse-
quently cannot produce the circulating screening currents. Formally the Meissner
effect can be explained by the relation (1.2). The derivation is given in Section 1.2,
but the justification of Eq. (1.2) itself is a problem: actually, both ideal conductivity
and the Meissner effect are related to the proportionality of the current  j to the vector
potential A, as expressed by (1.1), since j V. This somehow contradicts the
classical electrodynamics* in which the current is proportional to the electric field
E, and provides grounds to look for answers in quantum theory.

1.1.3. Energy Gap

In 1935 F. London published insightful arguments elucidating how the Meissner
effect is coupled with the possible existence of the gap in the energy spectrum of the
charge Namely, within the quantum mechanical description the current

*Classical electrodynamics is based on Faraday’s concept of local influence of electromagnetic fields
on charges. Meanwhile, for a long enough solenoid (one can even release an “infinitely long” option
in toroidal geometry—we will discuss an example related to the “gigantic” thermoelectric response in
Chaps. 13 and 14) the magnetic field H outside of the solenoid is absent, although in a wire looping
the solenoid, a current will start to flow when the loop is cooled down to the superconducting state! As
pointed out by Aharonov and (see also Refs. 5 and 6), the quantum objects can “sense” the field
potentials A and  when the values of E and H are zero.



SECTION 1.1. INTRODUCTORY CONCEPTS 3

(here  is Planck’s constant h divided by ) consists of two components: the term
containing (the “paramagnetic” term) and the term explicitly proportional to A
(the “diamagnetic” term). If " the -function in normal metals acquires
dependence on A as well, so these two components are of the same order and usually
cancel each other to a large extent, so that a weak dia- or paramagnetism occurs,
depending on the details of the electronic structure. If one assumes that is a gap in
the energy spectrum associated with the transition to the superconducting state, then
the electronic spectrum of the system will not be changed; the wave function  of
the state will behave as rigid: so that the paramagnetic term
should continue to be zero (as in the case of A = 0), while the diamagnetic term
should provide the main response. The presence of a gap in the energy spectrum
will make the creation of single-particle excitations impossible, providing the
nondissipative motion alike of described by Eq. (1.1).

In normal metals the spectrum of elementary excitations of electrons with
momenta in the vicinity of has the form

which follows straightforwardly in the parabolic band approximation
where is the Fermi energy: [the same type

of relation as Eq. (1.4) can be justified in more general cases]. Evidently, for normal
Fermi liquids there is no gap in the energy spectrum. However, let us suppose that
in the superconducting state the excitation spectrum possesses a gaplike singularity:

In the presence of the gap the birth of single excitations with small energies is
impeded. In Sect. 1.3 we will see that the microscopic theory indeed leads to the
spectrum of the type in (1.5). Here we discuss some of the consequences that follow
from Eq. (1.5).

1.1.4. Analogy with Relativistic  Quantum Theory

The spectrum (1.5) has an analog in relativistic quantum theory,8 where the
electron energy is (m0 is the electron rest mass, One can
try to reconstruct the wave function of the particle having the spectrum (1.5) by
writing down the stationary Schrödinger equation (using the equivalent Hamil-
tonian method; this is sometimes called the equivalent mass approach9):

According to the prescriptions of quantum theory (see, e.g., Ref. 10), one can
extract the square root from the operator by linearizing it (here and below
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where and are some mathematical objects to be identified by squaring the
operator (1.7). In the absence of external fields we should obtain the spectrum (1.5).
This leads to the relation

In the simplest case and are not numbers, but they may be expressed as
superpositions of the Pauli matrices [the unity matrix does not participate in these
linear combinations, as is seen from Eq. (1.9)]:

where the prime denotes according to Eq. (1.9), and Eq. (1.8) gives

Thus the wave function in (1.6) is a one-column matrix:

One can demand now that in the case of normal metal the components
and should become disconnected. This means that in the composition (1.10)

for only the coefficient at the matrix

/
will not vanish. In view of relations (1.10) and (1.11), this leads to

where is the (real) phase factor. Introducing the notation

we represent Eq. (1.6) in the form
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In the presence of a magnetic field* these equations become

which coincides with the Bogolyubov–De Gennes equations.12

1. 1 .5. Andreev Reflection

For stationary states we consider the wave function in the Schrödinger repre-
sentation, which includes the factor exp . Separating out the fast-oscillating
factors in the wave function:

and restoring the time-differentiation operators, one can transform Eqs. (1.18) and
(1.19) into the form:

Thus the analogy between the particle spectra has led to an apparent parallel
between Eqs. (1.18) and (1.19) and the Dirac equation.8,10 There are numerous
consequences from Eq. (1.21) [or, equivalently, from Eqs. (1.18) and (1.19)] that
are analogous to relativistic quantum effects.† We consider only one of them: the
so-called Andreev reflection.

*The magnetic field may.be introduced by.generalization of the standard method.11 One can start from
the Lagrangian , The scalar potential may be included in This
Lagrangian gives the correct expression for the Lorenz force acting on the electron in a normal metal
(when In the presence of a magnetic field, we obtain the Hamiltonian      where

which leads to Eqs. (1.18) and
(1.19).
†We note that there is no one-to-one correspondence between effects in superconductors described by
the Bogolyubov–De Gennes equations and the physics of the Dirac equation. Even formally there are
pronounced differences between these equations. According to them, for example, the quasi-particle
does not have a magnetic moment associated with the “zitterbewegung”13 ofelectrons in superconduc-
tors.
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In the absence of external fields, the -function may be taken as real (without
loss of generality), and using the normalization

one finds from (1.22), (1.16), and (1.17):

According to Eq. (1.22), the charge carrier with spectrum (1.5) is in a super-
position of states, having the probability amplitudes and . As follows from Eq.
(1.23), this superposition is essential in the energy range For we
have from (1.22) and (1.23), this is an electronlike excitation. For

we have ; this is a holelike excitation. Because the charges
of these excitations have the opposite signs, one has for the charge of quasi-particles,
described by the  function (1.12), the :

(the electron charge is unity). It follows that the quasi-particle charge, as well as its
group velocity

vanishes (and reverses its sign) at
Consider now the propagation of such a particle in a medium where is

a spatially inhomogeneous function. For instance, (r) | may increase smoothly
from zero to at the boundary between normal and superconducting phases. Let
the particle be moving from a normal to a superconducting region, with its energy

obeying the relation in the normal region. In the superconducting
region, as can be seen from Eq. (1.5), somewhat smaller values of  and conse-
quently smaller values of correspond to the same energy At the point where

, we have and according to Eqs. (1.24) and (1.25), the particle
should stop and be reflected. The group velocity in this case reverses its sign, but
the momentum may be retained. This means that the reflected particle reverses its
charge [see Eq. (1.24)], i.e., the reflected electron excitation becomes a hole. In the
relativistic theory, this phenomenon is known as the Klein In the
superconductivity theory, it corresponds to the Andreev  reflection.16

The Andreev reflection takes place when a current flows across the boundary
between a normal metal and a superconductor. This process was demonstrated
experimentally by the radio-frequency size  effect.17  As can be seen from Fig. 1.1,
the specifics of such a reflection allow one to place the electron’s trajectory (having
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a diameter D in the presence of a magnetic field ) within the normal metal layer
of thickness Evidently if the film borders a vacuum, the minimal value of
the field is H = but for a film deposited on a superconductor (see Fig. 1.1), the
closed trajectory is achievable in the field H = This example demonstrates
one of the remarkable kinetic properties caused by the nature of superconductivity.*

1.1.6. Electron Density of States

There are two additional points. The first relates to the density of the energy
levels of quasi-particles having the spectrum of Eq. (1.5). In a description of normal
metals, the density of the levels can be obtained when one passes from the
momentum summation to the energy integration:

so for the momenta the levels density is a constant
However, in superconductors, the levels density is a singular function

*It is recognized today that the Andreev reflection plays a major role in “our ability to insert current into
a superconductor.”18 The related physics is very important for various fundamental and applied
problems of superconductivity. I9–28
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Thus, when there is a gap in the excitation spectrum, the energy levels of quasi-particles
are pushed out from the intragap into the gap-edge region of energies This
singularity of superconducting energy levels will play an important role in further
discussions.

1.1.7. Coherence Factors

The second point relates to the coherence factors. The form of the wave
function (1.12) indicates that in calculations of the matrix elements connected with
the transition of quasi-particles from level to level combinations of the type

would appear, depending on the form of the interaction operator. The squared
quantities (which define the corresponding transition probabilities) would be, for
example, For the last quantity one obtains, after a simple calculation
taking into account Eq. (1.23):

Other combinations in Eq. (1.28) lead to analogous relations, differing only in the
signs in the parentheses in Eq. (1.29). These factors are called coherence factors.
They renormalize the transition matrix elements in superconductors relative to
those in normal metals.

For the processes that are symmetric over the electron-hole excitation
branches, the odd terms in (1.29) disappear and the coherence factors are of
only two types:

Note that for the transition probability doubles for the first factor and
vanishes for the second one. This is important, because the states with  play
an essential role in kinetic processes, as is seen from Eq. (1.27).

1.2. PHENOMENOLOGICAL GINZBURG–LANDAU THEORY

The Ginzburg-Landau (GL) theory permits a deep insight into the phenome-
non of superconductivity in the case of thermodynamic equilibrium and provides
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the most transparent technique for investigating this phenomenon. We continue our
discussion with the presentation of this theory.29

In formulating this theory, the experimental knowledge that the supercon-
ducting transition is a second-order phase transition was used. It was assumed that
below the phase transition temperature all the electrons of the superconducting
metal can be characterized by a superconducting order parameter
and On intuitive grounds, the order parameter  was considered
as the “effective wave function of superconducting electrons.”

1.2.1. Free Energy Functional

According to the theory of second-order phase  the free energy of
the superconducting state in the vicinity of  may be presented as a functional of
the complex variable , permitting the expansion (we make for a moment

(the terms proportional to and do not enter this expansion in view of the gauge
invariance of the free energy). In expression (1.31) is the free energy of the
normal phase. At fixed temperature the free energy (1.31) is minimized by
the value of (T) I, which can be found from the equation

subject to the condition

From Eq. (1.32) and (1.31) one finds

i.e., the factors and have opposite signs at . From the condition (1.33) it
follows that

and combining this with Eq. (1.34), we find
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According to this for temperatures near it could be written

Based on these expressions one can conclude that in the case of thermodynamic
equilibrium at

Let us now consider a superconductor that is placed in a static magnetic field
H(r). The free energy must have an additional term that is equal to the field
energy Accordingly, the critical magnetic field in a spatially homogeneous
case may be found from the equation

Generally, one must also take into account the energy, which is proportional
to the inhomogeneity of the wave function Thus at small gradients,

The last term in (1.42) corresponds to quantum-mechanical kinetic energy. Hence
there are reasons to represent it in the form

where m* is some coefficient having the dimensionality of a mass. To include the
magnetic field in the scheme, it is necessary to make in Eq. (1.43) the usual
quantum-mechanical substitution
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which enables one to obtain the gauge-invariant equations. Here A is the magnetic
field's vector potential and e* is the charge of the carrier, represented by the wave
function . Thus the free energy density may be written in the form

Demanding the minimum for the total free energy

(V0 is the system’s volume), one can obtain the equation for Varying (1.46) by
gives

(S is the metal’s surface). Because is arbitrary, we find from (1.47) an equation
for the order parameter

and also the boundary condition

(here n is a vector normal to the metal surface). The variation of (1.46) by A yields
the Maxwell equation

where the current

has a typical quantum-mechanical form [cf. (1.3)].
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Expressions (1.48) and (1.51) comprise the Ginzburg–Landau system of
equations describing the behavior of superconductors in a static magnetic field.
Presenting the complex function in the form

one can rewrite the expression for the current:

Here is the density of superconducting electrons in the Ginzburg–Landau
normalization, and the superconducting velocity vs is equal to

Putting B = curl A, one can easily prove that Eq. (1.53) coincides with the London
equation [ef. (1.2)]

Substituting into (1.55) the Maxwell equation

and taking into account that

we obtain the equation

1.2.2. London Penetration Depth

Equation (1.58) subject to condition (1.57) describes the expulsion of a
magnetic field from superconductor’s interior (the Meissner effect). Let us consider
the distribution of a magnetic field in a superconductor near its surface, assuming
the latter to be a plane. The characteristic parameter, which has the dimension of a
length, in this situation is
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as may be seen from expression (1.58). In the case considered here, the field
distribution depends on one (say, x) coordinate only. Then

with the boundary condition

which follows from Eq. (1.57). From the expressions (1.61) and (1.57) one can
conclude that the vector of induction B in the depth of the superconductor has the
form

where is a tangential component of the external field. The characteristic length
(1.59) is called the London penetration depth.

1.2.3. Coherence Length

The Ginzburg-Landau set of equations has one more characteristic scale,
which has the dimensionality of the length. Its value [usually marked as may
be seen from Eq. (1.48), characterizes the scale of spatial evolution of the -func-
tion and is given by

The temperature dependence of in the vicinity of is found using the
formula (1.37):

We are able also to obtain the temperature dependence of Indeed,
in the vicinity of one can substitute Eq. (1.39) into (1.59) with the result:
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The ratio of these two characteristic lengths

is temperature independent and, as we will now see, is an important parameter of
a superconductor, defining its behavior in a magnetic field.

1.2.4. Sign of Surface Energy

Let us consider the surface energy of the flat boundary between normal and
superconducting phases, which may exist in a magnetic field. In the normal phase,
the free energy density, including the field energy, is equal to In the
region where the free energy density is [Eq. (1.42)]. Near the boundary
one must take into account the energy associated with the magnetization of a
superconductor

In the depth of the normal phase, the equation  holds (the second of these
equations is also valid in the superconducting region, because

Thus the surface energy

taking into account Eq. (1.45), is equal to

[according to Eq. (1.41), In Eq. (1.69), the -function was
assumed to be real, because the term vanishes owing to the condition

The analogous term also disappears from Eq. (1.48) for the order parameter,
so Eq. (1.53) for the current acquires the form

It is expedient to use the variables
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Removing the bars above the symbols to simplify the notation, we present Eq. (1.48)
in the form

and write expression (1.69) as

Integrating the first term in (1.73) by parts, using the condition
one can reduce Eq. (1.73) to the form

Expression (1.74) vanishes if the integrand is identical to zero: . Since
and B must decrease with increasing then

From Eqs. (1.50) and (1.70) it follows that

Taking the derivative of (1.75) and introducing it into (1.76), we find

Substituting '(1.77) and A' (1.75) into Eq. (1.72) shows that Eq. (1.72) is fulfilled
identically at One can also see that the condition (1.75), which was used
earlier does not contradict the boundary conditions: and at

Thus we arrive at a very important conclusion: at the solution of the
order parameter equation causes the surface energy to vanish (this criterion was
established numerically by Ginzburg and Landau29 and proved analytically12 by the
Sarma method; the alternative method we used here is by Lifshitz and Pitaevski31).
Generally,  may have an arbitrary sign. To see this we will once again use the
expression (1.73), as well as the first integral of Eq. (1.72) subject to (1.76), which
has the form

*The last identity here follows from Eq. (1.76) and boundary conditions
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As a result we find

Note that the second term in (1.79) is always negative, because the field
which penetrates into the superconductor, is always smaller than the critical

one: The first term in Eq. (1.79) is always positive, but its value and
consequently the sign of are determined by the magnitude of [see Eq. (1.66)].
Superconductors in which

are called Type I superconductors, or Pippard superconductors. In these supercon-
ductors, as we have seen, The superconductors in which

are called Type II superconductors, or London superconductors.

1.2.5. Superheating in a Magnetic Field

Consider a film of a Type I superconductor with a thickness d,
placed in the magnetic field H parallel to its surface.29,32 Let the film occupy the
space in the appropriate reference frame (so that formally the
problem is one dimensional). To simplify calculations we will made In this
case Eq. (1.72) reduces to Account ing for the fact that

(according to Eq. 1.49), one obtains = const. In addition,
integrating the Maxwell equation (1.56) and taking into account that

one gets

i.e., the mean value of the superfluid velocity (averaged over the film’s thickness)
is zero. Substituting the value of (still unknown) into Eq. (1.58), subject to the
above-mentioned boundary condition for B(z), we find

Here denotes the value of in the absence of the
magnetic field (see Eq. 1.39). For the superfluid velocity, we obtain on the basis of
Eqs. (1.53), (1.56), and (1.83),
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Averaging over the film’s thickness, we arrive at

Omitting in Eq. (1.48) the term with a spatial derivative we find

or, using Eq. (1.34),

On the basis of Eqs. (1.41), (1.59), and (1.39), the relation (1.87) can be
represented in the form

The critical value of the field is reached when the Gibbs potentials of supercon-
ducting and normal states equalize. The Gibbs potential density in a supercon-
ducting state is

where is expressed by Eqs. (1.40) and (1.31) with the spatial derivatives omitted
in view of Using the relation (1.86), one arrives at

To proceed further we must integrate Eq. (1.90) over the specimen’s volume, which
is equivalent to averaging over the film thickness. Using Eq. (1.83) and calculating
the averaged values and
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one finally gets

In the normal phase To obtain the critical value of a
magnetic field one must equalize and which leads to the equation

Another relation between and is supplied by Eq. (1.88). As follows from
these equations, the critical field depends on the film’s thickness d.

We consider the two limiting cases of thin and thick films. In the case
, Eq.(1.88)is

i.e., the reduced-order parameter  decreases monotonically, with the field ampli-
tude H increasing. This behavior corresponds to the second-order phase transition.
Evidently the value corresponds to the critical field. Substituting into
Eq. (1.95), one finds

where is the thin film critical field.
In the opposite limiting case of thick film , Eq. (1.88) reduces to

Substitution of this into Eq. (1.93) yields the equation

The presence of a large multiplier on the left side means that i.e., the
thick-film’s critical field is approximately equal to because of Eqs. (1.17) and
(1.98). Thus the phase transition in thick films is of the first order, because it occurs
abruptly at finite values of
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More detailed study (see, e.g., that in Ref. 32) shows that the first-order
transition changes to the second order at the film's thickness The
physical reason for the first-order transition is the negative value of the surface
energy . Contrary to this, in Type II superconductors  is positive and this leads
to the appearance of the layered structure of superconductors in the external
magnetic field (i.e., the coexistence of normal and superconducting regions).

1.2.6. Flux Quantization

In their basic  paper29 Ginzburg and Landau assumed that e* was equal to the
electron's charge e. As was later established microscopically by Bardeen, Cooper,
and Schrieffer the current in superconductors being transmitted by the
Cooper pairs, and Gor’kov was able to provethat (seeSection 1.4). We stress
that in contrast to the mass m*, which in the above system of equations may be
changed by simple renormalization of the charge e* enters Eqs. (1.48) and (1.51)
additively and its magnitude is important. To demonstrate this we consider the
phenomenon of magnetic flux quantization.

Let us imagine a massive superconductor with a cylindrical cavity placed in a
magnetic field H, which is parallel to the cylinder’s axis. Consider a contour C (see
Fig. 1.2) that encloses the cavity and lies entirely within the depth of the supercon-
ductor. Owing to the Meissner effect, the superconducting current vanishes at
distances from the surface much greater than the London penetration depth
Thus, as follows from Eq. (1.51), on the contour C one has
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Integrating  j along this contour and using Eq. (1.99), we find

It must be taken into account that

where is the magnetic flux captured in the cavity. The first of the integrals (1.100)
is the phase difference acquired while going around the contour C and it must be a
multiple of :

because the -function is single valued [n is an integer in Eq. (1.102)]. As a result,
one finds from Eqs. (1.100) to (1.102)

or, in other words, the magnetic flux in the cavity of a superconductor is quantized
and may change only in portions This phenomenon was predicted first
by F. London7 and later confirmed experimentally by Deaver and Fairbank34 and
also by Doll and Näbauer,35 who found the value of e* in (1.103) to be equal to
twice the electronic charge:  Had the doubling of the carrier’s charge been
known in 1950, the analysis of the Ginzburg–Landau equation for the quantum
mechanical function of superconducting electrons might significantly accelerate
the subsequent development of the microscopic theory of superconductivity.

1.3. BCS–GOR'KOV THEORY

The basic cornerstone of the microscopic theory of superconductivity was laid
down by Cooper36 in 1956. Cooper considered the indirect (mediated by the phonon
exchange) interaction between electrons in metals; this is a process of the second
order in electron–phonon interaction. As is known from perturbation theory, the
second-order correction to the energy of the ground state is always negative (see,
e.g., Ref. 37), i.e., the Cooper interaction is attractive. Because the Fermi sphere at
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low temperatures is almost completely occupied, the motion of conducting elec-
trons in the momentum space is quasi-two-dimensional. This means that any weak
attraction between electrons produces the bound state, or leads to electron pairing.
In the absence of total current, the electrons with opposite momenta have the largest
pairing probabilities. The paired electrons become bosons, with the spin equal to 0
or 1. The electron system must have rearranged itself (because the paired state is
energetically preferable), forming the Bose condensate of paired electrons (the
Cooper or pair condensate). The properties of the Cooper condensate are typical
for all the Bose condensates. In particular, at temperatures lower than the conden-
sation temperature the occupation number of paired states with zero momentum
is macroscopically large. This means that in presence of the pair condensate, the
anomalous components of Green's functions should be introduced into the theo-
retical formula. Such a generalization of the theoretical scheme was made by

in the theory of superfluidity, and the concept of off-diagonal long-
range order was developed even earlier (see discussion in Ref. 39). In the theory of
superconductivity, this generalization was introduced by Gor’ and in a slightly
different way by Nambu (see, e.g., Ref. 41). The microscopic description of the
superconductor in terms of these formulas is fully adequate to the BCS theory and
being considerably simpler allows one to avoid all the problems connected with the
gauge invariance of the theoretical scheme.

1.3.1. Equations for    Operators

We start with the BCS–Gor’kov model, considering first the case of The
model Hamiltonian has the form

where (r) and (r) are the field operators in the Schrödinger representation
(from now on the repeated spin indices imply summation and the sign will be
omitted). The BCS potential corresponds to the indirect interaction of electrons.
Let us move to the Heisenberg representation, where operators and are the
functions of and obey the equations
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Here we have used the usual equations for the field operators

and the commutation rules for the Schrödinger operators

Green’s superconductor functions are defined by the expressions

and from Eqs. (1.110) and (1.106), and (1.108) and (1.109), we get

According to Wick’s theorem, the T-product of operators may be presented as
the averaged product of binary field operators. Owing to the presence of the pair
condensate in the system, the T-product may be written in the form

(here the electrons’ scattering processes and the renormalization of their chemical
potential are neglected).

1.3.2. Off-Diagonal Long-Range Order

We can now introduce the anomalous, nondiagonal Green’s functions

which shows that the quantum states with N and paired particles (Cooper
pairs) are indistinguishable. The last circumstance is connected with the above-
mentioned macroscopic occupation of the paired states, and allows one to neglect
the fluctuations in the number of pairs. It is convenient to write the propagators,
which describe the superconducting state, in a matrix form
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where the function corresponds to the Feynman diagram with
the reversed direction of arrows. The appearance of F-functions, which are nondi-
agonal in the Hilbert space of single-particle states, is connected with the phase
coherence of the superconducting electrons [the off-diagonal long-range order,
introduced by Landau (see discussion by Ginzburg43) and independently Penrose
and Onsager44; see also Refs. 29 and 44].

Note that in a spatially homogeneous and stationary state the propagators
(1.114) depend on the difference only. Introducing in this case the notation

one can rewrite Eq. (1.111) in the form

The equation for follows analogously:

1.3.3. Spin-Singlet Pairing

We can now exclude the dependence on the spin variables (this is permitted in
the case of interactions, which do not depend explicitly on the spins of particles).
Green’s functions may be presented in this case as the products of orbital and spin
parts. The diagonal Green's function  is proportional to the unity matrix

whereas the off-diagonal functions and F are proportional to the matrix, which
is antisymmetric in the spin indices

where is related to the second of the Pauli matrices:
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This antisymmetry characterizes the singlet pairing of the electrons assumed in the
BCS model, and we will adopt it in further analysis. [In the case of triplet pairing,
the choice of is ambiguous (see, e.g., Refs. 45 and 46) and leads to states with
different free energies.] The system of general equations for the superconductors
now acquires the form

where

1.3.4. Solutions in Momentum Representation

In the momentum space, Eqs. (1.122) and (1.123) may be rewritten as

Or, counting the energy from the Fermi energy level

The solution of Eqs. (1.126) and (1.127) has the form

where
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[One should bear in mind that since the case of is being considered here,

The rules to bypass the poles in Eq. (1.128) are defined by the Landau theorem
(see, e.g., Ref. 42), using which one can obtain

where , is the excitation spectrum of the superconductor

with a gap . To find the value of the gap, definition (1.129) may be used.

1.3.5. Self-consistency Equation

Substituting Eq. (1.131) into (1.129), one arrives (with at the
self-consistency equation

Integration in Eq. (1.133) over the angles and energy leads to divergence of the
integral at large energies. Integrating in symmetric limits over  one finds

where . is some boundary value of which depends on the model’s assumptions.
From Eq. (1.134) it follows that

where

In Eq. (1.136) N(0) denotes the density of energy levels for the electrons on the
Fermi surface in a normal metal.



In the model based on the Hamiltonian (1.104), the value of (and as we will
see further, the critical temperature of transition, may be arbitrarily large
if there is no restriction on the value of In the traditional BCS model, it was
assumed that only the electrons in the “Debye crust” near the Fermi surface take
part in the pairing interaction, since the interaction is mediated by phonons. This
assumption is probably the weakest in the BCS picture, if it is considered from the
point of view of high-temperature superconductivity. Nevertheless, we will accept
this assumption and put in the expressions (1.134) and (1.135) and further
on. Since where M is the lattice ion mass, it follows that

. This leads to the difference in between the same metals of
different isotope composition, which is well confirmed experimentally for the usual
superconductors.*

1.3.7. Gauge Invariance

Gauge invariance is an important property of Gor’kov’s equations. Electro-
magnetic fields may be introduced into the system of Eqs. (1.122) and (1.123) by
the usual operator replacement

depending on whether the space derivatives apply to the function or
respectively (in the same manner the time derivation operator gains the addition of

The equations for G and F+ may be written as

The functions G, F, and in the presence of an external field depend on each of
the variables and under the gauge transformation

*We should note that there are exceptions to this rule, even for the case of phonon-mediated pairing,
e.g., in the case of the PdH (palladium-hydrogen) alloy, where the effects of phonon anharmonicity are
significant.47 The situation with high-temperature superconductors is more complicated, and both
anharmonicity and some additional effects may be important there.48,49
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1.3.6.  Isotope  Effect
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they transform according to the rules

which follow from the transformation rules for the field operators and .
The transformation rules for and consequently for and , are also

defined by expression (1.141). So the gauge invariance of Eq. (1.139) is straight-
forward. It must be stressed that in certain cases it becomes possible to make the
value of real by special choice of the gauge. In such cases this value coincides
with the gap parameter in the excitation spectrum, which was introduced in the
pioneering BCS theory. But in general,  is a complex variable and contains
additional physical information. This circumstance is one of the important conse-
quences of the Gor'kov theory, as we will see later in Sect. 1.4.

1.3.8. Description at Finite Temperatures

We now generalize the theory to the case of finite temperatures. To do this, it
is necessary to apply the Matsubara technique,42 which introduces the imaginary
time coordinate The emerging equations are analogous to (1.122) and (1.123):

where

Using discrete imaginary frequencies

according to relations of the type

[and analogously for and  one can find from Eqs. (1.142) and
(1.143) the system of equations
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I

They have the solutions

1.3.9. Weak-Coupling Ratio

The gap value may be defined from any of the relations (1.144) and with
the help of Eq. (1.150) one can obtain at an equation

The summation over the frequencies may be carried out using the expression

As a result we obtain from (1.151) the self-consistency equation

which determines the gap at arbitrary temperatures. Note that (1.153) may be
presented in more transparent form

where the distribution function of Fermi excitations is given by the formula
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Setting one obtains from (1.154) the relation (1.133) for the gap At
the gap 1 vanishes and Eq. (1.154) reduces to the equation defining

from which one obtains

where is the Euler constant: 1.78.
Comparing the quantities (1.135) and (1.157), we find

This relation provides an empirical criterion of the quantitative validity of the BCS
model. It is fulfilled for most superconductors with weak electron–phonon cou-
pling, for which

The BCS theory describes quite satisfactorily many phenomena occurring in
superconductors at thermodynamic equilibrium, even in cases where the inequality
(1.159) is violated. In these phenomena, the BCS interaction potential does not
reveal itself directly. The inelastic collisions, which were omitted in the simplified
BCS picture, are also not important for this class of phenomena. We note now that
the BCS–Gor’kov model may be modified to remove these shortcomings. The
Migdal–Eliashberg model, which is more realistic and better applicable to the
problems of nonequilibrium superconductivity, is considered in detail in Chap. 3.

1.4. SELF-CONSISTENT PAIR FIELD: MICROSCOPIC
DERIVATION OF GINZBURG–LANDAU EQUATIONS

Initially, the idea that the gap in the energy spectrum of superconductors may
serve as the superconducting order parameter of the phenomenological Ginzburg–
Landau theory was contained in the fundamental work of Bardeen, Cooper, and

This idea was confirmed by whose work has assigned the
status of microscopic theory to the Ginzburg–Landau study. In the next section we
follow the derivation presented by
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1.4.1. Iterated Equations

The microscopic equations of superconductivity considered in the preceding
section may be written in the form

The parameter (and analogously is connected with an anomalous Green’s
function by the relation

where a summation over the frequencies spreads up to
Making iterations over in (1.160) and (1.161), one can obtain the result, which it
is convenient to display diagrammatically:

Here the right arrow corresponds to the normal state function and the left
arrow—to ; the vertex corresponds to depending on the conver-
gence or divergence of neighboring arrows. In addition, the sign of the diagram
changes if the vertex enters the diagram twice. This rule should be followed
constantly; however, we omit the minus sign on the digram. Taking into account all
the terms in the expansions of (1.163) and (1.164) allows us to present Eqs. (1.160)
and (1.161) in the integral form:

though only the first terms of this expansion, depicted in (1.163) and (1.164), are
needed. The appropriate expressions are
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For further calculations one must know the function We will find it
first in the absence of the magnetic field, putting and denoting the correspond-
ing Green’s function by (r). Using the definition of and making
straightforward calculations, one obtains

In deriving Eq. (1.169) the relations

were used.

1.4.2. Magnetic Field Inclusion

In the presence of a magnetic field, the function differs from by the
phase factor

where The function obeys the equation

which may be established from Eqs, (1.171) and (1.160) by taking into account the
quasi-classic conditions: is the field penetra-
tion depth). Because of the spatial homogeneity of , the relation follows from
(1.172):

which would be used further.
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1.4.3. Slow Variation Hypothesis

As is evident from Eq. (1.169), the function (and consequently
decreases over distances on the order of However, the field A near
varies over distances greatly exceeding . This allows
us to present the function in the form

Now we are able to derive the equation for parameter Substituting Eq.
(1.168) into (1.162) we find

Let us suppose that the pair field (r) weakly varies over distances comparable
with (this supposition, as we will see, will be confirmed). In the integrand of the
first term in (1.175) one can make a series expansion of the parameter

and also keep only the first item in the analogous expansion of the second term in
(1.175). Substitution of (1.176) into (1.175) taking into account expressions (1.171)
and (1.174), which also could be expanded in powers of the vector potential A(r),
gives the expression

By direct summation over the discrete frequencies it can be established that
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and owing to this, the first of the integrals in (1.177) would diverge, if one does not
take into account the “smearing” of the coordinate r over the distances , In
the momentum space one can cut off the summation in (1.177) (at  ,  which
corresponds to this smearing. Using this circumstance, one may write

The last equality here is obtained by taking into account Eq. (1.156) for the critical
temperature. The second integral in (1.177) may be evaluated using the formula
(1.178):

where is the Riemann zeta-function.
The third integral is also not too difficult to evaluate:

Gathering the results, one obtains after complex conjugation the equation for

The BCS potential disappears from the final result, which has the form of the
Ginzburg–Landau equation for the wave function.

1.4.4. Evaluation of Phenomenological Parameters

Microscopic derivation permits one to determine the phenomenological pa-
rameters in Eq. (1.48). First, the doubled value of the electron’s charge should be
noted in (1.182): this is the consequence of the Cooper pairing. For this
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reason was chosen in (1.182) and as may be found in comparison with
(1.37),

The value of the coefficient is sensitive to the normalization of the
-function. In Sect. 1.2 we have adopted a normalization, with correspond-

ing to the density of Cooper pairs [see Eq. 1.53)]:

The microscopic treatment is based on the initial expression for the current

Substituting here from (1.167), and using the quasi-classical conditions
mentioned above (for details see Ref. 42), one can find:

where N is the total density of electrons, which coincides with the normal state
value. Comparing (1.186) with (1.51) one can find a relation between and

Now the parameter may be obtained with the help of Eqs. (1.182), (1.187), and
(1.48):

Another relation to be noted is

which follows from Eqs. (1.184) and (1.187) and connects the density of pairs,
near with the total density of electrons in a normal metal, N.
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Thus, the microscopic theory not only laid the foundation for the Ginzburg-
Landau theory but also defined the phenomenological coefficients entering it. In
particular, the temperature-dependent coherence length and the penetration
depth _ ) may be calculated. One can ascertain now the self-consistency of the
assumptions made earlier, that at temperatures these lengths greatly exceed
the correlation length For the London superconductors these expres-
sions are still valid for temperatures below  Tc, though they fail quickly for the
Pippard superconductors if the temperature falls. It must be noted that a large class
of a superconducting metals, containing nonmagnetic impurities, may be attributed
to the London-type superconductors, as we will see in Chap. 3. Hence, the area of
applicability of the Ginzburg–Landau equations actually is rather wide.

1.4.5. Failure of the "Quantum-Mechanical Generalization" for
Time-Dependent Problems

In the vicinity of a critical temperature  Tc, the solutions of the Ginzburg-
Landau equations are fully equivalent to the solutions of the BCS equations. At the
same time, the Ginzburg–Landau technique is considerably simpler. As we have
seen, the “wave function of superconducting electrons” (r) is closely connected
with the field  ,  which characterizes the Cooper pair condensate. If one ignores
the nonlinear term in (1.150), then the equation for formally coincides with
the Schrödinger equation for the particle with the charge 2e and the mass 2m. The
simplicity and transparency of such an analogy has led to attempts to use the
Schödinger-type equation to describe the dynamic properties of superconductors
in nonstationary fields: A = A (r,t). At first glance, the “natural” extension of Eq.
(1.150) for the nonstationary case may be obtained by the quantum-mechanical
generalization:

Such a generalization, however, leads to a contradiction. This example is from
Eliashberg.51 Indeed, the “continuity equation”

follows in the usual manner from (1.190). If now one considers the half-space
occupied by a superconductor, where A and depend only on the coordinate
normal to the surface,  ), and the vector A is parallel to the surface
plane, then from (1.191) an absurd result will follow in an
arbitrary time-varying field A(t), the function does not change in time:
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divA Hence the problem of ex-
tending the Ginzburg–Landau-type description to the case of nonstationary external
fields is not as simple as might be thought. A deeper analysis of the properties of
the superconducting state is required to fully appreciate the difficulties that arise
and to solve this problem. The forthcoming chapters, particularly Chaps. 2 and 7,
will deal with this problem.
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2

Dynamics of Gapless
Superconductors

The content of the previous chapter enables us to compare the relatively simple
Ginzburg–Landau scheme of description with a much more complex field-theoretical
approach. The attractiveness of the GL-type description is even greater for time-de-
pendent problems. We have also seen that the generalization of the GL scheme to
include time-dependent fields is not a trivial problem. The simplest case which
permits such a generalization is the case of gapless superconductors. This case is
considered now.

2.1. SCATTERING ON IMPURITIES

2.1.1. Magnetic and Nonmagnetic Impurities

The interaction Hamiltonian of electrons with impurity atoms may be written
as

where indicates the impurity atoms, and the potential is

(2.2)

In expression (2.2) the potentials (r) and i (r) stand for the exchange
interactions of electrons with nonmagnetic and magnetic impurities, respectively;

is the spin matrix of the electron; S is the magnetic moment of the impurity atom.

39
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2.1.2. Diagram Expansion and Spatial Averaging for Normal Metals

A diagram technique for the scattering of electrons on impurity atoms may be
constructed in the usual manner—by the series expansion of the S-matrix. We use
here the approach developed by Abrikosov and It is convenient to
consider the properties of this diagram expansion on a normal metal, using Eq. (2.2)

Using an × (cross) to mark the interaction vertex of electrons with impuri-
ties, we obtain the diagram series

or in analytic form*:

[the combination with summing over corresponds to the inter-
action vertex, where q is the momentum transferred, and is the Fourier
component of the potential Equation (2.4) should be averaged over the impurity
coordinates, assuming their chaotic spatial distribution. The averaged values will
be denoted by bars above the symbols. Because the averaging procedure is applied
to a large volume with many impurity atoms,

After the averaging, diagram 2 in the series (2.3) becomes proportional to the
potential , and the averaging yields an expres-
sion analogous to the one from diagram 1 in all cases, except when and

As a result, the averaging of diagram 2 gives

where is the density of impurity atoms. Using the explicit expression for
, one can find from Eq. (2.6)

*Because the impurity field is a static one, we omit in this section the variable in the propagators
etc., showing this variable explicitly only when its presence is essential.
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where

is the (electron) elastic scattering time. Thus the main contribution arises from the
diagrams containing crosses, which correspond to the same atoms. It is convenient
to link these crosses by broken lines. The diagrams with three crosses provide
nothing new. The fourth order of the perturbation theory generally is represented
by the diagram

A comparison of contributions from the diagrams

shows that the diagrams with intersected broken lines contain a small parameter
, where l is the electron’s mean-free-path. Indeed, for the first of

the diagrams in (2.10) we have

After averaging over the impurity positions, this transforms to
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At the same time, the third of the diagrams in (2.10) yields

or, after averaging over the impurities,

Restrictions that follow from the angle integration in Eq. (2.14) require that
one of the G-functions be of the order Meanwhile in expression (2.13)
the same function is of the order in the region important for integration. This
circumstance confirms the statement on diagrams with intersections. The situation
is analogous to the case of the second and third diagrams (2.10).

2.1.3. Born's Approximation

Apart from the diagrams considered (2.10), there is another one of the fourth
order:
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The contribution of such diagrams is essential in the case of non-Born scattering.
We consider the opposite situation*

where one can omit contributions such as Exp. (2.15).
Let us now sum the selected diagrams. We have

It is not difficult to see that the result of the graphical summation of series (2.17)
may be depicted as

or in analytic form

*This assumption is satisfactory for our immediate purposes. However, when we discuss electron
scattering by magnetic impurities later, continuing to make this assumption results in the failure to
predict the Kondo effect4 and its very interesting consequences for transport phenomena in metals,
especially in the case of thermoelectricity.5–10



The solution of Dyson’s equation (2.19), as usual, may be presented in the form,

where, since it follows from Eqs. (2.19) and (2.20), the self-energy part  is
defined by the equation

Assuming is purely imaginary, we find in analogy with Eq. (2.7):

(2.22)

Comparing Eq. (2.22) with the limiting case , one finds = sign and,
consequently,

Moving now from (2.23) to the coordinate representation:

and taking into account formula (1.170), we rewrite (2.24) in the form

Closing the integration contour over in the upper and lower half-planes for the
first and second integrals in (2.25), respectively, and noting that the first integral is
nonzero at and the second at only, we find

where is the electron mean-free-path.
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2.1.4. Equations for a Superconducting State

For superconductors we have the system of equations

in analogy with (2.18) (here we set Let us make the series expansion in
(2.27) and (2.28) in powers of the Bose field for example, in an equation for the
G-function:

Separating the free line in this diagram, we obtain a remaining series

plus a class of diagrams with even numbers of
which enter the sum after the sign of the cross (we do not distinguish here

between and

Two options are possible when the external broken line is separated from such
a diagram: there is either an even or an odd number of vertices in the inner and
in the outer regions of this broken line. Summation of these two classes of diagrams
yields

Thus, we get the equation for the G-function
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(we have used here the rule concerning the diagram signs mentioned in Sec. 1.4).
In the same manner one can obtain for the expansion

Again, the left free line may be separated, which is followed by the vertex or by
a cross. Summing the first class of diagrams, one obtains If a vertex

one can separate the first external broken line:

(in the inner part of the diagram series there are broken lines and vertices If there
is an even number of in the inner part, then summation of the diagrams gives the

function , and the function obviously emerges in the outer part. If the broken
line embraces the odd numbers of then this class of diagrams yields the function

and the function G emerges in the outer part.
Thus

where Taking into account the definition of functions and

and analogously for other two elements of the -matrix (1.114), we obtain the
system of equations for superconductors with impurities:
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The self-energy matrix here is:

as follows from Eqs. (2.34), (2.35), and (2.8).

2.1.5. Anderson's Theorem

The solution of Eqs. (2.36) and (2.37) may be found in the same manner as
was done for the normal state. It gives the same formal result: the appearance
of exponential factors in the Green’s functions. However, the gap in the
energy spectrum of the superconductor is subject to the self-consistency equa-
tion (1.144), which includes the superconducting propagator at So
evidently nonmagnetic impurities do not influence the thermodynamics of a
superconductor.

2.1.6. "Londonization" by Elastic Scattering

Another important consequence follows from the comparison of Eqs. (1.169)
and (2.26). At / the electron correlation radius in superconductors becomes
less than . We have mentioned this circumstance in Chap. 1 as the “Londoniza-
tion” of superconductors by the scattering of elastic impurities. This aspect of the
influence of impurities is important for superconductors, making their electrody-
namics local.

2.2. MAGNETIC IMPURITIES

When the paramagnetic part of the potential (r) (2.2) is “switched on,” the
interaction becomes explicitly dependent on the electrons’ spins. Consequently, the
spin variables should be preserved in the intermediate calculations of Sect. 2.1.
Using the Hamiltonian

*In the theory of superconductivity, this result is sometimes called the Anderson theorem.11
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the following equations of motion for the Heisenberg operators and can
be obtained:

we have included the summation over impurities and the
exchange potential in 1. Starting from the definition of Green’s functions, taking
the derivative of (1.110) and account of (2.38) and using “Gor’kov splitting”
(1.112), one obtains the equation

where the function obeys the equation

Now, making the series expansion for the functions G and F+ on the basis of (2.39)
and (2.40), one can see that enters into the diagrams
whereas enters into the diagrams

2.2.1. Averaging over Spin Directions

Let us return now to the definition of functions

(see Sect. 2.1). Besides averaging over the spatial distribution of impurities, one
must also average over the spin directions, assuming their random orientation. In
the absence of impurities it follows that ~ If the dashed line is spin
dependent, then

Thus, the averaging of diagrams for G-functions adds the term to the
potential The situation with functions and   + is different. The corresponding
diagrams contain an additional factor  and a line ; for example,
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As a result, the part of the diagram represented by a dashed line and containing
- — - will have a sign opposite to Indeed, (see 1.119 and 1.120). But

and this causes a chain of relations:

2.2.2 Spin-Flip Time

The “magnetic” part in the averaged diagrams for F and  has a sign opposite
to the part produced by the usual impurities. Accounting for this, the value in
the diagonal components of in Eq. (2.37) is replaced by

and in nondiagonal components by

The difference in values (2.46) and (2.47) is due exclusively to the magnetic part
of the interaction and defines the reciprocal spin-flip time

2.2.3. Depression of Transition Temperature

Let us now consider the influence of paramagnetic impurities on the thermo-
dynamic properties of superconductors. The initial equations (prior to the impurity
averaging) in the representation of the imaginary discrete frequencies

have the form
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As before, we use the potential (2.2). It will be shown now that the critical
temperature remains unchanged if  and diminishes if

Since the temperatures close to the critical one are of interest, in the expansion
of  in powers of the field  it is sufficient to retain only the lowest-order diagram:

Substituting the corresponding analytic expression into the self-consistency equa-
tion (2.51), we find

The equation for must have a nonzero solution at the critical temperature.
Averaging (2.53) over the impurity positions and taking into account that  is a
smooth function and ) is a rapidly oscillating one, one may write

The averaging procedure in (2.54) produces the broken lines connecting the
crosses not only on the same propagation line, but also on different lines (recall that
the potential corresponds to crosses on the G-function's line). In the first case,
we have and a factor arises for the diagram.
This leads to the substitution in expression (2.26):

Correspondingly, the Fourier component of Eq. (2.55) has the form [compare Eq.
(2.23)]:

In the second case, one must calculate in (2.54) a “ladder” diagram of “dressed”
functions:



It is expedient to introduce the functions by the relation

Then Eq. (2.57) can be presented in the form

where is defined from the momentum conservation law: The
spin part of can be separated further: After that, a combination of
the type appears on the right-hand side of Eq. (2.59), which, as noted
earlier, is equal to So one can write (2.59) in the form

where

Multiplying Eq. (2.60) by and integrating over
we obtain

Keeping in mind the self-consistency equation (2.53), we put in (2.62) and
obtain

taking into account Eqs. (2.48) and (2.56).
We return now to Eq. (2.54) and move the factor out from under the integral

operator (as in Sect. 1.4, in what follows we will discard the bar above the symbol
Using the expressions (2.58) to (2.63) we find in this way

SECTION 2.2. MAGNETIC IMPURITIES 51
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from which the equation for the critical temperature follows:

One can see from this expression that will not change in the absence of magnetic
impurities. Indeed, at , Eq. (2.65) transforms to

Making in (2.66) the replacement , we arrive at Eq. (2.37) determining
which corresponds to a “pure” sample, This verifies the unshifted value

of
The situation is different for when

Restricting ourselves to a crude approximation, we take as a constant.* In
this approximation one arrives at the equation

which coincides with (2.66), but with a smaller interaction constant and hence [see
Eq. (1.157)] with smaller

2.2.4. Energy Gap Suppression

In the presence of impurities, the single-particle spectrum of the system is not
a well-defined quantity, because p is a bad quantum number. So we will try to
determine the value of a gap on the base of reasonings that are slightly different
from those used in Sect. 1.3. To solve this problem, we return to the expression for
Green’s function of a “pure” superconductor at temperature We present Eq.
(1.130) in the form indicates the principal value)

*The exact calculations2 lead to the fo l lowing expression for the cri t ical temperature
where is the logarithmic derivative of the

is the critical temperature in the absence of impurities.
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The imaginary part of Green’s function in (2.69) is determined by the function.
The first excited state in the system may be found as the minimal positive
value of _: at which Green’s function acquires an imaginary part. This conclusion,
as was shown by Migdal and  remains valid in the general case.

Solving the system (2.36) and (2.37) with the help of (2.46) and (2.47), one
can find for (p) and (p) (in a real-order parameter gauge, the expres-
sions:

Here

The equation for the function follows from Eq. (2.71):

At and for sufficiently small values of both functions u and  are real.
The right-hand side of Eq. (2.72) has the maximum at

at the corresponding value

For larger ε, the solutions u arecomplex and the quantity G acquires an imaginary
part. So the quantity (2.74) determines the value of the gap in superconductors
with paramagnetic impurities.

2.2.5. Gapless Superconductivity

As follows from Eq. (2.74), the value of the gap vanishes at

which is possible for .   This means that for superconductors with paramagnetic
impurities, the order parameter does not coincide with the value of the gap.
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Let us now determine, at what concentration of impurities vanishes. The
self-consistency equation for the order parameter may be written in the form

Integrating (2.76) with the help of (2.71) to (2.73) and (1.129) (for details see Ref.
6), we arrive at the expression is the gap in a “pure” superconductor):

Setting in Eq. (2.77), we have

It follows from Eq. (2.78) that the critical concentration of impurities at which the
superconducting order parameter vanishes is determined by the relation

At the same time, as follows from Eqs. (2.77) and (2.75), the gap vanishes when

Because one can conclude that superconducting correlations
remain in the superconductor while the gap has disappeared. Hence, there is a
certain interval of paramagnetic impurity concentration in which gapless supercon-
ductivity can be realized. In these gapless superconductors, the quantum correla-
tions in the self-consistent pair field are strong enough to maintain the superfluid
nature of the condensate motion (or, in other words, to maintain discussed above
“off-diagonal long-range order”) despite the absence of the gap in single-electron
excitation spectrum.

If the impurity concentration is increased, the gap singularity in a single-particle
density of states smears out simultaneously with the vanishing of the gap, as may be
seen from Eqs. (2.70) and (2.72) (detailed calculations may be found in Ref. 13 and
the corresponding figures in Ref. 14). This property permits us to derive the
nonstationary equations of the Ginzburg-Landau type for alloys with magnetic
impurities.
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2.3. NONSTATIONARY GINZBURG–LANDAU EQUATIONS

As in a stationary case (see Sect. 1.4), the self-consistency equation

may serve as a starting point for derivation of a nonstationary equation for the order
parameter The idea of calculations in a nonstationary situation is to present

as a series expansion in powers of  and  and in powers of electromagnetic
field potentials, considering all these Bose fields as classical. As a result, an equation
will follow from (2.81):

where the coefficients represent the response of the system to the action of the
classical field

2.3.1. Causality Principle and Nonlinear Problems

In nonequilibrium conditions, an equation of the kind (2.81) may be obtained
in a real-time representation using the Keldysh technique.15 The same result may
be obtained by the Gor’kov–Eliashberg technique,16 which is a generalization of
the usual procedure of analytical continuation to the nonlinear case. The underlying
principle at the base of this technique asserts that the response of system (2.82) in
a real-time representation must contain the values of the field in the moments
preceding the current time. This demand can be satisfied if the coefficients

which are determined in the Matsubara technique on the
imaginary axis, are analytically continued onto the upper half-plane for all the
frequencies One can verify this assertion in a manner analogous to
the case of linear response (e.g., in the case of derivation of the Kramers–Krönig
relations). In the next section we trace the calculations of Gor’kov and Eliashberg.16

2.3.2. Equations on an Imaginary Axis

Allowing for the time dependence of the fields, the Gor’kov equations can be
represented in the form
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where the function is defined by Eq. (2.81). In expression (2.83) the values
of and are given by the relations:

Equation (2.83) and the expression for the current and the density of particles

c

are basic for further calculations.* Using Eq. (2.83), one can establish the diagram
expansions for the functions and; :

or in analytic form

[the summation in Eqs. (2.89) and (2.90) includes all the intermediate energies and
integration over all the intermediate momenta]. Note that to derive the nonstationary
Ginzburg–Landau equations (as in the static case), one may keep only the first few
terms of the decomposition (2.88), with subsequent substitution into (2.81) and

*Note the difference in signs between (2.83) and its static analog (1.142) and (1.143). In both cases we
have retained the notation of the original  to maintain the connection between these equations
and many other original investigations. The difference in the propagators’ signs is unimportant here.
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(2.85). However, it is expedient to consider the problem from a more general point
of view, retaining all terms in Eqs. (2.89) and (2.90).

2.3.3. Analytical Continuation Procedure

In expressions (2.81), (2.85), and (2.86), it is necessary to carry out analytical
continuation over ω from the upper half-plane onto the real axis. Note, that the
analytical structure of diagrams is insensitive to the directions of arrows and to the
presence of vertices and Let us consider a general term of the series:

where the summation is also assumed over the internal frequencies, subject to the
condition The procedure of analytical continuation of Eq. (2.89) over
all onto the real axis should not depend on the order in which the continuation
over each of the frequencies proceeds. Then the problem of analytical continuation
of the whole structure will be solved.

Let us transform the sum in (2.89) into the contour integral

where the contour C encloses all the poles of the hyperbolic tangent and does not
contain the poles of   the -functions (Fig. 2.1). Consider a diagram of the  power
of the field and make the cuts between the singularities of the integrand in (2.92)
produced by the functions and so on. Transform the integration contour
C into a new one, C', which goes along the banks of the cut (Fig. 2.1) and along the
arcs of large circles. The contributions from the latter disappear [owing to the factor

in all the diagrams except the zero-order one for the -function (which
does not depend explicitly on the time variable). On horizontal parts of the
integration we have where e is a real variable and is a fixed imaginary
frequency. Shifting the integration variable and taking into account that
tanh we can write
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where the functions and ' have the well-known analytical properties:

Such representation allows us to determine analytical properties for all factors to
the left and to the right of and if all the frequencies       belong to the same
half-plane. In particular, if all the frequencies belong to the upper half-plane
(which corresponds to the general causality principle mentioned earlier), then all
the functions in (2.93) to the left of the factor would be retarded, and
those to the right would be advanced. Indicating these functions by the letters R and
A, we can now move to the real frequencies

2.3.4. Anomalous Propagators and Dyson Equations

We have formulated the procedure of analytical continuation, which is inde-
pendent of the ordering in The final result may be written after once again
shifting the integration variable in the integrands:
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This expression may be rewritten as

where

The regular functions ' in (2.95) and (2.97) are determined from diagram
expansions in which all the functions are retarded (or advanced). On the contrary,
the analytic structure of the “anomalous” function is much more complicated.
Taking into account the directions of arrows in the diagrams, one can find for
the graphical expression

where all the field vertices are multiplied by t anh
. The retarded propagator corresponds to the line lying to the left

of the vertex, and the advanced propagator corresponds to the line lying to the
right. In analytic form we have
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where

The expressions for nondiagonal Green’s functions may be found analogously. For
we obtain

The Dyson equations may also be found for anomalous functions. A graphic
representation is useful for this purpose. Let us present (2.98) in the form

Here the upper lines correspond to the retarded propagator and the lower ones to
the advanced propaga tors ; the r i gh t ver t ices are m u l t i p l i e d by

where are the frequencies corresponding to
adjacent lines. Specifying these diagrams, say, in the following way

and detaching the upper free line (shown by a dashed line), one
obtains the following Dyson-type equation
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Using the Dyson equations (which the functions and obey) and
definitions like Eq. (2.97), one can exclude from consideration the anomalous
functions obtaining the closed equation for the G-function:

or in a concise notation

This equation coincides in form with the equations for retarded and advanced
propagators. Being homogeneous, these equations to some extent are deficient
without certain additional conditions. We will consider one called a normalization
condition, in Chap. 3.

2.3.5. Regular Terms

Returning now to the problem of derivation of the Ginzburg–Landau-type
dynamic equations, we substitute the expression

into the self-consistency equation, which now acquires the form

Because the functions and are analytical in the upper and lower half-
planes, respectively, one can move again to the summation over in
the first two (“regular”) terms. As a result we obtain

is real now!). Further manipulations of the regular terms in (2.109) are similar
to those considered in Sect. 1.4 for the static case. As follows from that discussion,
it is enough to consider only the diagrams
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Unlike the static case, the field vertices in Eq. (2.110) are time dependent (e.g.,
so the diagrams explicitly depend on time. We will discuss the most simple and
important case of alloys with paramagnetic impurities when the impurity concentration
is sufficiently high  ) that In this case the time dependence
may be kept only in the first diagram on the right-hand side of Eq. (2.110), inserting
in the others and returning to the static case. Simultaneously, only the first
(linear) term may be kept in this selected diagram in its expansion over
Substituting these expressions into (2.109), one finds for the regular contribution
from the first diagram (2.110):

where the -functions are defined according to Eq. (1.169). The series over n arising
in (2.111) may be summed, yielding

As is clear from (2.112), the expansion of the exponent would occur in powers of
the factor In addition to the terms obtained in Sect. 1.4, we will obtain the
term

which is integrable in analytic form.
It should be noted that the scalar potential escapes from the regular terms’

contributions, as one may verify by calculating the second and third diagrams in
(2.110). (We will not present here these straightforward but sufficiently tedious
calculations.) Note also that the imaginary unit i in (2.113) causes (after the Fourier
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transformation) the dynamic equation to be of the diffusion type (thus the difficulty
described at the end of Chap. 1 is avoided). In writing down this equation, the
presence of impurities makes it necessary to take into account a renormalization of
regular terms. This procedure also renormalizes the coefficients* of the static
equation (1.182). As a result, the equation for the order parameter acquires the form

2.3.6. Nonlocal Kernels

We must account now for the contribution to Eq. (2.114) from the anomalous
part ' in (2.115). In analogy to (2.102), the equation for can be written
in a form:

The expression

corresponds to the last diagram in (2.116). For pure superconductors at
one may write in (2.117):

>

and consequently:

*We omit here the details of the calculations, and trace only the principal issues of the derivation of
time-dependent Ginzburg–Landau equations (one can find some details in Refs. 2 and 16). The more
general case is considered in detail in Chap. 7.
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Further transformation of (2.119) seems to be impossible, because the functions
oscillate in time with frequency
In the presence of paramagnetic impurities, the situation differs qualitatively.

In this case Green’s functions decay exponentially for times The kernels
of the integral equations for become local in time and that makes it possible to
use a technique analogous to the static case. Without further calculations we note
only that at a sufficiently high concentration of paramagnetic impurities, the result
has the form . Then the equation for may be written as*

The expression for the current in the gapless superconductors has a form
characteristic for a two-fluid model:

where is the electric field strength and is the super-
fluid’s momentum, which is related to the superfluid velocity (1.54). In the case of
superconductors with a finite gap, some additional terms arise in the current that
correspond to the interference of normal and superfluid motions (see Chap. 7).

Thus the dynamic generalization of the Ginzburg–Landau equation for the
order parameter has the form of a diffusion-type equation. Clearly, there is an
essential difference between (2.120) and the diffusion equation (or the equation for
the heat transfer), because in the case of superconductivity Eq. (2.120) is connected
with (2.121) and with the Maxwell equations that comprise a strongly nonlinear set
of equations. The solutions of these equations (see in particular Chap. 9) can be
periodic in space and time, revealing the remarkable properties of nonequilibrium
superconductors.
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3

Nonequilibrium General Equations

Under the action of alternating external fields, the problem of energy relaxation
becomes important since there is energy transfer from the field to the electrons. In
the dynamic scheme, developed in Chap. 2, explicit relaxation channels were not
involved. The relaxation of the order parameter, which followed from the final
expressions, was totally due to the self-consistent nature of the order parameter
itself, since the gaplessness decouples the order parameter from single-particle
excitations. Meanwhile, the majority of superconductors have finite gaps, and the
interaction of Cooper pairs with the electrons and phonons plays an important role
in the action of external fields, determining both the behavior of the order parameter
and nonequilibrium effects in the electron–phonon system.

3.1. MIGDAL–ELIASHBERG PHONON MODEL

3.1.1. Fröhlich's Hamiltonian

The interaction of electrons with phonons in metals will be considered in this
book (except in Chap. 12) within the isotropic model.1 The oscillations of the ionic
lattice produce lattice polarization. The interaction energy of electrons with the
lattice is

where n(r) is the density of electrons at the point r, P(r) is the polarization vector,
and is the interaction having a Coulomb dependence at small distances
and vanishing, owing to screening effects, at distances exceeding the lattice parame-
ters of a crystalline cell. Denoting these by a single distance parameter (a), the
function may be approximated as .As to the polari-
zation vector, it is proportional to the displacement q(r) of crystalline ions*

*Because the interaction energy is proportional to one may conclude that (in the isotropic
model!) the electrons interact with longitudinal phonons only.

67
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where . is the number of ions in a unit volume and Ze is the ionic charge. We
expand the displacement vector q(r,t) in plane waves

and introduce the operators connected with by the relations

where is the mass density of the medium, and is the phonon dispersion law.
Taking into account that is the momentum density of the medium, and

also the quantum-mechanical commutation rule

one can verify that the quantities and (3.4) are Bose operators. Because the
kinetic energy operator is

and the mean kinetic energy of oscillations is equal to the mean potential energy,
we have

where The operator of a free phonon field is defined by the relation

Note that is a real quantity [in the Debye model the summation in (3.8) is restricted
by the condition . The Hamiltonian of the electron–phonon interaction may
then be written as
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where the interaction constant g is defined by

and is the sound velocity. The Hamiltonian (3.9) in the theory of metals
is usually called the Fröhlich Hamiltonian.

3.1.2. Migdal Diagram Expansion

The interaction of electrons with phonons in normal metals was considered in
a diagram approach by Migdal,2 who used the Fröhlich Hamiltonian (3.9). In this
approach, the Dyson equation for Green’s function for electrons has the form

As shown in Ref. 2, even in the case of strong electron-phonon interaction, the
vertex remains “bare”*

where M is the ionic mass in the crystalline lattice. If one starts from the Green
function for noninteracting electrons and uses for the free phonon field Green’s
function

where is defined by Eq. (3.8), then based on (3.11) and a corresponding
equation for the D-function

*This point was critically reconsidered by Alexandrov and Ranninger.3 They have developed an
approach (the bipolaron theory of superconductivity), based on violation of Eq. (3.12), which was
accepted and developed further by other investigators. We will not consider this possibility (see
References in Alexandrov and Mott4).
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one obtains the renormalized expressions for electron and phonon spectra and also
for the damping of electron and phonon excitations. These renormalizations be-
come important when the dimensionless interaction parameter

is of the order of unity. The experiment shows that renormalizations indeed occur
in an electron system, whereas they are almost unobservable in a phonon system
(at . Some doubts were expressed in this connection concerning the
adequacy of the Fröhlich Hamiltonian for this problem. As was shown further,5 the
renormalization of the phonon spectrum in the above calculation scheme would
correspond to the double counting of interactions between electrons and phonons.
Unlike the electron system, the phonons in the “adiabatic approximation” are well

defined. The same is valid for the electron system if the parameter (3.15) is small.
We will consider further only metals with a weak electron–phonon interaction,

assuming that

and neglecting the renormalization effects. Applicability of the results to metals
with strong electron–phonon coupling should be analyzed separately. The effects
of renormalization are not very essential for the kinetics and can be taken into
account in the initial equilibrium state.

3.1.3. Eliashberg Equations in Weak-Coupling Limit

All the conclusions concerning the vertex renormalization  remain valid in
the superconducting state, because only the excitations with large energies are
essential for renormalization processes. The superconducting scale of energies is
much less than these high energies. In the bare vertex approximation we have
the following system for electrons in superconductors

For the phonon Green function in (3.17) and (3.18), the equation may
also be written:



SECTION 3.1. MIGDAL–ELIASHBERG PHONON MODEL 71

Equations (3.17) to (3.19) were first formulated and solved by Eliashberg.6

3.1.4. Comparison with the BCS–Gor'kov Model

One may note a similarity between Eqs. (3.17) and (3.18) and (1.122), (1.123),
or (1.147) and (1.148), which can be made more transparent if Eqs. (3.17) and (3.18)
are written in the momentum representation

where

The interaction matrix element is incorporated into the definition of the
hence the bare phonon Green function has the form

The above-mentioned similarity becomes more complete if one neglects the renor-
malization of the electron spectrum, letting

After that, the self-consistency equation (1.144) acquires the form

Thus it is clear that all the equilibrium results of the BCSr–Gor’kov theory are
contained in the phonon model of superconductors. At the same time, the latter
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model is much richer and may serve as a basis for the study of electron and phonon
kinetics in real superconductors. Besides, in the Migdal–Eliashberg model, the
critical parameters of a superconductor are expressed in terms of the parameters of
a normal metal. In particular, the critical temperature in the weak coupling phonon
model (3.17) and (3.18) is given by the relation, analogous to (1.157), where is
replaced by the parameter (3.15). The same replacement occurs in the expression
(1.135) for the gap at zero temperature, and in addition is replaced by

3.2. EQUATIONS FOR NONEQUILIBRIUM PROPAGATORS

3.2.1. Phonon Heat-Bath: Applicability

We continue a theoretical study of nonequilibrium superconductivity with the
simplest case, where the phonons play the role of a heat bath for the electron system.
In what cases is this phonon heat-bath model applicable? We examine this question
in the particular case of a thin film with thickness d. Let us assume
Because the wavelength of the phonon is where u is the velocity of sound,
then at so that the “geometric-acoustical” approximation
could be used to describe the phonon’s propagation. (Note that this approximation
becomes invalid at ) If the “acoustical densities” of the film and of
its environment coincide, then phonons in the superconductor lose their energy at
each collision with the specimen’s (Evidently if the phonons leave
the film without reflection at the boundary.) However, as was shown in Ref. 2, the
lifetime of thermal phonons, owing to their interaction with the conduction elec-
trons in the metal, is and consequently the scattering length of the
phonon is , which has an order of . Thus the nonequilibrium
phonons emitted during the relaxation processes by electrons have enough time to
leave the film without producing an influence on the electron system.

It must be stressed that the phonon heat-bath model can be used in various
situations. In each case an analysis of its applicability is required. For example, at

and for weak external pumping, the number of excess electron excitations
is small and the electrons shift the phonons from equilibrium only slightly, even in
thick films. In the case of a massive superconductor placed in an external electro-
magnetic field, the picture is spatially inhomogeneous. There diffusion plays the
main role in the relaxation processes in single-electron systems. The phonons
remain in equilibrium if their scattering length exceeds the diffusion length of
electron excitations.

*The expressions for  and ∆(0), as well as their ratio, change significantly in the strong coupling limit
(see, e.g., Ref. 7).
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3.2.2. Expansion Over External Field Powers

We move now to a formal description of superconductor electrodynamics on
the basis of Eliashberg equations in the framework of the phonon heat-bath model.
In a static case the initial equations in the spatial representation have
the form

and the self-energy parts are defined by the relations

where and the matrix product is understood as a convolution
over the internal variables, e.g.:

The phonon propagator in Eq. (3.27) is taken as an equilibrium one (3.23):

3.2.2.1. Analytical Continuation: Causal Propagators

Using the technique of analytical continuation introduced in Sect. 2.3, we will
first obtain the expressions for the functions analytical in the upper (and,
correspondingly, in the lower) half-plane. For this purpose we represent (3.27)
in the form

where the contour C encloses the poles of a hyperbolic cotangent and does not
include the singularities of the function in the z-plane. Making cuts in this
plane along the lines Im and Im  one can transform the integration
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contour C into another one, going along the arcs of large circles and along the banks
of these cuts (Fig. 2.1). Taking into account the fact that the integrals along the arcs
of large circles vanish when the radii tend to infinity, we obtain, using Fig. 2.1, the
result

The hyperbolic tangent appears in (3.31) owing to the shift of the integration
variable by the imaginary frequency Because the analytical properties of propa-
gators entering (3.31) are now definite, the variable may be considered as real.

3.2.3. Phonon Heat Bath: Consequences

Let us study the phonon propagators in detail. As follows from Eq. (3.19),

where is the polarization operator. We can rewrite (3.32) in the form

The real part of the polarization operator Re is connected with the renormali-
zation of the sound velocity. It is governed by the total mass of electrons; the range
of temperature smearing of the Fermi step gives the correction The same
smallness, have corrections connected with the superconducting transi-
tion. This is also true for the renormalization caused by an electromagnetic field.
As noted in Sect. 3.1, these renormalizations may be assumed as being already
made. However, the imaginary part is wholly defined by the vicinity of the
Fermi surface and thus is very sensitive to the distribution of electron excitations.
To realize the assumption concerning the phonon equilibrium, it would be necessary
in deriving the dynamic equations to take into consideration in an explicit form a
sink for the relaxation of phonons that is stronger than the source producing the
deviation of phonons from equilibrium, which is caused by processes in the electron
system. However, one can use the following artificial method: maintain the equi-
librium distribution of phonons by keeping the initial presentation of discrete
phonon frequencies and completely neglecting collisions of phonons with electrons
in the equations for the phonon propagator.
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Such an approach was proposed by and we outline it here. Note
that this approach not only simplifies the calculations, but also opens additional
possibilities to be used further (in Chap. 6 in particular). We will generalize the
discussion, assuming the external field in Eq. (3.26) and in Green’s functions there
to depend on Consequently, on the right side of Eq. (3.26) the
additional factor appears and Green’s functions will acquire dependence
on and .

The modified system (3.26) can be expanded in a series over the external field.
The diagrams consist of transit lines with different directions of arrows, containing
field vertices and phonon insertions . As in Sect. 2.3, the
directions of the arrows are not important for the procedure of analytical continu-
ation.

Consider a diagram of power in the external field for Green’s function for
electrons. Two types of diagrams may arise, depending on whether the diagram
contains the phonon insertion (Fig. 3.1). Any diagram will depend on the frequen-
cies of its extreme lines and and of the field vertices

The analytical structure of as a function of the variable at fixed should
be found. Owing to the causality principle considered in Chap. 2, the necessary
analytical continuation must be made over all from the upper half-plane, so in
all the expressions of the type  we will make  ωl > 0.  First we will consider
the diagrams without (as in Fig. 3. la). The analytical properties of such
diagrams are described by a simple composition:

and their singularities (the poles) lie on the lines Im = 0, Im Im
Im which are parallel to the abscissa. We will ascertain that

these lines are singular for the arbitrary type of diagram For this purpose it is
sufficient to verify that the function as the function of its external argument

has the same analytical structure as if the same set of field vertices is
included. In other words, the singularities of  are determined by the singularities
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of its internal electron Green’s function. To see this, we again transform the sum
over frequencies in Eq. (3.27) to the contour integral over the singularities of the
hyperbolic tangent. Shifting the integration contour along the banks of the cuts, one
obtains (in the same manner as in Sect. 2.3) the expression:

In Eq. (3.35) is the jump of the function at the bank  l. Because in (3.35)
z is real, one can see that  contains in the same combinations with  as

and this proves the above statement concerning the analytic structure of an
arbitrary-type diagram.

3.2.4. Analytical Continuation: Anomalous Functions

Now we can carry out the analytical continuation of Eq. (3.35). Continuing
analytically onto the real axis from the upper bank of the uppermost cut, we obtain
the function and continuing from the lower bank of the lowermost cut,
we get (In these cases all the functions have definite signs of imaginary
parts, hence the subsequent continuation over each does not depend on the
value of Thus, making Im shifting the integration
variable to restore the initial notation of the arguments, summing over N and
denoting

where , we arrive at

The static limit of (3.37) [at where
tanh coincides with Eq. (3.31). Because all the self-energy functions and
propagators composing are retarded (or advanced), the equation that deter-
mines has the form (see also Sect. 2.3):
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where, as earlier,

As for the functions defined by the relation (3.36), one can obtain the
equation for them in a manner used earlier in the Gor’kov model. For this purpose
the terms corresponding to the upper bank of the uppermost cut and the lower bank
of the lowermost cut must be separated:

For the diagrams are analogous to Eq. (2.98), although the vertices and
 are replaced now by the functions  and  and the field vertices

have the additional terms or Because the functions contain the factors
it is convenient to introduce a function

In doing so, will cor-
respond to the vertices

and

Taking into account that the products, such as change the sign of the
diagram, one can write:

where the notation



is used. In the same manner one has

The elements of are found from the definition of

from which, in analogy with Eq. (3.40),

3.2.5. Complete Set of Equations

We will find now the explicit form of the dependence between  and G. We
will use representation (3.35) for and calculate directly the sum (3.46). Taking
into account that the phonon propagator has poles at Im writing the
expression for and shift ing the integration variable (subject to
tanh multiplying the result by tanh  and tak-
ing into account the identity

coth

and summing first over i and then over all the orders of the perturbation theory, we
find the expression

78 CHAPTER 3. NONEQUILIBRIUM GENERAL EQUATIONS
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To complete the set of equations, it is necessary to establish the equation for
the defined by the relation (3.36). The method to be used here was
described in Chap. 2. Starting from the diagram expansion for the and
separating there the line corresponding to the bare propagator of electrons, we find
from the 11-element of the

Using the definitions (3.46) and (3.40), and also Eqs. (3.38) for the causal Green’s
functions, one can obtain on the basis of (3.50) the equation

or in the integral form:

Thus the closed system of Eqs. (3.37), (3.38), (3.49), and (3.51) is derived for the
functions and which describes the behavior of nonequilibrium
superconductors in the phonon heat-bath model. The temperature enters these
equations explicitly only in equations for and as the characteristics of the
phonon heat bath.

3.2.6. Keldysh Technique Approach

Note that one can obtain the same results by a completely different method
developed by Keldysh10 to describe nonequilibrium states. In that case the electron
Green’s function is defined in the following way (we use here the notations of
Volkov and Kogan11):

Here and and are the Nambu indices of the field operators
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The Keldysh indices i,k are the signs minus or plus, according to the position of the
time coordinate of the on each of two time axes The
time on the second axis (the index ) is greater than any time on the first axis (the
index–). For functions , and , which are defined as in the case of a normal
metal (see, e.g., Ref. 12),

one can obtain the equations coinciding with (3.51) and (3.38). This coincidence
of the results obtained by the Gor’kov–Eliashberg and the Keldysh techniques will
be demonstrated further on, when the phonon kinetics in superconductors are
considered.

3.3. QUASI-CLASSICAL APPROXIMATION

The equations obtained in the preceding section may be simplified further
when the phenomena occurring in superconductors involve electrons localized in
the momentum space near the vicinity of the Fermi surface. (In other words, when
microscopic processes of interest may be considered as macroscopic on the atomic
scales of space and time.) Such a situation is typical for most of the phenomena
occurring in nonequilibrium superconductors. In this case one can use a generali-
zation of the method introduced by Eilenberger13 for equilibrium superconductors.

3.3.1. Eilenberger Propagators

The essence of this approach may be elucidated in terms of the electron wave
function of the superconductor. The wave function of an electron with a momentum
in the vicinity of the Fermi surface oscillates rapidly in space and time. Under the
influence of external quasi-classical perturbation, the wave function’s amplitude
becomes weakly modulated. The information of interest is contained in the “envel-
oping curve” of the modulated signal. This allows us to ignore the “carrying”
frequency and to use only the “enveloping curve.”* In the Green’s functions
technique, this procedure is equivalent to integration over the values of or

Consider one of the equations for the self-energy functions, for example, for
(3.37). In the momentum representation we have

*An analogous procedure is applied in passing from the Bogolyubov–De Gennes equations to the
Andreev equations (see Sect. 1.1).



SECTION 3.3. QUASI-CLASSICAL APPROXIMATION 81

Here If the external momentum in (3.56) is close to the
Fermi surface: then the main contribution to integral (3.56)
is provided by the region (the integration over in the regions remote
from the Fermi surface renormalizes the chemical potential, which is insensitive to
details of the electron distribution in the vicinity of The D-function now depends
only on the angle between Using the chain
of equalities

it is easy to establish that is expressed by Green’s functions, integrated over the
energy variable:

Similar conclusions follow for other self-energy functions, so that one has:

3.3.2. Eliashberg Kinetic Equations

Now let us transform Eq. (3.51). Ignoring the quadratic terms in A, and moving
to the quantities                , one finds by multiplying Eq. (3.52) by from the
left and by from the right:
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where Subtracting from Eq. (3.62) Eq. (3.61) and integrating the result
over we find the equation for the function (3.58):

The set of arguments of the functions entering this equation is analogous to
that of electron distribution function. For this reason Eq. (3.63) may be called the
generalized kinetic equation. The quantity

is the collision integral (at present between electrons and phonons). The equation
for the function gR(A ) [which may be obtained from Eq.(3.38) by the procedure used
above] is similar to Eq. (3.63), although the quantity must be replaced by

In the equilibrium case, when the field A is absent:

i.e., , is proportional to the density of single-particle excitation states (for
this reason are called spectral functions).

As for the functions from Eq. (3.58) in the equilibrium case, the relation
follows

where is the distribution function of the electronlike and holelike
Fermi excitations. In the nonequilibrium case, as we will see, in general

does not necessarily coincide with However, the correct generalization of Eq.
(3.67) cannot be achieved by the trivial replacement as
might be thought. Such a replacement would retain as an odd function in
whereas in the general case can have an even in the part also. The necessary
generalization can be obtained with the help of the normalization condition for
g-functions, as was shown for the equilibrium case by Eilenberger13 and for the
nonequilibrium case by Larkin and Ovchinnikov.14
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3.3.3. Normalization Condition

In a real-time representation (see Eq. 3.53), this condition has the form*

where

and the symbol * is the convolution in time according to

The normalization condition (3.68) is satisfied identically by the following
substitution

where is an arbitrary matrix function of which may be represented as the
sum of the Pauli matrices, the diagonal matrices only participating in this decom-
position:

The functions and are linked with the distribution function of electron-hole
excitations Before showing this relation, we consider some general properties
of  and establish their gauge transformation laws.

3.3.4. Gauge Transformation

The basic gauge transformation law for a field operator under the
transformation of scalar potential

(where is an arbitrary function). From (3.73) and (3.53) it follows that the
propagator (as well as the spectral functions and is transformed according
to

*To avoid interrupting the presentation, we will prove this statement in Chap. 7. It is worth noting that
in the theory of superconductivity, the normalization condition is proved only at the “physical level”
of rigor.
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In the quasi-classical limit, when the propagators are fast-varying functions of
a difference variable and slow-varying functions of a sum
the expression (3.70) may be presented in the form

In Eq. (3.75) the following notations are used: and the
frequency corresponds to the Fermi transform over the difference argument

. From Eqs. (3.74) and (3.75) a transformation law follows for diagonal
components of propagators*:

Hereafter the terms proportional to are omitted owing to the assumed quasi-clas-
sical character of

At the same time, one can make a gauge transformation of the function defined
by expression (3.71). Taking into account that the functions and transform in
analogy to (3.74), one can obtain the coincidence of the corresponding result with
(3.76). This provides the transformation laws for the functions and

The functions and in (3.77) are defined by the relations

If we have in accordance with (3.74), (3.71), and (3.78),

*At this stage it becomes clear that expression (3.74) is an equivalent form of the usual relation for
Green’s function: in the gauge transformation. Expanding the expo-
nent over the “fast” time and finding the Fourier transforms over the difference variable, one
can obtain expression (3.76) for the appropriate matrix component.
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Note that, owing to Eqs. (3.77) and (3.79), the functions and (in analogy with
and are functions of a general type. They have definite parity only in the

absence of external fields.

3.3.5. Electron and Hole Distribution Functions

In the absence of external fields, as may be seen from the definition of these
functions and Eq. (3.63), and are odd functions of and

are even functions of Introducing an arbitrary function (here
we can write (making

Because the function should be determined further from the kinetic equations,
there is still an arbitrariness in the choice of coefficients and It is convenient
to choose them in the form

where

Then the expressions for take the form

where
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The constant in expression (3.68) may be chosen to be Without a loss of
generality, this ensures a limiting transition to expressions (3.66) and (3.67) in the
absence of imbalance, and simultaneously assigns to the function  a transparent
meaning for the energy distribution function in “pure” superconductors (this will
be shown later). At the same time, it might be noted that the description of a
superconductor in terms of integrated over the is also valid
in cases when the concept of the energy spectrum turns deficient and becomes a
bad quantum number (e.g., in the case of superconductors containing very many
impurities).

3.3.6. Kinetic Equations: Keldysh Option

As shown by Keldysh,10 in a nonequilibrium system, the Green’s function
technique allows us to develop kinetic formulas without integrating over energies.
In such cases, the energy distribution function of excitations is connected to Green’s
functions, integrated over the frequency variable. If the energy spectrum is well
defined, these two methods are usually adequate.*

For the causal Green’s function using the definition (3.53) and solving at
the Dyson equations by analogy to the normal metal case (cf. Ref. 12), we

have:

where the factors are defined by the relation (1.23), –by (1.132),
and corresponds to the distribution function of electronlike  and holelike

excitations.
Following Aronov and Gurevich,15 one can introduce a spectral representation

for the causal function

*We have noted the advantage of energy-integrated functions for “dirty” superconductors. At the same

particle cascading in superconductors. In such situations usual (Keldysh’s) formulation of the kinetic
scheme is preferable.

time, this technique fails when considering processes far from the Fermi surface, e.g., a high-energy
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Comparing Eqs. (3.89) and (3.90), one can find

In the same manner

Using these relations one can obtain the canonical forms of the collision
integrals in superconductors15 in a manner completely analogous to the case of a
normal metal.12 We will obtain the same kind of collision integrals (in rather
than in representation) in the next chapter by employing the propagators
integrated over energies. When both representations are applicable, these collision
integrals are completely adequate.

3.3.7. Expressions for Charge and Current

In general, the technique of the energy-integrated Green’s functions is more
convenient for those problems where the kinetic processes occur in the vicinity of
the Fermi surface. In these cases it provides a powerful tool for the study of both
pure and dirty superconductors.

On the contrary, if the main processes occur in the regions remote from the
Fermi surface, a straightforward application of this technique may lead to erroneous
results. This difficulty may be overcome by properly accounting for the contribution
that results from the equilibrium in the Green’s function formula. Consider, for
example, an expression for the electron charge in a superconductor. In the repre-
sentation of the discrete imaginary frequencies, one can write an expression (2.86)
for the number of electrons in superconductors as

We will separate in this expression the contribution supplied by a zero-order Green’s
function   includes the quasi-classi-
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cal scalar potential in the system. The deviation in the number of particles induced
by the potential (in the first order in has the form

where is the equilibrium electron density. Thus the electron density in non-
equilibrium superconductors is

where [the prime in (3.98) may be omitted if the
integration over is assumed the principal value sense in symmetrical limits]. From
(3.98) the relation follows for a charge in nonequilibrium conditions:

The situation with expression (2.87) for the electric current is analogous. The
correct accounting of the contribution supplied by the regions remote from the
Fermi surface results in the disappearance of the contribution from the second term
in Eq. (2.87), which must be absent if the technique9 is used.
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4

Electron and Phonon Collision
Integrals

In studies of nonequilibrium phenomena, collision integrals play a unique role. It
is well known that they describe the relaxation of excitations toward equilibrium.
Less trivial is that they may also be used to describe nonequilibrium excitation
sources.

4. 1. COLLISION INTEGRAL DERIVATION

4.1.1. Spatially Homogeneous States

The generalized kinetic equations for integrated Green’s functions pro-
vide initial relations for constructing the canonical forms of collision integrals. As
was shown in the preceding chapter, the matrix function obeys Eq. (3.63),
which in the spatially homogeneous case can be written as

where

91



92 CHAPTER 4. BASIC EQUILIBRIUM PROPERTIES

The retarded (advanced) functions in Eqs. (4.1) to (4.3) are determined from the
diagram expansion in which all the propagators and self-energies are retarded
(advanced) (Sect.. 3.2). For these functions equations of type (4.1) follow, where

The self-energy matrices in (4.2) are additive func-
tions*:

They correspond to the interaction of electrons with impurities, phonons, each
other, etc. Some of the self-energy parts are examined in detail in subsequent
sections.

4.1.2. Separation of Real and Virtual Processes

Separating in Eq. (4.2) the terms corresponding to the electron–phonon inter-
action, we will detach the virtual processes. Omitting the renormalization terms

and introducing a superconducting order parameter2

one finds for the 11-component of (4.2) the following expression

where the quantities

as well as represent the real interactions between electrons and phonons,
which are essential for the kinetics, and no longer contains explicitly.

4.1.3. Nondiagonal Channel

The dissipation function in Eq. (4.7) (as well as and has a
characteristic magnitude on the order of the energy damping of electron excitations.
In normal metals in a superconducting state  is even smaller, since a
significant part of the electron–phonon interaction (the virtual processes) was
already taken into account as being responsible for the superconducting transition.
The is less by orders of magnitude than the modulus of the order

*In principle, the interference between different physical processes described by Eq. (4.5) is possible.
Such interference has been considered, e.g., by Reizer and Sergeev1.



SECTION 4.1. COLLISION INTEGRAL DERIVATION 93

parameter almost at all temperatures. Hence, before moving to the kinetic
equation in (4.7), we must account exactly for the first expression in braces, using
equations for the nondiagonal components of following from (4.1) (the
nondiagonal channel, cf. Ref. 3). From these equations it follows that

As in the derivation of relation (4.7), we have separated in the braces in (4.9)
the virtual processes, which explicitly represent the electron–phonon interaction,
while contains [in analogy to in (4.7)] all other processes. For the last
quantity we have from (4.1):

(Here all external and internal arguments are omitted; in this notation the order of
the co-factors is important.)

4.1.4. Impurities

Here we consider thin-film superconductors with a thickness on the order of
the superconducting correlation length. Such specimens always contain a number
of electron elastic scattering centers (such as nonmagnetic impurities and lattice
defects). If the number of these centers is sufficiently large, the superconducting
films would be “dirty” and the mean-free-path of electrons would be shorter than
the other lengths, which characterizes their motion in superconductors. This cir-
cumstance allows one to make significant simplifications.* In particular, one may
ignore anisotropy effects, the nonlocality of electrodynamics, the reflection of
electrons from the boundaries, etc.

In the presence of impurities, the self-energy matrix in (4.5) has the form (see
Sect. 2.1)

*The case of “pure” superconductors should be studied separately. For example, in Sects. 5.4 and 12.1,
some peculiarities will be discussed that arise exclusively in pure superconductors.
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If paramagnetic impurities are also present, then (as follows from the analysis in
Sect. 2.1) different factors and correspond to the functions
respectively.

Having in mind the case of nonmagnetic impurities, in Eq. (4.1) we perform
averaging over the angular variable, taking into account Eqs. (4.7), (4.9), and (4.10).
The self-energy parts, which correspond to the interaction of electrons with impu-
rities, are eliminated owing to the isotropy of this interaction.

4.1.5. Effective Collision Integral

Before the derivation of the collision integrals in terms of the distribution
function of electron and hole excitations, we examine the relation
between and where

The required relation was established in Sect. 3.2. Using Eqs. (3.64) to (3.70), one
finds

where the dot designates the time derivative. Thus, the right side of Eq. (4.2) is
expressed in terms of the 11-component of Eq. (4.1). Taking into account the
nondiagonal channel, the effective collision integral becomes

where the last two terms have the structure

A similar expression follows for which contains the quantities etc.



SECTION 4.2. INELASTIC ELECTRON–ELECTRON COLLISIONS 95

4.2.   INELASTIC ELECTRON–ELECTRON COLLISIONS

To find the collision integral in canonical form,3,4 we will use the general
relations (4.13) to (4.15). First, it is necessary to specify the self-energy parts in
them.

4.2.1.   Diagram Evaluation of Electron-Electron Self-Energy

The diagrams corresponding to intercollisions of two electrons are depicted in
Fig. 4.1. The presence of pair condensate in the system, as usual, is responsible for
the matrix structure of The contribution to from the first graph in Fig. 4.1 is
shown in Fig. 4.2. In the representation of discrete imaginary frequencies, the
elements of matrix may be written (omitting for a moment unessential indices)
in the form

Here the 4-momentum variables of propagators are defined by the “decay” conser-
vation laws The quadratic forms A and B
are related to the scattering amplitudes of two normal excitations on the Fermi
surface. Using Fig. 4.1, the following expressions may be derived in Born’s
approximation:

where is the interaction potential.
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4.2.2. Analytical Continuation

From expressions (4.16) and (4.17), written in the discrete imaginary fre-
quency representation, we move to the expressions on the real axis, using the

Gor’kov–Eliashberg technique. To do this, consider the order diagram of
perturbation theory as the function of the complex variable  at fixed imaginary
frequencies of the field vertices. The analytical continuation over each of the
frequencies must be made from the upper half-plane onto the real axis. The cuts
lying between the lines Im correspond to this diagram.
Assuming that the cuts are

we transform the sum over frequencies in (4.16) and (4.17) into a double integral.
Because the directions of the arrows do not influence the procedure of analytical
continuation, one can present (4.16) and (4.17) in the form (omitting temporarily
unessential symbols)

where the contours of integration enclose all the poles of hyperbolic tangents.
Further step-by-step transformation of (4.21) to an integration over the real axis
gives the result
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Here the external variable and the field frequencies remain imaginary. Continuing
(4.22) over from the region Im and next over all the
frequencies onto the upper half-plane, one finds for the expression

Using the definition of in a form analogous to (3.46),

where is some combination of field vertex frequencies, one finds from Eq.
(4.22):

The expressions for the quantities which define the collision integral,
follow from (4.16) and (4.17) and (4.23) and (4.25).

4.2.3. Transition to Energy-Integrated Propagators

Before writing down the corresponding results, we will integrate (4.16) and
(4.17) over the variables this is possible because the effective
interaction is short range, so the amplitudes A and B depend on angle variables only.
Hence one can write
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The funct ion here restricts mainly the angle integration, requiring
and thus

Gathering the results, we have

The notations are used:

and the operator is defined as

4.2.4. Derivation of the Canonical Form

Substituting expressions (4.16) and (4.17), subject to (4.32) and (4.33) and
(3.81) to (3.85), into formula (4.15), we find
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[Here etc.] Reversing the sign of in this expression and
substituting the values of and into (4.13), we obtain, subject to the
relations (3.86) to (3.88), the following canonical form for the inelastic electron–
electron collision integral:

in which the factors have the form
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Coefficients entering (4.37) to (4.39), are given by the following relations:
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The quantities and are defined by the expressions

Factors a and b, entering Eqs. (4.40) to (4.43), are numbers (of an order of
unity) and are connected with A and B by relations of the type

4.2.5. Essence of Elementary Acts

The meaning of the elementary acts described by the collision operator (4.36)
is quite transparent. Consider, for example, the term in that is proportional to

With a positive sign of the first component in this term describes the merger
of three electron excitations into a single electron-type excitation. With a negative
sign of three merging electron excitations create an excitation on the hole branch.
Thus in the first case the difference in the number of electrons and holes changes
by 2, while in the second case it changes by 4. Analogous processes are described
by other items in this term. It vanishes in the case of a normal metal when

hence the channel of homogeneous relaxation of electron-hole imbalance
is closed in a normal metal.5 Note that the collision integral (4.36) has obtained
such a transparent meaning, owing to the specific selection of the form of the
functions in the expressions for in (3.81) to (3.88).

4.3. KINETIC EQUATION FOR PHONONS

4.3.1. Application of Keldysh Technique

The phonon Green–Keldysh function4 is introduced in the usual manner*:

*We omit further below the index of phonon polarization. It may be restored in the final expressions.
As mentioned in Sect. 2.3, in the isotropic model of metals, the electrons interact only with longitudinal
acoustic phonons. This interaction is implied in this chapter. In case of transverse phonons, the
coherence factors would change their signs (see Chap. 12).
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The Keldysh indices i, k are the signs minus or plus, according to the location of
the time coordinate on each of the two time axes  Recall that
the time on the second axis (with the sign plus) is greater than any time on the first
axis (with the sign minus), and the T-ordering on the second axis proceeds in the
reverse order. The free phonon field operators are real see Sect. 3.1):

Here is the volume of the system; is the dispersion of phonons in normal
metal; and and are the phonon creation and annihilation operators.

The “bare” Green-Keldysh functions, defined by Eqs. (4.47) and (4.48), may
be easily found in the homogeneous and stationary cases. For instance, the expres-
sion for is (cf. Ref. 6):

where is the nonequilibrium phonon distribution function.
In addition, we introduce an operator which acts on the first (second)

argument of the phonon propagator (u is the phonon velocity):

where

and is the third of the Pauli matrices
In general the phonon function obeys the Dyson equation

or

where all the functions are matrices in Keldysh indices. Note that owing to their
def ini t ion (4.47), the Green–Keldysh funct ions are linear dependent

and consequently the polarization operators are also
linear dependent:
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The electron Green–Keldysh–Nambu function is defined analogously:

as mentioned in Sect. 3.2. Here and are the Nambu indices of the
field operators

The Green’s function thus introduced (in the absence of interactions that depend
explicitly on spin variables) has the symmetry property

where the bar above the index indicates its reversion [i.e.,  From
Eqs. (4.54) and (4.56) it follows that:

The functions are defined according to the relation (3.55):

from which [taking into account Eqs. (4.57) and (4.58)] equalities follow:
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4.3.2. Quasi-classical Approximation

In homogeneous and stationary cases, the Green–Keldysh functions depend
on the difference of space-time coordinates. If the evolution of the phonon system
is taking place sufficiently slowly, one can assume that all the quantities depend
only weakly on the summary variable and are the functions mainly of the
difference variable , Separating these variables [we use the notations of type

one can perform the Fourier transformation over the difference variables

where obviously,  Acting by the operator on Eq.
(4.52) and by on Eq. (4.53), and subtracting, we obtain the result for the
component:

Consider first the right side of Eq. (4.68) and transform it with the help of
quasi-classical conditions. For the phonon system, these conditions mean that the
quantities characterizing its evolution in time  and space must be large in
comparison with the characteristic phonon reciprocal frequencies and wave
numbers

This is a good approximation when the perturbation of the phonon system is caused
by the superconducting electron system. Condition (4.69) permits us to simplify in
the usual manner (cf., e.g., Ref. 6) the left side of (4.68). Taking into account that
the operator on the left side of (4.68) may be presented in the form

and carrying out the Fourier transformation of (4.68), we obtain the expression
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(the arguments of all the functions in parentheses are we have used here
the linear interdependence of and mentioned earlier).

4.3.3. Phonon Distribution Function

To obtain the kinetic equation in terms of the distribution function N(q, r, t), it
is necessary to find a relation between functions N and In the quasi-classical
case, such a relation may be found rather simply. As noted in Sect. 3.1, the
superconducting transition negligibly influences [because
the bare phonon spectrum: Implying the quasi-classical condition for
the phonons, we assume that and obey the relation

For acoustic phonons (only these are important in the isotropic case) and for
momenta that are small compared with the extreme value in the crystal, the
following relation is valid:

Using also the property

[which follows from (4.47)], substituting Eqs. (4.72) to (4.74) into (4.71) and
integrating over within the limits one obtains the following kinetic
equation:

where the quantity

is the inequilibrium source.
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Note that expression (4.76) may also be presented in a somewhat different form
if one makes the standard transformation (see Ref. 6) from the matrix [in
analogy with (3.55)] to the linearly independent functions

Now we will specify the polarization operators in Eq. (4.77).

4.3.4. Polarization Operators in Keldysh's Technique

In the Keldysh–Nambu technique, the polarization operator is represented by
a diagram expansion:

Regular Feynman rules7 are applied; the only difference is that all the quantities,
including the vertices, are matrices in Keldysh–Nambu indices. Since the transition
to the superconducting state (as well as the interaction with an external electromag-
netic field) affects only a minor smeared region [the bold lines in
(4.78)] are considered as exact functions (they contain electrons interacting among
themselves, with the external field, phonons, impurities, etc.). Because in this
technique the vertices have the matrix structure8:

we obtain (g is the electron-phonon interaction constant)

However, it is more convenient to deal with the linearly independent quantities
(3.55). Moving simultaneously to and omitting

components like (which are identically zero), we obtain

and correspondingly
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Expressions (4.81) and (4.82) allow one to obtain the collision integral for the
phonon kinetic equation in a superconducting system. All the influence of the
electromagnetic field is contained in Green’s functions for electrons, which are
exact and also account for impurities and other fields acting on the electron system.

As required by the kinetic equation, written in the form of (4.75), we should
move to the (x,p) representation. It is clear that the polarization operators can be
expressed in terms of the energy-integrated Green’s functions. Before making this
transformation, we will derive the expressions for the polarization operators in Eq.
(4.77), using the analytical continuation technique.

4.3.5. Polarization Operators: Analytical Continuation Technique

In a d iscre te i m a g i n a r y f requency r ep resen ta t ion
we have the following expression for the polarization operator:

For brevity we omit the second arguments of Green’s functions which
may be reconstructed from the “decay” conservation law for internal variables:

Rule (4.84) is responsible for the appearance of in (4.83), which differ
from by the reversed directions of the arrows in the diagrams. In addition, the

pair in (4.83) is accompanied (cf. Sect. 1.4.1) by a change in the diagram’s
sign. Starting the analytic continuation of the polarization operator, we consider
each component in (4.83) as the infinite sum of the diagrams of various orders in
the external field. The entire procedure is analogous to that used earlier in deriving
the analytically continued self-energy parts of electron–electron collisions. The
only difference is that the external frequencies here are Bose frequencies (and
naturally there are two electron lines). Since the directions of arrows in the diagrams
do not influence the analytic continuation process, we will consider only the
expression
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For simplicity of notation, we omit the signs of internal frequency integration
and summation at the vertices of interaction with the external field and phonons.
Remember that expression (4.85) corresponds to the diagram series of perturbation
theory and contains the sum of the various diagrams up to the infinite order; Green’s
functions for electrons in the polarization loops contain the phonon self-energy
insertions that in turn contain field vertices of an arbitrary order. The diagram of a
specific order in the external field (considered as a function of the complex variable

has a cut on the line Im  for fixed imaginary frequencies of the field
vertices, which goes between the uppermost and lowermost banks:

As in the case of the electron–electron self-energy parts, the quantities
represent certain combinations of the field vertex frequencies; here the set of these
combinations and their total number depend on the distribution of vertices along
the electron lines. Assuming that the cuts with
correspond to these lines, we transform the frequency sum in (4.85) to the contour
integral

where C is the contour shown in Fig. 2.1. Deforming the contour which
goes along the banks of the cut, and noting that for the diagrams of any order the
integrals along the big arcs vanish when the corresponding radii tend to infinity,
after some straightforward calculations we obtain:

where is the jump in the Green’s function at the corresponding cut line. The
external variable and the field frequencies remain imaginary. Their combination
determines the set of cuts for the given diagram. Assuming in all diagrams
(the upper bank of  the upper cut line), shifting the integration variable in all diagram
expressions (as was done in Sects. 2.3 and 4.2) and summing over all orders of the
perturbation series, we obtain
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where the G-function is determined as

while the functions are determined directly from the diagram expansion (or
the Dyson equation), where all the Green’s functions for electrons are retarded (or
advanced) and their entire set coincides with the functions figuring in
Sect. 2.3. The expression for also follows from (4.88) for (the lower
bank of the lower cut line):

Using for an expression analogous to (4.90), but with the external
frequencies representing now the Bose field, i.e.:

we obtain after the substitution of (4.88) into (4.92):

Shift ing the integration variable in each of the terms in the first integral
in the second integral, and using the identity

(3.48), one gets

Summing in (4.94) all orders of perturbation theory and accounting for the defini-
tion of (4.89), we finally obtain
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Thus, for polarization operator (4.83), the complete set of functions
is found, which describes the nonequilibrium case. One can show that

they are identical to those obtained earlier on the basis of the Keldysh formula.

4.3.6. Equivalence of Keldysh and Eliashberg Approaches

Consider for this purpose any one of the components in which follow
from (4.83), for example,

and make a Fourier transformation to the spatial and temporal variables. As a result,
one obtains

Now we write down all the terms obtained from the analytical continu-
ation. Taking into account Eqs. (4.83) and (4.97) one finds

To compare this with result (4.82) obtained by the Keldysh technique, we must
make the substitution in the second multiplier of each of the
components in braces (or in brackets) either in (4.98) or in (4.82). In the latter case,
this should be done using the relations (4.63) to (4.65). We use the first possibility,
noting that the Eliashberg functions have the properties

[in the absence of the spin-dependent interactions
After removing the parentheses certain components vanish [for example,

, so Eq. (4.98) can be reduced to the form
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Comparing this expression with Eq. (4.82), we see that they coincide if the functions
are replaced by  Because

these functions coincide up to the sign, the polarization operators (which are
quadratic in Green’s functions) coincide identically.

4.3.7. Transition to Energy-Integrated Propagators

Consider now an arbitrary component [e.g., the first one in the expression for
, which follows from (4.83), taking into account (4.94). In this

expression we can move from the integration over to angle and energy
integrations based on the relation

Using the  auxiliary we may integrate with respect
to the variable This makes it possible to express the quantity

in terms of energy-integrated functions determined by a relation of the type

since the function in (4.102) restricts mainly the angular integration and hence it
may be factored out of the -integral. Thus we have

To shorten the notations, we introduce the operator

and the convention
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obtaining thus the final expressions for the Fourier components of the quantities,
which define the inequilibrium source in the phonon kinetic equation:

Before bringing the equation for phonons to the canonical form, we will obtain the
expression for the collision integral of electrons with phonons.

4.4. INELASTIC ELECTRON–PHONON COLLISIONS

The self-energy functions for an electron–phonon interaction were derived in
Sect. 3.2 assuming an equilibrium phonon distribution. We will consider now the
general case when the phonon system is not in equilibrium.

4.4.1. Electron–Phonon Self-Energy Parts

In the representation of discrete imaginary frequencies
m and n are integers], we have:

which corresponds to the diagram of Fig. 4.3. The functions (as well as ) in
(4.109) are assumed to be complete, including both external field and the self-energy
parts and polarization operators. Assuming that initially in the absence of an external
field the system is in equilibrium, we expand and  in a power series over the
field and consider the analytical structure of the diagram as the function
of the complex var iable at f ixed i m a g i n a r y f requencies
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. The manifold of cuts of the object under consideration
consists of the cuts of the internal and the -function. We denote this
manifold by These cuts may be considered as situated on the lines

in the complex plane between the uppermost line
and the abscissa (as was assumed earlier in accordance with the causality principle).
The combinations of which constitute are defined by the distribution of the
field vertices over the internal lines of the diagram Let us assume that
manifolds of cuts correspond to and

functions. Replacing in (4.109) the summation over by contour integration and
shifting as usual the integration contour to the banks of the cuts, we find the resulting
expression

where and are the jumps in Green’s functions on the corre-
sponding cuts (hereafter for brevity we omit the second indices of Green’s func-
tions). Continuing now analytically in Eq. (4.110) over from the upper bank of
the uppermost cut (the lower bank of the lowermost cut), we obtain (after returning
to real shifting the integration variable, summing over all the orders of
perturbation theory, and integrating over the energy the expression

in which the is defined as

Introducing as

we obtain, starting from Eq. (4.110), the expressions for the matrix elements of
which may be presented in the form (omitting for simplicity the second arguments)
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In the diagonal over frequencies (quasi-classical) approximation, the phonon
propagators may be expressed through the function

4.4.2. Canonical Form for Electron–Phonon Collisions

Using the relations (4.114) to (4.118), (3.83) to (3.88), (4.7), (4.9), and (4.13),
one arrives at the following form of the electron–phonon collision integral:

where the factors are
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Having ascertained that the function introduced by (4.117) plays the role
of a phonon nonequilibrium distribution function, we will now obtain the kinetic
equation for this quantity. We start from expression (4.112) for and (4.92)
for a polarization operator Separating the anomalous parts
one obtains

Regular functions in (4.123) and (4.124) (for example, the advanced function
can be determined by the diagram expansion, in which all the functions (propaga-
tors and polarization operators) are advanced ones. Separating in the diagram
expansion for the left free line we have the equation

where the following notation is used

(an integration over internal momentum or a coordinate variable is also assumed).
Separating the right free line in the same manner as subtracting the result
from (4.125), and using formulas (4.123) and (4.124) together with the expression
for regular functions, one obtains the relation

which is the desired general form of the kinetic equation for phonons. Expressions
(4.75) and (4.77) follow from (4.127) after integration over the positive half-axis

in a quasi-classical limit.
Note that at this stage the “bath” temperature T, which enters into imaginary

frequency variables of initial equations, is eliminated both from (4.127) and from
(4.114) to (4.116). The situation here is fully equivalent to that obtained by the
Keldysh technique. In the technique of analytical continuation, the bath temperature
plays the role of the equilibrium density matrix in Keldysh’s method—this matrix
is also eliminated from the final expressions.
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4.4.3. Canonical Form for Phonon–Electron Collisions

The canonical form of the phonon–electron collision integral follows from
Eqs. (4.75), (4.77), (4.107), (4.108), and (3.84) to (3.88):

Expression (4.119) describes, besides the energy relaxation of electrons,
inelastic collision processes that produce the relaxation of electron-hole population
imbalance in superconductors. The situation here is fully analogous to that dis-
cussed in Sect. 4.2 and requires no further comments.
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5

Microwave-Enhanced Order
Parameter

When a piece of normal metal is put into the high-frequency field, it is heated. This
is not surprising from the point of view of physics intuition. What was puzzling and
considered a “paradoxical quality” is that metals in superconducting state can
behave as if they are being cooled under these circumstances. Enhanced values of
critical currents were revealed by initial experimental measurements1,2 performed
on microbridges. It was not until 1970 that Eliashberg3 recognized that this
enhancement has nothing to do with spatial inhomegeneity. Instead, it is caused by
the effective cooling of electrons by high-frequency electromagnetic fields. This
specific mechanism, which will be described in this Chapter, was then further
elaborated for cases where the energy comes from electromagnetic4–9 and acoustic10

fields, as well as the tunneling process.11–14 Experiments 10,15–21 well confirmed
these predictions. It was also recognized that this “gap enhancement” effect should
be accompanied by a “phonon deficit effect,” which will be discussed in the next
Chapter.

During many years the enhancement effects looked like “small” and “of no
practical significance,” though “fascinating from a physical point of view”.22

However, rather recently experimentalists have been able to demonstrate the
“microrefrigeration” effect, which relies on physics that is closely related to that of
superconductivity enhancement (see Section 10.4).

5.1. SOURCE OF EXCITATIONS

5.1.1. Estimate for Magnetic Field Depairing Effect

An alternating electromagnetic field influences a superconducting order pa-
rameter in various ways. We start our discussion with the dynamic suppression of

119
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the order parameter modulus (denoted as in this chapter) by the effective mean
square of field amplitude

Near the action of is analogous to the action of a static magnetic field.
The time average variation of may be estimated by using the Ginzburg-Landau
theory (Sect. 1.2)

where is the diffusion coefficient of normal electrons. Second, the field
exerts a kinetic influence when the high-frequency quanta are absorbed by electron
excitations. That shifts their distribution over energies and changes the value of
according to the self-consistency equation.

As we will see in Sect. 5.2, at sufficiently high frequencies

where is the characteristic energy relaxation time (to be addressed later) in the
single-electron system, the kinetic effect dominates. Moreover, the variation of
has a sign that is opposite to that of Eq. (5.1).

5.1.2. Single-Quantum Transitions

We will consider this problem using the results of Eliashberg.3,23 Because the
action of a high-frequency field (5.2) on the oscillating part of the order parameter
is negligibly small, the nonequilibrium order parameter may be taken as a
stationary one. We assume also that the superconducting film is sufficiently thin
(having a thickness d), so the picture does not depend on the z-coordinate, which
is perpendicular to the film surface. We assume also that the electron’s mean-free-
path is small: . For orientation, consider first the case of a normal
metal, setting ~ In this case the matrix functions and u are diagonal.
The system of equations determining reduces to a single equation

where

because

(in the case of a normal metal, all the field-containing terms in a diagram expansion
for vanish after the integration over  . For simplicity we assume in
this case the high-frequency current density and also the vector potential A are
constant over the film’s cross section. Because the mean-free-path l is small, the
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dependence of g on the angle between the vectors p and A may be approximated
by the first spherical harmonic:

Below we will consider the monochromatic field: As follows from
(5.3), the elements

containing even powers of the field are nonzero in the equation for and the
elements

containing odd powers of the field amplitude A are nonzero in the equation for  

5.1.3. Excitation Source in Normal Metals

The collisions with impurities disappear from the equation for In contrast,
impurities play a major role in the equation for For one gets from (5.3):

Because the value of the
functions (the equations for them contain on the left-hand side) are small
compared with in the frequency range (5.2):

Hence only may be retained in the equation for g, and it follows finally from
(5.3) and (5.6)*:

where is the elastic scattering time of electrons entering (5.11) in view of (5.9),
(4.5), (4.2), (2.37), and (2.8). Substitution of (5.11) into (5.9) gives the equation

* As follows from Eqs. (5.9) and (5.10), at only single-quantum transitions must be taken into
account in the absorption acts of photon by electrons. The n-quanta absorption probability is small in
parameter
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where we have taken into account that is the (even
over ) excitation distribution function.

5.1.4. "Dirty" Superconductors

We turn now to the case of a superconductor.* Retaining in the isotropic part
only the diagonal term we will consider equations for separate components
of From (3.63) it follows immediately that:

In this chapter we will consider states that are symmetric in the electron-hole
branches. Then the collision integral takes a simplified form [cf. Eqs. (4.2) and
(4.7)]:

and, as earlier, the impurity contributions disappear from (5.14).
In the equations for we can neglect the phonon and electron self-energies,

compared with the one related to the impurities. By analogy with the normal state,
we will use a zero-field approximation for isotropic spectral functions and a linear
approximation for anisotropic spectral functions:

where

Solving now (3.63) subject to (5.15) to (5.18), we find

Introducing, in accordance with Sect. 3.2, the distribution function :

*The specifics of the problem considered in this chapter permit the use of a gauge with a real order
parameter.
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we find from (3.63) and (5.14) the kinetic equation

in which

The collision integral in (5.21) corresponds to electron–phonon and electron–elec-
tron collisions:

and in accordance with (5.14) we should put in (4.119) and
(4.36). In the general case, without any restriction on the function these integrals
were found in Sect. 4.2.

5.2. STIMULATION EFFECT

5.2.1. Nonequilibrium Self-Consistency Equation

The kinetic equations derived in the previous section contain the nonequili-
brium gap connected with by the relation (4.6). Using the expressions for

one can obtain a self-consistency equation

which differs from the equilibrium equation by replacement of tanh
sign by sign where is the nonequilibrium distribution

function [cf. (1.154)].
We will consider in more detail how the electromagnetic field of frequency

influences the nonequilibrium gap A formal condition allows
one to go far enough analytically. At the field term in (5.21) [we will denote
it ] is the difference of some function at the points shifted along the -axis by
the value . Substituting in i the equilibrium function
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instead of , expanding and keeping only the first, nonvanishing two terms in the
series, we obtain:

The first term is defined mainly in the region and the second in the range

5.2.2. Relaxation-Time Approximation

To find a solution for the linearized equation, we will subdivide the variation
of distribution function into parts:

For the function the collision integral in (5.21) allows us to use the
relaxation time approximation. Indeed, substituting one can
verify that the terms containing as integrands are smaller than other terms in
which is simply a factor. Omitting the smaller terms, we find an approximation
(the approximation; for more details see Sect. 11.3)

The damping may be found using explicit expressions for collision integrals
(4.36) and (4.119). It is determined by the range of integration over , which is
comparable with T and, up to the corrections has the same value as in a
normal state:

5.2.3. Solution for Distribution Function at

Introducing the notation we find at

i

At the value of does not depend on Substituting (5.28) into the
integral part of (omitted in the approximation), one can verify that the
correction has the relative smallness but is nonzero in the region

Subsequent iterations do not change this result.
The correction which corresponds to the second term in (5.26), may be

investigated in the same manner. This correction has a structure analogous to the
above-mentioned correction to (5.28). Thus the full variation of the distribution
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function consists of the part (5.28), which dominates at and of a small
“tail,” diminishing at To calculate this tail, one must go beyond the
approximation. The function enters the expression (5.25) for with the weight

Consequently, the main contribution comes from the region
This allows one to take into account only the part (5.28) when determining
and confirms the applicability of the  approximation in the vicinity of

5.2.4.   Enhancement of  the Gap

We substitute now the expression (5.28) into the gap equation (5.25), trans-
forming it preliminarily to the form

where now Accounting for

we find

where

Comparing (5.31) with the dynamic contribution, we can estimate the relative value
of the kinetic effect:

As (the latter inequality is the condition of a single-quantum
absorption of the field’s energy), one may conclude that high-frequency electro-
magnetic radiation should stimulate superconducting ordering in the film. The
enhancement of a superconductor’s critical parameters (critical temperature, cur-
rent, etc.) was indeed observed experimentally.1,2,24 As follows from (5.31), in weak
fields the enhancement effect grows with the intensity of radiation as One can
expect that the enhancement of by an order of its value may be reached
in fields with the intensity
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(assuming that the experiment is carried out at optional frequencies At such
intensities, as can be seen from (5.1), the dynamic influence of the field is
insignificant. The influence of the field on the superconductor’s single-particle
electron excitations is also small [i.e., the change of spectral functions (3.66) is
small and becomes essential only at significantly higher intensities:3 Ac--
cordingly, the model equation (5.25) remains valid in fields with intensities (5.34).
Nevertheless, the experimentally observed values of are only on the order of
several percent,24,25 even in optimal cases. The reason probably is that the “heating”
processes in the superconductor’s electron subsystem become essential at relatively
moderate intensities of the electromagnetic field. Such processes may occur, for
example, when the electron with the energy (an energy the electron can
obtain by sequential stages of photon absorption) collides with the Cooper pair and
decays into three electronic excitations. This mechanism is analogous to the
mechanism of “shock ionization” and is described by the electron–electron colli-
sion integral (4.36) (by terms that are proportional to the factor ). Such processes
increase the total number of excitations and lead to the effective damping of the gap

(see, e.g., Ref. 26).

5.3. PHOTON–ELECTRON INTERACTIONS

As was established in the preceding section, high-frequency electromagnetic
radiation influences a superconductor by the Eliashberg mechanism, effectively
redistributing electrons and holes in the momentum space, so that the “center of
gravity” of the Fermi distribution function is shifted to higher energies, while the
total number of excitations remains constant. As a result, the states near the Fermi
surface at the gap edge become unoccupied and this leads to an increase in the
superconducting order parameter, according to the self-consistency condition. Even
though the enhancement of the order parameter is rather small, the detection of the
effect allows us to estimate the characteristic time scales that characterize the
microscopic processes in superconductors. For example, the frequency range of
electromagnetic radiation, which can produce the enhancement effect, is restricted
by the value from above and by the value from below. Further theoretical
analysis of the enhancement mechanism also reveals the existence of other condi-
tions that are important for its realization. One of these conditions is the smallness
of an electron’s mean-free-path:

where is the electron’s elastic scattering time on impurities. In real superconduc-
tors, the condition (5.35) need not be fulfilled. Moreover, the reversed inequality
may take place. We will consider now this situation, which would arise in the latter
case.
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To study the enhancement problem in perfect specimens, it is necessary first
to derive the appropriate expression for the nonequilibrium source because the
kinetic equation (5.21) describes the case of dirty superconductors. To solve that
problem, it is expedient to use the quantum description for the interaction between
electrons and photons.

5.3.1. Quantum Description

The Hamiltonian of this interaction in superconductors has the form (the gauge
is used):

Introducing the operator

where and are the photon creation and annihilation operators (k and
correspond to the momentum and polarization of the photon), and

Moving to the Nambu representation the Hamiltonian ac-
quires the form:

For nonequilibrium superconductors, we will use the Keldysh diagram tech-
nique (mentioned in Sect. 3.3), in which the electron self-energies are represented
by the matrices

where the quantities are matrices in the Nambu space. The
electron and photon Green’s func t ions are def ined by the equat ions



128 CHAPTER 5. BASIC EQUILIBRIUM PROPERTIES

For the Fock states of an electromagnetic field, the photon propagators
have the forms

where is the photon occupation number, The
vertices where the energy-momentum transfer takes place are presented in the
Keldysh technique27 by objects of the kind where the two upper and all the
lower indices correspond to electrons, while l corresponds to Bosons. In the case
of electron–photon interaction, one can find using (5.36):

Using standard graphic techniques and assuming that the propagator links two
vertices with electron momenta and those due to the transverse character of
electromagnetic field we find, taking into account (5.37) and
(5.40),

Summing over the photon’s polarizations and integrating over using also the
relation between the -function and the distribution function of the electron-hole
excitations (see Sect. 3.3), the nonequilibrium source ) may be found in the
form of the collision integral of electrons with photons:
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where

and In the “dirty” limit, for the case of a monochromatic field in the
absence of branch imbalance expression (5.48) must be converted into
the field term of the Eliashberg kinetic equations, obtained by the classical descrip-
tion of an electromagnetic field in Sect. 5.1. We will confirm this now.

5.3.2. Collision Integral as a Nonequilibrium Single-Electron
Source

In the presence of impurity scattering, the energy-momentum conservation
laws [for the relaxation channel in (5.48)] may be presented in the form



130 CHAPTER 5. BASIC EQUILIBRIUM PROPERTIES

where q is a momentum that is transferred to the scattering center (the scattering is
assumed to be elastic). In the limiting case of a classical electromagnetic field, one
has . Retaining in (5.48) the terms proportional to and averaging over
the directions of q , we find

Because we can write

where is the unity vector in the direction p. Denoting the angle between and
p as we obtain

where cos Dealing in the same manner with other
we find

This form would be convenient for further angle averaging in the next section.

5.3.3. Classical Field Action in a "Dirty" Limit

Let the external electromagnetic field be a quasi-monochromatic wave having
a spectral width around the “carrying” frequency and an angle distribution

around the direction k. Then
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where is the Poynting vector of the radiation with the frequency and the
polarization e. Introducing the free path l by the formula we find

Here are coefficients defined by formulas (5.22) and (5.23) and
is defined by the expression

Putting and averaging in (5.48) over the directions of an
electron’s momentum, we obtain (up to the multiplier the desired result
(5.21).7

5.4. ENHANCEMENT IN PERFECT CRYSTALS

5.4.1. Quasi-particle Scattering and Kinematic Conservation Laws

In the case of a pure superconductor, the terms in Eq. (5.59) proportional to
the U-factors vanish. To prove this we will carry out a kinematic analysis of the
collision integral. Indeed, from (5.53) it follows that:

The second of the expressions in (5.61) shows that all the permitted values of k
obeying the laws of energy-momentum conservation must lie between the lines

The straight lines
pass at the point and in order for the system to possess the solution, they
should intersect the region between the lines which is dashed in Fig.
5.1. Hence the following condition must be fulfilled:

where is the excitation’s group velocity. However, the condition
cannot ever be fulfilled because Analogous reasoning

shows that the recombination channel [ the terms proportional to in Eq. (5.59)]
is always open. Hence, if the electromagnetic field falls on a superconductor with
a perfect crystalline structure, direct photon absorption is forbidden at photon
frequencies             .

5.4.2. "Switching on" of Eliashberg Mechanism

Real superconductors always contain a number of elastic scattering centers. It
is instructive to estimate the concentration of such centers when the relaxation
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channel is “switched on.” Using the relation (5.53), one can obtain the condition
is provided by (2.8), is the impurity concentration]:

(5.63)

as a criterion of the appearance of the Eliashberg enhancement effect.
The threshold value of a sample’s “pollution” depends on experimental condi-

tions (e.g., on the pumping frequency), but even at allowed minimal frequencies of
an external field, the inequality must be fulfilled. In strong coupling
superconductors, the damping of is large (e.g., and consequently
the critical concentration of impurities n should be at Then
the condition (5.63) appears to be sufficiently stringent. In those cases when this
condition is not fulfilled, it is necessary to analyze other mechanisms that determine
the formation of the nonequilibrium electron-hole excitation distribution function

5.4.3. Multiparticle Channels of Photon Absorption

When condition (5.63) is not fulfilled, the photons may be absorbed in a
single-electron system of excitations due to multiparticle processes, for example,
via the assistance of additional electrons or phonons. We consider below the case
of electron-assisted absorption. This process has an analogy with zero-sound
absorption in where a zero-sound quantum is absorbed with the participation
of  two Fermi particles.28 The self-energy diagrams that generate the single-particle
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electron-hole excitation source (in analogy to the consideration in Sect. 5.3) are
shown in Fig. 5.2.

Using the same approach as in the case of acoustic pumping in a superfluid
(Ref. 29), one can write down the collision integrals of electrons with photons

and derive the source of excitations for the action of a photon field
with the occupation numbers in the manner demonstrated in Sect. 5.3. In
the case of a monochromatic field at frequencies we have

where

and the coefficients are defined as (cf. Ref. 9):
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Here are quadratic forms of the electron–electron interaction
potential that are analogous to the coefficients A(B) of Sect. 4.2. The factor

in (5.64) is the vertex of electron–photon interaction renormalized by the
electron–electron interaction.

It is important to note that in expression (5.64) at the the function is
negative. One can prove this by considering the collision integral . Substi-
tuting the photon occupation numbers in this integral as an equilibrium (Bose)
distribution, one can ensure that the integral will yield the relaxation of disturbed
values of only at negative values of

Let us consider the properties of (5.64), assuming the parameters and
are small, and the distribution function is In this case can be

represented in the form:

where the definitions were:

and

The term in (5.67) proportional to  is nonzero at at the same time,
the term proportional to is defined at a much larger region of In
addition, this second term is small relative to the parameter . Taking into
account the negativeness of  values of the arguments, one
can confirm that is negative in the immediate vicinity of the overgap region:

One can consider now the solution of the kinetic equation

for the distribution function of single-particle excitations in a spatially homoge-
neous and steady state. Since in the problem of stimulation the main role is played
by the part of the distribution function that is located in the region of energies
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we will introduce a notation for its localized nonequilibrium addition.
To calculate it is enough to use in (5.70) a relaxation time approximation like (5.27).
Determining thus the solution and substituting it into (5.29), we arrive at

where is the energy density of the electromagnetic field. Since
one can deduce the nonequilibrium gap enhancement in this particular

condition. The essence of the enhancement mechanism remains unchanged: the
high-frequency field removes the electrons from the gap edge, keeping the total
number of excitations constant, and the gap increases owing to the self-consistency
condition. It should be noted that in this case the magnitude of the enhancement
effect would be smaller compared with the traditional case. Indeed, one can rewrite
Eqs. (5.31) and (5.32) in the form

where is the electron’s mean-free-path Then by an order of
magnitude the ratio is:

which is small because of the smallness of the second factor in (5.73) could
be but cannot compensate for the overall smallness in view of (5.63). At the
same time, disappears when condition (5.63) is not fulfilled, while

survives.
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6

Phonon-Deficit Effect

We started the discussion of the physics of a phonon heat bath in Sect. 3.2. When
applicable, the phonon heat-bath model decouples the kinetics of electron and
phonon subsystems. This decoupling is valid if the influence of the nonequilibrium
phonons on the nonequilibrium electrons is negligible. In such cases, the phonons
play the role of a “heat-bath” only for relaxation processes in the electron system.
At the same time, the influence of electrons on phonons cannot be simply regarded
as heating. As we will now see, the situation is much more interesting.

6.1. COLLISION INTEGRAL AS A PHONON SOURCE

The principle of a phonon heat-bath is closely tied to the phonon kinetic
equation derived in Sect. 4.5. It permits us to find the phonon fluxes from
nonequilibrium superconductors using the solutions of Eliashberg kinetic equations
(which were considered in Chap. 5 on the basis of the phonon heat-bath model).

6.1.1. Polarization Operators

In applying the analytic continuation method to derive the kinetic equation for
the nonequilibrium electrons in the phonon heat-bath model, Green’s electron
temperature functions were represented by the series expansions in the external
field amplitude (Sect. 3.2), and the diagrams of the type shown in Fig. 3.1 were
obtained. The physical quantities were defined by corresponding analytic continu-
ation to the upper half-plane with respect to each of the discrete imaginary field
frequencies. It is important here that the phonons be in equilibrium. From a formal
point of view, this means that in the exact phonon Green’s function

137
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the initial distribution of the discrete imaginary Bose frequencies is fixed:
where n is an integer*. Consequently, the cuts in an arbitrary

diagram (such as that shown in Fig. 3.1b) coincide with the cuts in a diagram that
does not contain the self-energy insertions (although it has the same order in the
field’s amplitude; see Fig 3.la). This determines the identical analytic structure for
the diagrams of the corresponding order in an external field. Generally when the
phonons are not in equilibrium, the phonon Green’s function may be presented in
the form

The real part Re which is responsible for the renormalization of the sound
velocity, is determined by the total number of electrons, while the temperature
blurring region near the Fermi surface produces a correction of the order As
mentioned earlier, the renormalization of the sound velocity due to the supercon-
ducting transition has the analogous smallness The influence of the electro-
magnetic field is small also: it affects primarily the blurring region. Hence we may
drop the small corrections and assume that the renormalization has already been
carried out in Eq. (6.1). On the contrary, the imaginary part is determined
wholly by the immediate vicinity of the Fermi surface and hence is sensitive to
details in the excitation’s distribution.

6.1.2. Consequences of Equilibrium Phonon Distribution

The neglect of in Eq. (6.2) and moving to the initial representation
in (6.1) corresponds to the physical assumption that a stronger relaxation source
exists in the phonon system than one caused by an electron–phonon interaction.
Such a source of phonon absorption (i.e., a sink) may appear if the phonon system
is tied to an external medium (the heat bath), causing the phonons themselves to
play the role of a thermostat for the electron system. If this coupling were explicitly
considered, then the kinetic equations obtained above the right-hand sides would
vanish in the limiting case of equilibrium in the phonon system. A different and
adequate technique has been used in deriving the kinetic equations in the nonlinear
electrodynamics of superconductors (Sects. 3.4, 3.5, 5.1, and 5.2); in the latter case,
the coupling of the phonon system to the heat bath would be implemented simply
by equating the polarization operator to zero. In both cases an equilibrium phonon
system is implied.

*Indeed, making the transformation from the expression for Green’s function (6.1) to the phonon
distribution function, one may find by direct frequency summation that the resulting distribution
function in the case of integer n coincides with the equilibrium Bose distribution.
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This discussion helps to clarify the physical meaning of the kinetic equation
(4.75). If we assume that the phonon functions (on the right-hand side, as well as
in the complete Green’s electron functions) are equilibrium ones, then the left-hand
side of this equation would correspond to the phonon drift toward the external
medium, i.e., it would represent the phonon’s emission flux. In situations where
this assumption is valid, the Eliashberg kinetic equations obtained for the electron
system in the phonon heat-bath model would also be valid.

6.2. NEGATIVE PHONON FLUXES

We discuss here the theory of a phenomenon called the phonon deficit effect.2

The essence of the effect may be summarized as follows. If a thin superconducting
film is immersed in a heat-bath and is irradiated by an electromagnetic field of a
frequency then in some spectral interval the film absorbs phonons from
the heat-bath, rather than emitting them to it.

In this section we consider only the formal aspects of this effect. We will
analyze the solution of the Eliashberg kinetic equations and then classify the phonon
sources and study them in detail. The physical aspects of the problem will be
discussed in the next section.

The solution describing the steady-state behavior of the nonequilibrium elec-
trons, which is used later, was obtained by Eliashberg3 in 1970 in connection with
the theoretical analysis of the superconductivity enhancement effect in a high-fre-
quency electromagnetic field. In Chap. 5 we reproduced certain important aspects
of this solution (Sect. 5.1). We assume that an external electromagnetic wave of
frequency is incident perpendicular to the film and is described by the vector
potential A lying in the film’s plane. For simplicity we assume that the vector
potential is constant over the film cross section. This means that the film is thinner
than the field’s penetration depth. Note, however, that the condition A = const is
not a critical one (from the viewpoint of the resulting homogeneous picture inside
the film) due to the typically large diffusion length of the nonequilibrium electron
excitations. We assume also a high concentration of nonmagnetic impurities, so that
parameter is small.

6.2.1. Electron Distribution Function

Thus the dynamics of the electron system become simplified (localized in the
momentum space); in particular, it is now possible to ignore the electron’s reflec-
tions off the walls (owing to their short mean-free-path . What is more
important is that the relaxation channel of photon absorption is now opened (owing
to the condition is the effective energy relaxation time of
excitations), yielding the Eliashberg mechanism. Another source of simplification
is the smallness of the imbalance in the electron-hole population (by the parameter
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see below Sect. 8.1). Thus one can put in the collision integrals.
Recall that in Sect. 5.2 we were interested in the linearized solution of the kinetic
equation (5.21), according to which the deviation of the distribution function

is divided into two parts: the main part, localized at above-the-gap
values of and the small “tail,” which diminishes with T.

Ignoring this “tail,” which contributes insignificantly, we can write the devia-
tion of the distribution function in the form (see 5.28):

6.2.2. Phonon Source in Linear Approximation

Let us now consider the phonon sources arising in this way. The emerging
features would be of general importance and useful in further analysis. Within the
approximations made for the electron system (and in the linear approximation in
the amplitude of the external field), the expression (4.75) subject to (4.128) and
(6.3) may be written as

where the factor is a multiple of the densities of states and the interaction
constant:

and u is the sound velocity. The expression
(6.4), as explained in the preceding section, determines the phonon flux from the
superconductor into the external medium.

6.2.3. Phonon Heat-Bath Realization

The reflection of phonons from the superconductor–heat-bath interface plays
a significant role here. We assume that the interface is “sufficiently” smooth. Then
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the “geometric-acoustical” approximation* can be used to study the phonon’s
propagation, whose frequency significantly exceeds the quantity u/d (where d is
the film’s thickness). In this approximation the phonon’s behavior at the boundary
is determined by the ratio of the “acoustic” densities of the media (
are the densities of the two media). Such phonons will lose all their energy upon
each collision with the wall (i.e., they will be freely emitting to the outside) if the
phonon “acoustic density” of the external medium coincides with the acoustical
density of the film is the mechanical density). After thus determining the lower
limit of the frequencies of the phonons of interest, we select a superconducting film
thickness so that the phonon escape time is less than its transit time, which is related
to the interaction with the electrons (in a bulk sample it is on the order of
Under such conditions, the feedback of the phonons on the electrons may be ignored
and the phonon heat-bath model becomes applicable for the electron system. For
example, let the film have a thickness d comparable to the coherence length

For such films it would mean that in the frequency range

the current scheme developed for phonons may be directly employed.
Note that in the preceding discussions phonon damping was ignored, i.e., the

phonon lifetime was assumed to be sufficiently long. Assuming that the phonons
are being absorbed in each collision with the wall, this time may be estimated as

and should satisfy the condition for our scheme to be
app l i cab le . If we set then th is condi t ion takes the form

which virtually coincides with the applicability condition of
the “geometric-acoustical” approximation [see the left inequality in (6.6)]. Thus we
may indeed ignore the damping of the phonons with frequencies that lie in the
interval (6.6). In general, the problem of  boundary conditions is not so simple (see,
e.g., the references mentioned in Chang and Scalapino4). When the reflection
processes are to be taken into account, one can envisage (6.4) as an intrinsic source
of phonons.

6.2.4. Induced and Spontaneous Processes

The source [the right-hand side in expression (6.4)] determining phonon
kinetics may be classified in the following manner. We will call the first integral in
(6.4), which is related to the relaxation processes in the electron system, the

*It implies that the wavelength of the propagating phonon is much less than the characteristic dimensions
of the inhomogeneity of the system and consequently one can ignore the diffraction effects (in analogy
with the “geometric-optics” approximation for photons).

**Such an estimate is appropriate in the vicinity of critical temperature when
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relaxation source . The second integral is related to excitation recombination and
pair breaking. It may be called the recombination source Each of these sources
consists of a set of terms that are proportional to the occupation numbers of the
phonons, and of other terms that do not explicitly contain such proportionality. The
first set may be called the induced phonon source while the second one may
be called the spontaneous phonon source Thus the entire source may be
represented in the form

which is convenient for examination.
We emphasize that for frequencies near the transition temperature, the

following relation holds

Consequently, in this frequency range the spontaneous sources in (6.7) are small
and may be neglected. Of interest is the spectral dependence for various
frequencies of the external electromagnetic field. It turns out that in the spectral
range of primary interest, which is comparable to this dependence
can be found analytically. It is expedient to carry out further investigation of the
behavior of the relaxation and recombination sources separately.

6.2.5. Properties of the Recombination Channel

We consider first the recombination term It may be represented as

Using (6.3) we may write

which, after some simple transformations subject to (6.5), reduces to the form
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where

while the function A is determined by the relation

Such notations are convenient for revealing the two most important spectral
features of the source First there is the minimum threshold frequency of the
nonequilibrium phonons (equal to twice the gap value), above which the source
(6.11) becomes nonzero. Second, since the quantity [which is a positive
quantity, as is clear from (6.12) and (6.13)] enters the source (6.11) with a minus
sign and is nonzero in a certain frequency range where the quantity is zero,
we may conclude that there exists a frequency range of where the value of
is negative.

At first glance this is an unexpected result. Hence it would be reasonable to
investigate in greater detail the cause of such an anomalous behavior of the
recombination source. To do this, we calculate first the integrals (6.12) and (6.13),
which may be done by approximately taking into account the smoothness of the
function in the integration ranges. This enables one to use the mean-
value law and represent (6.12) and (6.13) as

where and lie in the regions , while K (x) is the
first-order complete elliptical integral in a normal form, which appears during the
transition from (6.12) and (6.13) to (6.15) and (6.16). For this function we have
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Of primary interest to us are the frequencies of the scale , Note that for
such frequencies the calculations displayed below, which utilize the mean-value
law, are exact in the asymptotic case . This is precisely the case we have in
mind. We set [here and find from (6.15)
and (6.16) the threshold value of the function As a result we
obtain

From this expression, which determines [in combination with (6.11)] the depth of
the dip in the spectral curve of the recombination source (Fig. 6. 1a), it follows that
the dip will become deeper as the external field frequency is increased. The
examination of expressions (6.15) and (6.16) shows that diminishes when
the frequency grows and at takes the value (to an accuracy of

(here we use the numerical values of the coefficients).
If grows further, the contribution from the term   appears, its

threshold value coinciding (with accuracy up to with the corresponding
value of i.e.,

It follows from this, subject to (6.19), that the difference   at
is positive and is equal to approximately one-fifth of the value of

Since a further increase in causes each of the quantities
and consequently their difference to vanish, we conclude that the function

possesses a “peak” (maximum). A study of  the expression

shows that the half-width of the peak is of the order The results of the
calculations of the source are illustrated in Fig. 6. 1a.
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6.2.6. Comparison with Relaxation

We now consider the relaxation source which is represented in the
following form, based on Eq. (6.4):

Taking into account (6.3) and (6.50) and the relation as well as some
obvious transformations, one can write:

Further examination is completely analogous to the case of a recombination
source. Omitting the details of calculations, we present the results for the source
(6.23). The function has no threshold features. It vanishes (being positive)
at the beginning of the spectrum . At larger values of the argument,

increases and when it has a logarithmic singularity. Further
increasing the argument causes a decrease in , which initially is logarithmic
and then becomes exponential. For example, at values the source takes the
value This is illustrated in Fig. 6.1b. Thus the
behavior of the contributions is found in the whole range of phonon
frequencies of interest.

6.3. VIOLATION OF DETAILED BALANCE

The results obtained in Sect. 6.2 are summarized graphically in Fig. 6.2a. We
emphasize that the ranges of the relaxation and recombination sources in the
external radiation frequency range considered factually do not overlap.
For t h i s reason the total phonon f lux in the narrow frequency range

has a negative value (the “dip” in Fig. 6.2a). This means that a
superconducting film under the influence of a high-frequency electromagnetic field
would selectively absorb phonons.
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6.3.1. Phonon Deficit and Order Parameter Enhancement

The origin of this effect is closely related to the mechanism that causes the
enhancement of superconductivity in a high-frequency electromagnetic field,
which was considered in Sect. 5.2. Indeed, at temperatures there are always
a certain number of electron excitations above the gap, which are in thermodynamic
equilibrium with the phonons. The phonons in the superconductor, having an
energy approximately equal to twice the gap value, effectively create quasi-particles
that recombine and emit phonons of the same frequency.

Note that according to the detailed balance principle, the probabilities of the
direct and reverse processes are identical. The situation changes when an external
high-frequency electromagnetic field is applied. As was shown in Chap. 5, if the
frequency of the field does not exceed the quasi-particle creation threshold, the
action of the high-frequency electromagnetic field is reduced to changing the
“center of gravity” of the quasi-particle distribution function toward the higher
energies. Then the number of excitations above the gap edge falls below its
thermodynamic equilibrium value [the function (6.3) is negative at

. This indicates a violation of the detailed equilibrium in electron–
phonon interaction in the presence of an external field. The probability of phonon
absorption at frequencies becomes greater than the probability of their
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emission. As a result, at some frequency range near a deficit of phonons
is formed in a nonequilibrium superconductor, which should be compensated from
the outside of the system for the entire picture to remain stationary. Thus, phonon
fluxes flow from the heat-bath to the superconductor: they could be regarded as
negative fluxes.

6.3.2. Comparison with Alternative Approaches

Note in this connection that the experimental detection of phonon absorption
could be considered not only as the direct confirmation of the theory developed
earlier, but also as an additional proof of the validity of the concepts utilized in
formulating the theory of superconductivity enhancement. At this point we offer a
comment on the study by Chang and Scalapino.4 They incorporated an additional
term in the kinetic equation for the phonons, where is the escape time
of the nonequilibrium phonons from the film. This term accounts for the coupling
of the phonons to the external medium. Since in free exchange the phonon
deficit created by the external field is completely compensated by the flow from
the outside , they noted that the phonon distribution that arises within
the film is in equilibrium. However, this equilibrium is dynamic and is directly tied
to the existence of phonon fluxes of different signs. In Chang and Scalapino, these
phonon fluxes were not calculated. Figure 6.2b reproduces the curve they found by
numerical calculation for at from which the existence of negative
values of is implied. The form of this curve indicates the presence of a
phonon deficit within the film and also implicitly indicates the existence of negative
phonon fluxes.

The study by Dayem and Wiegand5 is also of interest. In their study, the
behavior of the nonequilibrium electron–phonon system was investigated under the
conditions of phonon pumping. The phonon frequency in the incident flux was
considered to be much less than twice the gap value. These authors solved the
problem numerically, using their model of discrete levels, in which several dozen
levels were used to “construct” the energy region over the gap in the energy space
of single-electron states. Electron transitions involving phonon emission and ab-
sorption take place between these discrete levels. The authors focused on the
possibility of effectively increasing the frequency of the incident phonon flux
(“up-conversion,” which turned out to be not very effective). It is interesting to note
that the curve describing the spectral dependence of the integral phonon flux is
negative in a certain frequency range beginning at This also indicates the
existence of an analog of the phonon-deficit effect under external (in this case,
phonon) pumping.
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6.3.3. Recombination Peak

As to the peak in the spectral curve (see Fig. 6.2a) at frequencies
its origin is determined by the recombination of quasi-particles,

shifted by an external field far from the gap edge on the energy distance with
the quasi-particles remaining at the edge. This is quite obvious in our examination.
Indeed, as was noted in Sect. 5.1, single-quantum transitions are characteristic of
this situation. Consequently, excess quasi-particles are created primarily at energies

As we see from Eq. (6.3), the contribution to the quasi-particle distri-
bution function is singular at such energies. However, since our study is restricted
by a linear (in intensity of the external field) approximation, it follows from (6.4)
that the main role is played by the recombination of nonequilibrium quasi-particles
(at energies with equilibrium quasi-particles (at energy level near
the gap edge, where the density of electron states is high. As a result of this
recombination process, the phonons with energy are produced.

6.3.4. Exclusion of Divergence

Concluding this section, we discuss the logarithmic divergence of the relaxa-
tion flux at frequencies (see Figs. 6.1 b and 6.2a). This formal divergence
is connected to the singularity in the density of electron levels, which is charac-
teristic for superconductors in the absence of external fields, and appears in the
approximations used. This logarithmic divergence vanishes if one accounts for the
smearing influence of the electromagnetic field on the electron BCS density of
states. Other methods for exclusion of such divergencies also exist [e.g., one can
bound Eq. (6.3) using the Pauli principle]. They do not, however, influence the
results in any significant way.
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7

Time-Dependent Ginzburg–Landau
Equations

7.1. ORDER PARAMETER, ELECTRON EXCITATIONS, AND
PHONONS

The external fields acting on a superconductor may lead to nonstationary phenom-
ena that have to be described by dynamic equations. However, as was shown in the
previous chapters, the set of nonstationary equations in the general case is very
complicated and in addition to the equations for the main parameters characterizing
superconductivity (such as it includes generalized kinetic equations for
distribution functions (see Sect. 3.3). In the vicinity of the critical temperature (in
analogy with the stationary case, Sect. 1.3), one can simplify the general time-de-
pendent Ginzburg-Landau (TDGL) equations by considering the gapless case (Sect.
2.2). For finite-gap superconductors, the attempt to simplify the general scheme
encounters serious difficulties connected with the nonlocal kernels of the integral
equations governing the order parameter. To derive the equations for such super-
conductors, one needs to account simultaneously for the condensate, the excita-
tions, and the interaction between them. The success achieved in this direction1–6

is due to progress in the kinetic description of single-particle excitations in non-
equilibrium superconductors (see the review articles in Refs. 7–10). The dynamic
equations for the order parameter were obtained in their most complete form by
Watts-Tobin et al.6 But in some respects the theory still had some deficiencies,
which we have tried to correct.

In many situations, the possible deviation of the phonon system from equilib-
rium should be taken into account. The role of phonons in the problem considered
is twofold. First, the nonequilibrium in the phonon system may be essential for the
dynamics of the order parameter. Second, the time variations of the order parameter
modulus might lead to excess phonon generation and to phonon exchange between
a superconductor and its environment.
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7.1.1. Basic Kinetic Equations

We will use here the generalized kinetic equations11,12 for energy-integrated
Green–Gor’kov functions. As was shown in Chap. 4, these equations are still valid
in the case where the phonon system is not at equilibrium. In a real-time approxi-
mation,* the equations may be written in a very compact form:

Here

where is the Fermi momentum and r is the quasi-classical coordi-
nate, the Fourier transform of which is denoted by k. In Eq. (7.1) (A, ) are the
electromagnetic field potentials

7.1.2. Normalization Condition

Equation (7.1) must be supplied with the normalization condition, which
allows us to select the necessary solution of homogeneous (relative to the

equations (7.1):

*In Eq. (7.1) the integration over the intrinsic spatial coordinate (or, depending on representation, over
the momentum variable) is assumed in general.
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We wrote this condition in Sect. 3.3 (see Eq. 3.68). It may be proven in the following
way (see, e.g., Ref. 5). Equation (7.1) may be presented in the form

where the operator as follows from Eqs. (7.6) and (7.1), is

Since the convolution * is commutative (which follows directly from its definition
in 3.70), it is easy to see that the condition

is compatible with the equation

which follows from Eq. (7.6). The value of a constant in (7.8) can be obtained by
considering Eq. (7.8) either in a superconducting region that is in an equilibrium
state, or in a normal area, where . The latter option is simpler, and it is possible
to calculate the constant immediately. Larkin and Ovchinnikov12 introduced the
normalization in which Because a particular value of this constant is of
no importance, we will retain the normalization const , used earlier.

7.1.3. Definition of Order Parameter

We will now use the results obtained in Chaps. 3 and 4. The self-energy
function is an additive quantity that contains certain terms corresponding to the
interaction of electrons with impurities, with phonons, with each other, and so on.
The nonequilibrium order parameter in a weak-coupling limit is the
dimensionless electron–phonon coupling parameter) is defined by the formula

where the self-energy function representing the interaction of electrons with pho-
nons is (see Sect. 4.5):
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The phonon propagator is expressed in terms of the nonequilibrium phonon
distribution function by the relations:

When phonons are in equilibrium, the contribution of the second term in Eq. (7.11)
is small by the parameter so to find one can use the simplified equation
that follows from Eqs. (7.10) to (7.13)

If the phonon distribution function is localized at energies and has
no singularities as a function of a real argument (this will be assumed further),
Eq. (7.14) may be applied to the situations with nonequilibrium phonons.

7.1.4. Nondiagonal Collision Channel

To obtain the propagator , one can use the equation that follows from
Eq. (7.1) for the nondiagonal “Keldysh” component. Separating in Eq. (7.1) the
virtual processes (see Sect. 4.1), which leads to Eq. (7.14), and ignoring the
renormalization terms, one finds the expression for the (4.2):

i

where the coefficients are connected with the self-energy functions [the defini-
tion of these quantities follows from a comparison of Eqs. (7.15) with (4.2)]. Taking
into account the nondiagonal channel in the kinetic equation for the electron-hole
distribution function we get the canonical form of the collision integral. We
recall here that the general expression for the which satisfies the
normalization condition (7.8), was discussed in Sect. 3.3, where the functions ,
and were introduced [see Eq. (3.72)]. These functions connect Green’s functions
with the distribution functions of electronlike  and holelike excitations.
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7.1.5. Spectral Functions

According to Eqs. (3.77), (3.79), and (3.80), the functions  f1 and f2 (as well as
are of a general type, i.e., they have definite only in absence of an

external electromagnetic field. In the latter case they are equal to

where is the energy damping of electrons. Introducing also the functions

we can express the as

7.1.6. Charge Density

In expression (7.22), only the lowest convolution corrections are kept (the
contribution from the is negligible).
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Using Eqs. (3.99), (3.77), (3.79), and (3.80), one can establish that in super-
conductors the charge density in the above approximation must have the form

which is strictly gauge-invariant. [Note that in Refs. 2–6 a slightly deficient
expression for is given; it may be obtained from Eq. (7.23) if which is
not fulfilled at

Separating in (7.14) the equilibrium part and making standard calculations (see
Sect. 1.4), we get an equation for the order parameter near

where is the diffusion constant and  is the Riemann

7.1.7. Gap-Control Term

Equation (7.24) for (r,t) contains a “gap-control” term:

where . The nonequilibrium functions and should be found
from the kinetic Eq. (7.1), where one can assume the phonon system to be initially
in equilibrium. Note that the terms generated by make insignificant contribu-
tions to Eq. (7.24) because the function is nonzero at Only the values
of play a major role in the integrand of (7.25). For this reason, one can neglect
the terms proportional to in expression (3.77), which then takes the form

From the kinetic equations for and in the absence of the potential  in the local
equilibrium approximation, it follows that

We will briefly follow the derivation procedure of these relations to clarify the
essence of local equilibrium approximation.
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7.1.8. Local-Equilibrium Approximation

If the characteristic frequencies and gradients of the electron system perturba-
tion obey the relations*

where is the damping caused by inelastic processes in the electron system, then
in the kinetic equations [(7.1) and (3.63)] that define the functions and , one can
neglect the left-hand sides and the terms connected with the Hamiltonian This
means that the functions and do not depend explicitly on the space
coordinate r and time t. Only implicit dependence on r and t remains through
the parameter (r,t), which enters into (7.1). This means that owing to effective
inelastic collisions, the behavior of single-particle electron excitations in an
external field is fully determined by the evolution of the order parameter that
governs the formation of the distribution function (and does not depend, e.g., on
the diffusion mechanism). In other words, local equilibrium between the system of
single-particle excitations and the pair-condensate is taking place.

7.1.9. Determination of the

In this approximation from the diagonal components of (3.63), the equation
for the follows:

[the series expansion of functions and in (7.29) may be restricted to the
first terms owing to the quasi-classical conditions]. Inserting expression (7.22) into
(7.29) and omitting convolution corrections, one finds

where the transformation rule is used and the inequalities

have been taken into account. The functions are expressed through the
collision operators obtained in Chap. 4:

*We also assume the quasi-classical character of the external fields A(r,t) and
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Furthermore, we will assume that the electron-phonon collisions provide the most
effective channel of inelastic relaxation and represent in the
form

where

In Eqs. (7.34) to (7.36), the function is the distribution function of phonons,
which as yet is assumed to be an equilibrium one:

In the vicinity of critical temperature, where for the collision integral
the relaxation-time approximation may be used*

*This opportunity occurs because the perturbation of the distribution function is localized in an energy
range smaller than the temperature diffusion scale. Because of this, the term containing the nonequili-
brium distribution function in the integral form is smaller than the “free” term. We stress this
circumstance because it remains valid also in derivation of the function (see later discussion).
However, sometimes the approximation is criticized and, moreover, negated (see, e.g., Ref. 6) as
violating a condition related to the particle number conservation. In our calculation scheme, the missing
term automatically appears from the gauge-transformation rules for the functions and which were
established in Sect. 3.3. (An approach equivalent to that of Ref. 6 is used in Sect. 13.3.4.)
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where

Using Eqs. (7.32), (7.33), and (7.38), we find from (7.30) the first expression in
(7.27).

7.1.10. Determination of  the

Let us now determine the function The nondiagonal elements of Eqs. (3.63)
and (7.15) are essential, because the first term (proportional to in Green’s

functions and (7.22) does not contribute to the equation

Accounting for this, one finds

The same approximations are used here as in deriving Eq. (7.29). Using the
relation

one obtains from Eqs. (7.38), (7.41), and (7.42) the second part of expression (7.27).
The potential may be restored now in (7.27) with the help of Eq. (7.26),

where one should make Omitting the term proportional to [its
contribution to Eq. (7.27) is small], one finds

As for the function the quadratic in the term may be omitted—it is
proportional to The linear term, which takes into account the transformation
rule for gives the equation
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7.1.11. Order Parameter Equation

Utilizing Eqs. (7.43) and (7.44), the equation for an order parameter [Eqs.
(7.24) and (7.25)] takes the final form

The function in (7.45) is due to the contribution of the nonequilibrium
phonon subsystem.

7.1.12. Contribution of Nonequilibrium Phonons

We will now trace the origin of If the phonons are shifted from
equilibrium, the collision integral (7.38) acquires the contribution

which follows from Eq. (7.33). The factor is the functional and is linked with
the deviation of the phonon dis tr ibut ion func t ion from the equ i l ib r ium

This leads to the redefinition of the function (7.43), which now has the form

The function (7.44) remains unchanged. Substituting (7.48) into (7.25), one finds
for ) the form
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In the next section we will discuss the contribution to Eq. (7.45) introduced by

7.1.13. Contribution of the Gauge-Invariant Potential

Another peculiarity of (7.45), compared with Refs. 2–6, is the additional term,*
which is proportional to Such a term was obtained by Galayko15 in a static limit
of the dynamic equations. The presence of the nonlinear term in (7.45) is critically
important. If the relation for the gap follows from (7.45):

However, if the expression for the gap in a spatially homogeneous and
stationary case is found from the equation

Hence the initial static pattern cannot exist at (this was first pointed out
by Galayko).16

Based on the assumption that the behavior of superconductors in a nonstation-
ary steady state has a close analogy with the usual thermodynamics (this principle
was discussed in Ref. 17 for superconductors; see also Ref. 18 for more general
cases), one can write the free energy functional of the Ginzburg–Landau type for
Eq. (7.45) by discarding the first (dynamic) term. Considering as a parameter in
this functional, it is easy to verify that the absolute minimum of the functional is
obtained at Thus in thermodynamic equilibrium, the value of vanishes.

7.1.14. Charge Density and Invariant Potential

Since it follows from Eqs. (7.23) and (7.27), the charge density in a local
equilibrium approximation is

*This term is presented in a form that guarantees the gauge invariance of Eq. (7.45), i.e., we have replaced
We have resorted to this procedure because in the derivation of (7.45) the higher time

derivatives were not kept. In more consecutive calculations, the term might be replaced, for instance,
by the operator
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Comparing this value of with the density of electrons in the normal state
one has

Note that in the gapless limit

7.1.15. Phonons and Order Parameter Dynamics

Now we return to the definition (7.45) of the function which contains
the nonequilibrium addition to the phonon distribution function. Substituting
the value into (7.45), one would find the value of to be an order
of unity that greatly exceeds all other terms in Eq. (7.45). In reality, however, the
value of must be determined from the phonon kinetic equation, which has the
form

where  is the phonon-electron collision integral, and is the operator
describing the phonon exchange of a superconductor with its environment (the heat
bath). In the simplest approximation,19,20 the latter may be defined as

where is the phonon escape time (into the heat-bath) and d is the
characteristic dimension of the superconductor. The inelastic collision integral

was derived in Sect. 4.5 in the form

Moving in this expression to the functions and in the local equilibrium
approximations (7.48) and (7.44) (omitting the term with in 7.48), and express-
ing and through N1 (7.16) and R2 (7.20), respectively, one arrives at

where the functions are defined by the relations
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with

The behavior of the for various parameters of superconductors is
illustrated in Fig. 7.1. Under the same conditions the function is practically
linear:

These relations taking into account (7.47) in principle allow one to find
and to study the interplay between the dynamics of the order parameter and

nonequilibrium phonons. We will define a “generalized local equilibrium approxi-
mation” (between the pair condensate, electron excitations, and phonons) as the
approximation in which (besides the fulfillment of the conditions of the local
equilibrium approximation) the characteristic frequencies (and wave vectors) of
variations of are small compared with so the left side of Eq. (7.54)
may be neglected. In this case the function depends on r and t implicitly,

through From Eqs. (7.54) to (7.62) it follows that

The solution of the integral equation (7.63) may be sought in the form
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In doing this, Eq. (7.63) is transformed into the equation

where . The function depends on and
parametrically  and may be found from (7.65) by numerical methods. Rough
estimates based on Eq. (7.65) show that

Substituting (7.66) into (7.47) and (7.49), one can see that the quantity
in Eq. (7.45) significantly renormalizes the term, which is proportional to
(this term changes by its order of magnitude at . The accurate

evaluation of this term is outside the scope of this analysis. A detailed investigation
is necessary for situations where the conditions of the generalized local equilibrium
approximation are violated; in those cases, the value in (7.66) may turn out to be
underestimated.

Consider now the limiting case when according to Eqs. (7.54) and
(7.55) This condition is fulfilled when for example, in the case
of a superconducting film or filament (see the discussion in Sect. 3.2). The phonon
radiation from the superconductor into the surrounding medium (the heat-bath) is
then determined by Eq. (7.55).
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According to Sect. 6.1, the intensity of the phonon flux emitted by the volume
V in  a  spectral  range is

where Using expression (7.55) for one obtains

Thus, any variation in the order parameter modulus is accompanied by the
exchange of phonons between the superconductor and the heat-bath (i.e., the
emission or absorption of phonons is taking place). We will use this circumstance
in further analysis (see Chap. 9).

7.2. INTERFERENCE CURRENT

An expression for a nonstationary current enters the set of TDGL equations.
As we will see in this section, the current in nonequilibrium superconductors in the
vicinity of consists of superfluid, normal, and interference components.

7.2.1. Usadel Approximation

The expression for the current may be derived from Eq. (2.85) by the method
of analytical continuation (see the discussion at the end of Sect. 3.3). In our notation
it has the form

where is the Keldysh vector part of the energy-integrated matrix Green–
Gor’kov (7.2). In the Usadel approximation,21 the may be
assumed to be in the form is the isotropic part of

Because the self-energy parts of the interaction of electrons with impurities may be
written as (see Sect. 2.1):
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where is the transport mean-free-path time, one can show that in the adopted
normalization (7.8) the solution of kinetic equation (7.1) for the vector harmonic

is expressed as

where

and the isotropic  part   in (7.72) obeys the relations

On the basis of Eqs. (7.69) to (7.75) we have

where

and the spectral functions (3.66), according to Eqs. (7.16) and (7.19) to (7.21)
are*

* In writing the spectral functions (7.78) we have completely ignored the influence of external fields A
and ; thus the expression (7.78) actually corresponds to the gauge For an arbitrary gauge with

the function (and, in particular, changes (see Sect. 3.3). This, however, produces no
substantial changes in the expression for the current in a quasi-classical approximation.
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In further transformations it is assumed that T is close to , so the following
inequalities are held:

This means in particular that the function does not depend on . We also assume
that the functions and do not explicitly depend on time. The terms with the
derivatives and terms with higher- order derivatives and their products
(whose contributions to the current are small) are omitted. The symmetry properties
of the integrand are taken into account ( is an odd function of is an even
function of Note also that in calculating the trace in (7.76) several of the terms
can be reduced to total differentials, which vanish upon integration. Furthermore,
as follows directly from (7.79), the following identities hold:

On the basis of the above arguments, one finds the resulting expression for the
significant (even in part of the trace in (7.76):

where the upper dot denotes a time derivative, and Defining the
superfluid momentum by the usual relation

the expression for the current can be presented as
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where the normal conductivity is

At this stage we see that in the gauge expression (7.83) coincides with
Schmid’s result.9 The last term in (7.83) with the time derivative (which was omitted
in Refs. 2–6) vanishes if the dispersion dependence of is ignored. Substituting
the equilibrium value into this term produces a nonzero result, which
contains an additional small factor . Since this term is also proportional to
another small parameter , we omit it below. Expression (7.83) is fundamental
for further analysis. Because it has been derived here in an arbitrary gauge, one can
be assured that the calculation scheme is self-consistent. The functions

in (7.83) should gen-
erally be determined from the kinetic equation for the distribution of the nonequili-
brium electron-hole excitations . In many cases, however, it is sufficient to
substitute the equilibrium function into (7.83). As was noted in Ref. 22, this
procedure was carried out in Refs. 2–6 and 9 insufficiently correctly. Thus, certain
terms whose contribution is sometimes not small were omitted from the final
equation for the current. We will analyze the situation in more detail below.

To transform the terms containing and in (7.83), we use the definitions
of the gauge-invariant potential

and the associated electric field

As follows from (3.77), in the presence of a potential the function is nonzero
and for is equal to

Substitution of (7.87) into (7.14) leads to

In equilibrium theory, the current in dirty superconductors is given by the first
term in (7.88), where one should make (i.e., in an equilib-
rium situation, the term, which is proportional to E, vanishes). In the nonequili-
brium case, two additional groups of terms arise if one inserts the equilibrium
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function into (7.88). The reason for this is the relation (7.89), which follows
directly from (7.16) and (7.10) to (7.21):

The integral (7.88), taking into account (7.89) and inequalities in (7.79), can be
evaluated in analytic form. In the time-dependent theory, it is necessary to evaluate
this integral for an arbitrary ratio of and [The equilibrium value of in a
finite-gap superconductor is large in comparison with but in the dynamic case

may sometimes vanish at some points!]
We will inspect the integrals in (7.88) in more detail. If the factor
acts in fact as the of the argument

and thus the first term in (7.88) gives

(this result does not depend on and holds for arbitrary even if the
becomes “smeared”). The second term in (7.88), taking into account

(7.89), takes the form

Expression (7.92) can be treated as the sum of two integrals

where satisfies the relation (recall that
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Using the relation (7.95), one can expand in the first integrals in
(7.95), keeping only the lowest-order term in a small parameter and use for
another integral the approximation

Thus the second term in Eq. (7.88) takes the form

One can now integrate (7.97) directly and find for (7.98):

where K(x) and E(x) are the complete elliptic integrals of the first and second type,
respectively. In the limiting case they have the following asymptotic forms:

and

7.2.2. Current Components in the Vicinity of

Expression (7.98) may now be written in the form

where the superfluid and normal components of the current are given by the
standard relations
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and the “interference” component is

The quantity (7.103) has properties of both the superconducting condensate and
the normal excitations. In fact, it describes some interference of two types of motion
occurring in the electron subsystem of the superconductor.

A comparison of (7.103) with (7.102) shows that the interference component
of the current is not always negligible. Using the asymptotic forms (7.99) and
(7.100) of the elliptic integrals, one can easily show that (7.98) takes the following
forms in the specified limiting cases

Equation (7.105) coincides with the expression for the gapless superconductor (see
Sect. 2.3); in this case the current consists of the normal and superconducting
components only. Thus the interference term in the “finite-gap” superconductor
stems from the strong correlation between the system of single-particle excitations
and the pair condensate. This correlation vanishes in a gapless regime.

Using (7.104) and (7.105), we can write the following rough approximation,
which reflects the behavior of the functions in brackets in (7.103):

This approximation is convenient for practical calculations.
Note that a logarithmic renormalization of conductivity, analogous to (7.107),

appears in the theory of both linear23,24 and nonlinear25,26 responses of a supercon-
ductor in a time-varying external electromagnetic field of the frequency for
example,
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Such a logarithmic renormalization of conductivity also reflects the interference
between normal and superfluid motions. Although the parameter near is
small, the corrections might be not negligible, because the logarithmic factor can
in principle be large. We should also mention that the interference described above
is closely related to the “drag” process investigated by Shelankov.27

7.2.3. More Complete Expressions

We used above the equilibrium approximation for the functions f1 and f2. To
find these functions [Eqs. (7.43) and (7.44)] in the time-dependent theory, the
nonequilibrium contributions must be taken into account. They may be expressed
in the form

The current component due to the function in (7.88) is vanishingly small and
can be ignored. However, the function whose contribution though small in
comparison with is dissipative. In general, this component need not be small in
comparison with The resulting current is given by the following expression in
the “local equilibrium approximation”:

This expression should be used in the Ginzburg–Landau equations instead of those
presented in Refs. 2–6.

7.2.4. Interference Current in Complete Form

The expression for current in the Ginzburg–Landau regime can be written in
the form

where
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This current (7.111) enters the Maxwell set of equations, which should be supple-
mented with two equations ensuing from (7.45). We will write down
these equations and prove the completeness of the resulting set.

7.2.5. Full Set of Equations

After separating the real and imaginary parts of (7.45) one finds*:

The superfluid momentum Q enters Eqs. (7.115) and (7.116). It is defined by the
relation (7.82) and is connected with the magnetic field strength H by

Recalling definition (7.86) of the electric field,

it can be easily seen that two of the Maxwell equations

*We also omit the term
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are satisfied identically due to (7.117) and (7.118). Note that in the equilibrium
Ginzburg–Landau scheme Eq. (7.116) coincides with the continuity equation
(because in that case). In nonequilibrium conditions, Eq.
(7.116) and the continuity equation

are independent. The second pair of the Maxwell equations may be written as

where and the charge density induced in a nonequilibrium superconduc-
tor by the external field is expressed in terms of the gauge-invariant potential by
(7.52). Thus the charge density, the current, and the electric and magnetic fields
may be expressed in terms of  and their derivatives. To calculate these (five)
quantities, we have two scalar equations [(7.115) and (7.116)] and the vector
equation (7.121). The scalar (the dielectric susceptibility) entering (7.121) re-
quires one more independent equation, which plays by the continuity equation
(7.120) [or, equivalently, Eq. (7.122)].

7.2.6. Boundary Conditions

This set of equations must be supplemented by the boundary conditions, which
may differ in various problems. For instance, at the boundary between a supercon-
ductor and a normal metal, one can write

where is some constant, usually taken as is an equilibrium
approximation and is the coherence length). In nonequilibrium conditions,
may differ from this value (see Ref. 28), but remains of an order of unity. At the
superconductor–vacuum boundary, the following conditions are reasonable:

where n is the vector normal to the superconductor’s surface. One should also obtain
the continuity of the magnetic field H and of the tangential component of the electric
field Some other boundary conditions are discussed in Chap. 9.
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We conclude this section by mentioning that is not necessarily a continuous
function of coordinates and time and may suffer discontinuity, so the solutions of
the equations given above may lie in a class of piecewise smooth functions.

7.3. VISCOUS FLOW OF VORTICES

7.3.1. Abrikosov Vortices

As was shown in Chap. 1, in Type II superconductors, the surface energy at the
boundary between superconducting and normal phases is negative. This results in
the presence of normal domains in Type II superconductors placed in a magnetic
field, which penetrates these domains. In isotropic homogeneous superconductors,
the domains form a regular structure (a vortex lattice*). Such a vortex state was
predicted by Abrikosov37 (see also Ref. 38) on the basis of the Ginzburg–Landau
theory. The magnetic field penetrating into the vortex core is screened by the
London currents, so the magnetic induction in the intermediate space between
vortices. With transport current passing through such a system, the Lorentz force
appears and acts on moving charges. In turn, an equal but opposite force acts on the
vortex system and pushes the latter into motion. Because the velocity of the vortex
lattice cannot increase indefinitely, the flow of vortices must have a viscous
character and be accompanied by energy dissipation. If this motion is stopped some
way, for example, by the trapping of vortices on imperfections of a crystalline lattice
(“pinning”), then the transport current remains superfluid. If pinning does not occur,
then ultimately the dissipation energy is eliminated from the kinetic energy of the
transport current, which ceases to be superfluid. To maintain this current, an electric
field should exist along the current direction. In this manner a resistive current state
is formed. We will use the nonstationary Ginzburg–Landau equations to describe
vortex motion in superconductors.

The velocity v of vortex lattice motion is connected to the vectors E and B by
the relation

We will consider only the weak magnetic fields: i.e., we will consider the
problem of the motion of an isolated vortex.

*In analogy to the case of a crystalline lattice, the vortex lattice can melt. This phenomenon was predicted
by Eilenberger30 (and Fisher31). It was demonstrated first in the high-temperature superconductors32

and afterwards in niobium.33 The reason it was not noticed earlier in low superconductors is the
narrowness of the temperature range of the liquid phase. Theoretical considerations, based on the Born34

criterion (the vanishing of the shear modulus at the melting point) are applicable to vortex melting35

and allow such tiny features of the phase transition as the lattice premelting to be considered.36
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7.3.2. Effective Conductivity: Definition

The immediate task is to obtain effective conductivity, which connects the
transport current E with the electric field E. To solve this problem we
use the method proposed by (see also Ref. 40).

We will apply the time-dependent Ginzburg–Landau equations (7.115) and
(7.116) in the form*

where

is the phase of an order parameter is measured in the units
(7.50).

The expression for the current is

where the coefficients and the function are obviously defined by
comparing (7.111) to (7.114), with (7.129).

7.3.3. Low-Velocity Approximation

If the velocity of vortex motion is small, then the solution of the system (7.126)
and (7.127) may be presented as

where are the Galilean transformed static solutions37 and
are the corrections, which are proportional to v and arise as a result of

deformation of the vortex structure during the motion. The static solutions are (we
use here the cylindrical frame of reference

*We ignore here the nonequilibrium phonon field, omitting also in (7.45) the term , which is quadratic
in E.
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The approximate expression (7.131) for the order parameter modulus follows from
the equation

In analogy to (7.130) we have the expression for the current

where

and is the correction to the superconducting current . For large
distances from the vortex core, the correction represents the transport current
flowing in the superconductor, and determines the effective conductivity Note
that strictly speaking, the contributions of normal and interference currents in
(7.135) should also be taken into account. However, these contributions are
small, because As to the value of it decreases as

Because the corrections to are needed only at the distances
it is not necessary to have the exact expressions for the quantities

and Instead, we will use a method39 that allows us to express the solution
in terms of static solution. One can easily verify the equality

where the integration (in the cylindrical frame of reference) is restricted by the
region and the polar radius obeys the
inequality .The vector d is as yet arbitrary. The right side of (7.136), using
the expression (7.131) and Eq. (7.127), can be transformed to

We have added a term into (7.137), which disappears upon
integration. Indeed, from the definition in Eq. (7.128), it follows that
(dropping the vector potential A). Thus:
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The second term on the right side of Eq. (7.138) vanishes owing to the electroneu-
trality condition div As for the first term, it transforms into a surface integral,
which is small in parameter,

7.3.4. Linearized Equations

On the basis of Eqs. (7.126) and (7.132) we can transform the first integral on
the right side of (7.137). From Eq. (7.126) it follows that the quantities and

obey the linearized equation

Taking into account that the functions are translational
invariant and satisfy the stationary equation (7.132), one finds that quantities

must satisfy the linearized static equation

(the vector d is now assumed to be small). Multiplying Eq. (7.139) by
subtracting the first from the second, we

obtain

One can see now that the r igh t side of Eq. (7.141) is equal to
. Thus, from the relations (7.136), (7.137), and

(7.141) it follows that:
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In deriving Eq. (7.142) the relation

was used. The quantity may be written in the form where is
governed by (7.127) and by the electroneutrality condition div from which

Calculating in (7.142) the angle integrals, we arrive at

7.3.5. Effective Conductivity: Results

Finally, the effective conductivity follows from (7.145) and (7.125):

where

Neglecting in (7.144) the small second integral, we get

This result coincides exactly with that of Larkin and Ovchinnikov,12 obtained by
direct solution of the generalized kinetic equation (7.1). Besides its self-sufficient
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value, the example considered demonstrates the possibility of using TDGL equa-
tions to describe nonequilibrium phenomena in superconductors.

7.4. FLUCTUATIONS

We will consider here some characteristic features of fluctuational corrections
to self-consistent treatments of superconductivity, such as GL or BCS theory. This
reveals the applicability limits of the self-consistent approach.

7.4.1. Ginzburg's Number

To elucidate the role of fluctuations, we will go back to the free energy
functional considered in Sect. 1.2. For simplicity we will perform calculations at

for the normal phase, where the equilibrium value is Then it is
convenient to denote the fluctuating value of the order parameter as The
fluctuation probability is governed by the expression

where is defined by Eqs. (1.46), (1.45), and (1.31), with Since we expect
the fluctuations to be small, it is sufficient to keep the second-order expansion terms
in the free energy functional:

Both terms are positive in (7.150), since
Let us now make a Fourier expansion of the fluctuating quantities in the volume

(for simplicity we will take below):

Since is real, Substituting (7.151) into (7.150) and integrating over
the volume, we find

As follows from (7.152), (7.149), and (7.152), fluctuations with different values of
k are statistically independent.
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Let us consider now the sum over states (a “partition function”) caused by the
fluctuations:

This yields the fluctuational contribution to the free energy of the system:

Performing straightforward transformations, we obtain:

[in writing Eq. (7.155) we took into account the relation
To evaluate the role of the order parameter fluctuations, one can

calculate the fluctuational contribution to the heat capacity which is defined
via the general relation

Since in (7.155) in a variation of T the most important contribution comes from the
temperature dependence of one can write:

or, taking into account (7.155):
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where the constant is a number 1. [One should note that the long-wavelength
fluctuations play the most important role in (7.158). Also, hereafter we will use the
absolute values of The symmetry of the behavior of fluctuating
quantities within this Ornstein–Zernicke description can be confirmed by direct
calculations at

We can now compare with some characteristic equilibrium value, such as
the jump in heat capacity at the transition point from a supercon-
ducting to a normal state. Using (7.156), (1.40), and (1.46), one can calculate

(7.159)

Thus the fluctuations are small if

(7.160)

As follows from (7.160), the mean-field theory has an applicability range only at
small values of the parameter Gi (usually called the Ginzburg number). Fortunately,
the Gi number is very small for conventional, low temperature superconductors,
and thus the mean-field theory is well applicable even very close to Indeed,
using for “clean” superconductors the values of and  which follow from
(1.183) and (1.188), we find

(7.161)

[in writing (7.161) we used (1.188), in which the density N of electrons may be
expressed as Usually so that
Ginzburg’s number is incredibly small for superconductors. To estimate Gi in the
case of “dirty” superconductors, we again need the microscopic values of pheno-
menological parameters (1.36) and (1.38). For these values we will compare Eqs.
(1.48) and (1.51) with (7.45) and (7.102), respectively. It follows then [for com-
pleteness we also provide here the relationship between and which is
analogous to (1.187) for the “dirty” case] that:
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and for Gi we obtain

which is also very small, so that usually the range of temperature fluctuations is not
of practical importance. It is worth mentioning once again that the smallness of the
Gi parameter permits us to apply the Ginzburg–Landau-type approach to the
description of superconductors. At the same time, it is wrong to conclude that the
smallness of Gi rules out the possibility of experimental observation of fluctuational
phenomena in superconductors: fluctuations may reveal themselves in one- or
two-dimensional samples.41–43 We will treat different mechanisms of resistivity
fluctuations in the next section.

7.4.2. Paraconductivity

Let us suppose that and there is a constant electric field E applied to the
metal. One can expect then that spontaneous fluctuations of the order parameter
create droplets of finite superfluid density, which will be accelerated by the electric
field, raising the normal conductivity Actually, the change of the conductivity
is small: but the temperature dependence is peculiar and thus could
be detected. Fluctuations of the order parameters may lead also to the specific
temperature dependence of the heat capacity in small superconducting particles.44

Following Schmid,45 we first treat the average (in thermodynamic sense)
current, coupled to the applied field, via the relation:

(7.166)

where (still hypothetical) conductivity equals

(7.167)

In Eq. (7.167) is the density of electrons fluctuating between normal and
superconducting states: and is the lifetime of electrons in the
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superconducting state. As noted, fluctuations at different wavelengths that contrib-
ute to the free energy (7.152) are statistically independent. In view of that*:

To obtain the value of one should consider TDGL equation (7.43). In the
fluctuational regime, Thus all the nonlinear terms, including contribu-
tions from the vector potential, as well as the phonon term could be
neglected, yielding

where for “dirty” superconductors. Since in
the linear approximation the relaxation time should not depend on the electric field
applied, one can discard the scalar potential in (7.169), and obtain for the Fourier
component the equation:

For the relaxation time of fluctuating components it follows then that:

To find the value of (7.167), one should compute

*Actually, there is a degeneracy in the system described by Eq. (7.152): the states with k and –k are
physically identical. Thus in expression (7.149) for the fluctuational probability of the value of

doubles. This causes the value of amplitude in (7.168) to be two times smaller:
To use the explicit form (7.168), one should perform in

expressions like (7.183) and (7.184) the subsequent integration over k over a single hemisphere of its
values (of. Ref. 46).
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As was demonstrated by Aslamasov and Larkin,47 the result of this summation
depends on the sample’s dimensionality. Indeed, since the minimal distance (the
“unit length”) in this scheme of calculation is restricted by the coherence length

the values of in (7.172) are restricted by the condition

(n is an integer) and when the characteristic length along the i-axis is smaller
than only the term contributes substantially is homogeneous
along that direction). Thus for bulk samples

while for thin films

so that in samples with smaller dimensionality, the fluctuations near are more
pronounced. For the one-dimensional case:

(7.176)

This phenomenon is called paraconductivity and was first described theoreti-
cally by Aslamasov and Larkin.47 The Green’s function technique was used and the
diagram for the current–current correlation function (shown in Fig. 7.2a) was
considered. Later Maki48,49 and Thompson50 took into account another diagram
(shown in Fig. 7.2b), which yields a different contribution that is dominant in some
conditions. We will consider both mechanisms without referring to these slightly
mysterious diagrams, but to the much more transparent TDGL scheme.

7.4.3. Aslamasov–Larkin Mechanism

The physics of the fluctuations outlined by Eq. (7.166) is rather transparent.
At the same time, an important question still remains open, namely, how to justify
Eq. (7.166) itself. The fact is that in thermodynamic equilibrium the supercon-
ducting current has a form (1.54), which is associated with the vector rather
than with the vector E. To proceed with this problem one should bear in mind the
relation (1.51). In view of the gauge . , adopted earlier for Eq. (7.169), it
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becomes clear that both the modulus and the phase of the wave function are
fluctuating, so that is proportional to

One can rewrite Eq. (1.51) in the form:

Following Abrikosov,38 one can represent in the form

and then use the TDGL equation in the form (7.169) to derive the value of
based on the known value of For a homogeneous electric field,

Since the field E is a static one, only low-frequency fluctuations
contribute to the response, so one can omit the time derivative in (7.169). Taking
into account that at the Fourier transformation one obtains from
(7.169):

so that

We will focus our attention on the most interesting case of “dirty” supercon-
ductors. Considering first the case of bulk samples, one can write

*A good insight into this problem was presented by Abrahams and
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Using the values for (see 7.169, 7.162, and 1.37), we arrive at

where and is the angle between the vectors k and E. For
the bulk sample we obtain

in accordance with Refs. 50 and 52. For thin films, the result is completely
independent of the material parameters

and is determined only by the value of the film’s thickness and the closeness to the
critical temperature.* We should note here the accord between (7.174) and (7.175)
and (7.183) and (7.184), respectively. It is interesting to mention that in the
two-dimensional case, a consideration45 based on (7.166) and (7.167) provides the
same numerical coefficient as the proper diagrammatic treatment!47

7.4.4. Maki–Thompson Mechanism

In the preceding consideration of the mechanism of paraconductivity we
referred to the superfluid component of the current (7.177), which resulted in a term
proportional to E.

Meanwhile,53 an expression of the same type follows directly from the inter-
ference term in the nonequilibrium current (7.114). Indeed, one can rewrite (7.114)
in the fluctuational limit

*We refer to the following values of integrals

arising in the calculation of (7.183) and (7.184).



188 CHAPTER 7. TIME-DEPENDENT GINZBURG–LANDAU EQUATIONS

The physical meaning of this term is, as discussed in Sect. 7.2, in the interference
between normal and superfluid motions of the electrons. As a result of the interfer-
ence, the normal motion described by the relation acquires an addition
(cf. 7.172):

In accordance with Sect. 7.2, the parameter which smears out the BCS singularity
in the single-particle density of states, should be taken as the maximum of possible
depairing factors related to (cf. Ref. 4),
and using (7.164) for the case of “dirty” superconductors, we arrive at

Substituting (7.167) into (7.187), one can confirm that the resulting expression has
exactly the same form*

as was used by Thompson.50 It was pointed out in Ref. 53 that this leads to the
Maki–Thompson conductivity Moving from (7.188) to integration over all
values of k (as was done in Ref. 50), we will get for the bulk sample:

which means that in this case

*To make the comparison easier, in expression (19) of Thompson,50 one should replace the derivative
of the digamma function by its numerical value:

**In view of the footnote on the degeneracy of the system (Sect. 7.4.2), the values of should be twice
as small as those given for both the 3D and 2D cases.
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For the samples of lower dimensionality, the value of which follows from
(7.188), is divergent: for thin films one should deal with expressions of the type

which demands a low-momentum cutoff In view of this factor, one can
obtain50:

Generally, the cutoff may be caused by internal or external pair breaking, owing
for example, to inelastic energy relaxation or the influence of the
magnetic field In the case of a
small cutoff the value of (7.191) may exceed (7.183) by an
order of magnitude. In the opposite limit of strong pair breaking (or very close to

tends to zero, as follows from (7.190). One might expect such behavior
since in the gapless regime the interference current components disappear in the
general TDGL description. It is important to note that the regularization procedure
for the case of restricted dimensionality is not trivial, even in absence of external
pair breaking: Keller and Korenman54 and Patton55 came to the conclusion that the
dominant contribution to this cutoff mechanism comes from the nonlinear self-in-
fluence of the fluctuations of the pair field. The related scattering of electrons is
more effective here than the inelastic single-particle scattering. Later the corre-
sponding process got an analog in localization from where the electron
phase relaxation time migrated into this area. We will
not consider this problem in more detail, nor different limiting cases for more
complicated physical situations (see, in particular, Refs. 57–91). Instead, we refer
the reader to the very interesting discussion presented by
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8

A Longitudinal Electric Field and
Collective Modes

8.1. LONGITUDINAL ELECTRIC FIELD

The appearance of new physical quantity introduces a new characteristic length
into the theory of nonequilibrium superconductivity. Recall that in Chap. 1, in
discussing the static description of superconductors, two characteristic lengths were
mentioned—the penetration length of the magnetic field and the coherence
length which characterize the spatial variation of the order parameter modu-
lus. A new characteristic value related to the presence of determines the penetra-
tion length of the longitudinal electric field E in a nonequilibrium superconductor.
We emphasize that the field E is not incorporated in the equilibrium theory, so such
a feature does not arise there.

8.1.1. Tinkham Expression for the Gauge-Invariant Potential

As was shown in Section 3.3, the Fourier transform of the charge density in
superconductors has the form*

(8.1)

Using the expressions for spectral functions given here, one can obtain a formula
in the quasi-classical limit

*To avoid misunderstanding, we emphasize the difference between notations for the Fourier component
of the charge density and the function related to the photon density of states.
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(8.2)

which is explicitly gauge invariant. We recall now the gauge-invariant potential

(8.3)

where 0 is the phase of the complex order parameter

(8.4)

In the gauge transformation (1.140), transforms as The condition
of the superconductor’s charge neutrality taking into account (8.2) provides the
relation (in the first order in

(8.5)

Writing (8.5) in the gauge using the relation (8.3) and iterating over one
finds in the first approximation

(8.6)

This is a familiar expression for the experimentally observed potential
introduced by This formula, as is clear from its derivation, is only the
first approximation to more general equations of the theory.*  At the same time,
treating in the expression (8.3) as the chemical potential of the paired
electrons and referring to as the chemical potential of normal electrons, one can
interpret in general, as the difference between the potentials of the normal and
superfluid components of the electron liquid.

8.1.2. Normal Metal—Superconductor Interface

As in the cases of lengths we turn to the Ginzburg–Landau
equations (generalized for nonstationary problems) and study the process of current

*Using the subst i tut ion expression (8.6) may be presented in the form
. Because the value of is commonly identified with the excitation’s charge

in superconductors (see Sec. 1.1), usually the gauge-invariant potential is related to the charge
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flow across the boundary between the superconductor and a normal metal (this
problem was considered by Rieger

We will consider first the case of a gapless superconductor. The equation for
an order parameter in this case has the form (see Sect. 2.3):

where

Let the superconductor occupy the region and the normal metal (Fig.
8.1). The equation for in the stationary case of interest coincides with the static
Ginzburg–Landau equation:

where is the value of the order parameter modulus The imaginary
part of Eq. (8.7) coincides with the continuity equation, which has the form

Figure 8. 1. The NS-junction investigated, (a) Current flowing across the NS-boundary; (b) the electric
field E and the order parameter modulus as functions of the x-coordinate for the current flow in the
gapless superconductors; and (c) the same for finite-gap superconductors.
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in the gauge [in this gauge, according to Eq. (8.3), In deriving (8.11),
the expression for total current density in a superconductor was used:

We will not seek the explicit solutions of Eq. (8.15).* The form of this equation
itself shows that the potential and the related electric field E descend at a distance
an order of Hence the characteristic descendence length of the electric field
(usually denoted as for gapless superconductors is of the order

8.1.3. New Characteristic Length in Superconductors

We will estimate now for finite-gap superconductors. To tackle this problem,
we have to use the set of dynamic Ginzburg–Landau-type equations for pure
superconductors, which are derived in Sect. 7.1. Separating in (7.45) the real and
imaginary parts in analogy with (8.9) and (8.11), one obtains:

*This solution is described by a hypergeometric function.4
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We emphasize that in the present case the continuity equation

and Eq. (8.18) are independent. Also, using the expressions (7.111) to (7.114) for
the current j, and considering the stationary case, when one finds an
equation for the potential in the form*

Because we are interested in the case of finite-gap superconductors, we can put in
(8.20)

(Recall that in 8.20 is the energy damping of single-electron excitations, which
in the case of interest must be significantly less than the gap in the electron
energy spectrum.) Thus (8.20) may be presented in the form

where

Hence the penetration depth of an electric field into the superconductor in the
vicinity of exceeds the length of the energy relaxation of electron excitations,

which in its turn may be substantially larger than (Fig. 8.1).**

*We neglect here the contribution provided by the interference current, since the parameter
considered small.

**For example, in aluminum (see Table 10.1 in Sect. 10.2) and thus in a pure metal mm.
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Because Eq. (8.23) contains in the denominator, l and
hence the electric field penetrates further and further into the bulk superconductor.
Thus a natural transition from a superconducting to a normal state occurs at

Concluding this section, we would like to emphasize that in accordance with
definition (8.3), which is the basic one for the value both the single-particle
electron excitations and the Cooper condensate contribute to the creation of the
electric field in superconductors. It would be wrong to state that the potential
arises as a consequence of the branch population imbalance only, as would follow
from Eq. (8.6). This expression was derived in a fixed gauge and is a consequence
of the assumptions made in Sect. 8.1. Note also that in thermodynamic equilibrium

—this value corresponds to the absolute minimum of the free energy.

8.2. CARLSON–GOLDMAN MODES

8.2.1. Damping of Collective Oscillations

The existence of weakly decaying collective excitations in superconductors
came under discussion immediately after the appearance of the BCS microscopic
theory. In particular, the weakly damping oscillations of the order parameter, which
have a soundlike spectrum in a neutral Fermi liquid, were discussed by Bogoljubov
(see, e.g., Ref. 5) and Anderson.6,7 Later it was realized that these oscillations are
connected with the longitudinal vibrations of electron density. So it became
necessary to account for the Coulomb interaction. The Coulomb interaction shifts
these oscillations into the range of plasma frequency. Consequently, the specific
superconducting characteristics cannot be important to these oscillations, because
the scale of superconducting energies is much less than the plasma one.

In the two-fluid hydrodynamics of superfluid helium, certain kinds of weakly
damping collective excitations are known.8 Among them the first, second, and
fourth sounds represent three-dimensional oscillations with soundlike spectra.

In superfluid helium, the first sound is connected with the density oscillations
of normal and superfluid components. In the charged superfluid system, the
frequency of these oscillations, along with the Bogoljubov–Anderson modes,
would be displaced toward the plasma frequency region. The same occurs with the
fourth sound, which is connected with the oscillations of the superfluid component.
The second sound represents the oscillations of temperature (entropy), not the
density oscillations of the electron liquid and, in principle, might be detected in
superconductors. However, as the investigations of Ginzburg9 and Bardeen10 have
shown, the damping of the second sound, is very large in practically any real
experimental conditions.

The appearance of the potential (and of the related electric field) in super-
conductors brings into existence a new type of sound mode that has no analogy in
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superfluid helium. Such collective oscillations, reported first by Carlson and
Goldman,11 reveal themselves in the high-frequency range

During such oscillations the total current density equals zero, i.e., the normal and
superconducting currents are oppositely directed. The zero value of the total current
and hence of the magnetic field, makes it possible for these oscillations to exist in
the depth of a superconductor, because there are now no restrictions related to the
Meissner effect. With the Carlson–Goldman oscillations, the longitudinal electric
field

appears in the superconductor, although the value of is small: . this
ensures the weak damping of oscillations.

8.2.2. Dispersion of the Charge-Imbalance Mode

A simple description of the Carlson–Goldman oscillating mode, which is
based on the generalized dynamic equation (8.18), was introduced by Schmid12 and
Schön.13 We will reproduce this approach in some detail. In the limit of finite-gap
superconductors, Eq. (8.18) takes the form

The dynamic equation (8.27) was obtained on the assumption of small characteristic
frequencies

In the opposite to the (8.28) limit, it may be rewritten as

As before, we assume the condition which was used in deriving (8.27).
Taking into account expressions (7.113) for and (7.114) for and also the
above-mentioned relation

we find from (8.29) a dispersion equation12,13 for the Carlson–Goldman mode
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which corresponds to propagation of the longitudinal wave exp with
the velocity a and the damping

We note that the velocity of propagation of the Carlson–Goldman mode is greater
than the velocity of the second sound by the factor

8.3. STABILITY AND BREAKING OF COOPER PAIRS

We will consider now the instabilities that may occur in superconductors,
driven by the external perturbation from equilibrium, assuming that the possible
instabilities rise so fast that any inelastic scattering process could be neglected. In
the instability time domain, the distribution function may then be considered as a
stationary one, so that the main evolution takes place in the system of paired
electrons.

8.3.1. Collisionless Dynamics for Spatially Homogeneous Modes

Since Cooper pairs of a superconductor constitute a bound state of two
fermions having identical masses, the diagram technique of Bethe and Salpeter,14

developed in 1951 for relativistic quantum field theory, is an effective tool for
describing the excited Cooper pair field. The original method14 considers the
two-particle Green’s function, which describes the spectrum of collective oscilla-
tions in the case of a two-particle system (e.g., the energy spectrum of positronium
in quantum field theory15). A very similar approach was used by Vdovin in the case
of triplet pairing16 and later by Aronov and Gurevich,17 who considered the
two-particle Green’s function for a system of singlet pairs. In the latter case attention
was focused on the vertex function

in the pairing channel on the basis of the effective four-fermion BCS Hamiltonian
(1.104).

An alternative although simpler approach was carried out by Gal’perin et
who used the generalized kinetic equations in the collisionless limit. We
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will develop the latter approach, starting from the technique of energy-integrated
Green’s functions accepted in this book.

In a collisionless regime, when the characteristic frequencies of the system’s
evolution are much higher than the reciprocal time of the energy relaxation of
electrons:

one can omit the terms in (7.15) that correspond to inelastic collisions. In this
limit Eq. (4.1), which describes spatially homogeneous cases, can be rewritten in
the form

We are discussing here the time-dependent problem, which can involve the branch-
imbalance potential (8.6) due to the asymmetry between As was argued
by it is simpler to solve spatially homogeneous time-dependent problems
in the rather than in representation. To take an advantage of the -repre-
sentation* we will multiply both parts of (8.35) by   with a subsequent
integration over Multiplying the result by   integrating over  (which
brings up the time variable t), and using the relations (4.56) to (4.58), we can rewrite
the system of equations in (8.35) in a very simple form

The collisionless equations (8.36) to (8.38) were originally derived by Volkov
and Kogan22 to discuss quantum relaxation of the order parameter. Since we have
omitted the term in (8.35), which in the supposed case of is equivalent to

*In principle, one can investigate collective modes of nonequilibrium superconductors in
sentation, as was demonstrated for the case of  superfluid
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the gauge the time derivative of the steady-state value of the phase equals
so that the proper function will acquire an

additional time-dependent factor For our purpose it is not necessary
to keep these factors explicitly, and we will remove them. The influence of external
fields (e.g., related to the action of or tunneling) is taken into account by
considering the function as nonequilibrium.

8.3.2. Dispersion Equation

We will denote the steady-state solutions of (8.36) to (8.38) as and
In view of (8.38), it is meaningful to introduce the function

As follows from (8.36), For the function we have from (8.37):

Provided the self-consistency equation (8.38) has the usual form (see, e.g., 1.153)
in equilibrium, the function should obey the relation:

where The generalization of (8.41) for a nonequilibrium steady-
state is straightforward:

To confirm (8.42), one can refer to the definition of propagators (3.91) and (3.92)
and directly integrate over the frequency variable For the
states with (e.g., for isotropic distributions) this results in (8.40) and (8.42)
up to the sign.

We will now look for the solutions of Eqs. (8.36) to (8.38) in the form:

*In Sect. 4.3 we noted the sign difference between the Eliashberg and Keldysh definitions of these
functions.
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One can consider in (8.45) as a real value function, so that
From (8.36) and (8.43) it follows also that Re Thus, using the notation
(' ) and (") for real and imaginary parts of the functions [e.g.,
we can write

Equation (8.38) for A(t) reduces to

After simple algebra one can obtain from (8.46) to (8.48) for the Fourier compo-
nents

Substitution of (8.51) and (8.52) into the Fourier transforms of (8.49) and (8.50),
respectively, yields a coupled system of homogeneous equations. Setting the
determinant to zero, we obtain the dispersion equation for oscillating modes in the
form:

where
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In the case of particle-hole symmetry, the left-hand side of (8.53) vanishes, and we
arrive at the equation first obtained in Ref. 17. It should be noted that the equation

coincides with the self-consistency equation for the gap   [later in this section we
assume is a real parameter, determined for the nonequilibrium steady-state case
via Eq. (8.55)].

8.3.3. Stability Analysis for Particle-Hole Symmetry

Consider first the case of a normal metal. the dispersion equation
(8.53) for reduces to

For a given function Eq. (8.56) has complex roots: If the roots
are located in the lower half-plane, then the state is stable. At the action of the
external fields the function varies, so that at certain values of external parame-
ters the root may shift from one half-plane to another (which corresponds to the
change of sign of The boundary of stability is determined by its crossing of
the real axis. This occurs when the root becomes real. Separating the imaginary part
of (8.56), using the relation (  indicates the principal part)

we obtain the condition that regulates the change of the sign of the imaginary part
of (8.56):

If the energy is counted from the reference point at which one obtains
from (8.58) an unstable mode The real part of Eq. (8.56) transforms
correspondingly to the equation
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which coincides in equilibrium with the equation determining the critical tempera-
ture [cf. (1.154) and (1.156)], or, in more general terms, the stability boundary
of the nonequilibrium state.

To consider the superconducting state in the case of symmetry between the
electron-hole branches, we will rewrite Eq. (8.53) (with the left-hand side equal to
zero) in the form:

where the functions k and are defined by the relations

As mentioned, the equation coincides with the equation for stationary
values of the nonequilibrium gap. Substituting into (8.60), we see that this
equation may be decomposed into several co-factors. Two ofthem yield the roots

and two others lead to the equation

Hence the stability boundary may be determined by Eq. (8.63). As in the case of
normal metal, we will substitute in this equation, and then the
stability boundary is determined by the change of the sign of Separating the
imaginary part in (8.63) [using Eq. (8.57)], one finds that the stability boundary is
determined by either one of the equations:

The real part of Eq. (8.63) [together with the condition (8.64) or (8.658)]
determines the values of the external parameters at which the instability in the
nonequilibrium state occurs. In case of (8.64) this equation has the form



(8.66)

while in (8.65) it follows from (8.63) and (8.61) that:

(8.67)

[the index i in (8.67) enumerates the solutions of Eq. (8.65)]. For Eqs. (8.66) and
(8.67) to have solutions, the function must be of a variable sign. If in
the function in the substantial for integration range does not exceed the
value 1 then the superconducting state is stable.

If the  function changes its sign only once, then Eq. (8.67) has no
solution. The stability boundary is determined by Eq. (8.66). In this region of
stability, nondamping collective modes with frequencies may exist in the
system. They are defined by the following dispersion equation

which determines the frequency of undamped modes This instability, as
seen from (8.66) and (8.68), is connected with the vanishing of the frequency of
one of these collective modes.

If the function changes sign more than once, then solutions of
(8.67) may also appear. In such a case, the stability boundary is defined, naturally,
by the mode of the largest increment.

8.3.4. Instability at Branch Imbalance

Let us now consider the case of In this case the left-hand side of Eq.
(8.53) is nonzero:

as is the value of (8.6). Applying Eq. (8.55) twice to (8.53), one can reduce the
latter to the form
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which is valid for both superconducting and normal states. In writing down this
equation we took into account the fact that the presence of the potential in the
system of normal excitations shifts the reference origin according to*

so that

Separating, as earlier, the imaginary part of (8.70), one can obtain at the
instability point (the vanishing value of the equation:

determining the frequency For the function

it follows that:

Substituting (8.73) into (8.55) and expanding in terms of small  quantities and
one can obtain:

where is the equilibrium value of the gap at the temperature T. Near  for this
quantity one can find either from (7.115) for “dirty” superconductors or (in
agreement with Anderson’s theorem) from (1.39), (1.183), (1.187), and (1.188) for
the “pure” case the same value:

As follows from (8.77), at the maximum value of
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one has and according to (8.76), the increment of instability has a finite value.
This means that instability starts at values of somewhat smaller than (8.79) when

(8.76) equals zero. Since at this instability point

the instability-causing, threshold value of is:

There was an  to use this mechanism to explain nonequilibrium phenom-
ena in tunnel junctions. In Ref. 23 it was suggested that this instability should be
exploited to elaborate the new principle of a three-terminal (transistor) device. We
will not consider these practical implications in more detail here.
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9

Phase-Slip Centers

Time-dependent Ginzburg–Landau equations provide a rather deep understanding
of the nature of resistive states arising in narrow superconductive filaments. If a dc
current passes through such a filament, then, according to the thermodynamic
equilibrium GL theory (Sect. 1.2), the filament should pass into its normal state
when the current achieves the critical value (Fig. 9.1). But in reality, other types of
curves have been registered.1 Moreover, electromagnetic radiation was detected,2

which resembles the Josephson effect. These facts demonstrate directly that the
resistive state in narrow superconducting filaments is of a nonequilibrium and
nonstationary nature.

9.1. ONE-DIMENSIONAL APPROACH

Because in reality the filament is narrow [its cross-sectional dimensions should
be less than the resistive state cannot be explained by the motion of
Abrikosov’s vortices (in distinction to the situation in wide films in Sect. 7.3). The
search for new mechanisms that can adequately describe the resistive state has
become necessary.

9.1.1. Phase Slippage

Probably, Little was the first to use the idea of a “phase slippage” while
analyzing the stability problem of electric current in quasi-one-dimensional struc-
tures.* This idea was developed further in a number of papers, particularly by
Langer and Ambegaokar,5 McCumber and Halperin,6 Skochpol et al.,2 and others
(a detailed bibliography, that can be used to reconstruct the history of the problem
is contained in the reviews in Refs. 7–9).

*The expression “phase slippage” was introduced earlier in the theory of superfluids by Anderson.4

213
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To clarify this idea, let us consider two points, of a superconducting
filament (Fig. 9.2) with a potential V applied between them. Ignoring for a moment
nonequilibrium effects, we conclude that the phase difference of the supercon-
ducting order parameter between the points increases linearly in time
[according to Eq. (8.9), if in equilibrium This indicates the
thickening in time of the spiral shown in Fig. 9.2. But such a thickening cannot
occur for too long a time, because the phase gradient determines the velocity of the
superfluid motion of electrons, which is restricted by the critical value. To decrease
the number of loops, the order parameter modulus should vanish at certain moments
of time. At such moments the phase can dump the excessive as it is shown in
Fig. 9.2.

The behavior of phase-slip centers (PSCs) was investigated rather extensively
on the basis of the Ginzburg–Landau-type dynamic equations (see in particular
Refs. 10–18). It was found that in the region of a PSC the order parameter modulus
oscillates, periodically turning to zero. In the time-averaged picture, the order
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parameter modulus in the region of a PSC effectively decreases. Something like a
“weak link” arises between superconducting “banks” and the situation as a whole
resembles the nonstationary picture in weakly coupled superconductors, where the
Josephson oscillations appear if a voltage is applied between the banks.

In the next section we present the numerical solutions of dynamic equations,
which illustrate in detail the behavior of all physical quantities of interest (such as
the order parameter modulus and phase, superconducting and normal currents,
superconducting velocity, the scalar and gauge-invariant potentials the
charge appearing in the filament, the current-voltage characteristics, and the
periods of the stable oscillations). The results will also illustrate the influence of
the interference current component (Chap. 7) on the solutions of the dynamic
equations. The spectral characteristics of phonon fluxes emitted from a supercon-
ductor in a resistive state will also be discussed.

9.1.2. Initial Dimensionless Equations

Equations (7.45), (7.52), and (7.111) to (7.114) may be written in a convenient
compact form introducing dimensionless variables [in (9.1) they are underlined]
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Here

In a dimensionless notation, Eq. (7.45) takes the form* [we will deal further with
dimensionless quantities only, dropping the underlines below the symbols in (9.1)]:

Note that and in this chapter relate to the charge and differ from
quantities introduced earlier (which relate to the electron charge e) by a
factor of 2. Representing the complex parameter where
is the modulus and is the phase of the order parameter, we find separately the real
and imaginary parts of Eq. (9.3)**

where

*The term in Eq. (7.45) is neglected in the derivation of (9.3). Correspondingly, the equation for
the inequilibrium phonon subsystem is not used.

**We drop the term with in Eq. (9.3).
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Before attempting to solve Eqs. (9.4) and (9.5), we will make one remark about
method. Equations (9.4) and (9.5) [as well as (9.3)] are gauge invariant, i.e., they
do not change under the transformation

where is an arbitrary gauge function. Usually the following method of
handling Eq. (9.3) is applied. One considers the “current state” and chooses the
specific gauge of the vector potential in Eq. (9.3), putting  and thus neglecting
the magnetic field in a narrow superconducting filament. The phase 6 now acquires
the meaning of the superconducting velocity potential, Solving then Eq.
(9.3) [or (9.4) and (9.5)] relative to one arrives at the usual picture of the
resistive state, where the order parameter modulus oscillates in time and the phase
suffers jumps (more properly, it “slips,” see the following discussion). As men-
tioned, such active regions are named the phase-slip centers.

This procedure, however, is not completely satisfactory. Indeed, the gauge
leading to strictly speaking, does not exist, wherever there exist a current j
and magnetic field in the system. Besides, as one can see from (9.10),
the superconducting phase depends on the choice of gauge and, consequently, the
physical quantities cannot depend on In fact, Eqs. (9.4) and (9.5) written in terms
of the invariant variables , and Q do not depend on In particular, these
equations conserve their form in the case also, i.e., in the case of a real order
parameter. The question then arises of how one should interpret the expression
“phase-slip center” if the phase everywhere is identical to zero.

To answer this question, we will split the vector potential into longitudinal and
transverse components:
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where is some scalar function and a is a vector function. Under the gauge
transformation (9.10), only the longitudinal component is transformed, but the
transverse part remains unchanged. Introducing into (9.3) instead of the
invariant complex function is the invariant
superconducting phase, we can rewrite (9.3) in terms of invariant variables

The superconducting velocity Q and potential (9.6) can be written now in the
form

where the values are invariant under the transformations of (9.10).
Considering a narrow superconducting filament and neglecting within it the mag-
netic field The invariant quantity has a meaning
of the potential part of the superfluid velocity is the invariant
potential of normal motion. Indeed, the electric field E in dimensionless units has
the form

Equation (9.12) has the same form as (9.3), if we use However the
invariant potential rather than the gauge-variant quantity enters into (9.12), and
the invariant phase instead of the gauge-variant superconducting phase In
particular, Eq. (9.12) is valid also at In further analysis we will use the
equation in the form (9.12), assuming This form coincides in fact with the
commonly used one.

9.1.3. Boundary Conditions

Several types of boundary conditions for Eqs.(9.12) and (9.8) may be formu-
lated, depending on the physical state assumed at the ends of the superconducting
filament. If a superconducting filament having a length L connects two (identical,
for simplicity) bulk superconductors, one can use the following boundary condi-
tions (at the points

where is some constant characterizing the bulk banks. The boundary condition
at the ends corresponds to the value of the bulk superconductor in

equilibrium (such boundary conditions were considered in Refs. 12 and 13). The

*The specifics of the spatial one-dimensional case emerge here. In general, it is necessary to use the full
system of Maxwell equations [(7.119) to (7.122)] to calculate the transverse component
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condition at the filament end is equivalent to the condition and

One can also choose different boundary conditions

accepting that in a bulk superconductor the total charge is transported by the
superconducting current. (The condition 9.15 for is equivalent to the condition

= 0 at the ends.) The boundary condition for can be written in a more general
form

where is some constant (see Sect. 7.2).
In the case of a long superconducting filament, when the phase-slip centers are

created evenly along the filament’s length, one can use the cyclic boundary
conditions

Here the points and correspond to the positions of the neighboring
extrema of (which can coincide with the phase-slip centers or lie between
them). Because the extrema of the superconducting current and of should
coincide, then on these points we evidently have If the supercon-
ducting filament connects two normal banks, the following boundary conditions
are possible

in accordance with the depression of the order parameter at the ends of the filament
due to the proximity effect, so that near the ends the total charge is transferred by
the normal current. We will use mainly the boundary conditions (9.14) and (9.15),
though the results will not depend substantially on the character of boundary
conditions.

9.2. CALCULATIONS PROCEDURE

9.2.1. Nonsingular Representation

The solutions of Eqs. (9.4) and (9.5) or (9.11) are singular and their numerical
evaluation demands certain precautions. We present in this section a rather full
description of the calculation scheme.

The singularity of Eqs. (9.4) and (9.5) written in terms of the invariant variables
and Q, is due to the term, which hampers the calculations by turning infinite
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at the moments when vanishes. A more convenient form of these equations is
attained by using a complex function

Introducing the real and imaginary parts of by the relation substituting
this in Eq. (9.19), and solving the resulting system of equations with respect to
and we find

where

The integration constant in (9.22) is chosen from symmetry considerations to ensure
that (the solution does not depend on the value of this constant).
Equations (9.20) and (9.21), written in terms of the Cartesian variables

differ advantageously from the representation in Eq. (9.12) of the
polar variables in that the point is no longer singular and
the process of its intersecting the phase trajectory { R , I } can be calculated

9.2.2. Matrix Representation for "Sweeping" Method

We present the system (9.20) and (9.21) in a matrix form

where

normally.12
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and replace the time derivative by the finite difference

here is the step in time and are the values of in the initial and
subsequent time layers.

We divide the interval L into n parts, h being the space step and and
denoting the value of in discrete point j, Replacing the coordinate

derivative by the finite difference

we rewrite Eq. (9.23) in a lattice form

where

The indices in Eq. (9.27) numerate the interior points of the compu-
tation interval where Eq. (9.23) is valid. The values at the current moment must
be found (the upper index is omitted). The coefficients depend on

at the preceding moment and are assumed to be known.
The boundary conditions of the type (9.14) and (9.15) may be written in a form

analogous to (9.27):

where the points and correspond to the limits of the computation
interval.

9.2.3. Recurrence Relations

We seek the solution of the system (9.27) in the form

where the matrices are to be found. Inserting (9.31) twice into (9.27), one
finds the recurrent relations
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Expressions (9.31) to (9.33) provide the matrix generalization of  the standard sweep
method19,20 in solving the differential equations.

9.2.4. Solution Procedure

The successive steps of finding the solutions are as follows. First we find from
the boundary conditions the matrices

The remaining matrices and (for are found further, taking into
account that Afterward, the functions are determined from
(9.31). Using the newly found values of one can calculate and also
the potential from (9.22). Having determined one can calculate a new
boundary value of the phase from the relation

where the superscript zero denotes the preceding moment of time. (From symmetry
considerations we have _ In the case of boundary condition (9.14) we
always have In the case of boundary condition (9.15), one should
use the relation [see (9.5)] to find the values of where
the current is found in terms of R and I, which is known from the
preceding step. A new value of the phase determined in this way can be used
in the boundary conditions (9.14) and (9.15), which are equivalent to

Writing down these conditions in a matrix form [(9.29) and (9.30)], one can repeat
the procedure described above once again to find the solution on a new time layer,
and so on. If R(x) and I(x) are known, one can calculate the values of
(9.22),

at any moment of time.
In the case of the boundary conditions (9.17), some complication arises owing

to the presence of the derivatives
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If the derivatives are represented as a finite difference: then
the unknown value appears. To overcome this difficulty, the

count interval is extended by introducing a subsidiary point The
condition (9.17) may be written in the form

(the lower indices denote the values One finds from this

i.e., the values are expressed in terms of the as-yet unknown values and
and the known (from the preceding step) value One more relation between

is provided by the recurrence formula (9.41)

The subsidiary value is easily excluded from (9.40) and (9.41), and the value
may be determined. After that, the sweep procedure of (9.27) to (9.35) is applied

to find the remaining values
To guarantee the equivalence of both left and right halves of the calculation

interval, the left and right runs were alternated and the solution’s symmetry was
maintained at every step.

To secure the convergence of solutions and to attain a stable oscillation regime,
the calculations were carried out using mainly the space step about

and the time step about The oscillation periods were found
to the accuracy of three meaningful numbers. The phase increase for one oscillation
period with the same accuracy was found to be (relative to one PSC). Several
hundred oscillations were sometimes performed before reaching the stable oscilla-
tion regime, thus making evident the presence of long-lived and weakly damping
oscillation modes in the system.

9.3. ANALYSIS OF RESULTS

A numerical analysis shows that if the values of the transport current j along
the filament are small enough, then there exist only static solutions of Eq. (9.12)
with When j is increased, the solutions start to depend on time, the
electric field and normal current appear in a superconducting
filament. All the parameters describing the superconductor
begin to oscillate in the vicinity of certain active points (PSC). After a sufficiently
long time, these oscillations reach a stable regime, and only such stable oscillations
are considered in the following section. To elucidate the characteristic features of
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these processes, let us consider first a short superconducting filament with only one
active center.

9.3.1. Single Active Center

Figure 9.3 shows the distributions of at different moments for a
filament with the parameters for the boundary conditions
(9.14). Figure 9.4 depicts the time dependence of at the PSC
point The numerals  at the curve denote the characteristic moments,
which correspond to the consecutive stages of an oscillation cycle (see Fig. 9.4). At
the moment 5,6 the momentum Q and the potential suffer discontinuity, and the
derivative of suffers a jump (see later discussion). The numeral 5 denotes the
moment just preceding and 6 just after the jump.

A detailed analysis of the numerical solutions has shown that the order
parameter and the superconducting current vanish simultaneously at the instant
of the jump (Fig. 9.4), but the superfluid momentum behaves singularly,
turning to This shows that the current in the vicinity of PSC at
some moments is negative. (An analogy with the vortex currents in Type II
superconductors and Josephson junctions is evident here.) Such characteristic
behavior is common to all time-dependent solutions of Eq. (9.11) investigated by
us and does not depend on the type of the boundary condition or the parameters
involved. (Negative values of were reported earlier, e.g., in Ref. 14). The
gauge-invariant potential also behaves singularly, taking values on
both sides of PSC at the moment of the jump (Fig. 9.5).

Figure 9.6 shows the behavior of the invariant Coulomb potential and of the
normal current  at all
times.
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Averaging the electric field relative to the coordinate x, we find a
voltage drop V at the filament ends

Here V is a function of time only. Using the relation one finds the
potential drop averaged over the period of oscillations:

where are time-averaged values of at the ends of filament and
is the phase difference gain between these points for one oscillation

In the case of the boundary condition (9.14) we have and
period tp.
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Our calculations show that the phase difference gain during the period of steady
oscillations is (related to one PSC), and consequently

(For unsteady oscillations this gain generally is not equal to

9.3.2. Oscillation Frequency

The expression (9.45) for the oscillation frequency at the phase-slip center may
be also derived analytically from topological considerations, as was demonstrated
by Ivlev and Kopnin.21 Assuming the oscillation process is stable and the positions
of PSC are equidistant along the coordinate x, one obtains in the two-dimensional
space-time the periodic lattice of points at which the modulus of the order
parameter vanishes (Fig. 9.7). Consider the two-dimensional vectors

in this space-time. Using a relation between the vectors (9.46):
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which follows from the definitions in (7.82) and (7.85), and integrating (9.45) over
the closed contour going around PSC, we have

The integral on the left side of (9.48) vanishes if the integration contour is chosen
along the “elementary cell,” denoted by in Fig. 9.7 [in the case of a single PSC
this contour must be stretched over subject to the condition The
first integral on the right side of (9.48) may be expressed by Stocks theorem through
the integral of curl p over the area S, restricted by the contours so

Taking into account that the last integral in (9.48) provides a phase gain equal to
(n is an integer) in going around the PSC, one has

and, accordingly,

where is the flux quantum (see Sect. 1.2). If E is a static quantity, then
the Josephson relation follows from (9.51) at n = 1:

in which Introducing the space and time-averaged value E:

we present (9.52) in the form:
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which is a generalization of the Josephson relation (9.52).

9.3.3. Temporal Behavior of the Phase Difference

In Fig. 9.8a the phase difference across the filament ends is
depicted as a function of time; the moments 1–6 are marked to correspond to the
notations in Fig. 9.4. The phase difference grows monotonically in time. Such
growth is a consequence, in particular, of the boundary condition from
which it follows that monotonically de-
creases and, analogously, monotonically increases in time. The superconducting
current always stays finite, i.e., in all regular points the phase
gradient is finite. However, the gradient of the continuous function cannot remain
limited if the function difference at the ends of the interval grows unlimitedly in
time. It follows then that should suffer a discontinuity at some point to preserve
the finite gradient at all other points.

Figure 9.8b shows the behavior of at different moments. For symmetry
reasons is an odd function relative to the middle point of the interval. If the
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moment 1 corresponds to the minimal current js in a system, then the phase
can be represented at this moment as a single-valued continuous function in the
interval In subsequent moments (2, 3, 4) decreases and the phase
gradient increases. Close to the moment of a jump, the phase gradient first turns to

(at the moment 5 immediately before the jump), and then changes (at the
moment immediately after the jump). At this moment the phase suffers a
discontinuity at the location of the value on both sides of PSC
being their difference is equal to at the moment of a jump. After
this the two branches of the phase diverge in the directions shown by the arrows,
smoothly deforming, and after the moment (which corresponds to the subsequent
minimum of the current they take the positions marked by the primed numbers

on the curves (the phase difference is at this stage). Further on the process is
repeated and the two branches of the phase continue to diverge from one another.
Because the phase is determined by the relation the resulting
picture can always be reduced to the one shown in Fig. 9.8b by shifting it along the
ordinate by (n is integer).*

The voltage-current characteristics of the short superconducting filaments with
the boundary conditions (9.14) are shown in Fig. 9.9a. The ratio of the voltage drop
(9.22) to the filament’s length is presented as a function of the transport
current j through the filament. The dashed straight line corresponds to Ohm’s law
in a normal filament. The curves corresponding to the resistive state of the

*The multivalued function can also be represented as a single-valued continuous function on a
cylindrical surface glued together along the element The phase difference
at the ends of the interval will change by at the moment of a jump, remaining always
within the limits
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superconducting filament are shifted along the abscissa relative to the normal state
Ohm’s law by an excess current The phenomenon of excess current was
observed experimentally in short superconducting bridges22–28; however, we will
not discuss this question here in more detail (see Sect. 10.5 and Ref. 29). The periods
of stable oscillations tp, which are related to V by expression (9.45), are shown in
Fig. 9.9b in dependence on the transport current j.

9.3.4. Other Boundary Conditions

Figure 9.10 demonstrates the behavior of in the case L = 5,
for the boundary condition (9.14) with The

distributions are presented on one half of the interval 0  only. For sym-
metry reasons the functions * are even relative to the point l = L/2 [i.e.,

and the functions and are odd  The numeration
of the curves hereafter corresponds to that used in Fig. 9.4. The voltage-current
characteristics for are given in Fig. 9.11.

9.3.5. Finite-Cap Results

The results presented in the preceding section relate to the gapless state
For finite-gap superconductors the qualitative picture of the

processes occurring in the filament does not change significantly. Figures 9.12 and
9.13 depict the voltage-current characteristics for superconducting filaments with

for the boundary conditions
(solid lines). The solutions for L = 5, at

j = 0.2 and j = 0.5 are shown in Figs. 9.14, and 9.15. For finite-gap superconductors,
the space distribution of electric charge arises along the filament driven into the
resistive state. The charge is proportional to and has opposite signs to the left
and to the right of PSC, so that the total charge is zero. The solutions for

and j = 0.5 are shown in Fig. 9.16.

9.3.6. Two Active Centers

For L = 10, along with the solution corresponding to one PSC in the middle
point, a solution with two phase-slip centers occurs. Figure 9.17 depicts voltage-
current dependencies for

As mentioned at the beginning of this chapter, spontaneous jumps were
detected in the experiments registering current-voltage characteristics in the resis-
tive states. These jumps may be explained by the creation of a new PSC and by
corresponding transitions from one branch of the solution to another (see Fig. 9.17).
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9.3.7. Current-Voltage Relations: Galayko Model

It should be pointed out that some features of the current-voltage characteristics
(such as those depicted in Fig. 9.1) may be well described by the analytic solutions
of the static equations (9.4) to (9.8), or, more properly, by a static version of these
equations proposed by Fink et al., and by Galayko et al. (the “static model,” see,
e.g., Refs. 30–34). The applicability of static equations is connected with the fact



234 CHAPTER 9. PHASE-SLIP CENTERS

that the oscillations of physical quantities at PSC are of high frequency, but the
current-voltage characteristics are observed on time intervals significantly larger
than the oscillation period

Averaging Eqs. (9.4) and (9.5) over time, keeping only nonzero terms and
replacing the mean values of compositions by the compositions of mean (nonzero!)
values, one obtains the equations

(to simplify the equations we make Using the relation (9.57), we
transform (9.56) into the form

In thermodynamic equilibrium, In the resistive state, the value of dimin-
ishes. Thus in the vicinity of PSC one can assume and omit the term

in the set of equations (9.55) and (9.58). Then the basic equations of the
static model are simplified further and reduced to
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Despite the crudeness of the approximation, the main features of the current-voltage
characteristics (as can be seen) are described by Eqs. (9.59) to (9.61). Using the
method of solution proposed in Ref. 35, we choose a superconducting current

as the integration variable. Differentiating Eq. (9.61) over the coordinate
x and combining it with (9.59), one finds

The boundary conditions for the functions must be supplied to these
equations. Taking into account the symmetry of the problem and that of

we have
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(the signs and refer to the left and right ends of the filament). The second
boundary condition is obvious (Fig. 9.18a):

The function appearing in (9.62) and (9.63) is determined by Eq.
(9.60), from which (accounting for the expression it follows that

The behavior of the solution of this equation is illustrated in Fig. 9.18b. Because
the thermodynamically stable branch of the solution corresponds to the values

one can assume that in the whole range of variation  the function
varies slowly. This fact simplifies further analysis. Integrating Eq. (9.63) and

taking into account that at the center of the filament the value of
vanishes, we obtain

Integration of Eq. (9.62) in the range taking into account boundary
condition (9.65) gives the relation

The value of increases with increasing j. When attains the value the
creation of PSC becomes possible. At the constant length L, this occurs when the
total current j reaches a certain critical value Let us find a relation between

and L. As mentioned earlier, in the first approximation one can neglect the
dependence of        in the expressions (9.67) and (9.68) [assuming

and  fulfill the integration in quadratures. Setting
we find from (9.67):

Substituting this expression into (9.68) and neglecting the functional depend-
ence we obtain the following equation for
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For a sufficiently long filament the relation

follows from (9.70), which connects The
quantity defines the critical current when the first PSC appears. Because the
boundary conditions at the point where the PSC exists coincide with the boundary
conditions for the junction of the superconductor and normal metal, for a suffi-
ciently long filament (the distance between PSCs must significantly exceed the
penetration depth we return to the initial problem, but for two consecutively
connected segments of the filament. If the current increases further, new PSCs arise,
with a critical current

corresponding to the creation of the nth PSC. With the appearance of a subsequent
PSC, the voltage difference at the filament suffers a jump (which in the first
approximation does not depend on j). Taking into account (9.69), one can conclude
that between these jumps the current-voltage characteristics have linear sections
corresponding to the differential resistivity

The length of these sections between jumps (see Fig. 9.1) evolves with n as
In the static model, as we have seen, the creation of a new PSC

occurs when the current attains the value [in dimensionless units
In reality (owing to various physical factors) the quantitative crite-

rion of PSC creation may differ from this condition. In principle, a hysteresis is
possible at subsequent increases and decreases of the current through the filament.
We will not consider these details here.

9.3.8. Shortcomings of the TDGL in the Absence of Relaxation

Returning to the numerical analysis, we note that at large the values of
are also large at small distances from PSC and diverge formally at

[see expressions (9.5) and (9.9) for which is inadmissible for
physical reasons. From this limitations also follow on the applicability of the TDGL
set of equations for large values of
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9.3.9. More Features of Numeric Solutions

The solutions for are shown in
Fig. 9.19 (one PSC) and Fig. 9.20(two PSCs). The phase difference at the filament’s
ends in the state with two PSCs increases by over the period of stable oscillations
(Fig. 9.21). The dynamics of the phase variation along the filament with two PSCs
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is demonstrated in Fig. 9.22. At the moment 5, the phase has a vertical tangent
at the point of PSC (the dotted line). At the next moment (6) the phase at this points
breaks and two branches of on both sides of PSC slip relative one another.
The left branch at the moment (see Fig. 9.21) remains in the position  as shown
in Fig. 9.22, but the right branch at the moment occupies the position a, coinciding
with the right branch of the curve 1. Because the phase is a multivalued
function the right branch can be shifted from the
position a into position b (dashed line). This, however, produces the discontinuity
of in the regular point because the phase is assumed to be antisymmet-
ric relative to the middle of the interval: Figures 9.23–9.26
illustrate the solutions with the boundary condition (9.15) , and Fig.
9.27 corresponds to the cyclic boundary condition

9.3.10. Role of Interference Current Component

It is of interest to see how the solutions behave if the interference current
(9.8) is included (we have demonstrated some of the results in the preceding
drawings). Figures 9.28–9.31 illustrate the role of the interference current compo-
nent. One can see from the figures into account does not significantly change
the qualitative pattern of the resistive state, although some changes occur. In
particular, the oscillation periods and current-voltage characteristics change notice-
ably (Figs. 9.12, 9.13, and 9.17). The presence  is revealed more markedly in
the behavior of the potential, in which an anomaly is formed in the vicinity of PSC
(Fig. 9.28), which in turn leads to peculiar behavior of the normal component of
the         (Fjg. 9.30). Such behavior persists also in the case
of two PSCs (Figs. 9.29 and 9.31).

With increasing the magnitude of the anomaly also increases, but at
the interference contribution disappears. Although the normal current may
become rather large when vanishes, there is no anomaly Because the total
current is kept fixed, const, the anomaly is compensated for
by a corresponding anomaly Thus the total current j stays a finite and smooth
function.

A remark should be made concerning the anomalies The
anomalous behavior is related to the term in (9.8), which
grows when tends to zero and Q becomes infinite. The superconducting current

at these moments remains finite. Representing in the form
it is easy to conclude that enormously large values of

1, i.e., the characteristic frequencies in the vicinity of PSC
are greater than the energy damping of electrons. However, in deriving TDGL
equations, quasi-classical conditions were assumed, i.e., that the characteristic
frequencies should be less than the energy damping [see (7.28)]. In fact, this
condition becomes violated in the vicinity of the PSC, which demonstrates a certain



SECTION 9.3. ANALYSIS OF RESULTS 245



246 CHAPTER 9. PHASE-SUP CENTERS



SECTION 9.3. ANALYSIS OF RESULTS 247



248 CHAPTER 9. PHASE-SLIP CENTERS

inconsistency in the equations used. It should be noted that this difficulty is inherent
to TDGL equations, even Indeed, the large space and time gradients
always arise in the PSC structure, in contradiction to quasi-classical conditions.
One possible way to overcome this difficulty might be a consistent accounting for
time derivatives of higher order. In such an approach, the inclusion of an additional
term proportional to see footnote on page 161] in the
dynamic equation (7.45) may be reasonable. The inclusion of an interference
current component in the set of dynamic equations is in fact a step in this direction.

9.4. EMISSION FROM PHASE-SLIP CENTERS

As shown in the preceding section, the resistive state of a superconducting
filament is characterized by periodically placed phase-slip centers. In the vicinity
of these centers, having a length scale where is the
stationary value of the gap, all the quantities describing the electron system oscillate
in time with frequency, which is defined by the voltage drop on the PSC [see
expression (9.54)].

9.4.1. Generation of Electromagnetic Radiation

It is natural to suppose that electromagnetic radiation might be generated in
these conditions. Indeed, such radiation from narrow thin-film structures was

even prior to the creation of the microscopic theory of PSC (a typical
level of radiation was W). As was found further, the picture is complicated:
besides the high-frequency radiation (32.13) an emission at low frequencies was
also Assuming that this effect may be explained by the motion of the
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PSC structure as a whole along the filament, the velocity of the motion was
cm/s. According to this picture, the electric field pulses

arise periodically at the ends of the filament, defining the generation frequency.
Another explanation of the low-frequency part of the spectrum is that such pulsa-
tions are due to small differences in oscillation frequencies of separate phase-slip

This difference may be caused by variations in geometrical or physical
parameters along the filament. A complete explanation of the mechanism of
low-frequency oscillations is yet to be found.

9.4.2. Phonon Radiation

Another interesting consequence of the PSC regime is the possibility of phonon
radiation from the PSC. Expressions (7.68) and (7.58) can be used to calculate the
spectral dependence of the phonon emission from the phase-slip center
for arbitrary moments of time. Since is a periodic function of time, the phonon
emission from the active region oscillates and the phonon flux periodically reverses
its direction, as is evident from the sign alternations of entering into (7.68).
[Note that the time-averaged value of the phonon flux is nonzero because of the
interdependence of

The intensity of the phonon flux emitted from the unit volume may be
estimated as For the voltages (e.g.,

which is of the order of Joule’s
heat where is the specific resistivity of the active region with the length

Thus this kinetic effect,39 though not observed experimentally as yet, has a
noticeable scale.

It is necessary to acknowledge that the sign-alternating pulsating phonon fluxes
are not easy to detect. One approach would be to use a high-resolution technique
[the detection time of phonons must be shorter than the period of oscillations given
by Eq. (9.54)]. Another approach would be to detect the phonon flux by a method
that is sensitive to only one direction of the phonon flux (for example, a method
based on using the fountain effect in superfluid 4He.)40

The detection of the phonon emission, which is spatially modulated and
periodically reversed in time, might provide additional confirmation of the validity
of current theoretical understanding of the physics of resistive states in “one-dimen-
sional” superconductors. The discovery of phase-slip centers in high-temperature

raises such expectations.
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Josephson Junctions

10.1. TUNNEL SOURCE OF EXCITATIONS

10.1.1. Josephson Effect

Consider a superconductor that occupies all the space, with the current j flowing
along the direction x. In Chap. 1 expression (1.53) was obtained for a superfluid
current in an equilibrium superconductor. Because the problem considered here is
formally one-dimensional, one can choose a gauge where

is the phase of the condensate wave function (1.52). From this expression it
follows that the current is defined by the phase difference between the points along
the direction of motion. Let now two superconductors occupy two isolated half-
spaces and each of them be described by its own wave function. If these supercon-
ductors are brought into contact, then a current will flow perpendicular to the
boundary because the phases of wave functions in each of superconductors, in
general, may differ from each other. Since the states in (1.52) with where
n is an integer, are physically identical the current between superconductors must
be a periodic function of the phase difference with the period In addition,
the current must vanish when the phase difference is zero. Hence the functional
dependence of the current between superconductors, at least in a first approxima-
tion, may be expressed by the relation this is the first, or the
stationary Josephson effect.1,2

If the superconductors occupying the half-spaces are connected by the tunnel-
ing barrier, the potential difference may appear on the barrier in the
current-carrying state. Bearing in mind the relation between the phase of the wave
function and the scalar potential (see 8.3), according to which  in equilibrium

we arrive at the conclusion that the current between superconductors oscillates
in time: The frequency of oscillations

where we have restored the fundamental constant previously set at unity
(the second, or nonstationary Josephson effect).

255
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The phenomena that take place in the Josephson junctions have been studied
in numerous papers (see bibliographical review, Ref. 3). Before moving to the
description of a nonequilibrium Josephson junction, note that the equilibrium
theory of superconductivity (see Sect. 1.2) cannot describe the situation when the
potential difference exists at the superconductor’s boundary (the potential  and
the normal current do not enter the equilibrium equations at all). In the case
considered the boundary between superconductors appears as a
nonequilibrium source. In the presence of massive banks, the nonequilibrium
carriers may dissipate by diffusion and the nonequilibrium phenomena cannot
noticeably change physical properties of the junction, which thus could be consid-
ered as equilibrium one. The picture differs for thin-film junctions whose thickness
is comparable with the diffusion length of the electron excitations. In this case the
junction banks are in a spatially homogeneous nonequilibrium state and, as we will
see in this chapter, the nonequilibrium effects become essential.

10.1.2. Tunneling Hamiltonian and Self-Energies

Let the voltage be applied to the tunnel junction and this voltage
be constant in time. We will describe the tunnel process by the Hamiltonian

where the indices 1 and 2 correspond to different banks of the junction and
integration is assumed over their volumes. The self-energy parts corresponding to
the tunneling in the superconductor–insulator–superconductor junction
may be obtained with the help of Hamiltonian and in our notations they
have the form*

where is the tunneling frequency related to the tunneling operator and
the function corresponds to the superconductor injector.

10.1.3. Derivation of Excitation Source

Taking into account relations (4.13) to (4.15) and (10.2), we find;

*The formal analogy between (10.1) and the Hamiltonian (2.1) describing the scattering of electrons on
impurities makes the detailed derivation of Eq. (10.2) excessive [cf. Eq. (2.37)].
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where Moving to the distribution function
according to (3.84) to (3.88), we find, based on (10.3),

In Eq. (10.4) the dimensionless factors are defined in the following way:

We emphasize that in these final expressions, which represent the nonequilibrium
tunnel source of the Josephson junction,5 the  quantity is defined positively. Here
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appears as the electronlike excitation distribution function, denotes the
holelike one. [Expression (10.4) without the terms i.e., without taking
into account the macroscopic phase coherency in the junction, was derived in Ref.
6.]

The tunnel frequency in (10.4) should be expressed in terms of the detectable
parameters. To achieve this, it is necessary to have the expression for the current
flowing across the Josephson junction in a nonequilibrium state. Naturally, in
equilibrium it should transform into the expression obtained by Josephson. We will
now derive the expression for this nonequilibrium current.

10.1 .4. Expression for Tunnel Current

We start from the 11-component of Eq. (3.63). Integration over and sub-
sequent averaging over the angle variables transforms it into a continuity equation.
After such a procedure, the terms remaining in (3.63) contain the self-energy parts
representing (up to a numeric factor) the divergence of the current density, inte-
grated over the volume of the nonequilibrium film (the spatial homogeneity of
the pattern is assumed). Thus the integral tunnel current acquires the form

where For the current amplitude we find the following function-
als, (for simplicity the sign of the modulus in quantities in these expressions
is omitted):

j
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We stress that the expression derived for the current is not a trivial generaliza-
tion of the formula figuring in equilibrium theory. The last two terms in (10.11)
emerge from the branch imbalance and they characterize solely the nonequilibrium
s i t u a t i o n . In the e q u i l i b r i u m approx ima t ion , [where

the formulas (10.8) to (10.11) transform to the familiar
expressions for the Josephson current.1,7

10.1.5. "Tunnel Frequency" Parameter

We will now find the explicit form of v. Moving to the equilibrium case
and making the limiting transition in (10.8) to (10.11) to Ohm’s law we

get from which

Here S is the junction’s cross section, d is the thickness of the S-film, and R is the
resistivity of the junction in the normal state (caused by the dielectric interlayer of
an area S). For clarity the electron charge e is restored in expression (10.12).

10.1.6. Complete Set of Equations

Nonequilibrium functions entering the expres-
sions (10.9) to (10.11) are yet to be determined. The following serves the purpose:

At strong deviation from equilibrium, the order parameter modulus (which may
be taken as real in spatially homogeneous states) must be determined from the
self-consistency equation. The self-consistent value of  is determined by formula
(4.6), from which it follows (see Sect. 5.2) that

This relation will be used in conjunction with the kinetic equation (10.13).
Generally, the system of equations (10.13) and (10.14) should also be supple-

mented by Maxwell’s equations, which sometimes dictate the selection among
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various solutions of the kinetic problem [since the current through the junction is
determined by the relations (10.8)–(10.11)].

10.2. OSCILLATORY PROPERTIES OF A TUNNEL SOURCE

We will now study the kinetics of an electron system of nonequilibrium tunnel
Josephson junction. We assume that the Josephson junction consists of two suffi-
ciently thin films with a constant voltage V applied between them. Various applied
voltages will be considered: both (1) the supercritical values when the
applied electrical field generates excess quasi-particles from the condensate, and
(2) the case of subcritical voltages In the latter case, in addition to
the usual Josephson effect, another inherent effect appears: if the electron excita-
tions are out of equilibrium, quantum oscillations arise in the system. We will
discuss some manifestations of this effect in more detail.

10.2.1. Clark's Branch Imbalance

As first demonstrated by Clarke,8 when electrons are injected from a normal
metal into a superconducting film (NIS), a potential difference between the Cooper
condensate and the excitations appears in the film. Tinkham9 has shown that this
property of the NIS junction was caused by the population imbalance of electron–
hole excitation branches in the nonequilibrium superconducting film. We will
elucidate the physical meaning of this phenomenon.

Let us consider the tunnel junction consisting of films sufficiently thin
that the phonons are in equilibrium and the picture in each of the films is homoge-
neous across their thickness. Let the junction be coupled with a heat bath having a
temperature T. We will consider the solutions of Eq. (10.13), assuming arbitrary
deviation of the distribution function from the equilibrium Fermi function

First, however, we will examine some properties of the expression

1. The typical values of which determine the injection intensity, are
usually significantly smaller than the intensity of relaxation processes
(which may be roughly characterized by the damping where

is the transition temperature, and is the Debye frequency). In this
limiting case and we may assume the distribution
functions are equilibrium ones: Assum-
ing also  we obtain the familiar expression4,9 for
the tunnel source of the NIS junction. A remarkable property of this
expression is that this finally causes the branch imbalance
during the tunneling injection of excitations.

2. One can easily see that the property of the tunnel source
holds also in the case (even for a symmetrical SIS junction). However,
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the source obtained in Ref. 10 and figuring in a number of papers (see Ref.
11) does not possess this property. The relevant expression10 arises if one
drops in Eq. (10.7) all but the terms in the corresponding round
parentheses, drops also the terms Q1,2 in (10.5) and (10.6), and then sets

 Such a procedure may be justified only in the case of injection
in the range of directly above the gap, when the imbalance is insignifi-
cant. In the latter case, however, an interesting peculiarity of the tunnel
source resulting from the macroscopic phase coherence will be lost.

3. This peculiarity arises from the time-oscillating components
which are of a quantum nature (they vanish when

Since the solution of the nonlinear problem (10.13) yields the
which are explicitly time dependent, the entire

source (including the “stationary” generally “vibrates,” and the
Fourier spectrum of these oscillations (when the deviation from equilib-
rium is significant) cannot be represented by the first (Josephson) har-
monic only.

10.2.2. Oscillations of the Gauge-Invariant Potential

Thus if the electron injection in the NIS junction leads to the appearance of a
nonzero potential (see Sect. 8.1.1), in the SIS junction not only does the potential

appear, but having appeared, it should oscillate in time. At small these
oscillations would be of small amplitude near the stationary value and have the
Josephson frequency. We will now find certain quantitative characteristics of the
predicted effects.

Consider a symmetric SIS junction and use in calculations the collision integral
(4.119), accepting the electron–phonon collisions as the dominant relaxation
mechanism in (10.13). Assuming the deviation from equilibrium to be weak, we
present the difference in the form

Substituting (10.15) into (10.13) subject to (4.119) and (10.4), one obtains acoupled
system of integral equations for determination of

where the function is



262 CHAPTER 10. JOSEPHSON JUNCTIONS

I

while the operator is defined as

We also denoted here

where is the dimensionless electron–phonon interaction constant and is the
sound velocity.

Obtaining results of the numerical solution of Eq. (10.16), shown in Fig. 10.1,
we may easily calculate the value of the gauge-invariant potential which
according to (8.6) equals

Figures 10.2 and 10.3 show the behavior of as the functions of V and T,
respectively. The stationary value of the junction, as an examination shows,
behaves analogously to that of the NIS junction. At sufficiently small values of v
(Fig. 10.2), the dependencies of are analogous to although with increasing
v the oscillations of reach a maximum and then diminish. At the same time,
the stationary part increases nearly without bounds (the only limitation is the
condition Another peculiarity of the oscillating terms in the potential
is their dependence on (i.e., on the temperature; Fig. 10.3). We have

Despite this, because of the
structural differences between [Eq. (10.4)].
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We should note that this examination, strictly speaking, is valid only when
may, as is clear from Figs. 10.2

and 10.3, account for In the most favorable cases the characteristic
values of may be on the order of a microvolt,  may be fractions of this
value (say, tens or hundreds of nanovolts for low-resistance aluminum junctions).
Thus the oscillations of the nonequilibrium gauge-invariant potential may be
identified experimentally a detection scheme should be like in Fig. 10.4 with
voltmeter replaced by an oscilloscope.

10.2.3. Satellites in Scattered Radiation

The amplitude of oscillations of the gauge-invariant potential examined in
the previous section is of the second order of smallness in the parameter
whereas the potential itself (its time-averaged value) is a first-order effect in
The question arises of whether the oscillations of the tunnel source can appear in
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the first approximation in Such an effect is described in the following
paragraphs.

We will focus on the kinetic equation (10.13). In the first approximation over
a small parameter the distribution functions  in (10.4) to (10.7) may be taken
as equilibrium ones. As a result, one obtains the following expressions for
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In writing these expressions we have restricted ourselves to the case
(recall that the primed quantities and functions with shifted arguments correspond
to the injector). It is easily seen that the functions (10.21) to (10.23) have the
properties:

[The property (10.25) is responsible for the oscillating contribution to the potential
(10.20), being of the second order of smallness in  From (10.25) it follows

that the oscillating nonequilibrium contributions to the distribution function of the
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electron–hole excitations in the first order in are symmetric with respect to the
sign of We will find these contributions.

Consider the range of temperatures so that there is a sufficient
number of equilibrium electron excitations. The collision integral in (10.13)
may then be linearized in small deviations of the distribution function. The
stationary correction to in this case is determined by the term (10.21) and
yields an insignificant renormalization of The asymmetry with respect to

(property 10.24) causes an imbalance that we will also ignore in view of its
additional smallness (as follows from 10.21) and assume further that
Because the applied voltage the variation is localized at energies smaller
than T. This means that now we may use in (10.13) the relaxation time approxima-
tion for the collision integral (we postpone general discussion
of the validity of relaxation time approximation until Sect. 11.3):

where is a characteristic energy damping of the nonequilibrium excitations.
Substituting (10.21) to (10.23) and (10.26) into (10.13) and carrying out a Fourier
expansion of the nonequilibrium addition
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one obtains in the first order in the following amplitudes

where Using these expressions we may now consider the scattering of
external electromagnetic radiation by a nonequilibrium tunnel junction.

For a proper description of the scattering process, we must know the general-
ized of the nonequilibrium junction in response to the action of the
electromagnetic radiation. For this purpose we will use the photon–electron colli-
sion operator. The electron–photon collision operator was derived in the quantum
treatment of electromagnetic radiation in Sect. 5.3. Within the same lines one can
show that the desired photon–electron operator for “dirty” superconductors has the
form corresponds to the occupation number of photons with the frequency
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where the prefactor n is proportional to the fine structure constant:
We have written the operator (10.30) in a general form that also accounts for

the branch imbalance. We are interested now in the classical limit of (10.30) when
In this case one can carry from under the integral signs (henceforth

we assume that is included in the prefactor n; we will not need the explicit form
of this factor and it will be omitted in the following discussion). Retaining only the
terms that correspond to the action of a field with frequency one obtains

where the functions [determined subject to (10.27) to (10.29)] acquire the form

(the contribution of in 10.15 is negligible),
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Before providing the results of the numerical analysis of these integrals, we briefly
comment on the physical picture.

According to (10.27) to (10.29), the density of electron excitations in thin
superconducting film oscillates with a small amplitude near its steady-state value owing
to the existence of macroscopic phase coherence in a system of single-electron
excitations. The interaction between the external electromagnetic radiation and the
oscillating electron density of states causes the scattering of the electromagnetic
wave with the formation of satellites at frequencies

The collision operator (10.30) allows one to calculate the response of the
nonequilibrium system, for example, to find the relative intensities of the satellites
in the reflected radiation. From the point of view of spectroscopic experiments,
however, it is easier to deal with the absorption coefficient of the system (specifi-
cally, with the imaginary part of the dielectric constant) or, in other words, with
characteristics of the wave that passes through the film.

Consider a test wave passing through one of the films of an equilibrium
superconducting junction. The absorption coefficient (up to a constant factor) is
given by formula (10.34). We assume that the oscillations of the type mentioned
earlier occur in the film. Then the absorption coefficient would also oscillate in
accordance with (10.33). As a result, the amplitude of the transmitting wave would
be modulated (we assume that and the satellites would appear. The
estimate of their relative intensity is as follows:

The presence of a second film in the junction, in which oscillations also occur,
somewhat distorts this simple picture. We will return to this question later.

Consider now the results of the numerical analysis of the junction’s behavior.
The function was calculated for three metals: lead,
niobium, and tantalum with the parameters shown in Table 10.1 (the data for
aluminum will be used later, in further considerations).

The growth of P with a drop in temperature (Fig. 10.5) is due to the reduction
in the number of equilibrium excitations, which makes the film effectively more
transparent [for convenience Fig. 10.5 shows the dependence in the BCS

*The value of  was introduced in calculations as a cutoff factor to remove divergence at the integration
over in (10.35).
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model]. One may become sure of that by direct analysis of the behavior of the
amplitudes (see the dotted lines in Fig. 10.5).

The presence of a (logarithmic) maximum near (Fig. 10.6) is a charac-
teristic feature of the dependence of P on the voltage V across the junction.
Corresponding voltages are optimal for detection of satellites.



SECTION 10.2. OSCILLATORY PROPERTIES OF A TUNNEL SOURCE 271

The transformation coefficient P is independent of the frequency of the test
radiation (Fig. 10.7) at sufficiently high frequencies  but at lower frequen-
cies it increases sharply, which ultimately is due to the singularity in the supercon-
ductor’s electron density of states (in the calculations this singularity was cut off at
energies The inspection shows that the intensity of the satellites increases
with diminishing (Fig. 10.8).

The dependence of P on the injector’s gap is a peculiar one (Fig. 10.9). If
(this numeric value corresponds to  adopted in calcula-

tions), P drops by an order of magnitude. However, if I by 1%, P increases
noticeably, but diminishes with further increases in This circumstance may be
of use in the detection of satellites. Indeed, as noted earlier, the estimate (10.37)
was obtained for the response of a single film, and, generally speaking, is not valid
for a real Josephson junction, shown schematically in Fig. 10.8. However, in
asymmetric junctions, the oscillations of the electron excitation’s density manifest
themselves only in a film with a smaller gap. (The difference between and
must be quite small, about 1%; such a difference may exist for films of
identical metals owing to some difference in deposition conditions, thickness, etc.)
In these cases the estimate of (10.37) may be used directly.



272 CHAPTER 10. JOSEPHSON JUNCTIONS



SECTION 10.2. OSCILLATORY PROPERTIES OF A TUNNEL SOURCE 273

For a lead film with and we have
Values of the same order were obtained for niobium

and tantalum. Such values can be easily measured spectroscopically. For metals
with low (and large , such as aluminum) , is relatively large while

is small and hence In such junctions, the level of nonequili-
brium excursion is quite high and other interesting effects may also be observed
(satellites with multiple frequencies, etc.).

Note the following. In principle, the appearance of satellites in an electromag-
netic wave scattered by the Josephson junction may be explained within the usual
electrodynamics by accounting for the interference between the ac current induced
by the external field and the Josephson current. The proper functional dependencies
(similar to those shown in Figs. 10.5–10.9) may obviously be different. It is also
important to emphasize the fundamental difference between these effects (the
kinetic and electrodynamic one). The “kinetic effect” holds if we consider scattering
of the acoustic wave at the junction, instead of electromagnetic radiation

The high-frequency acoustic wave would also generate satellites with
frequencies However, the “electrodynamic effect” cannot occur during the
scattering of an acoustic wave. Thus the satellites caused by the oscillations in the
excitation’s density, in principle, can be singled out and unambiguously interpreted.
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10.3. SELF-CONSISTENT SOLUTION OF KINETIC EQUATIONS

10.3.1. Analytic Solution with a Branch Imbalance

Now we will consider the voltages when

In the entire superconducting temperature range, except for a very small vicinity of
the transition point, the scale of the inverse frequencies corresponding to (10.38) is
small compared to the time intervals that characterize the kinetics of single-particle
excitations. Hence at the voltages of Eq. (10.38), the coherent effects in the
excitation system are negligible (the results presented in the preceding sections
implicitly confirm this).

In spite of the reduced role of quantum oscillations, the range of voltages in
Eq. (10.38) is interesting, because the applied electric field is capable of pair
breaking during pair tunneling. This breaking process is a resonant one and the
resulting degree of nonequilibrium may be quite high.

In general one must consider (10.13) and (10.14) simultaneously with the
analogous equations for the injector, so the number of coupled equations doubles.
Indeed, the function (10.7) entering into (10.4) (it is enough to consider only its
contribution) contains the distribution functions of both superconductors. In two
limiting cases—symmetric and highly asymmetric junctions—the situation sim-
plifies. In this chapter we consider the case of a symmetric SIS junction. Then in
the force of the symmetry the following identities hold:

where all distribution functions correspond to the test superconductor. We will not
provide explicit expressions for the quantities save space. These
expressions are obvious from a comparison of (10.40) and (10.41) with (10.13).

In representations (10.40) and (10.41), one may explicitly identify terms
related to resonant pair breaking. This representation is convenient, because it
allows exact accounting for these processes. For this purpose we will move to new
arguments in (10.40) and (10.41), making the transposition We get thus
two additional equations defined in the same energy region
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with the determinant

which is nonzero in the region

where subject to (10.39)

Composing now the determinants and for a system of four equations, one
finds in the usual manner in the region (10.45):

At low temperatures the “tail” of the distribution function at
is small. Neglecting this tail, as well as the tunneling redistribution of excitations
and the relaxation processes, one obtains the solution that generalizes (accounting
for the population imbalance) the expression derived by Aronov and Spivak15 for
the case of ultra high frequency (UHF) pumping. The iterations of the solution prove
that accounting for the “tail” produces small changes in the resulting picture.

10.3.2. Inclusion of Self-Consistency Equation

The procedure for finding the solutions is not entirely reduced to simple
iterations. Note that the nonequilibrium gap enters the kinetic equation for
this gap itself depends on the form of It may be shown that when
Eq. (10.14) is equivalent to the system
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This system was included in the general iteration scheme that also utilizes (10.47)
at

The behavior of the excitation distribution function is illustrated in Figs.
10.10–10.14. Note the imbalance between the electronlike and the holelike

excitations, which occurs in both the subthreshold and superthre-
shold regimes.

10.3.3. Analysis of Numerical Solutions: Subthreshold Voltages

In the subthreshold case, in addition to the appearance of “spike,” the distribu-
tion function shows a tendency for a global displacement toward higher energies
(Fig. 10.10), which ultimately stimulates superconductivity (see Sect. 5.2) and
creates a phonon deficit (see the following discussion). As the temperature drops,
the nonequilibrium features become more pronounced: a larger number of spikes
appear, which are separated by a distance V in the energy space (cf. Figs. 10.11 and
10.12). At very low temperatures, the distribution function acquires a “sawtooth”
shape and is nonzero even in the range where the equilibrium Fermi “tail” is
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negligible. Note that the number of observed spikes increases with a drop in voltage
(Fig. 10.13).

10.3.4. Analysis of Numerical Solutions: Superthreshold Voltages

In the superthreshold range, virtually all the excess excitations are concentrated
in the region above the gap and, as Fig. 10.14 shows, the “tail” adjacent to this
region is negligible. Hence we may speak of a “quasi-local” distribution of
nonequilibrium quasi-particles. The behavior of the nonequilibrium gauge-invariant
potential is illustrated in Fig. 10.15.

Note two characteristic features of the behavior of the nonequilibrium gap
First, there is a range of V where subthreshold and superthreshold values coexist

(compare curves 1 and 2 in Fig. 10.16). This produces the hysteresis in the
current-voltage characteristics (see Fig. 10.17). Second, at with an increase
in voltage V  the curve increases insignificantly, rapidly saturating. Here we
have the familiar phenomenon of superconductivity enhancement due to the tun-
neling absorption of
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10.4. PHONON EMISSION FROM A TUNNEL JUNCTION

Using the electron-hole distribution function found in the preceding section,
one can calculate the spectrum of phonons emitted from the tunnel junction
(analogously to the electromagnetic field, considered in Chap. 6).

10.4.1. Phonon Deficit in a Subthreshold Regime

The spectrum of phonons emitted from a nonequilibrium film is shown in Fig.
10.18. The dip in the spectrum at reflects the presence of the phonon
deficit effect. The same effect, though caused by the action of the UHF field, was
discussed in Chap. 6. Since the essence of the effect remains the same in the present
case, we will not provide a detailed commentary.

One small difference in the present case is that there are now two (rather than
one) relaxation peaks* (see Fig. 10.18, curve 1). Their origin is related to the

*Such peaks would most likely occur under UHF pumping also (cf. Chap. 5), if one could perform the
calculations with the appropriate accuracy.
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sawtooth shape of the excitation distribution function (see the inset to Fig. 10.18).
In some cases the peaks are indistinguishable at the scale used (Fig. 10.18, curve
2).

10.4.2. Superthreshold Regime: Preconditions of Deficit

The behavior of the phonon emission spectra in the superthreshold regime
(Figs. 10.19 and 10.20) is peculiar. Note that curves similar to those in Fig. 10.20
(curve 1) were first obtained by Chang and (in a simplified model
ignoring imbalance). However, they did not mention that at small values of the
phonon fluxes became negative: this is illustrated in Fig. 10.20 (curve 3).

The phonon deficit effect when the excess quasi-particles are generated by the
field from the condensate is not a trivial one. Evidently it is due to the strong
localization of excess excitations near the gap edge in the energy space (see Fig.
10.14). As a result, in the scattering of phonons by electrons, the emission of
phonons with frequencies higher than the boundary value is forbidden. At the same
time, scattering with the absorption of phonons is possible: at high energies there
is no energy gap. Hence the scattering mechanism causes a phonon deficit in a
certain spectral range. A question arises in connection with this: Doesn’t the deficit
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reflect the phonon instability at the relaxation frequencies (i.e., the sign reversal of
the phonon absorption coefficient)? As the calculations show (Fig. 10.20, curve 3),
the sign of the absorption coefficient does not change. An inspection of the collision
integral (4.128) shows that the small (equilibrium) “tail” of the excitation distribu-
tion function does not contribute to the nonequilibrium emission of phonons, while
it does contribute to the absorption coefficient, compensating for the small dip that
results from nonequilibrium.

Note that effects of the type presented in Figs. 10.19 and 10.20 hold for a broad
range of junction parameters. We will not dwell here on further quantitative
analysis.
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In conclusion, we wish to make a remark concerning the difference between
phonon emission from the tunnel junction and that from a film under UHF pumping.
As described in Sect. 10.1, the nonequilibrium tunnel source contains terms that
oscillate in time. These oscillations may reveal themselves in a system of single-
electron excitations, and modulate with the Josephson frequency the phonon
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radiation emitted by the tunnel junction. The amplitude of this modulation however,
is small (at sufficiently large voltage V, it is proportional to and that allows
us to ignore this dynamic effect. Much more pronounced phenomena of this kind
exist in the phase-slip centers, as we saw in Chap. 9.

10.4.3. Microrefrigeration

Is it possible to use the phonon deficit effect to achieve refrigeration by having
the negative phonon fluxes yield a cooling effect? In the symmetric SIS junction
considered earlier, the answer is most likely “no,” since the negative fluxes are more
than compensated for by the positive ones. [Bear in mind that to consider the fluxes
in terms of energy, it is necessary to multiply the value of the phonon source in (6.4)
and (6.7) by the phonon density of the states in the Debye model) and the
energy factor which strongly enhances the relative contribution of
the positive “tail.”] Parmenter18 was the first who argued the benefit of using an
SIS´ IS structure (the extraction of electron excitations from a smaller gap, thin-film
superconductor S´ by tunneling into the larger gap “banks” S) for electron cooling
in S .́ This work pioneered the theory of order-parameter enhancement in conditions
of nonequilibrium superconductivity (see Chap. 5). It has also initiated subsequent
studies on the possibility of tunnel junction refrigeration,19 which resulted in
practical realization of the effect.20–24

Initially microrefrigeration studies focused mainly on the effective electronic
temperature of the smaller gap superconductor. (Note that in the ultimate case of
the smallest gap one deals with the most effective SINIS structure.) These



SECTION 10.4. PHONON EMISSION FROM A TUNNEL JUNCTION 283

studies were related to the order-parameter enhancement effect, which is based on
the effective cooling of the electrons (see Chap. 5). This intrinsic electron cooling
can have “on-chip” practical applications.21 A wider application range is possible
when cooling also involves the crystalline lattice. In this case it will be possible to
refrigerate external objects. Consideration of the crystalline lattice must take into
account the phonon deficit effect, which counteracts Joule heating.25 For SIS
junctions, both mechanisms are proportional to where V is the voltage across
the junction, and the heating is typically stronger than the cooling power of the
phonon-deficit mechanism. For asymmetric SIS´ junctions, the cooling power
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becomes a slower function of V (linear in some range of values), so that for
sufficiently small voltages the net difference may result in cooling.*

*There is a close analogy here with the Peltier effect at thermoelectric cooling, where one has
competition between the cooling mechanism, which is proportional to the current j, and Joule heating,
which is proportional to At low values of j one has a net cooling.
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10.5. WEAKLY COUPLED BRIDGES

10.5.1. Modified Aslamasov–Larkin Model

We will consider now the resistive state arising in weakly coupled supercon-
ductors. To describe it, we will exploit the Aslamasov–Larkin model,26 according
to which the order parameter within the weak link can be written in the form

We consider a one-dimensional problem; the coordinate x along the weak link varies
from const is the order parameter modulus of the bulk superconductor;

are, respectively, the time-dependent values of the order parameter phase
on the left and right “banks.”

Since we consider the one-dimensional case, it is sufficient to calculate the
current at the point It follows from (10.49) (in the gauge and at
that
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In the bulk “bank,” one can set assuming , we find from (7.85) and
(7.86)

The condition indicate that an analysis based on an equation of the
Ginzburg-Landau type (7.45) (which assumes that the spatial derivatives are small)
cannot be applied. Nevertheless, the expression for the current in the form (7.98)
can still be used, since in (7.88) may be taken as an equilibrium function, owing
to the rapid diffusive dissipation of nonequilibrium excitations toward the bulk
superconductive banks. Substituting (10.50) to (10.52) into (7.101) subject to
(7.106), one finds

where is some constant phase difference and
In the region of the weak link, there exist a number of “captured” nonequili-

brium excitations with energies As Schmid and Tinkham showed,28 the
presence of these excitations at voltages produces a current contribution

where is some non-negative even function of
period with a maximum value of 2/5. The magnitude of the same dissipative

phase-dependent structure could also be obtained formally by substitution of
(10.51) and an equilibrium distribution function into the second term in (7.88). The
interference term arising in this approach is not small in comparison with in
(10.53) As mentioned earlier, there should be no “local equilibrium”

contributions to the current in the case of short bridges because of the
fast diffusion processes toward the banks. In other cases, however, these terms may
be important.

10.5.2. Term Paradox

The interference current may determine qualitative features of the dynamic
characteristics of nonequilibrium superconducting bridges. In particular, it mani-
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fests itself in a so-called  “    -term paradox” (see, e.g., Ref. 29). For weak-link
bridges, this paradox arises when one attempts to interpret the experimental data
on the basis of the standard expression for the current, found by the method of the
tunneling Hamiltonian.1 It is expedient to reconsider this problem.

Let us examine, for example, the interpretation of the experiment by Falco et
al.,30 who measured the fluctuating value of the derivative of the voltage with
respect to current. A theoretical analysis of that quantity is based on the Fokker–
Planck equation,31 which can be written for fluctuations in weak-coupling super-
conductors in analogy with the motion of a Brownian particle in an external
potential field.32 As a result, the expression for the quantity was found
to be

Here is the cross
section of the weak link and R is its normal state resistance; the parameters  are:*

In comparing the theory with experiment, Falco et al.30 used the ordinary
Josephson expression for the current [in the latter case we should set

in (10.54)]. The experimental data were found to lie well below the theoretical
curve (they were close to the curve with , and this result was considered a
paradox (see Fig. 10.21). If instead one compares the experimental data with the
expression (10.54) for one would find that the theoretical curve of Eq.
(10.54) runs well below the one found when To demonstrate
this, consider the behavior of (10.54) in more detail, setting for a moment

We thus arrive at

*The value for may be found if one retains in (10.53) the contribution to the current, which follows
from the last term in (7.83) and is approximately equal to Since incorporation
of this term into the expression for the current would involve going beyond the accuracy of our
treatment, there could be other contributions to  of the same order of smallness, which are effectively
negligible.
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We look for the dependence of (10.56) on Only the second integral in the
denominator of (10.56) depends on It may be decomposed into two terms, as is
illustrated in Fig. 10.3 (it is convenient to make ). The first term is proportional
to the area bounded by the solid line (dashed in Fig. 10.3). The second term is
proportional (up to the same multiple) to the area restricted by the line obtained
after multiplication of the solid and broken lines. as one may see
from Fig. 10.3, the second term is negative (and has a smaller absolute value
than the first term). For this reason, the denominator in (10.56) decreases though
remaining positive, and at positive the value of K(0) is smaller than

For a negative the contribution of the second term is always positive
(because the dashed curve in Fig. 10.22 should be reflected relative to the
abscissa) and for a given y we have In the same manner one can
see that the terms containing and diminish the values of (10.54). Thus
probably the paradox mentioned above might be explained in this particular case.
It would be premature to make a detailed comparison of theory and experiment
because of insufficient knowledge of the parameters that determine the voltage-
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current characteristic of the weak link. For example, the relation between and the
measured voltage in Ref. 30 is not known; this is an important question,33 since it
determines the dominant term in (10.56).

10.5.3. Excess Current

Excess current has been observed in all the types of weakly coupled supercon-
ductors,34–40 except Josephson junctions. Likharev and Jacobson41 proposed a
model to account for the relaxation of the order parameter in the region of a weak
link. They tried to apply a simple generalization of the Ginzburg–Landau equations
to the nonstationary case. Though such a generalization may be justified for the
gapless superconductors only, nevertheless it was the first successful explanation
of the excess current. The problem was treated more precisely by Artemenko et al.42

They have explained this phenomenon using the model of short bridges. The results
obtained in Ref. 42 were confirmed by experiments both at low and at
sufficiently high temperatures and at arbitrary bias voltages.34–40 For a bridge
“superconductor–constriction–superconductor” at arbitrary temperatures and

the result of Artemenko et al. may be written as

this result may be rewritten as
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where is the BCS value of the gap.
An expression of the same type follows from the formulas of Sect. 7.2, which

utilize the idea of interference current [see Eq. (7.104)]. For illustration we will use
the results obtained with the Aslamasov–Larkin model. From expression (10.53) it
follows that the time-averaged value of the interference current is not zero. Substi-
tuting into (7.104) the time-averaged value we have

For ordinary superconductors

so one can omit the logarithmic dependence on T [keeping only the dependence on
in the expression (10.59). Thus we arrive at a qualitative and even

quantitative coincidence of the results obtained by rather different techniques
(though in the vicinity of only). In particular, the temperature dependence is
essentially the same. In addition, some new aspects of this phenomenon emerge:
first, the excess current is periodic in time, as can be seen from (10.53). Furthermore,
while previously it was thought42 that the excess current arises in the weak link
bridges because of the presence of massive banks (i.e., manifests itself as a boundary
effect), from the analysis presented here it follows that as a result of interference
between normal and superfluid motions, the excess current may reveal itself in bulk
samples also.*
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11

Influence of Laser Radiation

It is not surprising that a nonequilibrium state is created when photons of energy
much larger than the pairing energy are absorbed by the superconductor. What is
surprising is how strongly the behavior of this still superconducting state depends
on the “tiny features” of the superconducting state.

11.1   ELESIN APPROACH TO QUASI-PARTICLE DISTRIBUTIONS

Consider a thin superconducting film irradiated homogeneously by an electro-
magnetic field. The frequency of the radiation is supposed to be substantially
higher than the value of the gap* : so the excess quasi-particles in the
electron system are created by the field in the energy range As a
consequence, the source “density” in the kinetic equation for electrons [Eq.
(5.21)] is small and the shape of the electron excitation distribution function is
formed mainly by the inelastic collision operators. For simplicity we will consider
only inelastic electron-phonon collisions (4.119), assuming that the phonons are
in equilibrium as a result of coupling with the heat-bath.

11.1.1.   Spectral Function of Electron–Phonon Interaction

We will start with the case of temperature Denoting
one can write the kinetic equation (5.21) for the quasi-stationary state in

the form:

*In this chapter a gauge with the real order parameter will only be used.

293
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In Eq. (11.1) the electron-phonon interaction function is introduced.
The approximation

corresponds to the cases considered in the previous chapters. In (11.2), the depend-
ence of the electron-phonon interaction matrix element on the wave vector q is
taken into account ( for ionic crystals). Note that in the adopted notations, the
nonequilibrium source in (11.1) differs by the factor from the canonical
form (5.59).

11.1.2. Excess Quasi-particles: Normalization Condition

The concentration of excess quasi-particles is determined by the integral form
of Eq. (11.1). The normalization condition1

is obtained by integrating Eq. (11.1) over the relaxation terms disappear on doing
so. The explicit expression for may be significantly simplified using the

condition Omitting the U-factors in (5.59) [i.e., ignoring in Eq. (11.1) the
redistribution of excess quasi-particles by electromagnetic radiation—these factors
cancel each other in Eq. (11.3)] and simplifying the term that corresponds to the
creation of the excess quasi-particles from the condensate by the photon, one can
write [cf. Eq. (5.54)]:

11.1.3. Separation of "Coherent" Contributions

For [i.e., for k =  –1 in Eq. (11.2)], the kinetic equation
(11.1) can be solved analytically.1 We will analyze only this model case, when Eqs.
(11.1) and (11.3) acquire the forms:
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In this case, as can be seen from (11.5) and (11.6), the solution depends
explicitly on the order parameter through the coherence factors

11.1.4. Analytic Solution for

Assuming in these equations, we will neglect for the moment the
“coherent” contribution to the function We will denote the solution of (11.5)
with To define this function, one has the equation

It is useful to introduce the function

which obeys the nonlinear differential equation, following from (11.7):

Introducing further one finds from (11.9) the equation:

from which

or, returning to the original function y,
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Only the solution with a positive sign before the square root satisfies the boundary
condition [see (11.8)], and thus the integration constant is defined as

So we have obtained for the function

The characteristic parameter a determines the behavior of the solution To
obtain this quantity, we rewrite the normalization condition in the form:

from which it follows* [neglecting corrections of the order of

Thus the maximum value of the function increases, the
function decreases and becomes small at a. As mentioned earlier, the function

does not depend on A. Thus one can conclude that at optical
pumping.1 We will now examine the “coherent” contributions to the function

11.2. ORDER-PARAMETER AMBIGUITY

11.2.1. First-Order "Coherent" Correction

Assuming that one finds from (11.5) the equation

is small when which is of interest here.
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Taking into account that the term (11.17), containing in the integral form, is
small, one obtains to the first order in

Note that this function is negative at Taking into account zero-order solutions,
the self-consistency equation [of the type (10.14) that follows from (7.14)] can be
presented in the form

or, after simple transformations, as

11.2.2. Critical Pumping Intensity

The parameter a in (11.20) depends on the pumping intensity through the
relation (11.16). The critical value at which vanishes, may be determined
from (11.20):

or

11.2.3. Multiple-Order-Parameter Solutions

As mentioned in Ref. 2, the solution at intensities is not a unique
one. Indeed, if the coherent contribution is neglected, the right side of Eq. (11.20)
vanishes. So at it follows from (11.20):
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Thus at the gap tends to zero monotonically and no nontrivial solutions of
Eq. (11.23) exist at If the right side of Eq. (11.20) is taken into account, Eq.
(11.23) acquires additional terms:

where is the Katalan constant. In Fig. 11.1 the dependence of on
the order parameter is plotted according to Eq. (11.24). The above-mentioned trivial

solution normal state) also exists for any This state might be
realized if one approaches the superconducting state from the normal metal state
by decreasing the pumping intensity. Thus at there exist three solutions
of the self-consistency equation (11.19). Two nonzero branches merge at

as one can see from Eq. (11.24). In this case

11.2.4. Stability of Solutions

We will consider now the stability problem of various branches of the solution
of Eq. (11.24) relative to spatially homogeneous perturbations:
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As above, neglecting in Eq. (11.1), restoring on the left side the time derivative,
varying the right side over n and and omitting the small contribution due to the
term with in the integrand, one obtains the equation

Varying (11.19), one gets

Assuming, as usual,

we obtain from (11.19)

where . Substituting Eqs. (11.29) and (11.30) into (11.28), we get

Noting that the main contributions to the integrals come from small
(11.31) may be transformed to

Substituting into (11.27) and (11.32), one can obtain:
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11.2.5. Physics of Coherent Instability

As follows from (11.33), the parameter so that the correspond-
ing solution is unstable [here is the root of the equation which coincides
with (11.25)]. This means that the states of the system, indicated by the dotted line
in Fig. 11.1, are unstable against the transition to the normal state or to the state
with The region of instability coincides with the region of ambiguity of

This ambiguity arises, as mentioned earlier, from the coherence factors in the
kinetic equation, which reveal the physical cause of instability.2 Indeed, let the gap
at be decreased slightly due to a fluctuation. Then the probability of excess
quasi-particle recombination decreases owing to the coherence factors. This in-
creases the number of excess quasi-particles and leads to a further decrease in
etc. The reverse conclusions are also valid. As a result, from the intermediate values
of the solution passes to the branch or to the branch This leads
to the “coherent” instability.

11.3. FINITE TEMPERATURES

11.3.1. Inclusion of Thermal Phonons

As before, we will consider the kinetic equation (5.21), with a collision integral
of the form

The phonon distribution function in (11.34) remains in equilibrium:
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11.3.2. -Approximation

The deviation of the electron distribution function from its equilibrium value
is assumed to be small and localized in an energy range much smaller

than the temperature scale. In such a case, the terms containing in the integrands
are small compared with the terms containing as multipliers. Omitting these
integral terms and noting that the terms in square brackets in Eq. (11.34) vanish for
the equilibrium substitutions and one can write:

After algebraic manipulations, taking into account the expressions for and
one finds

Because the essential range of integration in (11.36) is one can consider
at as a constant:

which in the Debye model [ in (11.2)] is equivalent to

Note that this expression for , as well as the collision integral in the relaxation-time
approximation, was used in previous chapters.
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11.3.3. Iterative Solution Procedure

Continue now the examination of the collision operator (11.34), removing the
restriction for to be localized, but assuming it is small in magnitude. The only
simplification now follows from neglecting the quadratic in terms. Taking into
account the identities

one can rewrite (11.34) in the form:

where is given by Eq. (11.37). As in Sect. 11.1, the shape of the distribution
function is governed by the condition which implies:

11.3.4. Solution for

Let us initially put Then from (11.42) it follows that varies within
the energy range of the order of the temperature scale, decaying exponentially at

In our case and increases linearly with So:

The coefficient B may be estimated from the normalization condition, which is
analogous to (11.3):
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Using the approximation (11.2) with one finds (by the order of magnitude)

11.3.5. Coherent Contribution

To estimate the contribution proportional to one can use an iteration
procedure based on (11.42). Substituting (11.43) into (11.42) and taking into
account (11.2) and (11.37), one can find the desired correction (up to the factor

cf. Ref. 3):

In deriving Eq. (11.46) it was taken into account that the “coherent” correction
should be essential in the energy range The part of which does not

depend on was omitted, although it renormalizes the function

11.3.6. Two Branches of a Nonzero-Order Parameter

This function renormalizes in the self-consistency equation
(5.25). One can assume that this renormalization has been made and ignore the
explicit dependence on in Eq. (5.25), which in the vicinity of has the
form[cf. Eq. (1.182)]:

The anomalous part which sometimes is called the gap control term (see Sect.
7.1.7), is defined by the relation

Note that the function (11.46) is negative and this enhances the value of For a
given B, one has two branches of solution for in the temperature range
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The quantity is defined by the relation Apart from
these solutions, there is also a trivial solution, Thus the situation at finite
temperatures is analogous to the zero temperature case. In the next section we will
consider in more detail some consequences of this ambiguous behavior of the
nonequilibrium gap

11.4. DISSIPATIVE PHASE TRANSITION

11.4.1. Stationary Solutions for Time-Dependent Problems

We will use in our analysis the time-dependent Ginzburg–Landau equation
(7.115) for a real order parameter, adding to (7.115) the contribution from the gap
control term caused by the action of an electromagnetic field:

where Introducing the potential function

one finds from Eq. (11.50) that the stationary solutions must obey the
equation

(we consider the one-dimensional case omitting below the argument r). As
was pointed out in Ref. 3, this equation is analogous to that describing the motion
of a particle with the mass in the potential instead of time we have the
space coordinate x, and instead of a space coordinate, the value of The first
integral of (11.52) has the form:

(the “mechanical” analogy to the constant C is the energy of the system). Note the
following properties of solutions the symmetry with respect to the coordinate
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Among the solutions generated by the potential (Fig. 11.2a) there are
three constants:

which correspond to the extrema of in these cases we have
The restricted solutions for     exist in the region between

the boundary extrema of (Fig. 11.2a). Generally these bounded solutions are
periodic in space (Fig. 11.2c). As follows from (11.52), the curvature in the extrema
of periodic solutions is equal to at the turning points

The periodic solutions degenerate to solitons (localized objects, Fig.
11.2c) whenever one of these curvatures vanishes, e.g., if
If for some reasons (e.g., at some level of external pumping) then there is
a possibility of further degeneration of the soliton to the wall-like solution at

(Fig. 11.2d).

11.4.2. Local Stability Against Space-Time Fluctuations

Now we will inspect, following Eckern et al.,3 the local stability of these
solutions against small space–time fluctuations. To do this we will analyze the
dynamics of in the vicinity of stationary solutions Linearizing (11.50)
in the vicinity of and assuming (without any loss of generality) that the
prefactor at is equal to 1, one obtains for the equation:

Presenting U(x, t) in the form one obtains from (11.55)
the one-dimensional analogy of the “Schrödinger” equation:

where has the meaning of an “energy.” As follows from (11.56), spatially
homogeneous solutions corresponding to the maxima of are stable:

at these points. On the contrary, the intermediate values of are not
stable. To analyze the stability of spatially periodic stationary solutions, one should
differentiate (11.52), resulting in:

reflection and the invariance at an arbitrary shift of the “coordinate” (the
mechanical analogy is the time reversal and space translation).3
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Using (11.56) and (11.57), one can establish that the eigenfunction is the
only one that corresponds to the eigenvalue For periodic solutions,
has an infinite number of nodes. Hence there are functions with a finite number of
nodes that correspond to the lower values of “energy”: So the periodic
solutions are not stable. The soliton function has a single node; consequently
there is one eigenfunction corresponding to the smaller value of “energy”:

(the “ground state”). Thus the solitons are not stable either. The wall-like
solution has no nodes; this solution is stable against small perturbations.

11.4.3.   Coexistence of Normal and Superconducting States

As mentioned earlier, the wall-like solution corresponds to

Taking into account (11.51), it can be found from Eq. (11.58) that the wall-like
solution corresponds to the temperature

The general situation is illustrated in Fig. 11.3. At the free energies of
superconducting and normal phases are equal: these phases may coexist. At higher
temperatures, the normal phase is energetically favorable and the wall moves
toward the superconducting region. At lower temperatures, the superconducting
state is more favorable and the superconducting phase should expand to fill the
space.
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11.4.4. Velocity of Phase-Boundary Motion

To obtain the velocity v of NS boundary motion at one can
use (cf. Ref. 4) Eq. (11.50). Suppose the motion is stationary and the solution

obeys Eq. (11.52) at On account of (11.60) and the condition Eq.
(11.50) transforms at into

Using (11.53) at one obtains

Integrating expression (11.51) for along the trajectory of motion within the
limits taking into account Eq. (11.59) and

one finds (for the following expression for the motion of the wall (i.e.,
the NS boundary):

where
Because the spatially homogeneous solutions are locally stable, superheated

and supercooled states are possible. The transitions between different phases should
be analogous to the first-order phase transitions. The dynamics of these dissipative
phase transitions were discussed earlier.

11.5. MAGNETIC PROPERTIES

11.5.1. Equilibrium Diamagnetic Response

The response of a superconductor to a slowly varying magnetic field is
determined by the dependence of the superconducting current on the vector
potential. This dependence is contained in the first term of Eq. (7.88) (e = 1):
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where

Positive values of in thermodynamic equilibrium

lead to a diamagnetic response. In a nonequilibrium state, as follows from (11.66),
may become negative which corresponds to the paramagnetic

response.

11.5.2. Paramagnetic Instability

The superconducting paramagnetic state may become unstable against fluc-
tuations of superfluid velocity 5, 6 Indeed, from the Maxwell equation

the dispersion relation

follows for small values of q and subject to (11.65). Here and
N is the charge carrier density in the normal metal. Evidently for the Fourier
component of the field with grows exponentially in time.

11.5.3. Role of Boundary Conditions

Thus the perturbations moving perpendicular to the boundary would be
damped out in a film of thickness while the perturbations moving along the
film would amplify. Note that such amplification may not occur if the film is
deposited on a massive superconductor S´.7 In this case, one must consider three
equations: for the half-space Eq. (11.69) for the film S, and the
equation for the half-space occupied by a superconductor S´. These
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equations are linked by the boundary conditions expressing the continuity of the
vector potential A. The dispersion relations

follow for the solution, which should vanish at Because small values of
momenta are of interest, one can put and , obtaining thus from (11.71)
and (11.72):

At the system is stable if

If the substitution of (11.14) into (11.66) gives the value
Consequently, the sign of is defined mainly by the sign of the “coherent”
addition. As follows from (11.18), in the case we have considered, and is
positive. Using (11.8), (11.14), (11.65), and (11.66), one finds

In the model considered in Sect. 11.4, at finite temperatures one has

i.e., is also positive.

11.5.4. Superheated States at External Pumping

Concluding this section, we will discuss some peculiarities of the dissipative
phase transition in a magnetic field.3,8,9 Suppose a thin film of thickness d (under
the action of laser radiation) is placed in a magnetic field H. In this stationary state,

and Eq. (11.65) is modified to

It was shown in Sect. 1.2 that the average value of in the film is zero, although
It could be evaluated as
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where is a factor that is approximately equal to (up to the numerical
constant). From Eq. (11.77) one can see that the magnetic field renormalizes the
temperature. Making the substitution

one can restate for all the results found in Sect. 11.3 for the original temperature
T. Thus, at “temperatures” obeying the relation

the same ambiguity of arises in a thin film. As may be seen from Eqs. (11.80) and
(11.79), at the actual temperature Correspondingly, the original values
of TM and TK are also shifted. At fixed values of T, the superheated or supercooled
states may be created by varying the magnetic field. (In close analogy with the
first-order phase transition, considered in Sect. 1.2 for the Type I superconductors,
one can expect superheating and supercooling in the Type II superconductors.) In
this case the first-order phase transition in the Type II superconductors is related to
the external deviation from thermal equilibrium.

11.6. BRANCH IMBALANCE INITIATED BY ABSORPTION OF
HIGH-ENERGY QUANTA

11.6.1. Finite Curvature of the Fermi Surface

During laser pumping or high-energy particle cascade events, the branch
imbalance in superconductors is usually considered negligible. The reason is the
symmetry property

which the nonequilibrium source (5.12) [as well as its quantum generalization
(5.54)] possesses. The property (11.81) yields the solutions of the kinetic equations
of (3.63), which are symmetric over the electron and hole branches:

At the same time, there exists a mechanism that can yield the asymmetric population
of electron-hole excitations, even under the action of electromagnetic radiation.10

The physical source of this asymmetry is the finite curvature of the Fermi surface.
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Namely, the density of electron levels has a large-scale dependence on the excitation
energy

This dependence was neglected in all the above calculations, since the relation

was universally adopted. One can correct the dependence (11.84) by taking into
account the relation (11.83):

Consequently, the collision integral of electrons with photons may be rewritten in
the form*

where the factors were defined in Sect. 5.3.
Thus the interaction of electromagnetic radiation with the electrons in a

superconductor (as in a normal metal) “resolves” the electronlike and
holelike excitations (see Figs. 11.4 and 11.5). As a result, a photoinduced
potential must arise. We now consider this effect in more detail.

11.6.2. Photoinduced Potential and Owen–Scalapino Model

We consider the stationary state that arises in a thin superconducting film,
which is analogous to the case considered in Chap. 5. Instead of (5.41), one deals
with (11.86), which provides, in the manner described in Sect. 5.3, the following
linearized nonequilibrium source:

*We should note that the previously exploited powerful tool for the description of nonequilibrium
superconductivity, the energy-integrated Green's function technique, is not rigorously applicable
here. This technique is appropriate only for describing processes taking place in the momentum
space not far from the Fermi surface. Nevertheless, the Boltzmann-like kinetic equations could be
appropriately corrected to include the most important part of the branch imbalance effect resulting
from high-energy quanta absorption.
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where is defined by (5.60),

and the substitution of the equilibrium function , was made in (11.87).
Owing to the presence of Eq. (11.87) implies the property:

which may be regarded as yielding a branch imbalance. Figure 11.5 illustrates the
situation clearly.
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The steady-state nonequilibrium solutions for electron-hole distribution func-
tions and in the spatially homogeneous case may be found by using the kinetic
equation

For the sake of brevity we will consider the case where the bias temperature is
absolute zero, and the electromagnetic field is “wide,” as everywhere in
this chapter. As in Sect. 11.1, we will set const, and present (11.90)
in the form [cf. (11.7)]:

In writing (11.91), we focus on the energy dependence of the distribution function
on an energy scale that is small compared with and large compared with the
nonequilibrium value of This value of may be much smaller than the
equilibrium value owing to the external pumping. Assuming this to be the case,
we set in (11.91). The presence of a superconducting state is revealed in two
aspects of the branch-imbalance solutions: they are physically allowed, and they
are stable against fluctuations.

By analogy to (11.10), let us denote
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and assume on grounds of the phase-space volume. Proceeding as in the
derivation of (11.14), we obtain in this case:

In the absence of imbalance, the value was obtained from normalization
condition (11.3). In the case of imbalance

where Consequently,
Actually, where is the gauge-invariant potential (8.6), repre-

senting the difference between the potentials of the normal and superfluid compo-
nents of the electron liquid. On somewhat different grounds, this potential was first
introduced by Owen and Scalapino11 (the so-called -model). Despite the exist-
ence of a nonzero potential following laser pumping of superconductors, it has
not yet been experimentally confirmed. A while ago the pioneering work of
Testardi12 initiated interest in the states generated by the influence of electromag-
netic radiation on superconductors. This problem continues to attract the attention
of a lot of experimentalists (see, e.g., Refs. 13–17). Thus one can expect that branch
imbalance will be eventually registered and exploited in practice.
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12

Inverse Population Instabilities

We will refer to the inverse population state as the state with the excitation
distribution function satisfying the condition*

in a finite-energy region above the gap edge Comparing (12.1) with the
thermodynamic equilibrium function

one can call the inversely populated state a “negative temperature” state,1 since at
Eq. (12.2) would satisfy (12.1).

The possibility of inverse population in superconductors challenged investiga-
tors for a long time. Despite many theoretical indications of its feasibility, and very
unusual and exciting implications (see, e.g., Refs. 2–16), this state has not yet been
realized experimentally. Depending on the frequency of external radiation, two
characteristic situations are usually considered: the case of “wide” source pumping
and the case of “narrow” source pumping.

12.1. "WIDE" PUMPING SOURCE

In wide source pumping, the distribution function is formed by the counter-
play of relaxation and recombination processes within the electron–phonon system,
so the detailed properties of may be neglected. Thus in the following section
we will focus our attention on electromagnetic pumping. The generalization of
results to tunnel injection is straightforward.

*In this chapter we assume to be a real quantity and ignore the branch imbalance, setting in
all the expressions.

317
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12.1.1. Elesin Theorem

Suppose a thin superconducting film of thickness d is deposited on a substrate,
and a monochromatic electromagnetic field is incident on the film, driving the
superconducting electron system out of equilibrium. Suppose also that the main
mechanism responsible for relaxation of the electron system toward equilibrium is
provided by inelastic collisions of electrons with phonons. The model of a “phonon
heat bath,” which was used extensively in previous chapters, simplifies the analysis.
We will consider mainly the ordinary superconductors at assuming that a
spatially homogeneous state emerges in the film under electromagnetic pumping.

The kinetic equation for electrons may be written in the form:

where is the nonequilibrium source of quasi-particles (5.21) and (5.54), and
is the electron–phonon collision integral

(4.119), which we will write in a somewhat more general form [cf. Eq. (11.34)]:

The quantity in Eq. (12.2) is the spectral function of the electron-pho-
non interaction. As noted above, we will not consider in this section inelastic
electron–electron collisions, so that the term will be ignored. To find a
proper self-consistent solution of nonlinear kinetic equations, the equation

must be coupled with Eq. (12.1).
We will consider first the isotropic model of metals with the Debye spectrum

of phonons, following Elesin.17 Eq. (12.1) may be rewritten in the form:

where
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and the quantities correspond to the “in” and “out” relaxation scattering
of quasi-particles, and, correspondingly, to recombination via the phonon emission.
Using (12.6), one can present as a functional fraction:

In the case of optical pumping, when the frequency greatly exceeds the value of
the source creates nonequilibrium quasi-particles in the wide range of

and inequalities

take place in the region at any practically achievable intensity of optical
pumping. This gives us grounds to rewrite (12.8) as

For further analysis, the function in (12.7) was chosen17,18 in the
form

and the values of were studied. In all of these cases one can estimate the
values of the functionals and using for the approximation

This allows us to find the inequalities

and thus to establish (the Elesin theorem) from (12.8).
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A principal difference between the kinetics of superconductors and semicon-
ductors now becomes clear: the processes of recombination in superconductors
have a single-phonon character, while in semiconductors the single-phonon proc-
esses of recombination are forbidden (because For superconductors, the
role of the semiconductor gap is performed by which does not exceed the
phonon boundary frequency in all known superconductors. Moreover, the

relation holds for traditional superconductors. At the same time, in
recently discovered high-temperature superconductors, is comparable with
In this case it is necessary to revise the earlier results.

12.1.2. "Two-Peak" Approximation for

Such an attempt was made in Ref. 19. A simple “two-peak” approximation for
the spectral function was adopted in this work:

where and are characteristic frequencies of phonons in superconductors, and
the coefficients and include the interaction constants of electrons with these
phonon modes and are also proportional to the spectral weights of these modes. For
the case

the problem permits an analytic solution, which can be presented in the form

As an analysis of this formula shows, for a narrow energy range
. The physical reasons for this result are related to the presence of

two groups of phonons, with the frequencies and obeying the relation
(12.13), which causes some peculiarities in the electron kinetics. Indeed, the
recombination takes place by the participation of phonons only. But this channel
turns out to be noneffective, because the quasi-particles in the vicinity of the gap
edge (with the energy are to recombine with the quasi-particles removed far
from the gap edge The concentration of these high-energy quasi-par-
ticles is rather low. That is why, contrary to the model used in Ref. 17, the
recombination processes are not effective in this case, and the term may be
neglected in (12.8). With respect to the interplay between factors and in (12.8),
it may be noted that at (when only spontaneous emission of phonons in a
relaxation channel may take place) outscattering of electrons from the states lower
than the level is impossible [this causes at . A
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unique rule—the Pauli principle—thus regulates the filling of states lower than the
“energy horizon” , yielding (12.12).

12.1.3. Numerical Analysis for Realistic Spectral Function

Approximation (12.14) has relevance for some classes of superconductors,
such as alloys of transition metals20,21 and high-temperature superconductors.22,23

At the same time, more detailed information may be obtained by numerical analysis
of Eq. (12.4) subject to (12.5).

In this case it is useful to start with a model approximation for the spectral
function plotted in Fig. 12.1,a, and change the parameters

, and The results of numerical analysis for the case of
0 are shown in Figs. 12.2–12.8. They are different for longitudinal and transverse
phonon fields.

First we will discuss the case of longitudinal phonons. As is seen from these
results, the distribution function of quasi-particles may be inverted for certain
choices of parameters.

Changing the boundary values and , one finds that the most radical variation
in the shape of function (a decrease) takes place when the value of exceeds
(Fig. 12.2); this change is caused by the “switching on” of intermediate energy

phonons in the kinetic processes. We would like to mention here an
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interesting feature: shifting of the maximum of when exceeds (Fig. 12.2,d).
The value of decreases noticeably when the value of increases (Fig. 12.3).

The change of localization boundaries of high-energy phonons also may
strongly influence the formation of function (Fig. 12.4). When the boundary
is near the critical value the distribution function is substantially depressed
(Fig. 12.4,a), and, in contrast, strongly increases when the group of high-energy
phonons is situated far from With respect to the parameters and , it may
be shown (Fig. 12.5) that the maximum of increases (being restricted by 1) when
the ratio increases.

The role of phonons of the lowest energies (described by the parameter ) is
negligible, as Fig. 12.6 illustrates. It is interesting to note that setting

one arrives at (Fig. 12.2,c) the results obtained in Refs. 17 and 18 (for
–1) .

Let us consider now the case of a transverse phonon field. For such phonons a
very significant sign reversal
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occurs in the coherence factors of the collision integral (12.2). Such an exchange
raises the intensity of relaxation processes and and diminishes the intensity
of recombination processes as may be demonstrated from (12.5). In accord-
ance with (12.6), this must yield an increase in . Figure 12.7 illustrates such a
conclusion. As may be found by a comparison of corresponding curves from Fig.
12.7 and Figs. 12.2-12.6, the function is indeed greater in the case of transverse
phonons than in the case of longitudinal phonons.

In real crystals, both longitudinal and transverse phonon modes are always
present. Two limiting curves corresponding to the cases of purely transverse and
purely longitudinal phonons are depicted in Fig. 12.8 (taken from Ref. 12). The
shape of the function was chosen to correspond to the data obtained
for high-temperature superconductors (in particular,

*These superconductors as well as other representatives of high- families are highly anisotropic and
this raises the probability of transverse phonon field participation in electron–phonon interactions.
Dealing with this class of superconductors, one should bear in mind that there may be additional
interactions (e.g., paramagnon exchange), which can mediate the process of energy relaxation of
quasi-particles and change the whole picture.24 Undoubtedly for more precise predictions, the mecha-
nism of superconductivity itself must become better known.
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12.2. "NARROW" PUMPING

In “narrow” pumping, the pumping source may be regarded as having a
resonant action on the system of electrons. Thus the term in (12.4) can no
longer be omitted. Taking this into account, the functional fraction (12.6) can be
presented in the form

On pumping by a electromagnetic field with the frequency

the quasi-particles will be created mainly in the narrow region above the
gap.

12.2.1. Analytic Solution for Resonant Pumping Case

We will start our discussion with the case of relatively weak fields (cf. Chap. 5):
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Dropping the components that are proportional to U-factors in the field term of
(5.21), Aronov and Spivak11,26 found an analytic solution for (these factors are
responsible for the redistribution in the energy space of excess quasi-particles,
created by the electromagnetic field). Using the relaxation-time approximation for
the collision integral in (12.3), one can ascertain that under these conditions the
electron excitation's distribution function has the form11,26:

where
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The function at various values of and is plotted in Fig. 12.9.* The result
(12.21) indicates that the distribution function of the excess quasi-particles in a
superconductor pumped by an external electromagnetic field not only can exceed
the value 1/2 but can even attain the maximum value of This is connected
with the singularity in the superconductor's density of states. Owing to this, the
value may be attained at even for exceedingly weak pumping, i.e.,
even when (as is clear from 12.21). This result may be formulated in the
following manner: at the ground state of the superconductor (i.e., the state
without electron quasi-particles) is unstable with respect to the transition to the
nonequilibrium steady state, in which the value is attained, if a weak external
electromagnetic field with a frequency in resonance with the threshold frequency
is applied. We will consider the possible implications of this result in Sect. 12.3.

*Here we ignore the insignificant “tail” of the excess quasi-particle distribution function at
Refs. 11 and 26).
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12.2.2. Tunnel Injection of Electrons

Even stronger deviation from equilibrium is possible by tunnel injection of
quasi-particles at voltages At such voltages one can neglect the terms

and in (10.4): their influence average out. Because of that, the general
equations (12.3) and (12.5) may be significantly simplified. We will make these
simplifications assuming To make a more thorough analysis, we will add
to (12.4) the electron-electron collision term (4.36) in the form (below is
assumed):
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The quantity entering expressions (12.18) to (12.23) should be determined from
the self-consistency equation (12.5). The self-consistent system of Eqs. (12.18) to
(12.23) is highly nonlinear. However, the assumption of a “narrow” energy distri-
bution of the electron excitations makes it possible to effectively find the solution,
even taking into account (12.23).

12.2.3. Simplifications for "Narrow" Distributions

Introducing the variables and denoting

we present Eq. (12.24) in the form

where is the gap at in the absence of external perturbation. The “narrow”
distribution results [as is seen from (12.25)] in a small value of and hence

Consider now the collision integrals. If the function and is still
concentrated in the region immediately above the gap, the relaxation terms in
(12.23) are small in comparison with the recombination terms, and may be
simplified:

The electron–electron collisions may cause a significant change in the distri-
bution function if they are efficient. In our case, when the quasi-particles are
concentrated in a narrow layer near the Fermi surface and in this layer, we
must first account for the “collision pairing” processes [the second term in the
component of the collision integral when three colliding electron excitations
with energies . create a bound state (a Cooper pair) and a free quasi-particle with
the energy The opposite “collision breeding” processes in this case are not
efficient and hence may be reduced to the form
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Comparing (12.27) and (12.28), one may ascertain that the electron-electron
collisions are not important if the following parameter:

is small (we set . For metals with relatively large Debye frequencies (such
as Al, see Table 10.1 in Sect. 10.2), the value of might be insufficiently small, so
it becomes necessary to account for (12.28). Unfortunately, the factors a and b in
(12.29) are not yet well established experimentally (as mentioned in Ref. 27), so in
the next section we consider the values to cover the limiting cases.

12.2.4. Analytic Solution for Symmetric Junctions

In the case of an SIS-junction, the quasi-particle source (10.4) has the form
(ignoring imbalance):

The analysis of kinetic equations proceeds in the same manner as for the case
of a UHF field. The nonequilibrium electron distribution function is given by the
expression

Even though we assumed to be small, the narrow injection source may drive
the distribution function to saturation

if We will consider the implications of (12.34) in Sect. 12.3.
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12.2.5. Injection from Bulk Sample to a Thin Film

Let us consider now the case of SIS' junctions. The latter case was first
examined by Genkin and Protogenov,8 who found that the function may be close
to unity for lying above the gap. Because the analysis in Ref. 8 was not completely
exhaustive,* we provide here a solution of Eqs. (12.18) to (12.29) in a more accurate
approximation. As follows from the results of Chap. 10, the initial equations for the
SIS' junction are analogous to the case of a symmetric SIS junction; the only
difference is that the distribution function entering Eq. (12.30) for the source
with shifted arguments, relates to a bulk superconductor, while the factors and

are

( is the gap of the bulk injector).
If the thickness of the injector is much greater than the thickness of the film,

which in turn does not exceed the diffusion length for the quasi-particles, then the
electron system of the bulk superconductor may be considered to be unperturbed,
even if the thin film is driven significantly out of equilibrium. Assuming that the
resulting highly nonequilibrium distribution of quasi-particles at is
“narrow,” the solution of Eqs. (12.3) to (12.5) subject to (12.25), (12.27), and
(12.28) can be represented as

where

while the parameter should be determined from the equation

*Unfortunately, in Ref. 8 no detailed analysis was given of the kinetic equations taking into account the
self-consistency equation, and the related ambiguity of the solutions of the kinetic equations was not
revealed. Such an approach is insufficient for our purposes.
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We recall here that the quantities and A in (12.37) depend on and Eq.
(12.39) determines the values B for fixed injection parameters. It is expedient to
write Eq. (12.39) in the form

Equation (12.39) allows further analytic investigation in several limiting cases [for
simplicity in (12.37) we put for the time being].

1. Assume the external parameters V and are such that the self-consistent
value of leads to Then Eq. (12.39) subject to (12.37) reduces to the form

Note that the roots of Eq. (12.40) do not depend on the parameter though the
range of applicability of Eq. (12.40) does, because and the steady-state
solution should satisfy the inequality

The left-hand side of Eq. (12.40) has a maximum at This value of is a
root, if

(here e is the base of the natural logarithm). For larger there is no solution with
small B, while for smaller there are two roots. The smaller root behaves as

while the second one increases rather rapidly, finally leaving the range of applica-
bility of our approach (recall that the value of was assumed to be small). In the
vicinity of the characteristic value one has the following condition for the
parameter
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Thus, for the self-consistent kinetic equations always have two solu-
tions with , since condition (12.44) can only be satisfied for a that is not
too small is the initial voltage displacement above the threshold level,

for small we have
2. In the opposite l imiting case of , the right-hand side of Eq. (12.39)

is approximately unity and hence (12.39) has a small root only for small values of
Using the relation (12.26) we obtain from (12.39) the following expression for

the smallest root

which becomes meaningless when Thus the self-consistent system of
equations with negative initial displacement has a solution with

here if is sufficiently small.
3. Of the greatest interest is the intermediate case , since for such values

of B phonon instability (see Sect. 12.3) can be achieved. In this case the right-hand
side of Eq. (12.26) is equal to and for the small root we again obtain the
value (12.46). Thus the roots of interest in cases (2) and (3) coincide; they differ
only by the values B, which are determined by the external parameters and

A numerical analysis of the transcendental equation (12.39) confirms the
reasonings outlined above. Thus, for the parameters
2 (in units), three roots of Eq. (12.38) exist:

and When and (for example,
we have (with only a single solution (here

). With increasing the value of B decreases
when , and for sufficiently large (for example, , there are no roots
at all. Thus the behavior of the tunnel SIS' junction is very sensitive to the initial
injection parameters and to those of the junction itself.

In addition to the solutions obtained at there also exists a solution
which corresponds to the situation with no excess quasi-particles, as well as

the solution that corresponds to the normal state . Setting aside the solutions
with large values of we conclude that in general there are three solutions for

the intermediate one corresponding to . Keeping in mind the discussion in Chap.

*To consider large values of we should go beyond the approximations used earlier. It is important to
note that slates with a larger are separated from states with a smaller by a high energy barrier, and
transitions between them are very improbable.28
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11, one may expect that the latter solution is unstable, while the current-voltage
characteristic of the SIS' junction is S-shaped, and the spatially inhomogeneous state
is realized in the superconducting film. However, we will not scrutinize this
possibility since (as was mentioned earlier) when and (see in particular
the case when there exists only one solution. This solution corresponds
to a superconducting state with excess electron excitations, so that the possibility
of S-shaping disappears.

The vanishing of the S-shape as increases (i.e., as the nonequilibrium level
in the tunnel junction grows) suggests an analogy between the nonlinear behavior
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of a nonequilibrium superconductor and the behavior of nonideal van der Waals
gases. Namely, the increase in the junction’s nonequilibrium level is analogous to
the increase in the temperature of a nonideal gas, which causes the van der Waals
isotherm to acquire a monotonic shape (Fig. 12.10).

12.3. PHONON INSTABILITY

We have accumulated enough results to discuss the possibility of phonon
instability in nonequilibrium superconductors. Phonon instability is characterized
by the reversal of the sign of the sound absorption coefficient of the nonequilibrium
electron system. In the case of positive feedback, such an instability may cause a
generation regime, in which phonon emission from the nonequilibrium supercon-
ducting film is coherent and monochromatic. More detailed formulation of this
problem is given in the following sections.

12.3.1. Decoupling of Electron–Phonon Kinetics

To study the dynamics of the phonon system of a nonequilibrium supercon-
ductor, we must, in general, go beyond the phonon heat-bath model. In doing so
we should consider a coupled system of kinetic equations of the general form

where Q is the external nonequilibrium source, L is the operator describing the
phonon’s interaction with the external heat-bath, and I is the phonon–electron
collision operator. [We disregard within (12.47) and (12.48) the pair condensate
dynamics.] In the presence of feedback, some part of the nonequilibrium phonons
emitted by the electron system is reabsorbed by electrons and exerts a reverse
influence on the electron system. If the absorption coefficient for any phonon mode
is negative, the number of such phonons in the system will grow exponentially,
leading to instability, and finally the dynamic state will emerge.

A self-consistent solution for dynamic equations (12.47) and (12.48) is an
independent problem, which is not yet resolved (although there have been prelimi-
nary attempts to address it: see, e.g., Ref. 29). However, we do not need the full
solution because we will investigate only the possibility of getting to the threshold
regime of instability. In this case one may consider the following kinetic scheme:
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Here is the superconductor’s internal phonon field and corresponds to the
external phonon flux whose linear response will be studied. The operators in

(12.50) and (12.51) are of identical structure. In the subthreshold regime we can
use the model of the phonon heat-bath (it is applicable at least in the absence of
phonon instability). In this case a so-called dissipative steady state establishes:

and

Hence, Eqs. (12.49) to (12.51) become ungrouped; the function in (12.49) is
equal to its equil ibrium value Eq. (12.50) is an identity, while (12.51) will
be used to calculate the linear response (i.e., to analyze phonon instability).

We will assume that under the action of external factors the electron system of
a superconductor (which is coupled to an external heat-bath) deviates from equi-
librium and a dissipative steady state is achieved in which the nonequilibrium
electron excitations are characterized by the distribution function (henceforth it
will be assumed that is an even function and is also spatially homogeneous and
isotropic, like the order parameter ).

Consider the influence of the external phonon flux on the electron system; this
flux is characterized by the occupation numbers (we assume In
nonequilibrium superconductors (as clarified in Sect. 6.2), the phonons may be
absorbed (or emitted) both in pair-breaking (or, correspondingly, recombination)
and in relaxation processes. If the deviation from equilibrium is significantly large,
the recombination processes in superconductors are much more rapid than the
relaxation processes, so that in this case it is necessary to consider the stability
relative to the recombinational emission of phonons.

12.3.2. Phonon Absorption and Inverse Population

The number of phonons absorbed per unit of time in the volume at frequency
in the interval is given by the expression (cf. Sect. 6.2):

where is the e l e c t r o n – p h o n o n co l l i s i on operator (4.128) and
In the case of interest it acquires the form:
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(recall that for the external phonon field may be assumed to be classical).
The recombination part of the collision integral (12.54) may be written as

while the relaxation part may be written as

As follows from expressions (12.55) and (12.56), phonon instability due
to recombination processes (at frequencies may exist only when the
condition (12.1) is satisfied. Note that the distribution in superconductors is not
necessarily a monotonic function. Hence the mode could be not the most
unstable and, moreover, the instability condition (mentioned in Ref. 9) in
general is not the necessary condition. The necessary one is only the weaker
condition (12.1).10

12.3.3. Phonon Field Amplification in "Narrow" Electron
Distributions

Assuming the quasi-particle distribution is “narrow,” we can simplify expres-
sions (12.55) and (12.56) and present the “sufficient” condition of instability at
frequencies in the form
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An analysis of expression (12.57) shows that this condition may be satisfied if the
deviation from equilibrium is sufficiently large: Indeed, in this case
for frequencies the first integral in the curly braces is equal to
and the second integral, which does not exceed the value is small,
because the electron distribution is “narrow.” Thus, instead of absorption of the
acoustic wave we have an amplification in this case. The equality sign in the
condition

for some value of determines (ignoring all losses) the threshold of phonon
instability (at the given frequency ).

In view of (12.58), the spectral dependence of the absorption coefficient
is of primary interest. The dependence may be obtained for a “narrow”

source of electromagnetic pumping by substituting expression (12.21) into (12.57).
The resulting integral may be easily evaluated numerically. The corresponding
curves are shown in Fig. 12.11. An analysis of these results shows that the
absorption coefficient has a sharp minimum at With the growth of the
field's amplitude, the minimal value of diminishes but does not completely
vanish, even in the case of very intense fields where solution (12.21), strictly
speaking, is no longer valid.

The absorption coefficient has a dip on the order of the coefficient itself,
indicating that at electromagnetic pumping it is possible to at least come close to
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the threshold of coherent phonon generation. Nevertheless, condition (12.58)
cannot be satisfied, at least for fields with sufficiently low amplitude.

The case of a “narrow” high-intensity source requires special analysis.30

However, we will not go in that direction since the tunnel injection of quasi-particles
provides a higher level of excursion from equilibrium. In a symmetric junction, the
highest achievable level of nonequilibrium distribution function is (12.34), which
coincides with the saturation regime at electromagnetic pumping, but in this case
without entering the saturation regime. As noted earlier, even in the saturation
regime phonon instability does not arise. It is possible to confirm that the inclusion
of electron–electron inelastic collisions [in effective approximation (12.27)] does
not change this result.

Thus the nonsymmetric SIS´ junction turns out to be regarded as a unique
possibility for satisfying all the necessary conditions of phonon instability. Indeed,
the solution (12.36), discussed in Sect. 12.2, in case (3), with B ~ 1, will provide
the threshold regime of acoustic quantum generation. To confirm this it is enough
to substitute (12.36) (see Fig. 12.12) into (12.57). As follows from the discussion
in Sect. 12.2, when B ~ 1, phonon instability could be achieved in a spatially
homogeneous and steady-state approach. We will now discuss to what extent the
competing instabilities could affect this conclusion.

12.3.4. Stability Against Order-Parameter Fluctuations

In nonequilibrium superconductors there are many factors that influence the
stability of the steady state (including, e.g., fluctuations in the superfluid velocity,7

high-frequency fluctuations of the order parameter,31 and fluctuations of the elec-
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tromagnetic field11). We begin with a stability analysis of the inversely populated
state related to the high-frequency fluctuations of The corresponding criterion
of instability was considered in Chap. 8. We recall here that the extremal steady-
state value of is determined by the sign reversal of the expression

where the frequency of the i-mode can be found from the equation

The mode may also be unstable. For a narrow injection source corresponding
to the case B ~ 1 (which is important in our case), expression (12.59) may be
rewritten in the form*

and, consequently, the rapid “breakdown” of the Cooper pairs may occur only if
Thus, for small values of this competing instability cannot arise.

12.3.5. Fluctuations of Superfluid Velocity

We will now consider the instability related to the fluctuations of the superfluid
velocity In this case the response of a nonequilibrium superconductor to an
external magnetic field becomes paramagnetic (see Sect. 11.5) and the “density of
the superfluid component” may change sign:

As follows from (12.62), at small and B ~ 1 the density may indeed change its
sign.

It is important to recognize that phonon instability occurs before becomes
negative. In the case this may be ascertained directly. One may disregard
the constant 1 in Eq. (12.62) and the second of the integrals in (12.57), putting

in the first one (this is the least stable mode). Then, using expression (12.36)
for and recognizing that the corresponding integrals could be evaluated in

*For B > 1 and the instability does not occur.
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quadratures, one may see that changes its sign at , while phonon instability
is expected at B > 0.54. Thus, for the appropriate choice of parameters, the
instability related to the sign reversal of might not be destructive. For this reason
we will not study the problem of the superfluid velocity fluctuations in detail. Note
only that the sign reversal of if any, does not necessarily indicate the develop-
ment of instability. The interface between the film and the bulk superconductor can
electrodynamically stabilize the situation in a thin film if (cf. Sect. 11.5).
Here and are the magnetic field penetration depths connected to the London

penetration depth by the relation

In the presence of competing processes it is highly important that for a certain
choice of parameters the self-consistent kinetic equations allow only one solution
with a small [see Eq. (12.46) and Fig. 12.10]. Otherwise, in the case of multiple
solutions, a spatially inhomogeneous state of the superconductor may arise (see
Chap. 11 and Sect. 12.2), which would complicate the situation.

Note that the longitudinal electric field in superconductors (which is related to
the branch imbalance in the electron excitation spectrum) might also fluctuate (cf.
Sect. 8.4). However, in our case (T = 0 and “narrow” distributions) the imbalance
is expected to be small and no instability is likely to be developed as a result of the
fluctuations of the longitudinal field. The problem of the stability of the pattern
arising relative to the high-frequency fluctuations of a transverse electromagnetic
field (photons) will be considered in Sect. 12.4.

12.3.6. Estimated Gain

We now provide some numerical values for parameters relevant to the acoustic
quantum generation regime. From the viewpoint of possible experiments, the
nonequilibrium state can be efficiently realized in aluminum films as a result of the
relatively long lifetime of the electron excitations in this material. Characteristic
values of for aluminum are estimated to be (see Table 10.1 in Sect.
10.2), and if then for aluminum at cm we have from (10.12) RS

Such low-resistance junctions may be implemented in practice (see,
e.g., Refs. 32 and 33). The necessity to satisfy the inequality imposes
additional restraints on both metals comprising the SIŚ  junction.

Note that the velocity of sound in a superconductor is significantly less than
the speed of light, while the dimensionless electron–phonon interaction constant
exceeds the corresponding constant of electromagnetic interaction. Because of that,
the gain of the acoustic quantum generation could be quite high. Using (12.53) we
may obtain the following expression for the amplification factor (i.e., the gain):
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where is the quantity in braces in (12.57), and for characteristic metals (see
Table 10.1 in Sect. 10.2) we have from (12.64) during pumping,
which corresponds to This is higher than the working gain of gaseous,
solid-state, and semiconductor lasers.*

12.4. PHOTON INSTABILITY

Photons represent a Bose field, which has a lot of analogy with the phonon
field. At the same time there are major distinctions, which makes the case of photon
instability worth a separate discussion.

12.4.1. Two Channels of Electron–Photon Interaction

Consider a photon of frequency propagating through a superconductor
with a nonequilibrium electron population. We assume that the distribution function

is isotropic in the momentum space. As mentioned earlier, a photon can
participate (in a first approximation) in two types of processes, which are shown in
Fig. 12.13. They can be described by the collision operators (cf. Sect. 5.3):

(these operators are written in the limit of large photon numbers assuming
the absence of branch imbalance: Here is a (positive) constant propor-
tional to the interaction cross section of the photon with an electron quasi-particle.

*Hence the acoustic quantum generation, in principle, might be achieved without using a resonator
(superluminescence), with the coherent phonon flux propagating along the thin film. Moreover, because
the phonons suffer total internal reflection at the metal–liquid helium interface, it seems expedient to
try to implement a ring generator scheme.
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(these operators are written in the limit of large photon numbers , assuming
the absence of branch imbalance: ). Here is a (positive) constant propor-
tional to the interaction cross section of the photon with an electron quasi-particle.

12.4.2. Photons Versus Phonons

Taking into account that

and integrating in (12.65) and (12.66) with the help of one obtains for
the photon absorption coefficients and in recombination and
relaxation channels, respectively, the following relations:

Interchanging the variables and   – epsilon in the integrand of (12.68), one can
rewrite it in the form (the same procedure was applied in Sect. 12.3 to get 12.55):
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and thus

According to Eq. (12.73) one cannot expect to obtain any amplification of electro-
magnetic waves at frequencies because the gain in the recombination
channel is completely suppressed by the relaxation losses. This is a major difference
in the behavior of photon and phonon fields in nonequilibrium superconductors.
The physical reason* is in the transverse nature of the photon field as opposed to
the interaction of longitudinal phonons within an isotropic metal.

12.4.3. "Clean" Limit Kinematic Restrictions

The result (12.73) is based on Eqs. (12.65) and (12.66), which could be violated
in the limit of perfect crystals (i.e., in specimens with a small concentration of elastic
scatterers; cf. Chap. 5). In this limit the relaxation process of the type

which is described by the collision operator (12.65), is forbidden owing to the
energy-momentum conservation law subject to the condition where is the
Fermi velocity and c is the speed of light in the medium. In fact, the last inequality
(the Cherenkov condition) suppresses the relaxational channel (Fig. 5.1) while
leaving the recombinational channel active. This suppression effect was treated in
detail in Sect. 5.4. Hence in this particular case of perfect crystalline samples one
can expect a negative absorption coefficient for photons at

12.4.4. Experimental Feasibility

The detection of stimulated emission of electromagnetic radiation from a
nonequilibrium point microjunction NIS was reported in Refs. 35–37 (the scheme
of the experiment is depicted in Fig. 12.14). The nonequilibrium population was
created by excess quasi-particles injected by the current flowing from a normal
metal to the superconductor. The recombination of two quasi-particles across the
gap (see Fig. 12.13a) creates a new pair, which is added to the Cooper condensate.
A pair-binding energy was assumed to be emitted in the form of millimeter-range
electromagnetic quanta, corresponding to the value of superconducting tanta-

*To confirm this conclusion, one should bear in mind that the conductivity has a large imaginary part,
which stabilizes electromagnetic fluctuations.11
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lum, used in the experiments in Refs. 35–37. The power of the emitted coherent
radiation was reported to be about

Unfortunately, this result has remained unconfirmed by other authors. More-
over, in a subsequent work,38 critical arguments were put forward to prove the
impossibility of “laser” action. As was pointed out, the relaxation loss channel (see
Fig. 12.13b) is very important in superconductors and it overdamps the recombi-
national gain channel. To have a gain, it is necessary to pay special attention to the
crystallinity of the sample. Also, it is necessary to use an injection scheme that
guarantees (at least theoretically) the possibility of an inverse population at the
operational regime.

As shown in this chapter, the most promising results might be obtained by
tunnel injection in nonsymmetric SIŚ  junctions, which seems quite appropriate for
the creation of an inverse population in the “narrow” pumping case (Fig. 12.12).
The deviation from equilibrium is higher when the injector has a larger gap.
Recalling the results discussed, it seems evident that with a normal-metal injector
(used in Refs. 35–37), one cannot expect to fulfill the necessary conditions for
quantum generation.

From the experimental point of view, serious difficulties could arise even in
the case of an SIŚ  junction. Indeed, as mentioned in Sect. 12.3, the favorable values
of the parameter B should be about 1. This means that the RS value of the junction
must be less than Such junctions, with an exceedingly high transpar-
ency of the tunneling barrier, are very sensitive to the processes of degradation and
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breakdown. This is probably why the inverse population has not been observed
experimentally so far.

Possibilities for creating inversely populated states in superconductors exist
also in the wide pumping discussed in Sect. 12.1. Some factors could favor this
conclusion. Among them are sufficiently high quality of the crystalline structure of
the superconducting specimen, the non-Debye character of the phonon spectrum,
sufficiently large values of the Cooper gap compared with the characteristic phonon
frequencies, and significant participation of transverse phonon modes in the elec-
tron relaxation processes.

The fulfillment of the last condition is rather probable in superconductors with
an anisotropic crystalline structure, particularly in high-temperature superconduc-
tors. To make more strict predictions, one needs to analyze the problem from first
principles, using the partial functions for all the phonon modes The
polarizations of these modes must be known. For numerical calculations, it is
necessary also to know the energy band structure of electrons in the normal state
as well as the properties of the superconducting state. The positioning of phonon
peaks relative to the frequency plays a major role in the shape formation
of the function as the discussion in Sect. 12.2 revealed.

It must be acknowledged that only the main points of the superconductor-based
quantum generation have been outlined in this chapter. Among the omitted ques-
tions is the competition between phonon and photon instabilities. Both regimes of
instability have practical implications. To some extent, the result of competition is
determined by external factors, such as the design of the resonator, or, in a more
general sense, the nature of the feedback. This competition becomes of practical
importance when the instability threshold is crossed. Investigating beyond this
threshold is then a task for future theoretical work.
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13

Thermoelectric Phenomena

13.1. LINEAR RESPONSE TO THERMAL GRADIENT

Thermoelectric effects in charged Fermi liquids are small owing to the approxi-
mate symmetry between particle and hole branches of elementary excitations. In
thermal equilibrium, some weak asymmetry in the properties of these excitations
results only from a nonzero curvature of the Fermi surface.

13.1.1. Thermopower of Normal Fermi Liquids

We will use for this analysis the general expressions for current obtained in
Sect. 7.2, and consider first the case of a normal metal. For this case Eq. (7.83) may
be represented as*

Substituting the normal-metal limit we arrive at

In the case of a linear response we have

where so (13.2) takes the form:

*Both a derivation and a discussion of this basic relation for thermoelectricity in normal metals may be
found elsewhere (see, e.g., Refs. 1 and 2).

349
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Everywhere in this book we treated the conductivity (7.84) as a constant. To
describe thermoelectricity, one must account for the dispersion of in the energy
space.* Keeping only the first two terms in the series expansion for we have

where

Thus we obtain

At thermodynamic equilibrium in normal metals, a symmetry between electron-
and holelike excitations is governed by the electroneutrality condition,
and the first integral in (13.7) vanishes. Evaluating the second integral in (13.7),
one obtains the differential thermopower of a normal metal (or the Seebeck
coefficient 5) in the following form:

(the electron charge is restored).

13.1.2. Response of a Superconductor's Normal Component

For superconductors, the calculations of S should be modified by using the
spectral functions (7.16); (7.19) to (7.21) in expression (13.7) for the current:

*Ziman3 describes as the “electrical conductivity which the metal would have, at absolute zero, if
the Fermi level, came at the energy in our notation).
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[The component (13.9) of the total current (7.83) is sometimes denoted as
because it describes the diffusion of “normal” excitations in a superconductor
driven by a temperature gradient.] In the BCS limit one gets:

This expression was derived first in Ref. 4 and, as follows from (13.10),

The magnetic field inside a superconductor is governed by the usual Maxwell
equation curl where total current density generally is the sum of two
components (for simplicity we ignore here the presence of the interfer-
ence component; cf. Sect. 7.2). Here is the usual superconducting current (7.102)
and is the normal excitation current in superconductors generated by the
temperature gradient. Since the magnetic field and total current vanish deep inside
the superconductor (owing to the Meissner effect), then i.e., the normal
and superconducting currents compensate each other, flowing in opposite direc-
tions.

Such a current cancellation effect explains why the early experimental search
for thermoelectric phenomena in superconductors produced negative results (see
Ref. 5 for details). In fact, very sophisticated experiments were performed in an
attempt to observe the resulting thermoelectric current in superconductors. For
example, Steiner and Grassman6 suspended a bimetallic ring on an elastic string in
a weak magnetic field and then heated the junction. If a net thermoelectromotive
force had existed in the superconducting ring, it would have accelerated the
superconducting electrons and produced a current that would increase in time and
lead to a torsion of the elastic strings. However, during long observation, no rotating
momentum was detected.6 Also, no evidence was found for the Peltier and
Thompson heat transfer effects (see Ref. 7). This led to the belief that all thermo-
electric phenomena vanish in the superconducting state.8 The reason for such a
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conclusion is the expected total cancellation of two currents—“normal” and
“superconducting”—in the bulk of a superconductor.

Nevertheless, as was noted by Ginzburg9 in 1944, there is no complete
cancellation of currents in the case of a superconducting bimetallic plate in the
presence of a temperature gradient. A small residual current remains, which flows
around the joint of two metals, causing a small magnetic field at the junction (in
the interior of the bulk superconducting system). An analogous situation exists in
homogeneous but anisotropic superconductors (see Refs. 9 and 10 for details).

In 1973 Gal’perin et al.11 and independently Garland and Van Harlingen12

proposed that imposing a temperature difference across the junctions of a super-
conducting bimetallic ring should create an unquantized magnetic flux  through the
ring. The anticipated size of the effect was very small:

( is the flux quantum), which is within the sensitivity limit of the SQUID
(i.e., a superconducting quantum interference device) technology. It was later
recognized that the effects discussed in Ref. 9 and Refs. 10, 13 are virtually the
same as these predicted in Refs. 11, 12, and 14.

13.2. THERMOELECTRIC FLUX IN A SUPERCONDUCTING RING

The origin of thermoelectric flux in an inhomogeneous superconducting ring
can be easily understood by considering the Maxwell equation governing the
magnetic field inside the superconductor: curl where the total current
density is the sum of two components:

The usual superconducting current is excited by the phase gradient of the order
parameter and by the magnetic field potential A. The current is driven
by the temperature gradient, analogously to a normal thermoelectric current,

From Eq. (13.11) it follows that

or, after integration along a closed contour C and using the condition
(m is an integer), one obtains

Here is the magnetic flux piercing C.
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13.2.1. Meissner Effect and Incomplete Cancellation of
Thermoelectricity

In a massive superconducting ring, the current j in the bulk of the metal is zero
because of the Meissner effect. In a massive superconducting cylinder, the current
j at the outside surface is also zero (in the absence of an external magnetic field).
Thus the total magnetic flux confined inside the cylindrical system is

where C embraces the outside surface. The term describes a quantized magnetic
flux, captured originally inside the hollow superconducting cylinder (usually one
may assume ); the term is the additional unquantized temperature-dependent
thermoelectric contribution.11,12 The current j flows near the inside cylinder surface at
a distance

Let both metals be in a normal state with the current density The
total current in the normal system is where is some averaged value.
The magnetic field in the hollow is and the flux in the normal system
is (neglecting the flux confined in the cylinder walls, if ). Finding
the ratio

(here the proper average is assumed), one notices a very small factor
entering Eq. (13.15). This factor reflects the above-mentioned strong cancellation
of two currents in superconductors, which results in a drastic reduction in the
magnetic flux generated in superconductors, compared with the flux gener-
ated in normal metals.

To make the numerical estimates of one should know the coefficient in
Eq. (13.15). For this reason one can use Eq. (13.10). At small T the coefficient

quickly diminishes, which reflects the reduction in the number of "normal"
excitations at low temperatures. At temperatures the coefficient

which is natural because and Since ther-
moelectric experiments are usually made at temperatures T and in close
vicinity to for one of the metals, it seems reasonable to set for a
rough estimate of Setting in (13.15) R~ 1 cm, d~ 1 mm,

accounting for the temperature dependence with
, and utilizing the measured coefficients for typical metals used

in experiments (such as Pb, In, Sn), one obtains for the expected flux generated in
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a superconducting cylinder the estimate (see Ref. 10
for details).

13.2.2. "Gigantic" Flux Puzzle

In the first experiments by Zavaritskii15 (performed using superconducting
bimetallic loops), thermoelectric fluxes of only the predicted magnitude
were registered; the temperature dependence of the generated flux In

was also in agreement with theoretical predictions. However, in subsequent
experiments,16,17 much larger fluxes (on the scale of were observed;
the temperature dependence was also found to disagree with the predictions.

Careful measurements of thermoelectric flux made by Van Harlingen et al.
confirmed the existence of such a “gigantic” thermoelectric effect. The experi-
ments18 were made with hollow bimetallic toroids of lead and indium near the

transition temperature of indium The rate of the magnetic flux increase
was found to diverge as the transition temperature was approached, with a

power-law dependence, instead of the expected
power law. It was recognized also that the effect is sensitive

to the geometry of the experiment.19,20

The observed “gigantic” thermoelectric flux,18 which exceeds expectations by
several orders of magnitude, is a puzzle that has defied explanation for almost 20
years. To date, there is no commonly accepted explanation of this “gigantic” effect,
although several hypotheses have been proposed.

One approach to the explanation of the large effect was based on the anomalous
behavior of the induced current in Eq. (13.12). This hypothesis was
explored in a number of papers, where the kinetic theory of thermoelectric phenom-
ena in superconductors was modified to account for transport processes unique to
the superconducting state, such as additional superfluid counterflow currents14,21

and the generation of additional currents driven by a nonequilibrium chemical
potential22 (this question is also considered in the next section). However, the
inclusion of such effects does not noticeably change the estimate for the coefficient

and cannot remove the large discrepancy between the theory and experiment.
A recent paper23 contains arguments that the usual formulation of the kinetic

theory for superconductors should be radically reconsidered. According to Ma-
rinescu and Overhauser,23 the coefficient (in the presence of a temperature
gradient) is five orders greater than (even for ), and that would be enough
to remove the above-mentioned discrepancy. However, this assertion seems to
contradict the measurements made with ordinary “loop”-geometry (see, for in-
stance15), where no anomalous increase of thermoelectric effect near was
noticed. Thus, the arguments raise serious doubts.

Another assumption17 was that an additional source of magnetic flux should
be introduced in Eq. (13.14), which accounts for the redistribution of the magnetic



SECTION 13.3.    THERMOELECTRICITY AND CHARGE IMBALANCE                                 355

fields enclosed in normal and superconducting measuring circuits, thus causing
spurious effects. However, carefully controlled experiments18 have apparently
excluded this possibility.

Still another conjecture was24,25 that the number m of captured flux quanta in
Eq. (13.14) is temperature dependent and increases spontaneously with Ac-
cording to Arutyunan et al.,25 the vortex–antivortex pairs are generated by the
current inside the superconductor. The antivortex (i.e., the vortex with the
opposite flux direction) is expelled from the system, but the vortex remains inside,
thus increasing the captured flux. This hypothesis24,25 will be discussed in Chap.
14.

13.3. THERMOELECTRICITY AND CHARGE IMBALANCE

We consider now certain thermoelectric phenomena related to the gauge-
invariant potential existing only in the superconducting state. First the effect
predicted theoretically by Pethick and Smith26 and demonstrated experimentally
by Clark et al.27 will be considered. These studies have initiated a number of
theoretical investigations28–31 that are partly summarized in Ref. 32.

13.3.1. Pethick–Smith Effect: Qualitative Description

The temperature gradient T shifts the Fermi sphere in the momentum space
(see Fig. 13.la). This leads to an electron-hole branch imbalance in the vicinity of
the Fermi sphere. This imbalance has different signs in opposite directions on the
Fermi sphere and gives after integration over directions of p (if ). The
situation is different, if a nonzero supercurrent is present. In this case the
single-particle spectrum has the form33

and some asymmetry arises (Fig. 13.1b), which leads to a finite value of

13.3.2. Spatially Inhomogeneous Kinetic Equation

To describe this phenomenon quantitatively, we will use the general kinetic
equation (3.63), in which the terms proportional to v · k and connected with spatial
inhomogeneity will be important. Our task is to generalize Eqs. (7.30) and (7.41)
for the functions and

As earlier, we will use the Usadel approximation (7.70)

Representing Eq. (7.6) in the form
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and substituting (13.17) into (13.18), we find after angle integration

from which it follows for the “Keldysh component” (cf. Ref. 34; our
normalization differs from that of Schmid):
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Using the relations

which follow from the normalization conditions (7.74) and (7.75), one finds by
analogy with (7.30) and (7.41) the equations:

In the limiting case these equations transform correspondingly to
(7.30) and (7.41); the functions are defined in (7.32) and (7.42). Equations
(13.22) and (13.23) were derived originally by Kramer and Watts-Tobin35 (see also
Refs. 34 and 36).

13.3.3. Influence of Heat Flux

The interaction of electrons with the heat flux is not taken into account in
operators however, these equations may be used to study thermoelectric effects

in superconductors, with some additional assumptions.30 The main issue is that (in
analogy with the normal metal) the temperature gradient creates the gradient of the

The functions and are generally interdependent, as follows from Eqs. (13.12)
and (13.23). Substitution of (13.24) into (13.23) gives the equation for

-function:
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The first term in this equation is responsible for the branch imbalance: as may be
seen, it is proportional to The second term describes the conversion
between the condensate and excitations. The third term represents the electron–
phonon collision integral taking into account the nondiagonal channel.

13.3.4. ''Mutilated" Collision Operator
In Sect. 7.1 we mentioned that the usual relaxation time approximation for this

integral does not conserve the number of particles. The missing term in (7.27) was
restored [see (7.44)] using the gauge transformation rules for the functions and

In this section we will use the “mutilated collision operator” approximation,
introduced by Eckern and Schön37:

Along with the “out-scattering” term (7.38), this approximation contains the
“in-scattering” term in the integral form. Ignoring the dispersion of and in the
vicinity of one can show that the approximation (13.26) conserves the particle
number:

and hence it is compatible with the continuity equation for electrons.

13.3.5.   Calculation of Branch Imbalance Potential

Using the expression for the charge density (8.2) and the neutrality condition
for a superconductor, one may derive from (8.5) a first approximation in analogy
to (8.6):

Substituting (13.28) into (13.26), we obtain Eq. (7.44); this confirms the correctness
of approximation (13.26). Note that in the gauge the quantity coincides

with [cf. (8.6)]. So the equation is valid:

from which it follows [using (13.28) and the relation ] that:
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Utilizing expressions (7.16) to (7.21) for spectral functions (with where
does not depend on and ), assuming the temperature range

and putting oneobtains

Thus we finally arrive at the expression for the gauge-invariant potential:

where is the electrons' transport mean-free-path and

Up to the logarithmic factor, expression (13.32) of Schmid and Schön29 coincides
with that derived by Clarke and Tinkham28 for pure superconductors with a rather
different technique. In the vicinity of it follows that and for fixed
values of the temperature dependence of is governed by the temperature
dependence of

The estimate for agrees with the experiment qualitatively and even quantita-
tively.38 The typical values of (e.g., for tin32) are of on the order of 1 nV at
temperature gradients and This problem is a classic example
of spatially homogeneous branch imbalance in nonequilibrium superconductors.

13.3.6. Branch Imbalance and Thermopower

We will demonstrate now that the value of thermopower in the presence of an
electron-hole population imbalance changes radically. Let us inspect once again
expression (13.7). The influence of external factors may destroy the symmetry of
excitation distributions above and below the Fermi surface, so the first term in (13.7)
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does not vanish. In normal metals in thermodynamic equilibrium, the symmetry
between electron- and holelike distribution functions is maintained by the elec-
troneutrality condition. In nonequilibrium situations (e.g., at the junction interface),
the symmetry may be broken. This leads to the appearance of the electric potential,
which falls off rapidly from the boundary at distances on the order of the Thomas-
Fermi screening length (typically Such a short scale excludes the
possibility of observing branch imbalance in normal metals. The situation is
different in superconductors. In this case there is no problem with electroneutrality:
the charge created in a system of normal excitations is compensated by the charge
of superfluid electrons. (Because of this, even spatially homogeneous branch
imbalance states are possible, as we confirmed in the previous section.) Consider
now expression (13.7) for j, which is valid not only for normal metals, but also for
normal components of current in gapless superconductors. For nonequilibrium
distribution functions, the first term in (13.7) does not vanish and gives39

This expression does not contain the parameter (cf. 13.8, 13.10), which
usually implies very small values of S for normal metals in thermodynamic
equilibrium.

We should draw attention here to the work40 (see also41–43) which extends the
earlier arguments by Pethick and Pines. The conclusion is that the value of and
consequently of S(s) (see 13.10) will be strongly enhanced in superconductors with
anisotropic gap. The origin of this enhancement is the asymmetry between relaxa-
tion times of electrons and holes, which is caused by their scattering on normal
(non-magnetic) impurities. In calculations this effect is seen only beyond the first
Born approximation (as for the Kondo-mechanism in case of scattering on magnetic
impurities mentioned in Sec. 2.1). The increase in S vanishes at and
but is expected to be orders of magnitude larger than usual S(s) at intermediate
temperatures For isotropic gap superconductors the effect is absent in
the BCS model, but should exist, though small, for real superconductors with finite
values of imaginary part in superconducting density of states (cf. 7.16, 7.19–7.21
at By the best of our knowledge, the Pethick-Pines mechanism has not yet
been confirmed experimentally. One of the possible ways is to investigate the
“convective” contribution to the thermal conductance in superconductors (see
details in Ref. 43).

13.3.7. Thermopower in Optical Pumping

For finite-gap superconductors, more general formulas of Sect. 13.1 should be
used and the kinetic equation must be involved to find the functions n for each
problem. For instance, in Sect. 8.1, a thin superconducting film under the action of
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electromagnetic radiation was considered. Confining ourselves to the case
(here is the modulus of the order parameter), we obtain [in analogy to

(8.17)] the expression:

where and are given by (5.22), and is the same as in (5.28). This
result must be substituted into the appropriate term of (13.9). Subject to (13.36),
after partial integration in (13.9) and keeping only the most important terms, we
find in the BCS limit:

Thus electromagnetic radiation leads to a nonequilibrium contribution to
differential thermopower, which diverges in the BCS approximation. Removing the
divergence by introducing the inelastic scattering rate one obtains44

The physical essence of (13.38) is rather transparent. When the temperature gradient is
applied to the metal (which was initially in equilibrium), the single-particle excitations
diffuse from the hot to the cold end. The approximate similarity of the kinetic
characteristics of electron- and holelike excitations having charges of opposite sign
leads to effective cancellation of their contributions to thermopower. The external
electromagnetic perturbation breaks the symmetry between electron and hole
populations, increasing the thermopower.
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14

Vortices and Thermoelectric Flux

14.1. VORTEX ORIGINATION BY A MAGNETIC FIELD

Consider a superconducting half-space in an external magnetic field
parallel to the interface. With increasing, the vortices originate at the surface
(i.e., the filamentlike region inside the superconductor appears, where the order
parameter is suppressed, with a localized magnetic field and circular currents

flowing around this region). A detailed description of the behavior of vortex line
structure is possible by using the complete set of nonlinear Ginzburg–Landau
equations. However, the solution of this problem is known at present only for the
case where x is the distance from the vortex center to the surface and

is the coherence length. We will assume so that the influence of the
surface on the order parameter behavior is negligible; if only qualitative
estimates are possible.

14.1.1. Bean–Livingston Barrier

The existence of a surface barrier impeding penetration of magnetic vortices
into Type II superconductors in an external magnetic field was first analyzed by
Bean and Livingston1 and then investigated in many experimental and theoretical
works.2–6 The behavior of a magnetic flux line near the plane surface of a semi-in-
finite superconductor in an external magnetic field parallel to the interface has
been studied, and, in particular, an expression for the free energy of a superconduc-
tor containing a vortex has been obtained with a view to describing a plane surface
barrier. (The problem of a surface barrier for circular flux lines in a hollow
superconductor with an azimuthal magnetic field applied has also been addressed
recently.7,8) We will reproduce the main results presented in Refs. 1–6, but first a
more general expression will be derived which describes the surface barrier for a
hollow superconducting cylinder of finite thickness in an external magnetic field,
taking into account the flux quantization effect.

365
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14.1.2. Hollow Superconducting Cylinder

Let us consider a hollow superconducting cylinder (Fig. 14.1) with an inside
radius and an outside radius the field outside the cylinder being and the
field inside There is a magnetic flux line inside the superconductor carrying one
flux quantum where (the vector is aligned with the z-axis; its
z-projection assumes the values and 0; and the fields and are also
parallel to the z-axis). The flux line is at distance x from the cavity surface, with
a radius The field corresponds to m flux quanta (with direction trapped
in the cavity. In order to describe the process of penetration of vortices from the
outer to the inner side of the cylinder, we need to find the Gibbs free energy (or
thermodynamic potential) of the system given in Fig. 14.1.

We start with the energy conservation law in a superconductor:

when the change in the energy during time is due to the heat dissipated in
the superconductor and electromagnetic energy transmitted through the inside

and outside surfaces of the sample. The vortex has a normal core, which
is modeled by a void with a radius containing one flux quantum The
field on the vortex axis is denoted by In the limit the field
coincides with the magnetic induction i.e., the real field on the vortex axis.

Using formulas like

and the Gauss theorem

one can replace the surface integrals in Eq. (14.1) by volume integrals. We also use
the Maxwell equations

where E and B are the electric and magnetic fields in the superconductor, and H
(i.e., and ) are the unscreened (unlike the magnetic induction B) magnetic
fields in a vacuum. The H fields in Eq. (14.1) are constant on the surface which
applies to all cylindrical surfaces whose cross sections are defined by curves of the
second order, not just to the circular cylinder shown in Fig. 14.1.
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Using the inequality where T= const is the sample temperature and
S is its entropy, and introducing the superconductor free energy we
transform Eq. (14.1) to the form where the Gibbs free energy C is expressed
by (cf. Refs. 9–11):

Here is the total sample volume, is the interior cavity volume, and
is the superconductor volume, while the volume of the normal core of a vortex

In deriving Eq. (14.5), we have assumed that the external field is fixed,
but the field in the cavity is variable (it could depend,

for example, on the temperature or on the vortex distance x to the surface; only the
number m of trapped magnetic flux quanta in the cavity is fixed, i.e., the magnetic
fluxoid is quantized). Thus, any changes in the system lead to a decrease in the
Gibbs free energy provided that T and are maintained constant in time.

The superconductor free energy is expressed through the standard
Ginzburg–Landau functional:
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where is the free energy of a normal metal in a zero magnetic field; and are
the temperature-dependent parameters that determine the thermodynamic critical
magnetic field of a massive superconductor, and are
the charge and mass of a Cooper pair; is the complex order parameter;

is its phase; and A is the vector potential of the electromagnetic field.
The variational equation yields, as usual (cf. Sect. 1.2), the mag-

netic field in the system:

The boundary conditions on the inside and outside surfaces of the superconductor
are

where the field is fixed, and the fields in the cavity, and on the vortex axis,
must be calculated as a function both of the number m of magnetic flux

quanta in the cavity and the distance x to the axis of the vortex .

14.1.3. General Consideration of Gibbs Free Energy

The system energy is measured with respect to its value in the normal state
(when ). Let us express the Gibbs free energy as where is
the free energy of the normal state; in addition, and

Equation (14.5) can be transformed, using Eqs. (14.6) to (14.8) (see similar
calculations in Ref. 11) to

where corresponds to the condensation energy of the system.
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The phase in Eq. (14.10) (unlike that in Ref. 11) has not one but two
topological singularities owing to two doubly connected regions, and shown
in Fig. 14.1. In this connection, the phase as a function of a coordinate can be
expressed as

where r is the integration point in Eq. (14.10) (we assume that holds); is
the radius vector connecting the center of the cavity with the point r; is the
radius vector connecting the vortex center with the point r; is the angle at which
point r is seen from the cavity center; and is the angle at which this point is seen
from the vortex center. The phases in Eq. (14.12) satisfy the following conditions:

where m is an integer; is an arbitrary closed path around the cavity
but not encircling the vortex is an arbitrary closed path around the vortex,

but not encircling the cavity; and is a closed path encircling both and
From curl B and the formula curl which applies to all

functions the second integral in Eq. (14.10) can be transformed, using
Eqs. (14.2), (14.3), and (14.12), to

where is the cylinder height (in what follows, ); is a closed path on the
inside surface is a path encircling the vortex; and is a closed path on the
outside cylinder surface.

The field B(r) in the superconductor, the field on the vortex axis, and
the field in the cavity are functions of the vortex coordinate x. This dependence
will be made explicit: B(r, x), and As a result, the Gibbs free energy
(14.10) is transformed, taking into account Eq. (14.13), to

To consider in a unified way all the possibilities of the magnetic flux direction in a
vortex the number in Eq. (14.15) is written formally as a vector that
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is directed along the and that may acquire three values, (analogously
for m and other vectors).

This equation is universal, since it has been derived from Eqs. (14.1), (14.5),
and (14.10) using identities. It is exact if applied to superconductors defined by
cylindrical surfaces whose cross sections are second-order curves. Equations
(14.1 1) and (14.15) do not demand that If holds, Eq. (14.15)
yields the Gibbs free energy of circular11 and elliptical12 hollow cylinders, and at

it yields the Gibbs free energy of a superconducting plate9 and of a solid
circular cylinder10 in an external magnetic field

14.1.4. In-Plate Penetration

The exact equation (14.15) expresses the free energy of a hollow superconduc-
tor containing a flux line in terms of the fields and The field
in the superconductor, the field in the cavity, and the field on the vortex
axis are functions of the vortex position x with respect to the cavity surface. These
fields are derived from Eqs. (14.7) and (14.8) with boundary conditions (14.9). This
derivation can be done analytically only in the case , and this condition
is assumed hereafter. This approximation is feasible if the magnetic field is
sufficiently weak (the region near the vortex axis is considered separately).

First let us consider an isolated vortex in an infinite superconductor. The field
with respect to the vortex axis is derived from Eq. (14.7) and expressed

by the equations [the field around an isolated vortex, is denoted by 2,3]

where and are modified Bessel functions of the second kind,
is the magnetic field penetration depth, and (1.59). For
the function drops exponentially. For the function has a

logarithmic singularity, so Eq. (14.16) does not apply to the field h near the vortex
axis

A more accurate analysis taking into account the equation for the order
parameter indicates4,5 that Eq. (14.16) holds for distances down to
where is the coherence length, and is the Ginzburg–Landau
parameter for a Type II superconductor. In the range of distances the
amplitude of the order parameter drops; as As a result, the field
h(0) on the vortex axis is finite and equals approximately twice the first critical field

which corresponds to the onset of vortex penetration into the superconductor:
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The expression for in Eq. (14.17) holds for whereas at smaller this
formula is quite inaccurate.4 Note that Eq. (14.17) has been derived taking into
account the gradient of the order parameter near the vortex axis.1–6 In the following
paragraphs we will use Eq. (14.16) for assuming and taking into
account Eq. (14.17) for

The field at some point in a semi-infinite superconductor generated
by a vortex at distance from a plane boundary is calculated using the
mirror-reflection technique as a sum of two solutions of Eq. (14.16) for the vortex

at point and its mirror reflection [the antivortex ] at with respect to the
boundary:

We have added the index to the field B to indicate that this field is generated by
the vortex. Here is the radius vector connecting the center of the vortex with
the observation point and is the radius vector connecting the center of the
antivortex with the observation point where 2x is the vector
connecting the centers of the vortex and antivortex and is perpendicular to the
superconductor boundary). It may be shown that at any point on the interface
between the superconductor and vacuum the f ie ld sa t i s f ies

as follows from Eq. (14.19).
If there is a certain external field on the interface an exponentially

decaying function should be added to Eq. (14.19). In this case, the
condition is satisfied. By setting and in Eq. (14.19)
(the point is on the vortex axis), we obtain at the axis of the vortex
at distance from the interface:

For a superconducting plate of a finite thickness d in an external magnetic field
the solution is expressed as a sum of repeated mirror reflections from

the two interfaces. If one can take into account only the nearest reflections:

[Note that since both these functions determine the field on the
vortex axis.] The solution (14.21) satisfies Eqs. (14.7) and (14.8), and the boundary
conditions
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moreover, if
The total magnetic flux in the system is the sum of two terms:

where is the flux without a vortex and is the flux associated with the
vortex. The latter decreases as the vortex approaches an interface:

so the vortex placed on any interface does not contribute to the total flux in a plate,
since

The Gibbs free energy of a superconducting plate containing a vortex for
(or ) is derived from Eq. (14.15):

As a result, we derive from Eq. (14.25), with due account of Eqs. (14.21) and
(14.24),

where is the Gibbs free energy of the plate without vortices,9 and is the
contribution due to the vortex. Equation (14.26) is a generalization of the result
presented in Ref. 1 and 2 for a plate with a finite thickness

Note that when and it follows from Eq. (14.26) that
therefore the equilibrium critical field can be defined as When

holds, a vortex added to the system does not change the total energy:
for i.e., the vortex inside the superconductor is in thermodynamic

equilibrium.
The behavior of the function defined by Eq. (14.26) is illustrated in Fig.

14.2. The surface barrier vanishes when the condition

is fulfilled, from which the threshold field (i.e., the maximum “superheating”) is
derived using Eqs. (14.16) and (14.17):



SECTION 14.1. VORTEX ORIGINATION BY A MAGNETIC FIELD 373

where is the thermodynamic critical field of the superconductor. When
vortices should move from the interface into the superconductor interior.

14.1.5. Penetration into a Hollow Cylinder

The Gibbs free energy of a hollow cylinder containing a vortex is determined
by the general formula (14.15), which requires the total magnetic flux the
field in the cavity, and the magnetic field on the vortex axis. These
parameters are usually determined using the mirror-reflection method, but in the
case of a hollow cylinder of arbitrary dimensions it is difficult to find an exact
solution like (14.19) because of the surface curvature. In the following paragraphs
we consider the case of a circular cylinder characterized by radii and with a
large cavity radius: This allows us to neglect the effect of the surface
curvature and use the formulas for the field generated by a vortex in the case of a
plane interface.

When the total magnetic flux is calculated using Eq. (14.23) (the integration
is performed over the entire cross section of the sample, including the inner cavity),
one should take into account that, unlike the case of Eq. (14.24), the flux associated
with a vortex is now
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since only the fraction of the flux dissipates into the environment,
whereas the other fraction which also dissipates into the environment in
the case of a planar plate, now remains in the inner cavity and contributes to the
trapped field.

The field in the cavity is a sum of the field in the absence of the vortex
and added by the vortex:

The field corresponds to m flux quanta contained in the cavity and is
expressed as follows11:

where and are modified Bessel functions, and
The factors and in Eq. (14.32) are functions of temperature and system
dimensions, and describe shielding properties of a superconducting cylinder of a
finite thickness. In the specific case the shielding factor

at all realistic temperatures, and the factor is exponentially small. In the
limiting case of a temperature very close to when and the
factors and . Thus, the shielding factor in Eq. (14.32) accounts
for the fact that the trapped flux as i.e., as the cylinder
becomes transparent for a magnetic field, although the number m of trapped flux
quanta remains fixed. In this case We assume that the condition
holds, therefore and

The additional flux in the system and the additional field in the cavity
due to the vortex are

respectively.
When using Eq. (14.15), one must know the total flux in the system given by

Eq. (14.23), the field in the cavity given by Eq. (14.31), and the field
on the vortex axis. Instead of Eq. (14.21), the field on the vortex axis is

de te rmined now by the equa t ion [here, as in previous ca lcula t ions ,
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Using Eqs. (14.30) to (14.35), let us express the Gibbs free energy (14.15) as
where is the system energy in the absence of vortices11:

and is the energy due to the vortex:

For we have i.e., a vortex placed on the outside surface does not
affect the system’s energy. If the vortex is placed on the inside surface this
means, in fact, that the system contains quanta in the cavity. Therefore the
following condition should hold:

where is the Gibbs free energy of the system without vortices. It can be shown
that this condition is satisfied exactly:

Note that a vortex placed on the inside surface is just a current encircling
the cavity and maintaining an additional flux quantum.

The behavior of the function given by Eq. (14.37) in the case of a hollow
cylinder with a wall thickness d is illustrated by Fig. 14.3a (we consider the case
of ). The barrier preventing penetration of a vortex from the cavity into the
superconductor vanishes when the condition is satisfied,
i.e., with due account of Eq. (14.17),

for which we determine either the maximum number of flux quanta that can be
trapped in the cavity at a given temperature:
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or the maximum “overheat” temperature above which a field corresponding to
m trapped flux quanta cannot be confined in the cavity:

At a flux quantum should be ejected from the cavity (Fig. 14.3b, curve 3).

14.2. VORTEX ORIGINATION BY THERMOELECTRIC CURRENT

The giant thermoelectric effect observed in hollow bimetallic cylinders13,14

was investigated previously15 by solving a model problem of a homogeneous
cylinder carrying a normal current circulating around a cavity to simulate the real
thermoelectric current (see Fig. 14.1). We now generalize the formulas of the
preceding section to include the thermoelectric current The energy conservation
is expressed in this case (we assume that the external field is zero) by
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where the last term on the right is the work done by the electric field
on the given current We assume that this current flows in

the plane perpendicular to the cylinder axis, where
The amplitude of total current around the cavity in the normal state is

and the related field in the plane

14.2.1. Free Energy Barrier

The Gibbs free energy of the system (provided that and )
is expressed similarly to Eq. (14.5):

where is given by Eq. (14.6), and the variation yields the equation

where is expressed by Eq. (14.8). Equation (14.44) is easily transformed to a form
similar to Eq. (14.10) (recall that

where is the vector potential in the normal state, i.e., and, using
Eqs. (14.12), (14.13), and (14.45), to the form similar to Eq. (14.15):

where Equation (14.47) is exact, but
after substituting and one has to use approximate expressions simi-
lar to those of the mirror-reflection method.

As a result, we obtain where is identical to
the expression in Ref. 15:

where the field in the cavity containing m flux quanta is given by15
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the shielding factor is
By setting and we obtain

The contribution to the Gibbs free energy due to the vortex is

For x = d  we  have as expected. At x = 0 the cond i t i on
is satisfied exactly.

The expression for has the form

Comparison with Eq. (14.40) demonstrates that the right-hand side of Eq. (14.53)
contains the additional term which can be either positive or negative,
depending on the direction of current and field generated by this current.

The behavior of the Gibbs free energy as a function of the thermoelectric
current when the cavity contains the largest possible magnetic flux (Eq. 14.41)
is illustrated by Fig. 14.4. Curve 1 corresponds to the case when
and the derivative (Eq. 14.40); curves 2 and 3 correspond to when

and and curve 4 to when and
This means that in the presence of a thermoelectric current generating magnetic

field in the same direction as the captured magnetic flux in the cavity (Eq.
14.41), the derivative since The force acting on the vortex

is directed toward the cavity at Thus the thermoelectric
current effectively blocks the trapped magnetic flux in the cavity and prevents
ejection of magnetic vortices from the superconductor (curve 3 in Fig. 14.4), which
would take place at higher temperatures in the absence of the thermoelectric current

(Fig. 14.3b).
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If the current is directed oppositely to (curve 4 in Fig. 14.4), then
the trapped magnetic flux cannot be confined in the cavity; and flux

lines should be formed and ejected from the superconductor. Whether this predicted
effect really takes place can be determined experimentally.

Note also that the function has a minimum at (curve 2 in Fig.
14.4). This means that a vortex can occupy a metastable position at some distance
from the cavity. Here we do not discuss this effect in detail.

14.3. VORTEX–ANTIVORTEX PAIR GENERATION

Now compare the behavior of the vortex and antivortex (i.e., a vortex contain-
ing the magnetic flux of the opposite sign) inside a superconductor with a thermo-
electric current It follows from Eqs. (14.52) and (14.53) that and

in the case of a vortex and in a sufficiently strong
thermoelectric field (curves 3 and 4 in Fig. 14.5a). This means that a force
directed toward the cavity acts on a vortex near the inside surface. In the case of an
antivortex we have and i.e., the driving
force is directed from the cavity (curves 3 and 4 in Fig. 14.5b). Thus, if there is a
vortex–antivortex couple, its components can be driven apart by thermocurrent
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under certain conditions. This effect can lead to important consequences, which are
discussed in this section.

14.3.1. Two-Vortice Free Energy

Here we calculate the Gibbs free energy when the system shown in Fig. 14.1
contains two vortices, and located along the radius at distances

and from the cavity surface Using the same technique as in the preceding
section, one easily obtains an exact formula that is a generalization of Eq. (14.47):

Magnetic fields on the vortex axes and are determined using the mirror-re-
flection technique:
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where

The functions and are introduced to take into account both the
intrinsic fields of each vortex and the fields generated by the counterpart vortex, as
well as the contributions of the nearest mirror reflections from both interfaces

and The field around each vortex is described by the Bessel functions
and for but at the vortex axis we set and

in accordance with Eq. (14.17).
For convenience let us write the expressions for all typical fields in the problem:

The field inside the cavity is

where is defined by Eq. (14.32), and the increase in the cavity field due to the
vortices and is

(here, as previously, and ).
By expressing as where is defined by Eq.

(14.48), we obtain an equation for the contribution of the vortices:
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Here and
The free energy (14.62) satisfies the necessary conditions, namely, at

the expression for coincides with Eq. (14.52), if (i.e., a vortex
and antivortex are contained in the superconductor at the same time),

for all The condition indicates that
nothing happens at this point; that is, the presence of a vortex and antivortex at one
point does not change the system’s energy because the fields generated by them
cancel out and therefore do not affect the order parameter of the
superconductor. This means that a vortex and antivortex pair can be generated
through fluctuations, and this process does not require a supply of energy. But when
a vortex and antivortex are being separated, the forces acting on them are directed
oppositely. The vortex and antivortex are attracted to each other,2,3,6 whereas a
thermocurrent tends to separate them by driving the vortex to the cavity and the
antivortex outside because the two last terms on the right-hand side of Eq. (14.62)
have opposite signs for The function in Eq. (14.62) reflects the
presence of countervailing factors, such as interaction between the vortices and
between the vortices and the cavity surface.

14.3.2. Vortex–Antivortex Separation

On analyzing function (14.62), we should determine the point at which
the variation i.e., when the barrier preventing separation of vortices
vanishes. One can verify that less energy is needed when a vortex and antivortex
pair is generated on the inside surface It is rather obvious that
the inside surface is the best place for the beginning of a vortex–antivortex
separation since the field generated by thermocurrent is largest there and
acts on the vortex and antivortex in opposite directions. The resulting antivortex is
driven outside and carries away magnetic flux whereas the vortex remains on
the cavity surface Thus, if the system previously contained magnetic flux

where is the total magnetic flux inside the circle with radius
then, after the antivortex crosses the outside surface the system will contain the
magnetic flux When the vortex axis crosses the inner boundary

it will transfer all this flux to the inner surface and all its currents will transform
to the currents encircling the cavity, i.e., the vortex has turned into an additional
current flowing around the cavity. No singularity in the order parameter will
remain. The behavior of the function at different temperatures is illustrated
by Fig. 14.6.

By substituting        and into Eq. (14.62), we determine the deriva-
tive
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The parameter a in Eq. (14.46) is a function of temperature and can be expressed
in a compact form as

Here we have used the formulas

The reduced temperature t ranges between 0 and 1.
It follows from Eqs. (14.46) and (14.47) that as the parameter

a increases and the condition can always be satisfied. This condition
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determines at which the barrier to separation between the vortex and antivortex
vanishes, because at the attractive force between the vortex and antivortex
equals the force resulting from the thermocurrent driving them apart.

14.3.3. Threshold Temperature of Separation

Taking into account Eq. (14.47), we can write the equation for the threshold
temperature as

where This cubic equation can be solved using the Cardano
formulas. In particular, for we have the temperature of transition from level

to i.e., the temperature of the first jump in m:

For we have or

The function m(t) can be easily derived from Eq. (14.48) by taking the integral
part of m:

i.e., the total magnetic flux in the system at point of transitions
has been found as a function of temperature. For the derivative

we have

Note that as i.e., the asymptotic limit is described by the formula
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14.3.4. Comparison with Experiment and Discussion

As mentioned earlier, Van Harlingen et al.13,14 discovered that in hollow
bimetallic superconducting samples with a temperature gradient, the total magnetic
flux was anomalously large—several orders of magnitude higher than theoretical
predictions. In fact, Eq. (14.49) indicates that the field in the cavity is a sum of
the field due to the originally trapped magnetic flux and the field generated
by the thermocurrent In superconductors, the field due to the thermocurrent is
suppressed by the factor in comparison with normal metal,
because in a bulk superconductor the normal current and superconducting current
cancel each other ,16 i.e., the Meissner effect occurs (see Ref.17 for
details). The resulting magnetic flux should be about whereas the
measured fluxes13 were on the order of tens and hundreds of flux quanta
There is no generally accepted interpretation of this “giant” thermoelectric
effect. The hypothesis proposed in Ref. 15 and later developed in Refs. 18–23,
which suggested that the “giant” effect can be interpreted in terms of jumps in
the trapped magnetic flux due to transitions between quantum states with the fluxes

and induced by the thermocurrent, raised serious objections. Namely,
the quantum number m in the hollow superconductor is a topological invariant24

and can be changed only by introducing an additional vortex through the outside
sample surface. But if the external field is zero, there exists a barrier to penetration
of vortices from the outside interface (Fig. 14.4), and a vortex cannot be generated
inside the sample for topological reasons. It was suggested in Ref. 15 on an intuitive
basis that there should be some mechanism for increasing the quantum number m
without a real transfer of a flux quantum by a vortex, but with the direct generation
of additional current around the inner cavity. This hypothesis, however, was not
based on solid ground because the corresponding mechanism had not been substan-
tiated. However, the mechanism of a vortex–antivortex pair generation, described
in Sect. 14.3, justifies the hypothesis suggested by Arutyunyan and Zharkov15.

In fact, if a vortex–antivortex pair is generated at some point inside the
superconductor, the quantum number m (i.e., the total flux ) of the system
does not change, so the topological laws are not violated. If the vortex axis remains
on the cavity surface the currents associated with the vortex encircle the
cavity and contribute to the internal field i.e., the vortex is converted to a current
encircling the cavity. As the antivortex moves away from the cavity surface

a region with an oppositely directed field is formed near its axis, and
holds on its axis (Note that a detailed description of the field configuration and
order parameter near the cavity surface for would require detailed calcula-
tions of the vortex structure like those discussed in Refs. 4 and 5). As the antivortex
moves away from the interface, carrying the negative flux, the field in the cavity
gradually increases, which indicates the generation of an additional current encir-
cling the cavity. However, the total magnetic flux in the system remains constant
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and only when the antivortex approaches the outside surface within a
distance approximately equal to and its flux gradually passes to the external
space does the total flux become The quantum number m of the
system jumps from m to at the moment when the axis of the antivortex crosses
the outside surface (in accordance with topological considerations) and the system
would arrive at a state with quanta. Thus the proposed mechanism allows
the system to transfer to a higher magnetic level through generation of a vortex–
antivortex pair and its separation by thermoelectric current. As a result, we have a
physical picture that probably describes the “giant” thermoeffect observed experi-
mentally.

Proceeding to a more substantial discussion of experimental results, 14 note that
Eq. (14.71) with the total flux in the system directly indicates a “giant”
effect since the additional flux in the system due to each newborn fluxoid is
two orders of magnitude higher than the value predicted by a simple

theory.17 The total flux measured as a function of temperature14 is described near
by the formula which is in agreement with Eq. (14.72) for

For lower the right-hand side of Eq. (14.72) is a flatter function of
temperature because of the large constant This constant also determines the large
height of the barrier for a single vortex introduced in a superconductor in the
Bean–Livingston theory.1 Note, however, that this theory applies only to the case
of a superconductor with a mirror-smooth surface (when the mirror-reflection
technique can be used). If the surface is rough, the measured threshold field25 is
considerably smaller than the theoretical value,1 which indicates a smaller contri-
bution of the last term on the right-hand side of Eq. (14.72) and a wider temperature
range, in which the law holds. Moreover, Fig. 14.5 indicates that the
barrier for vortices on the outside surface, where the presence of residual magnetic
fields may be important, decreases with increasing (i.e., with the temperature of
the hotter junction, Such effects should be also taken into account in
comparing the experiment and theory. Note also that the simplified uniform model
used above does not allow us to compare quantitatively the calculations of Sect.
14.3 and experimental results15; therefore, only qualitative comparison is possible.

First let us estimate the parameter in Eq. (14.47), which determines the
magnitude of the effect. By expressing the coefficient b as where is the
thermoelectric coefficient and is the resistivity, and using published data26 for the
constants and we find for pure superconductors. Van Harlingen13

used bimetallic samples of pure In and Pb, but the parameters of the junction (alloy)
were not known. This may be an important point, since a vortex–antivortex pair
would be generated, most probably in the junction (because it is a weak link in the
system) with large and whereas the thermoelectric current and hence the
parameter are determined by characteristics of pure bulk superconductors, where
is usually small. As a result, the choice of the system parameters is somewhat arbitrary.
Taking and
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we derive from Eq. (14.49) at which the first jump in the total flux occurs, namely
An anomalously large flux was detected in experiments13 at smaller

but this could have various causes. For example, the samples used in
experiments13 were toroids with rectangular cross sections; therefore the geometric
factors affecting the generation of vortices were notably different from the case of
an infinite cylinder. Thus, the presence of a sharp angle at the interface of two
superconductors may lead to a much smaller effective radius in Eq. (14.49) and
correspondingly diminish A smaller also produces the same effect and the
possibility of vortex generation in Type I superconductors with a small cannot be
excluded.

The effects of surface roughness and the uncertainty of parameters at the
junctions were mentioned earlier. As follows from the analysis reported by
Mkrtchyan et al.,27 the height of the barrier to vortex penetration on an interface
between two superconductors with very different significantly diminishes. Note
also that a vortex–antivortex pair can be generated, not in the form of two
antiparallel flux lines, but as a closed ring of a finite dimension, like a vortex ring
in a superfluid helium,28,29 which takes less energy (see also Ref. 30). All these
factors can have a considerable effect on the height of the barrier to pair formation.

Thus the theory presented have suggested a possible interpretation for the
“giant” thermoelectric effect,13 although additional investigation taking into ac-
count real experimental conditions is needed. If the above theory is principally
correct, then magnetic hysteresis effects should be observed. Indeed, the vortices
are generated when the temperature difference increases, thus increasing
the number of flux quanta trapped inside the cavity. If the temperature difference
diminishes, the number of trapped flux quanta will not change. The experimental
search for such a temperature magnetic pump effect seems warranted.

We note in conclusion that the proposed mechanism of magnetic flux genera-
tion may be relevant to the problem of the origin of the superhigh magnetic fields
around the rotating neutron stars, whose high-density matter may be in a supercon-
ducting or superfluid state.31
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Self-consistency equation: see Energy gap
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Superconductors
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high-temperature, 26, 175, 252, 321
usual, 26
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Superheating
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magnetic field, 16
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time-dependent

finite gap, complete form, 160, 172, 173
dimensionless, 216
nonsingular representation, 220

Thermopower
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superconductors, normal component, 351
superconductors, incomplete cancellation, 353
superconductors, optical pumping, 360, 361

Tinkham-Clark potential, 195, 260; see also
Gauge invariant potential

Tunnel frequency, 256

Usadel approximation, 165

van der Waals isotherm, analogy with, 334

Wall-like solutions, 307; see also Normal
metal-superconductor, boundary

motion

Zitterbewegung, 5
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